
Distribution Category:Mathematics and ComputerScience (UC-405)ANL-94/6ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439-4801OTTER 3.0 Reference Manual and GuidebyWilliam W. McCuneMathematics and Computer Science DivisionJanuary 1994This work was supported by the O�ce of Scienti�c Computing, U.S. Department ofEnergy, under Contract W-31-109-Eng-38.

ContentsAbstract 11 Introduction 11.1 What Otter Isn't : 21.2 History, New Features, and Changes : : : : : : : : : : : : : : : : : : 31.3 Useful Background : 42 Outline of Otter's Inference Process 43 Starting Otter 64 Syntax 74.1 Comments : 74.2 Names for Variables, Constants, Functions, and Predicates : : : : : : 74.3 Terms and Atoms : 84.4 Literals and Clauses : 94.5 Formulas : 94.6 In�x, Pre�x, and Post�x Expressions : : : : : : : : : : : : : : : : : : 104.7 Whitespace in Expressions : 124.8 Bugs, etc., in Input and Output of Expressions : : : : : : : : : : : : 134.9 Examples of Operator Declarations : : : : : : : : : : : : : : : : : : : 135 Commands and the Input File 145.1 Input of Options : 145.2 Input of Lists of Clauses : 145.3 Input of Lists of Formulas : 155.4 Input of Lists of Weight Templates : : : : : : : : : : : : : : : : : : : 155.5 The Commands lex, skolem, and lrpo multiset status : : : : : : 165.6 Other Commands : 176 Options 176.1 Flags : 176.1.1 Main Loop Flags : 17iii

6.1.2 Inference Rules : 186.1.3 Paramodulation Flags : 196.1.4 Flags for Handling Generated Clauses : : : : : : : : : : : : : 196.1.5 Demodulation and Ordering Flags : : : : : : : : : : : : : : : 206.1.6 Input : 226.1.7 Output Flags : 236.1.8 Indexing Flags : 236.1.9 Miscellaneous Flags : 246.2 Parameters : 256.2.1 Monitoring Progress : 256.2.2 Placing Limits on the Search : : : : : : : : : : : : : : : : : : 256.2.3 Limits on Properties of Generated Clauses : : : : : : : : : : : 256.2.4 Indexing Parameters : 266.2.5 Miscellaneous Parameters : 267 Demodulation 278 Ordering and Dynamic Demodulation 298.1 Ad Hoc Ordering : 308.1.1 Term Ordering (Ad Hoc) : 308.1.2 Orienting Equalities (Ad Hoc) : : : : : : : : : : : : : : : : : 318.1.3 Determining Dynamic Demodulators (Ad Hoc) : : : : : : : : 318.1.4 Lex-dependent Demodulation (Ad Hoc) : : : : : : : : : : : : 328.2 LRPO : 328.2.1 Term Ordering (lrpo) : 328.2.2 Orienting Equalities (lrpo) : : : : : : : : : : : : : : : : : : : 338.2.3 Determining Dynamic Demodulators (lrpo) : : : : : : : : : 338.2.4 lrpo-dependent Demodulation (lrpo) : : : : : : : : : : : : : 338.3 Knuth-Bendix Completion : 339 Evaluable Functions and Predicates ($SUM, $LT, : : :) 359.1 Using More Natural Expressions for Evaluation : : : : : : : : : : : : 389.2 Evaluation Examples : 39iv

10 Weighting 4010.1 Weighing Clauses and Literals : 4110.2 Weighing Atoms and Terms : 4111 Answer Literals 4212 The Passive List 4213 Completeness and Soundness 4213.1 Completeness : 4213.2 Soundness : 4314 Interaction during the Search 4315 Output and Exit Codes 4416 Controlling Memory 4617 Fringe Features 4717.1 Autonomous Mode : 4717.2 The Hot List : 4817.3 Linked UR-Resolution : 4917.4 Conditional Demodulation : 4917.5 Special Unary Function Demodulation : : : : : : : : : : : : : : : : : 4917.6 Ancestor Subsumption : 5017.7 Reducing max weight on the Fly : 5117.8 The Invisible Argument : 5117.9 Floating-Point Operations : 5117.10Foreign Evaluable Functions : 5217.11Sequent Notation for Clauses : 5217.12The Inference Rule gL for Cubic Curves : : : : : : : : : : : : : : : : 5318 Limits, Abnormal Ends, and Fixes 5419 Obtaining and Installing Otter 55v

References 55

vi

OTTER 3.0 Reference Manual and GuidebyWilliam W. McCunemccune@mcs.anl.govAbstractOtter (Organized Techniques for Theorem-proving and E�ective Re-search) is a resolution-style theorem-proving program for �rst-order logicwith equality. Otter includes the inference rules binary resolution, hy-perresolution, UR-resolution, and binary paramodulation. Some of itsother abilities and features are conversion from �rst-order formulas toclauses, forward and back subsumption, factoring, weighting, answerliterals, term ordering, forward and back demodulation, evaluable func-tions and predicates, and Knuth-Bendix completion. Otter is coded inC, is free, and is portable to many di�erent kinds of computer.1 IntroductionOtter (Organized Techniques for Theorem-proving and E�ective Research) is aresolution-style theorem prover, similar in scope and purpose to the aura [22] andlma/itp [15] theorem provers, which are also associated with Argonne. Otterapplies to statements written in �rst-order logic with equality. The primary designconsiderations have been performance, portability, and extensibility. The program-ming language C is used.Otter features the inference rules binary resolution, hyperresolution, UR-resolution, and binary paramodulation. These inference rules take a small set ofclauses and infer a clause; if the inferred clause is new, interesting, and useful, it isstored and may become available for subsequent inferences.Other features of Otter are the following:1

� Statements of the problem may be input either with �rst-order formulas orwith clauses (a clause is a disjunction with implicit universal quanti�ers andno existential quanti�ers). If �rst-order formulas are input, Otter translatesthem to clauses.� Forward demodulation rewrites and simpli�es newly inferred clauses with aset of equalities, and back demodulation uses a newly inferred equality (whichhas been added to the set of demodulators) to rewrite all existing clauses.� Forward subsumption deletes an inferred clause if it is subsumed by any ex-isting clause, and back subsumption deletes all clauses that are subsumed byan inferred clause.� A variant of the Knuth-Bendix method can search for a complete set of reduc-tions and help with proof searches.� Weight functions and lexical ordering decide the \goodness" of clauses andterms.� Answer literals can give information about the proofs that are found.� Evaluable functions and predicates build in integer arithmetic, Boolean op-erations, and lexical comparisons and enable users to \program" aspects ofdeduction processes.Although Otter has an autonomous mode, most work with Otter involves in-teraction with the user. After the user has encoded a problem into �rst-order logicor into clauses, he or she usually chooses inference rules, sets options to control theprocessing of inferred clauses, and decides which input formulas or clauses are tobe in the initial set of support and which (if any) equalities are to be demodula-tors. If Otter fails to �nd a proof, the user may wish to try again with di�erentinitial conditions. In the autonomous mode, the user inputs a set of clauses and/orformulas, and Otter does a simple syntactic analysis and decides inference rulesand strategies. The autonomous mode is frequently useful for the �rst attempt at aproof.1.1 What Otter Isn'tSome of the �rst applications that come to mind when one hears \automated the-orem proving" are number theory, calculus, and plane geometry, because these aresome of the �rst areas in which math students try to prove theorems. Unfortunately,Otter cannot do much in these areas: interesting number theory problems usuallyrequire induction, interesting calculus and analysis problems usually require higher-order functions, and the �rst-order axiomatizations of geometry are not practical.(Nonetheless, Art Quaife has proved many interesting theorems in number theoryand geometry using Otter [20, 19].) For practical theorem proving in inductivetheories, see the work of Boyer and Moore [2, 3].Otter is also not targeted toward synthesizing or verifying formal hardware orsoftware systems. See [7, 6] for work in those areas.2

Summaries of other theorem-proving systems can be found in proceedings of therecent Conferences on Automated Deduction (CADE) [23, 9].1.2 History, New Features, and ChangesThere have been several previous releases of Otter|version 0.9 was distributedat CADE-9 in May 1988, version 1.0 was released in January 1989, version 2.0 inMarch 1990, and version 2.2 July 1991. There was also a minor release, version2.2ax, in January 1992.Summary of New Features� In the autonomous mode (Sec. 17.1), the user simply inputs clauses and/orformulas, and Otter decides on inference rules and strategies.� The hot list (Sec. 17.2) can be used to give emphasis to some of the inputclauses. (Suggested by Larry Wos.)� The user can declare function symbols to be in�x with associativity and prece-dence so that expressions can be written in a natural way (Sec. 4.6).� Clauses can be written in sequent notation (Sec. 17.11). (Suggested by ArtQuaife.)� The new evaluable functions include bit string operations (Sec. 9) and oating-point operations (Sec. 17.9).� The inference rule gL builds in a generalization principle for cubic curves (Sec.17.12). (Suggested by R. Padmanabhan.)� The user can write in C his or her own evaluable operations (Sec. 17.10).� Given clauses can be selected interactively (Sec. 6.1.1). (Suggested by BobVero�.)� Ordered hyperresolution (Sec. 6.1.9) has been implemented (suggested by MarkStickel) and is the default.� Some optimizations have been implemented for propositional problems (Sec.6.1.9).� The justi�cation lists for binary resolvents and paramodulants now tell whichliterals or terms were uni�ed to produce the clause (Sec 15).Summary of Changes� Term ordering has been simpli�ed (Sec. 8).� Factoring is now applied also as a simpli�cation rule (Sec. 6.1.4); for example,the clause p(x)|p(a) simpli�es to p(a).3

� Conditional demodulators (Sec. 17.4) are written in a more natural way.� Some of the options cause other options to be changed automatically. Theautomatically changed options can now be overridden.� Setting the ag binary_res causes the ags factor and unit_deletion tobe automatically set.� The ag knuth_bendix causes a di�erent set of options to be changed (Secs.6.1.5 and 8.3).� Multipliers in weight templates are written di�erently (Sec. 10).� The parameter value that indicates \no limit" or \no action" has been changedfrom 0 to �1 for the parameters max_seconds, max_mem, max_given, max_gen,max_kept, max_literals, max_proofs, demod_limit, and report.Bugs in Otter 2.2. The following bugs in Otter 2.2 have been �xed.� Calculation of the level of a proof would sometimes cause Otter 2.2 to hangjust after printing the --- PROOF --- message.� In some cases, Otter 2.2 would crash when doing complicated demodulationduring evaluation of a negative evaluable literal during hyperresolution.� Unit deletion with a unit clause containing an answer literal with variablesnot in the ordinary literal was not handled correctly.� When a multiliteral clause merged into an equality unit and the agdynamic_demod was set, the equality would never become a demodulator.1.3 Useful BackgroundThis manual does not contain an introduction to �rst-order logic or to automateddeduction. We assume that the reader knows the basic terminology including term(variable, constant, complex term), atom, literal, clause, propositional variable, func-tion symbol, predicate symbol, Skolem constant, Skolem function, formula, and con-junctive normal form (CNF), resolution, hyperresolution, and paramodulation. See[25], [4], or [14] for an introduction to automated theorem proving, see [26] for anoverview of the �eld, see [21] and [1] for collections of important papers, and see[24] for a list of outstanding general problems in the �eld.2 Outline of Otter's Inference ProcessOnce Otter gets going with its real work|making inferences and searching forproofs|it operates on clauses and on clauses only. If the user inputs nonclausal�rst-order formulas, Otter immediately generates clauses from them.4

As with its predecessors aura and lma/itp,Otter's basic inference mechanismis the given-clause algorithm, which can be viewed as a simple implementation ofthe set of support strategy [25]. Otter maintains four lists of clauses:usable. This list contains clauses that are available to make inferences.sos. Clauses in list sos (set of support) are not available to make inferences; theyare waiting to participate in the search.passive. These clauses do not directly participate in the search; they are used onlyfor forward subsumption and unit conict. The passive list is �xed at inputand does not change during the search. See Sec. 12.demodulators. These are equalities that are used as rules to rewrite newly inferredclauses.The main loop for inferring and processing clauses and searching for a refutationoperates mainly on the lists usable and sos:While (sos is not empty and no refutation has been found)1. Let given_clause be the `lightest' clause in sos;2. Move given_clause from sos to usable;3. Infer and process new clauses using the inference rules ineffect; each new clause must have the given_clause asone of its parents and members of usable as its otherparents; new clauses that pass the retention testsare appended to sos;End of while loop.The set of support strategy requires the user to partition the input clauses intotwo sets: those with support and those without. For each inference, at least oneof the parents must have support. Retained inferences receive support. In otherwords, no inferences are made in which all parents are nonsupported input clauses.At input time, Otter's list sos is the set of supported clauses, and usable is thenonsupported clauses. (Once the main loop has started, usable no longer corre-sponds to nonsupported clauses, because sos clauses have moved there.) Otter'smain loop implements the set of support strategy, because no inferences are madein which all of the parents are from the initial usable list.The following paragraph tries to answer the frequently asked question \At a cer-tain point, Otter has all of the clauses available to make the inference I want, andone of the potential parents is selected as the given clause|why doesn't the programmake the inference?"Otter's main loop eliminates an important kind of redundancy. Suppose onecan infer clause C from clauses A and B, and suppose both A and B are in listsos. If A is selected as the given clause, it will be moved to usable and inferenceswill be made; but A will not mate with B to infer C, because B is still in sos.We must wait until B has also been selected as given clause. Otherwise, we wouldinfer C twice. (The redundancy would be much worse with inference rules such5

as hyperresolution and UR-resolution that can use many parents.) In general, allparents that participate in an inference must either have been in the initial usablelist or have been selected as given clauses. (This is not true when demodulators areconsidered as parents.)The procedure for processing a newly inferred clause new_cl follows; steps markedwith * are optional.1. Renumber variables.* 2. Output new_cl.3. Demodulate new_cl (including $ evaluation).* 4. Orient equalities.* 5. Apply unit deletion.6. Merge identical literals (leftmost copy is kept).* 7. Apply factor-simplification.* 8. Discard new_cl and exit if new_cl has too many literals or variables.9. Discard new_cl and exit if new_cl is a tautology.* 10. Discard new_cl and exit if new_cl is too `heavy'.* 11. Sort literals.* 12. Discard new_cl and exit if new_cl is subsumed by any clausein usable, sos, or passive (forward subsumption).13. Integrate new_cl and append it to sos.* 14. Output kept clause.15. If new_cl has 0 literals, a refutation has been found.16. If new_cl has 1 literal, then search usable, sos, andpassive for unit conflict (refutation) with new_cl.* 17. Print the proof if a refutation has been found.* 18. Try to make new_cl into a demodulator.-------------* 19. Back demodulate if Step 18 made new_cl into a demodulator.* 20. Discard each clause in usable or sos that is subsumed bynew_cl (back subsumption).* 21. Factor new_cl and process factors.Steps 19{21 are delayed until steps 1{18 have been applied to all clauses inferredfrom the active given clause.3 Starting OtterAlthough Otter has a primitive interactive feature (Sec. 14), it is essentially anoninteractive program. On unix-like systems it reads from the standard input andwrites to the standard output:otter < input-�le > output-�leNo command-line options are accepted; all options are given in the input �le.6

4 SyntaxOtter recognizes two basic types of statement: clauses and formulas. Clauses aresimple disjunctions whose variables are implicitly universally quanti�ed. Otter'ssearches for proofs operate on clauses. Formulas are �rst-order statements withoutfree variables|all variables are explicitly quanti�ed. When formulas are input,Otter immediately translates them to clauses.Function symbols and predicate symbols are sometimes referred to as functorswhen the distinction is not important.4.1 CommentsComments can be placed in the input �le by using the symbol %. All charactersfrom the �rst % on a line to the end of the line are ignored. Comments can occurwithin terms. Comments are not echoed to the output �le.4.2 Names for Variables, Constants, Functions, and PredicatesThree kinds of character string, collectively referred to as names, can be used forvariables, constants, function symbols, and predicate symbols:� An ordinary name is a string of alphanumerics, $, and _.� A special name is a string of characters in the set *+-/\^<>=`~:?@&!;# (andsometimes |).� A quoted name is any string enclosed in two quotation marks of the same type,either " or '. We have no trick for including a quotation mark of the sametype in a quoted name.(The reason for separating ordinary and special names has to do with in�x, pre�x,and post�x operators; see Sec. 4.6.) Although out of place here, for completenesswe list the meanings of the remaining printable characters.� . (period) | terminates input expressions.� % | starts a comment (which ends with the end of the line).� ,()[]{} (and sometimes |) | are punctuation and grouping symbols.Variables. Determining whether a simple term is a constant or a variable dependson the context of the term. If it occurs in a clause, the symbol determines the type:the default rule is that a simple term is a variable if it starts with u, v, w, x, y, orz. If the ag prolog_style_variables is set, a simple term is a variable if andonly if it starts with an upper-case letter or with _. (Therefore, variables in clausesmust be ordinary names.) A simple term in a formula is a variable if and only if itis bound by a quanti�er. 7

Reserved and Built-in Names. Names that start with $ are reserved for specialpurposes, including evaluable functions and predicates (Sec. 9), answer literals andterms (Sec. 11), and some internal system names. The name = and any name thatstarts with eq, EQ, or Eq, when used as a binary predicate symbol, is recognized as anequality predicate by the demodulation and paramodulation processes. And somenames, when they occur in clauses or formulas, are recognized as logic symbols.Overloaded Symbols. The user can use a name for more than one purpose, forexample as a constant and as a 5-ary predicate symbol. When the ag check_arityis set (the default), the user is warned about such uses. Some built-in names arealso overloaded; for example, | is used both for disjunction and as Prolog-style listpunctuation, and although - is built in as logical negation, it is generally used forboth unary and binary minus as well.4.3 Terms and AtomsRecall that, when interpreted, terms are evaluated as objects in some domain, andatoms are evaluated as truth values. Constants and variables are terms. An n-ary function symbol applied to n terms is also a term. An n-ary predicate symbolapplied to n terms is an atom. A nullary predicate symbol (also referred to as apropositional variable) is also an atom.The pure way of writing complex terms and atoms is with standard applica-tion: the function or predicate symbol, opening parenthesis, arguments separatedby commas, then closing parenthesis, for example, f(a,b,c) and =(f(x,e),x). Ifall subterms of a term are written with standard application, the term is in purepre�x form. Whitespace (spaces, tabs, newlines, and comments) can appear in stan-dard application terms anywhere except between a function or predicate symbol andits opening parenthesis. If the ag display_terms is set, Otter will output termsin pure pre�x form.In�x Equality. Some binary functors can be written in in�x form; the mostimportant is =. In addition, a negated equality, -(a=b) can be abbreviated a!=b.List Notation. Prolog-style list notation can be used to write terms that representlists. Table 1 gives some example terms in list notation and the corresponding purepre�x form. Of course, lists can contain complex terms, including other lists.Table 1: List Notation[] $nil[x|y] $cons(x,y)[x,y] $cons(x,$cons(y,$nil))[a,b,c,d] $cons(a,$cons(b,$cons(c,$cons(d,$nil))))[a,b,c|x] $cons(a,$cons(b,$cons(c,x)))8

4.4 Literals and ClausesA literal is either an atom or the negation of an atom. A clause is a disjunction ofliterals. The built-in symbols for negation and disjunction are - and |, respectively.Although clauses can be written in pure pre�x form, with - as a unary symbol and| as a binary symbol, they are rarely written that way. Instead, they are almostalways written in in�x form, without parentheses. For example, the following is aclause in both forms.Pure pre�x: |(-(a),|(=(b1,b2),-(=(c1,c2))))In�x (abbreviated): -a | b1=b2 | c1!=c2Otter accepts both forms. (Clauses are parsed by the general term-parsing mecha-nism presented in Sec. 4.6).4.5 FormulasTable 2 lists the built-in logic symbols for constructing formulas.Table 2: Logic Symbolsnegation -disjunction |conjunction &implication ->equivalence <->existential quanti�cation existsuniversal quanti�cation allFormulas in Pure Pre�x Form. Although the practice is rarely done, formulascan be written in pure pre�x form. Quanti�cation is the only tricky part: there is aspecial variable-arity functor, $Quantified, for quanti�ed formulas. For example,8xy9z(P (x; y; z)jQ(x; z)) is represented by$Quantified(all,x,y,exists,z,|(P(x,y,z),Q(x,z))).If the ag display_terms is set, the formulas (and everything else) will be displayedin pure pre�x form.Abbreviated Formulas. Formulas are usually abbreviated in a natural way. Theassociativity and precedence rules for abbreviating formulas and the mechanism forparsing formulas are presented in Sec. 4.6. Here are some examples.standard usage Otter syntax (abbreviated)8xP (x) all x P(x)9

8xy9z(P (x; y; z) _ Q(x; z)) all x y exists z (P(x,y,z) | Q(x,z))8x(P (x) ^Q(x) ^R(x) ! S(x)) all x (P(x) & Q(x) & R(x) -> S(x))Note that if a formula has a string of identical quanti�ers, all but the �rstcan be dropped. For example, all x all y all z p(x,y,z) can be shortenedto all x y z p(x,y,z). In expressions involving the associative operations &and |, extra parentheses can be dropped. Moreover, a default precedence onthe logic symbols allows us to drop more parentheses: <-> has the same prece-dence as ->, and the rest in decreasing order are ->, |, &, -. Greater prece-dence means closer to the root of the term (i.e., larger scope). For example,p | -q & r -> -s | t represents (p | (-(q) & r)) -> (-(s) | t), or in purepre�x form, ->(|(p,&(-(q),r)),|(-(s),t)).When in doubt about how a particular string will be parsed, one can simplyadd additional parentheses and/or test the string by having Otter read it andthen display it in pure pre�x form. The following input �le can be used to test thepreceding example.assign(stats_level, 0).set(display_terms).formula_list(usable).p| -q&r-> -s|t. % This formula has minimum whitespace.end_of_list.In general, whitespace is required around all and exists and to the left of -;otherwise, whitespace around the logic symbols can be removed. See Sec. 4.6 forthe rules.4.6 In�x, Pre�x, and Post�x ExpressionsMany Prolog systems (for example Quintus and Sicstus) have a feature that allowsusers to declare that particular function or predicate symbols are in�x, pre�x, orpost�x and to specify a precedence and associativity so that parentheses can some-times be dropped. Otter has a similar feature. In fact, the clause and formulaparsing routines use the feature. Users who use only the predeclared logic operatorsfor clauses and formulas and the predeclared in�x equality = can skip the rest ofthis section.Prolog users who are familiar with the declaration mechanism should note thefollowing di�erences between the Quintus/Sicstus mechanism and Otter's.� The predeclared operators are di�erent. See Table 3.� Otter does not treat comma as an operator; in particular, a,b,c cannot bea term, as in a,b,c -> d,e,f.� Otter treats the quanti�ers all and exists as special cases, because theydon't seem to �t neatly into the standard Prolog mechanism.10

� Otter requires whitespace in some cases where the Prologs do not.Functors to be treated in this special way are given a type and a precedence.Either Otter predeclares the functor's properties, or the user gives Otter a com-mand of one of the formsop(precedence, type, functor).op(precedence, type, list-of-functors).The precedence is an integer i, 0 < i < 1000, and type is one of the following: xfx,xfy, yfx (in�x), fx, fy (pre�x), xf, yf (post�x). See Table 3 for the commandscorresponding to the predeclared functors.Table 3: Predeclared Functorsop(800, xfx, ->). op(700, xfx, @<).op(800, xfx, <->). op(700, xfx, @>).op(790, xfy, |). op(700, xfx, @<=).op(780, xfy, &). op(700, xfx, @>=).op(700, xfx, =). op(500, xfy, +).op(700, xfx, !=). op(500, xfx, -).op(700, xfx, <). op(500, fx, +).op(700, xfx, >). op(500, fx, -).op(700, xfx, <=).op(700, xfx, >=). op(400, xfy, *).op(700, xfx, ==). op(400, xfx, /).op(700, xfx, =/=). op(300, xfx, mod).Given an expression that looks like it might be associated in a number of ways,the relative precedence of the operators determines, in part, how it is associated. Afunctor with higher precedence is more dominant (closer to the root of the term),and one with lower precedence binds more tightly. For example, the functors ->, |,&, and - have decreasing precedence; therefore the expression p & - q | r -> s isunderstood as ((p & (-q)) | r) -> s.In each of the types, f represents the functor, and x and y, which represent theexpressions to which the functor applies, specify how terms are associated. Givenan expression involving functors of the same precedence, the types of the functorsdetermines, in part, the association. See Table 4. The following are examples ofassociativity:� If + has type xfy, then a+b+c+d is understood as a+(b+(c+d)).� If -> has type xfx, then a->b->c is not well formed.� If - has type fy, then - - -p is understood as -(-(-(p))). (The spaces arenecessary; otherwise, --- will be parsed as single name.)11

Table 4: Functor Typesxfx in�x (binary) don't associatexfy in�x (binary) associate rightyfx in�x (binary) associate leftfx pre�x (unary) don't associatefy pre�x (unary) associatexf post�x (unary) don't associateyx post�x (unary) associate� If - has type fx, then - - -p is not well formed.Caution: The associativity speci�cations in the in�x functor declarations say noth-ing about the logical associativity of the operation, e.g., whether (a+b)+c is thesame object as as a+(b+c). The speci�cations are only about parsing ambiguousexpressions. In most cases, when an operator is xfy or yfx, it is also logicallyassociative, but the logical associativity is handled separately; it is built-in in thecase of the logic symbols | and & in Otter clauses and formulas, and it must beaxiomatized in other cases.Details of the Functor Declarations. (This paragraph can be skipped by mostusers.) The precedence of functors extends to the precedence of expressions in thefollowing way. The precedence of an atomic, parenthesized, or standard applicationexpression is 0. Respective examples are p, (x+y), and p(a+b,c,d). The prece-dence of a (well-formed) nonparenthesized nonatomic expression is the same as theprecedence of the root functor. For example, a&b has the precedence of &, and a&b|chas the precedence of the greater functor. In the type speci�cations, x represents anexpression of lower precedence than the functor, and y represents an expression withprecedence less than or equal to the functor. Consider a+b+c, where + has type xfy;if association is to the left, then the second occurrence of + does not �t the type,because a+b, which corresponds to x, does not have a lower precedence than +; ifassociation is to the right, then all is well. If we extend the example, under the dec-larations op(700, xfx, =) and op(500, xfy, +), the expression a+b+c=d+e mustbe understood as (a+ (b+c))= (d+e).4.7 Whitespace in ExpressionsThe reason for separating ordinary names from special names (Sec. 4.2) is so thatsome whitespace (spaces, tabs, newline, and comments) can be removed. We canwrite a+b+c (instead of having to write a + b + c), because \a+b+c" cannot be aname, that is, it must be parsed into �ve names.Caution. There is a de�ciency in Otter's parser having to do with whitespacebetween a name and opening parenthesis. The rule to use is: Insert some whitespace if and only if it is not a standard application. For example, the two piecesof white space in (a+ (b+c))= (d+e) are required, and no white space is allowedafter f or g in f(x,g(x)). 12

4.8 Bugs, etc., in Input and Output of Expressions� The symbol | is either Prolog-style list punctuation or part of a special name.With the built-in declaration of | as in�x, the term [a|b] is ambiguous,with possible interpretations t1 =$cons(a,b) and t2 =$cons(|(a,b),$nil).Otter recognizes [a|b] as t1. The term t2 can be written [(a|b)]. The bugis that t2 will be output without the parentheses. This is the only case I knowin which Otter cannot correctly read a term it has written.� A term consisting of a unary + or - applied to a nonnegative integer is alwaystranslated to a constant.� Parsing large terms without parentheses, say a1+a2+a3+...+a1000, can bevery slow if the operator is left associative (yfx). If you intend to parse suchterms, make the operator right associative (xyf).� Quoted strings cannot contain a quotation mark of the same type.� The ag check_arity sometimes issues warnings when it should not.� Braces ({}) can be used to group input expressions, but Otter always usesordinary parentheses on output.4.9 Examples of Operator DeclarationsGroup Theory. Suppose we like to see group theory expressions in the form(ab�1c�1�1)�1, in which right association is assumed. We can approximate thisfor Otter with (a*b^ *c^ ^)^. (We have to make the group operator explicit;-1 is not a legal Otter name; the whitespace shown is required.) The declara-tions op(400, xfy, *) and op(350, yf, ^) su�ce. Other examples of expres-sions (with minimum whitespace) using these declarations are (x*y)*z=x*y*z and(y*x)^ =x^ *y^.Otter Options. Options are normally input (Sec. 5.1) as in the following exam-ples. set(prolog_style_variables).clear(print_kept).assign(max_given, 300).If, however, we make the declarations (the precedences are irrelevant)op(100, fx, set).op(100, fx, clear).op(100, xfx, assign).then we may write 13

set prolog_style_variables.clear print_kept.max_given assign 300.5 Commands and the Input FileInput to Otter consists of a small set of commands, some of which indicate thata list of objects (clauses, formulas, or weight templates) follows the command. Alllists of objects are terminated with end_of_list. The commands are given in Table5. There are a few other commands for fringe features (Sec. 17).Table 5: Commandsinclude(�le name). % read input from another fileop(precedence, type, name(s)). % declare operator(s)make evaluable(sym, eval-sym). % make a symbol evaluableset(ag name). % set a flagclear(ag name). % clear a flagassign(parameter name,integer). % assign an integer to a parameterlist(list name). % read a list of clausesformula list(list name). % read a list formulasweight list(weight list name). % read weight templateslex(symbol list). % assign an ordering on symbolsskolem(symbol list). % identify skolem functionslrpo multiset status(symbol list). % status for LRPO5.1 Input of OptionsOtter recognizes two kinds of option: ags and parameters. Flags are Boolean-valued options; they are changed with the set and the clear commands, which takethe name of the ag as the argument. Parameters are integer-valued options; theyare changed with the assign command, which takes the name of the parameter asthe �rst argument and an integer as the second. Examples areset(binary_res). % enable binary resolutionclear(back_sub). % do not use back subsumptionassign(max_seconds, 300). % stop after about 300 CPU secondsThe options are described and their default values are given in Sec. 6.5.2 Input of Lists of ClausesA list of clauses is speci�ed with one of the following and is terminated withend_of_list. Each clause is terminated with a period.14

list(usable).list(sos).list(demodulators).list(passive).Example:list(usable).x = x. % reflexivityf(e,x) = x. % left identityf(g(x),x) = e. % left inversef(f(x,y),z) = f(x,f(y,z)). % associativityf(z,x) != f(z,y) | x = y. % left cancellationf(x,z) != f(y,z) | x = y. % right cancellationend_of_list.If the input contains more than one clause list of the same type, the lists willsimply be concatenated.5.3 Input of Lists of FormulasA list of formulas is speci�ed with one of the following and is terminated withend_of_list. Each formula is terminated with a period. (Note that demodulatorscannot be input as formulas.)formula_list(usable).formula_list(sos).formula_list(passive).Example (analogous to above):formula_list(usable).all a (a = a). % reflexivityall a (f(e,a) = a). % left identityall a (f(g(a),a) = e). % left inverseall a b c (f(f(a,b),c) = f(a,f(b,c))). % associativityall a b c (f(c,a) = f(c,b) -> a = b). % left cancellationall a b c (f(a,c) = f(b,c) -> a = b). % right cancellationend_of_list.If the input contains more than one formula list of the same type, the lists willsimply be concatenated.5.4 Input of Lists of Weight TemplatesA list of weight templates is speci�ed with one of the following and is terminatedwith end_of_list. Each weight template is terminated with a period.15

weight_list(pick_given). % for selecting given clausesweight_list(purge_gen). % for discarding generated clausesweight_list(pick_and_purge). % for both picking and purgingweight_list(terms). % for ordering termsExample:weight_list(pick_and_purge).weight(a, 0). % weight of constant a is 0weight(g($(2)), -50). % twice weight of argument - 50weight(P($(1),$(1)), 100). % sum of weights of args + 100weight(x, 5). % all variables have weight 5weight(f(g($(3)),$(4)), -300). % see Sec. ``Weighting''end_of_list.See Sec. 10 for the syntax and use of weight templates.5.5 The Commands lex, skolem, and lrpo multiset statusEach of the commands lex, skolem, and lrpo_multiset_status takes a list ofterms as an argument. The lex command speci�es an ordering on symbols, and theothers give properties to symbols. An example islex([a, b, f(_,_), d, g(_), c]).The arguments of f and g serve as place-holders only; they identify f and g asfunction or predicate symbols and specify the arity.lex([...]). The lex command speci�es an ordering (smallest-�rst) on functionand constant symbols. Lexical ordering on terms is used in four contexts:orienting equality literals (Secs. 8.1.2 and 8.2.2), deciding whether an equal-ity will be used as a demodulator (Secs. 8.1.3 and 8.2.3), deciding whetherto apply a lex-dependent demodulator (Secs. 8.1.4 and 8.2.4), and evaluat-ing functions/predicates that perform lexical comparisons (Sec. 9). If a lexcommand is not present, then Otter uses a default ordering (Sec. 8).skolem([...]). The skolem command identi�es constant and function symbols asSkolem symbols. (If the user inputs quanti�ed formulas and otter Skolem-izes, this command is not necessary.) The Skolem property is used by the op-tions para_skip_skolem (Sec. 6.1.3) and delete_identical_nested_skolem(Sec. 6.1.4).lrpo multiset status([...]). This command speci�es multiset status for the lex-icographic recursive path ordering (ag lrpo). See Sec. 8.2.16

5.6 Other CommandsThe command op(precedence, type, name(s)), example op(400,xfy,+), declaresone or more symbols to have special properties with respect to input and output.See Sec. 4.6.The command make evaluable(symbol, evaluable-symbol), for examplemake_evaluable(_+_, $SUM(_,_), copies evaluation properties from an evaluablesymbol to another symbol, so that one can write x+3 instead of $SUM(x,3). SeeSec. 9.1.The command include(�le name) causes input to be read from another input�le. When the included �le has been read, Otter resumes reading commands afterthe include command. The �le name must be recognized as an Otter name, soif it contains characters such as period, slash, or hyphen, it must be enclosed in(single or double) quotes. Included �les can include still other �les. A list of objects(clauses, formulas, or weight templates) cannot be split among di�erent input �les.One can, however, read clauses into a list from more than one �le, as in the followingexample. standard input �le f1.in �le f2.ininclude("f1.in"). list(usable). list(usable).include("f2.in"). p(a). p(b).end_of_list. end_of_list.6 OptionsFlags are Boolean-valued options, and parameters are integer-valued options. Whenthe user changes an option, Otter sometimes automatically changes other options.The user is informed in the output �le when such a change occurs.Several additional ags and parameters are described in Sec. 17.6.1 Flags6.1.1 Main Loop FlagsA given clause is taken from sos at the beginning of each iteration of themain loop. The default is to take the lightest clause with respect to eitherweight_list(pick_given) or weight_list(pick_and_purge). If neither weightlist is present, the weight of a clause is its number of symbols.sos_queue | default clear. If this ag is set, the �rst clause in sos becomes thegiven clause (the set of support list operates as a queue). This causes a breadth-�rstsearch, also called level saturation. Some information about search levels is printed(see Sec. 15) when this ag is set.sos_stack | default clear. If this ag is set, the last clause in sos becomes the17

given clause (the set of support list operates as a stack). This causes a depth-�rstsearch (which is almost never useful with Otter).input_sos_first | default clear. If this ag is set, the input clauses in sos aregiven a very low pick_given weight so that they are the �rst clauses selected asgiven clauses.interactive_given| default clear. If this ag is set, then when it's time to selecta new given clause, the user is prompted for his or her choice. This ag has priorityover all other ags that govern selection of the given clause.print_given| default set. If this ag is set, clauses are output when they becomegiven clauses.print_lists_at_end | default clear. If this ag is set, then usable, sos, anddemodulators are printed at the end of the search.6.1.2 Inference Rulesbinary_res | default clear. If this ag is set, the inference rule binary resolution(along with any other inference rules that are set) is used to generate new clauses.Setting this ag causes the ags factor and unit_deletion to be automaticallyset.hyper_res | default clear. If this ag is set, the inference rule (positive) hyperres-olution (along with any other inference rules that are set) is used to generate newclauses.neg_hyper_res | default clear. If this ag is set, the inference rule negative hy-perresolution (along with any other inference rules that are set) is used to generatenew clauses.ur_res | default clear. If this ag is set, the inference rule UR-resolution (unit-resulting resolution) (along with any other inference rules that are set) is used togenerate new clauses.para_into | default clear. If this ag is set, the inference rule \paramodulationinto the given clause" (along with any other inference rules that are set) is used togenerate new clauses. When using paramodulation, one should include the appro-priate clause for reexivity of equality, for example, x=x.para_from | default clear. If this ag is set, the inference rule \paramodulationfrom the given clause" (along with any other inference rules that are set) is used togenerate new clauses. When using paramodulation, one should include the appro-priate clause for reexivity of equality, for example, x=x.demod_inf | default clear. If this ag is set, demodulation is applied, as if it werean inference rule, to the given clause. This is useful when term rewriting is the mainobjective. When this ag is set, the given clause is copied, then processed just likeany newly generated clause. 18

6.1.3 Paramodulation Flagspara_from_left| default set. If this ag is set, paramodulation is allowed from theleft sides of equality literals. (Applies to both para_into and para_from inferencerules.)para_from_right | default set. If this ag is set, paramodulation is allowed fromthe right sides of equality literals. (Applies to both para_into and para_frominference rules.)para_into_left| default set. If this ag is set, paramodulation is allowed into leftsides of positive and negative equalities. (Applies to both para_into and para_frominference rules.)para_into_right | default set. If this ag is set, paramodulation is allowed intoright sides of positive and negative equalities. (Applies to both para_into andpara_from inference rules.)para_from_vars | default clear. If this ag is set, paramodulation from variablesis allowed. Warning: setting this option may produce too many paramodulants.(Applies to both para_into and para_from inference rules.)para_into_vars | default clear. If this ag is set, paramodulationinto variablesis allowed. Warning: setting this option may produce too many paramodulants.(Applies to both para_into and para_from inference rules.)para_from_units_only | default clear. If this ag is set, paramodulation is al-lowed only if the from clause is a unit (equality). (Applies to both para_into andpara_from inference rules.)para_into_units_only | default clear. If this ag is set, paramodulation is al-lowed only if the into clause is a unit. (Applies to both para_into and para_frominference rules.)para_skip_skolem | default clear. If this ag is set, paramodulation is neverallowed into subterms of Skolem expressions [16]. (Applies to both para_into andpara_from inference rules.)para_ones_rule | default clear. If this ag is set, paramodulation obeys the 1'srule. (The 1's rule is a special-purpose strategy for problems in combinatory logic;its usefulness has not been demonstrated elsewhere.) (Applies to both para_intoand para_from inference rules.)para_all | default clear. If this ag is set, all occurrences of the into term arereplaced with the replacement term. (Applies to both para_into and para_frominference rules.)6.1.4 Flags for Handling Generated Clauses(Sec. 6.1.5 describes equality-related ags for handling generated clauses.)detailed_history | default set. This ag a�ects the parent lists in clauses that19

are derived by binary_res, para_from, or para_into. If the ag is set, the positionsof the uni�ed literals or terms are given along with the IDs of the parents. See Sec.15 for examples.order_history| default clear. This ag a�ects the order of parent lists in clausesthat are derived by hyperresolution, negative hyperresolution, or UR-resolution. Ifthe ag is set, then the nucleus is listed �rst, and the satellites are listed in the orderin which the corresponding literals appear in the nucleus. If the ag is clear (or ifthe clause was derived by some other inference rule), the given clause is listed �rst.unit_deletion | default clear. If this ag is set, unit deletion is applied to newlygenerated clauses. Unit deletion removes a literal from a newly generated clause ifthe literal is the negation of an instance of a unit clause that occurs in usable orsos. For example, the second literal of p(a,x) | q(a,x) is removed by the unit-q(u,v); but it is not removed by the unit -q(u,b), because that uni�cation causesthe instantiation of x. All such literals are removed from the newly generated clause,even if the result is the empty clause. (Unit deletion is not useful if all generatedclauses are units.)delete_identical_nested_skolem| default clear. If this ag is set, clauses withthe nested Skolem property are deleted. A clause has the nested Skolem propertyif it contains a a Skolem expression that (properly) contains an occurrence of itsleading Skolem symbol. For example, if f is a Skolem function, a clause containinga term f(f(x)) or a term f(g(f(x))) is deleted.sort_literals| default clear. If this ag is set, literals of newly generated clausesare sorted|negative literals, then positive literals, then answer literals. The mainpurpose of this ag is to make clauses more readable. In some cases, this ag canspeed up subsumption on non-unit clauses.for_sub | default set. If this ag is set, forward subsumption is applied duringthe processing of newly generated clauses. (Delete the new clause if it is subsumedby any clause in usable or sos.)back_sub | default set. If this ag is set, back subsumption is applied duringthe processing of newly kept clauses. (Delete all clauses in usable or sos that aresubsumed by the newly kept clause.)factor | default clear. If this ag is set, factoring is applied in two ways. First,factoring is applied as a simpli�cation rule to newly generated clauses. If a generatedclause C has factors that subsume C, it is replaced with its smallest subsumingfactor. Second, it is applied as an inference rule to newly kept clauses. Note thatunlike other inference rules, factoring is not applied to the given clause; it is appliedto a new clause as soon as it is kept. All factors are generated in an iterative manner.Factoring is attempted on answer literals. If factoring is enabled, a clause with nliterals will cause a clause with fewer than n literals to be deleted by subsumption.6.1.5 Demodulation and Ordering Flagsdemod_history| default set. If this ag is set, then when a clause is demodulated,20

the ID numbers of the demodulators are included in the derivation history of theclause.order_eq | default clear. If this ag is set, equalities are ipped if the right sideis heavier than the left. See Secs. 8.1.2 and 8.2.2 for the meaning of \heavier".eq_units_both_ways| default clear. If this ag is set, unit equality clauses (bothpositive and negative) are sometimes stored in both orientations; the action takendepends on the ag order_eq. If order_eq is clear, then whenever a unit, say� = �, is processed, � = � is automatically generated and processed. If order_eqis set, then the reversed equality is generated only if the equality cannot be oriented(see Secs. 8.1.2 and 8.2.2).demod_linear| default clear. If this ag is set, demodulation indexing is disabled,and a linear searchs of demodulators are used when rewriting terms. With indexingdisabled, if more than one demodulator can be applied to rewrite a term, then theone whose clause number is lowest is applied; this ag is useful when demodulation isused to do \procedural" things. With indexing enabled (the default), demodulationis much faster, but the order in which demodulators is applied is not under thecontrol of the user.demod_out_in | default clear. If this ag is set, terms are demodulated outside-in, left-to-right. In other words, the program attempts to rewrite a term beforerewriting (left-to-right) its subterms. The algorithm is \repeat frewrite the left-most outer-most rewritable termg until no more rewriting can be done or the limitis reached". (The e�ect is like a standard reduction in lambda-calculus or in com-binatory logic.) If this ag is clear, terms are demodulated inside-out (all sub-terms are fully demodulated before attempting to rewrite a term). The one ex-ception when inside-out demodulation is in e�ect is the evaluable conditional term$IF(condition,then-value,else-value) (Sec. 9).dynamic_demod | default clear. If this ag is set, some newly kept equalities aremade into demodulators (Secs. 8.1.3 and 8.2.3). Setting this ag automatically setsthe ag order_eq.dynamic_demod_all| default clear. If this ag is set, Otter attempts to make allnewly kept equalities into demodulators (Sec. 8.1.3). Setting this ag automaticallysets the ags dynamic_demod and order_eq.dynamic_demod_lex_dep| default clear. If this ag is set, dynamic demodulatorsmay be lex-dependent or lrpo-dependent. See Secs. 8.1.3 and 8.2.3.back_demod | default clear. If this ag is set, back demodulation is applied todemodulators, usable, and sos whenever a new demodulator is added. Back de-modulation is delayed until the inference rules are �nished generating clauses fromthe current given clause (delayed until post_process). Setting the back_demod agautomatically sets the ags order_eq and dynamic_demod.knuth_bendix | default clear. If this ag is set, Otter's search will behavelike a Knuth-Bendix completion procedure. This ag is really a metaag; itsonly e�ect is to alter other ags as follows: set(para_from), set(para_into),set(para_from_left), clear(para_from_right), set(para_into_left),21

clear(para_into_right), set(para_from_vars), set(eq_units_both_ways),set(dynamic_demod_all), set(back_demod), set(process_input), andset(lrpo). See Sec. 8.3 for more details.lrpo | default clear. If this ag is set, then the lexicographic recursive pathordering (also called rpo with status) is used to compare terms. If this ag is clear,weight templates and lexicographic order are used (Secs. 8.2 and 8.3).lex_order_vars| default clear. This ag a�ects lex-dependent demodulation andthe evaluable functions and predicates that perform lexical comparisons. If this agis set, then lexical ordering is a total order on terms; variables are lowest in the termorder, with x � y � z � u � v � w � v6 � v7 � v8 � � � �. If this ag is clear, thena variable is comparable only to another occurrence of the same variable; it is notcomparable to other variables or to nonvariables. For example, $LLT(f(x),f(y))evaluates to $T if and only if lex_order_vars is set. If lrpo is set, lex_order_varshas no e�ect on demodulation (Sec. 8.1.1).symbol_elim | default clear. If this ag is set, then new demodulators are ori-ented, if possible, so that function symbols (excluding constants) are eliminated. Ademodulator can eliminate all occurrences of a function symbol if the argumentson the left side are all di�erent variables and if the function symbol of the left sidedoes not occur in the right side. For example, the demodulators g(x) = f(x,x)and h(x,y) = f(x,f(y,f(g(x),g(y)))) eliminate all occurrences of g and h, re-spectively.6.1.6 Inputcheck_arity | default set. If this ag is set, a warning is given if symbols havevariable arities (di�erent numbers of arguments in di�erent places in the input).For example, the term f(a,a(b)) would be agged. (Constants have arity 0.) Ifthis ag is clear, then variable arities are permitted; in the preceding term, the twooccurrences of a would be treated as di�erent symbols.prolog_style_variables| default clear. If this ag is set, a name with no argu-ments in a clause is a variable if and only if it starts with A through Z (upper case)or with _.echo_included_files | default set. If this ag is set, input �les included withthe include(�lename) command are echoed in the same way as ordinary input.simplify_fol | default set. If this ag is set, then some propositional simpli�-cation is attempted when converting input �rst-order formulas into clauses. Thesimpli�cation occurs after Skolemization, during the CNF translation. If simpli�-cation detects a refutation, it will always produce the empty clause $F, but Otterwill not recognize the proof (i.e., give the proof message and stop) unless the agprocess_input is set.process_input | default clear. If this ag is set, input usable and sos clauses(including clauses from formula input) are processed as if they had been generatedby an inference rule. (See the procedure for processing newly inferred clause in Sec.22

2.) The exceptions are (1) the following clause-processing options are not appliedto input clauses: max_literals, max_weight, delete_identical_nested_skolem,and max_distinct_vars, (2) clauses input on list usable remain there if retained,and (3) some output appears even if the output ags (Sec. 6.1.7) are clear.6.1.7 Output Flagsvery_verbose | default clear. If this ag is set, a tremendous amount of informa-tion about the processing of generated clauses is output.print_kept | default set. If this ag is set, new clauses are output if they areretained (if they pass all retention tests).print_proofs| default set. If this ag is set, all proofs that are found are printedto the output �le. If this ag is clear, no proofs are printed.print_new_demod | default set. If this ag is set, demodulators that are ad-joined during the search (dynamic_demod) are printed. New demodulators are al-ways printed during input processing.print_back_demod | default set. If this ag is set, clauses are printed as theyare back demodulated. Back-demodulated clauses are always printed during inputprocessing.print_back_sub | default set. If this ag is set, clauses are printed if they areback subsumed. Back-subsumed clauses are always printed during input processing.display_terms | default clear. If this ag is set, all clauses and terms are printedin pure pre�x form (Sec. 4.3). This feature can be useful for debugging the input.pretty_print | default clear. If this ag is set, clauses are output in an indentedform that is sometimes easier to read. The parameter pretty_print_indent (de-fault 4) speci�es the number of spaces for each indent level.bird_print | default clear. If this ag is set, terms constructed with the bi-nary function a are output in combinatory logic notation (without the functionsymbol a, and left associated unless otherwise indicated). For example, the clausea(a(a(S,x),y),z) = a(a(x,z),a(y,z)) is output as S x y z = x z (y z).Terms cannot be input in combinatory logic notation.6.1.8 Indexing Flagsindex_for_back_demod | default set. If this ag is set, all nonvariable terms inall clauses are indexed so that the appropriate ones can be quickly retrieved whenapplying a dynamic demodulator to the clause space (back demodulation). Thistype of indexing can use a lot of memory. If the ag is clear, back demodulationstill works, but it is much slower.for_sub_fpa | default clear. If this ag is set, fpa indexing is used for forwardsubsumption. If this ag is clear, discrimination tree indexing is used. Settingthis ag can decrease the amount of memory required by Otter. Discrimination23

tree indexing can require a lot of memory, but it is usually much faster than fpaindexing.no_fapl | default clear. If this ag is set, positive literals are not indexed for unitconict or back subsumption. This option should be used only when no negativeunits will be generated (as with hyperresolution), back subsumption is disabled, anddiscrimination tree indexing is being used for forward subsumption. This option cansave a little time and memory.no_fanl | default clear. If this ag is set, negative literals are not indexed for unitconict or back subsumption. This option should be used only when no positiveunits will be generated (as with negative hyperresolution), back subsumption isdisabled, and discrimination tree indexing is being used for forward subsumption.This option can save a little time and memory.6.1.9 Miscellaneous Flagscontrol_memory | default clear. If this ag is set, then the automatic memory-control feature is enabled (Sec. 16).order_hyper | default set. If this ag is set, then the inference rules hyper_resand neg_hyper_res are constrained by an ordering strategy. A literal in a satelliteis allowed to resolve only if it is maximal in the satellite. (A literal is maximal ina clause if and only if there is no larger literal.) The ordering uses only the lexicalvalue (as in the lex command or the default, Sec. 5.5) of the predicate symbol.(This ag is irrelevant for positive hyperresolution with a Horn set.)propositional | default clear. If this ag is set, Otter assumes that all clausesare propositional, and it makes some optimizations. The user should set this ag onlywhen all clauses are propositional; otherwise Otter may make unsound inferencesand/or crash.really_delete_clauses | default clear. If this ag is clear, clauses that aredeleted by back subsumption or back demodulation are not really removed frommemory; they are retained in a special place so that they can be printed if theyoccur in a proof. If the job involves much back subsumption or back demodulationand if memory conservation is important, these \deleted" clauses can be removedfrom memory by setting this ag (and any proof containing such a clause will notbe printed in full).atom_wt_max_args| default clear. If this ag is set, the default weight of an atom(the weight if no template matches the atom) is 1 plus the maximum of the weightsof the arguments. If this ag is clear, the default weight of an atom is 1 plus thesum of the weights of the arguments.term_wt_max_args | default clear. If this ag is set, the default weight of a term(the weight if no template matches the atom) is 1 plus the maximum of the weightsof the arguments. If this ag is clear, the default weight of a term is 1 plus the sumof the weights of the arguments.free_all_mem | default clear. If this ag is set, then at the end of the search,24

most dynamically allocated memory is returned to the memory managers. This agis used mainly for debugging, in particular, to help �nd memory leaks. Setting thisag will not cause Otter to use less memory.6.2 ParametersParameters are integer-valued options. In the descriptions that follow, n is thevalue of the parameter, and max int is a large integer, usually the size of thelargest normal integer on the user's computer.6.2.1 Monitoring Progressreport | default �1, range [�1..max int]. If n > 0, then statistics are outputapproximately every n cpu seconds. The time is not exact, because statistics willbe output only after the current given clause is �nished. This feature can be usedin conjunction with unix programs such as grep and awk to conveniently monitorOtter jobs.6.2.2 Placing Limits on the Searchmax_seconds | default �1, range [�1..max int]. If n 6= �1, the search is termi-nated after about n cpu seconds. The time is not exact, because Otter will waituntil the current given clause is �nished before stopping.max_gen | default �1, range [�1..max int]. If n 6= �1, the search is terminatedafter about n clauses have been generated. The number is not exact, because Otterwill wait until it is �nished with the current given clause before stopping.max_kept | default �1, range [�1..max int]. If n 6= �1, the search is terminatedafter about n clauses have been kept. The number is not exact, because Otter willwait until it is �nished with the current given clause before stopping.max_given| default �1, range [�1..max int]. If n 6= �1, the search is terminatedafter n given clauses have been used.max_mem | default �1, range [�1..max int]. If n 6= �1, Otter will terminate thesearch before more than n kilobytes have been dynamically allocated (malloc).6.2.3 Limits on Properties of Generated Clausesmax_literals | default �1, range [�1..max int]. If n 6= �1, new clauses arediscarded if they contain more than n literals.max_weight | default max int, range [�max int..max int]. New clauses arediscarded if their weight is more than n. The weight list purge_gen or the weightlist pick_and_purge is used to weigh clauses (both lists may not be present; seeSec. 10). 25

max_distinct_vars | default �1, range [�1..max int]. If n 6= �1, new clausesare discarded if they contain more than n distinct variables.6.2.4 Indexing Parametersfpa_literals | default 8, range [0..100]. n is the fpa indexing depth for literals.(fpa literal indexing is used for resolution inference rules, back subsumption, andunit conict. It is also used for forward subsumption if the ag for_sub_fpa isset.) If n = 0, indexing is by predicate symbol only; if n = 1, indexing looks at thepredicate symbol and the leading symbols of the arguments of the literal, and so on.Greater indexing depth requires more memory, but it can be faster. Changing thisparameter will not change the clauses that are generated or kept.fpa_terms | default 8, range [0..100]. n is the fpa indexing depth for terms. (fpaterm indexing is used for paramodulation inference rules and back demodulation.)If n = 0, indexing is by function symbol only; if n = 1, indexing looks at thefunction symbol and the leading symbols of the arguments of the term, and so on.Greater indexing depth requires more memory, but it can be faster. Changing thisparameter will not change the clauses that are generated or kept.6.2.5 Miscellaneous Parameterspick_given_ratio | default �1, range [�1..max int]. This parameter causessome given clauses to be selected by weight and others in a breadth-�rst manner.If n 6= �1, n given clauses are are selected by (smallest pick_given) weight, thenthe �rst clause in sos is selected as given clause, then n given clauses are selectedby weight, etc. This method allows heavy clauses to enter into the search whilefocusing mainly on light clauses. It combines breadth-�rst search (ag sos_queue)and best-�rst search (default selection by weight). If n is �1, then the clause withsmallest pick_given weight is always selected.interrupt_given | default �1, range [�1..max int]. If n > 0, then after n givenclauses have been used, Otter goes into its interactive mode (Sec. 14).demod_limit | default 1000, range [�1..max int]. If n 6= �1, n is the maximumnumber of rewrites that will be applied when demodulating a clause. The countincludes $ symbol evaluation. If n is �1, there is no limit. A warning message isprinted if Otter attempts to exceed the limit.max_proofs| default 1, range [�1..max int]. If n = 1, Otter will stop if it �ndsa proof. If n > 1, then otter will not stop when it has found the �rst proof; instead,it will try to keep searching until it has found n proofs. (Some of the proofs mayin fact be identical.) (Because forward subsumption occurs before unit conict, aclause representing a truly di�erent proof may be discarded by forward subsumptionbefore unit conict detects the proof.) If n = �1, Otter will �nd as many proofsas it can (within other constraints).min_bit_width| default bits-per-long, range [0..bits-per-long]. When the evaluablebit operations (Sec. 9) produce a new bit string, leading zeros are suppressed under26

the constraint that n is the minimum string length.neg_weight | default 0, range [�max int..max int]. n is the additional weight(positive or negative) that is given to negated literals. Weight templates cannot beused for this purpose, because the negation sign on a literal cannot occur in weighttemplates. (Atoms, not literals, are weighed with weight templates; see Sec. 10.)pretty_print_indent | default 4, range [0..16]. See ag pretty_print, Sec.6.1.7.stats_level| default 2, range [0..4]. This indicates the level of detail of statisticsprinted in reports and at the end of the search. If n = 0, no statistics are output;if n = 1, a few important search and time statistics are output; if n = 2, all searchand time statistics are output; if n = 3, search, time, and memory statistics areoutput; and if n = 4, search, time, and memory statistics and option values areoutput. This parameter does not a�ect the speed of Otter, because all statisticsare always kept.7 DemodulationBasic demodulation is straightforward, but there are many variations and enhance-ments whose descriptions are scattered throughout this manual. This section (whichis mostly redundant) lists some overall comments on demodulation and points thereader to the appropriate sections on variations and enhancements.The Equality Symbol. The binary symbol = (which can be used as an in�xfunctor) and any name that starts with eq, EQ, or Eq, when used as a binary predicatesymbol, is recognized as an equality predicate by demodulation.When and How It Is Applied. Demodulation is applied, using equalities inthe list demodulators, to every clause that is generated by an inference rule. Also,when the ag demod_inf (Sec. 6.1.2) is set, demodulation is, in e�ect, treated asan inference rule.Demodulation of Atomic Formulas. Atomic formulas (literals with any nega-tion sign removed) can be demodulated. Useful examples are(x*y = x*z) = (y = z). % one form of cancellationD(x,y) = D(y,x). % lex-dependent atom demodulatorP(junk) = $T. % trick to get rid of a literalThe appropriate clause simpli�cation occurs if the right side of an atom demodulatoris one of the Boolean constants $T or $F. Negated literals cannot be demodulated,but the atom of a negative literal can be demodulated.27

Inside-out or Outside-in. The user has the option of having terms rewritteninside-out or outside-in. (See the description of the ag demod_out_in in Sec. 6.1.5.)Although the choice makes little di�erence for many applications, I nearly alwaysrecommend inside-out. Outside-in can be much faster in cases where the left side ofthe demodulator has a variable not in the right side.Order of Demodulators. By default, demodulation uses an indexing mechanismto �nd demodulators that can rewrite a given term; if more than one demodulatorcan apply, the user has no control over which one is used. If the user wishes to orderthe set of demodulators for application, he or she can set the ag demod_linear(Sec. 6.1.5).Dynamic Demodulation and Back Demodulation. Positive equality unitsderived during the search can be made into demodulators (Secs. 6.1.5, 8.1.3, and8.2.3). Demodulators adjoined during the search can be used to rewrite previouslyderived clauses (Sec. 6.1.5).Termination. With the default ad hoc ordering, demodulation is not guaranteedto terminate by itself. Therefore, a parameter (demod_limit) speci�es the maximumnumber of rewrite steps that will be applied to a clause. With the lexicographicrecursive path ordering (ag lrpo), demodulation will always terminate by itself.(Even with lrpo, the parameter demod_limit has e�ect, because demodulationsequences can have an unreasonable number of steps.)Introduction of New Variables. A demodulator introduces new variables if ithas variables on the right side that do not occur on the left. The lrpo does notallow demodulators to introduce new variables. The default ordering allows variableintroductions only for input demodulators.Lex- and lrpo-dependent Demodulation. Ordinary demodulators are usedunconditionally; they usually simplify or canonicalize regardless of the context inwhich they are applied. But some equalities that are not normally thought of asrewrite rules can be used as such and are applied only if the application produces a\better" term. These are called lex- or lrpo-dependent demodulators (dependingon whether the ag lrpo is set). For example, commutativity of an operation, sayx + y = y + x, can be used to rewrite b + a to a + b if a + b � b + a. See Secs.6.1.5, 8.1.4, and 8.2.4. Do not confuse this type of demodulation with conditionaldemodulation.Demodulation of Evaluable Terms. Otter has many built-in function andpredicate symbols for doing arithmetic, logic operations, bit operations, and otheroperations. The evaluation of terms containing these built-in symbols is done as apart of demodulation (Sec. 9). 28

Conditional Demodulation. Demodulators can be written with conditions ascondition -> � = �.The demodulator is applied only if the condition, instantiated with the matchingsubstitution, demodulates to $T (meaning true). This is a \fringe feature", and ithas not been heavily used (Sec. 17.4).Demodulation as Equational Programming. Otter's demodulation, espe-cially with the evaluable symbols, can be used as a general-purpose (although notparticularly e�cient or convenient) equational programming system (Sec. 9). Ihave not seen cases where this is useful in the context of a traditional refutationsearch, but I have found it to be very useful for various symbolic programming tasks,particularly with hyperresolution.Demodulation to Delete Clauses. Demodulation can be used as a trick toovercome one of the de�ciencies of the weighting mechanism (Sec. 10) to discardundesired clauses. Weighting does not implement a true match (one-way uni�ca-tion) operation. If the user wishes to discard every clause that contains an instanceof a particular term, say f(x,x), a demodulator, say f(x,x) = junk, can be in-put along with a weight template that gives junk a purge_gen weight higher thanmax_weight. (When using this and similar tricks, the user must make sure thatthe clauses containing junk are really discarded by weighting or another means; onoccasion we have found proofs that are incorrect because they depend on junk.)8 Ordering and Dynamic DemodulationThis section contains a more complete explanation of the options lex_order_vars,order_eq, symbol_elim, dynamic_demod, dynamic_demod_all, lrpo, anddynamic_demod_lex_dep. It gives all the rules|built in and optional|for ori-enting equality literals and deciding which equalities will be dynamic demodulators.Otter uses two kinds of term ordering.ad hoc ordering. This is a collection of ordering methods that we have accumulatedthrough many years of experimentation. The methods do not have a substan-tial theoretical foundation, but they are useful in many cases. This is thedefault ordering; it is presented in Sec. 8.1.lrpo. This is the lexicographic recursive path ordering (also called rpo with status).It has nice theoretical properties and is easier to use than the ad hoc ordering,but it is more computationally expensive. The lrpo ordering is enabled withthe ag lrpo; it is described in Sec. 8.2.Both kinds of term ordering use an ordering on constant and function symbols.The lex command (Sec. 5.5) is used to assign an ordering on symbols. For example,the command 29

lex([a, b, c, d, or(_,_)]).speci�es a � b � c � d � or (or is a binary function symbol). If a lex com-mand is given, all constant and function symbols in terms that will be comparedmust be included. If a lex command is not given, Otter uses the following defaultordering.[constants, high-arity, � � �, binary, unary]Within arity, the lexicographic ascii ordering (i.e., the C library routine strcomp())is used.The methods for orienting equalities and for determining dynamic and lex-dependent demodulators apply to all inferred clauses; if the ag process_inputis set, they also apply to input usable and sos clauses.In this section, � and � always refer to the left and right arguments, respectively,of the equality literal under consideration; wt() refers to the weight of usingweight_list_terms; vars() is the set of variables in . The symbols � and � areused for several orderings; the one referred to should be clear from the context.Table 6 is a quick reference guide to the ordering mechanisms presented in Secs.8.1 and 8.2. Table 6: Quick Reference to OrderingSituation Ad Hoc LRPOInput demods ip? no if � � �lex-dependent? if ident-x-vars if neither is greaterOrienting eqs (order eq set) ip if sym-elim,occurs-in, or wt-lex-ord ip if � � �d_d_all clear if oriented, var-subset,and wt(�) � 1 if � � �Dynamic demod? d_d_all set if oriented and var-subset if � � �lex-dependent? if ident-x-vars anddynamic demod all set if neither is greater,and var-subsetApply lex-dependent demod? lex-order(��; ��) �� � ��Lex $ evaluation lex-order lex-order8.1 Ad Hoc Ordering8.1.1 Term Ordering (Ad Hoc)Two types of ad hoc term ordering are used: lex-order and weight-lex-order. Theuser does not have a choice between these two; the one that is applied depends onthe context, as described in the following subsections.lex-order. This is a basic lexicographic extension of the symbol order. To com-pare two terms, read them left to right, and stop at the �rst symbols wherethey di�er; the relationship of those symbols determines the term order. Thetreatment of variables depends on the ag lex-order-vars:30

lex order vars is set. Variables are the lowest in the symbol ordering, withx � y � z � u � v � w � v6 � v7 � v8 � � � �. Since the order on symbolsis total (any two symbols are comparable), the lexical order on terms istotal (any two terms are comparable). Note that applying a substitutionto a pair of terms may change their relative order.lex order vars is clear (the default). A variable is comparable only to it-self and to a term that contains the variable. The order on terms ispartial. Note that if t1 � t2, and if � is any substitution, then t1� � t2�.weight-lex-order. In comparing two terms, they are �rst weighed withweight_list_terms. If one term is heavier, it is greater in the order. Ifthe terms have equal weight, they are compared with respect to the lex-orderas if lex-order-vars is clear.8.1.2 Orienting Equalities (Ad Hoc)If the ag order_eq is set and lrpo is clear, then equality literals (both positiveand negative) in inferred clauses are processed as follows.1. If the symbol_elim ag is set and if the equality is a symbol-eliminating type(Sec. 6.1.5), the equality is oriented in the appropriate direction.2. If one argument is a proper subterm of the other argument, the equality isoriented so that the subterm is the right-hand argument.3. If one argument is greater in the weight-lex-order, say � �, the equality isoriented with as the left side.The preceding steps do not apply to equalities input on the list demodulators.8.1.3 Determining Dynamic Demodulators (Ad Hoc)A dynamic demodulator is a demodulator that is inferred rather than input. Ifeither of the ags dynamic_demod or dynamic_demod_all is set, the ag order_eqwill also be set, and Otter will attempt to make some or all inferred positiveequality units into demodulators. If the ag process_input is set, the procedureapplies to input usable and sos equalities. The procedure assumes that equalitieshave already been oriented.1. If the ag symbol_elim is set and if � = � is symbol-eliminating, the equalitybecomes a demodulator.2. If � is a proper subterm of �, the equality becomes a demodulator.3. If � � � in the weight-lex-order, and if vars(�) � vars(�),(a) if dynamic_demod_all is set, the equality becomes a demodulator;31

(b) if dynamic_demod_all is clear and if wt(�) � 1, the equality becomes ademodulator.4. If dynamic_demod_lex_dep and dynamic_demod_all are both set, if � and� are identical-except-variables (Sec. 8.1.4), and if vars(�) � vars(�), theequality becomes a lex-dependent demodulator.8.1.4 Lex-dependent Demodulation (Ad Hoc)Two terms are identical-except-variables if they are identical after replacing all oc-currences of variables with x. An input or dynamic demodulator is lex-dependentonly if � and � are identical-except-variables. (See Sec. 8.1.3 for determining lex-dependent dynamic demodulators.) A lex-dependent demodulator applies to a termonly if the replacement term is smaller in the lex-order. In particular, Otter willapply a lex-dependent demodulator � = � if and only if �� � �� in the lex-order,where � is the matching substitution.For example, in the presence of the lex command and the (lex-dependent) de-modulatorslex([a, b, c, d, or(_,_)]).list(demodulators).or(x,y) = or(y,x).or(x,or(y,z)) = or(y,or(x,z)).end_of_list.the term or(or(d,b),or(a,c)) will be demodulated to or(a,or(b,or(c,d))) (inseveral steps).8.2 LRPO8.2.1 Term Ordering (lrpo)The lexicographic recursive path ordering (lrpo, or rpo with status) [5, 8, 10] is amethod for comparing terms. The important theoretical property of lrpo is that itis a termination ordering. That is, let R be a set of demodulators in which in eachdemodulator, the left side is lrpo-greater than the right side; then demodulation(applying the demodulators left to right) is guaranteed to terminate.To use lrpo one typically uses the lex command (Sec. 5.5) to assign an orderingon constant and function symbols. If the lex command is not present, Otterassigns an ordering (which is frequently ine�ective). (Otter uses a total orderingon symbols that is �xed at input time. Other implementations of lrpo use partialorderings or dynamically changing orderings.)With respect to lrpo, function symbols can have either left-to-right status (thedefault) ormultiset status. The command lrpo multiset status(symbol list) gives32

symbols multiset status.Lrpo comparison is used when orienting equality literals, deciding whether anequality should be a demodulator or an lrpo-dependent demodulator, and decidingwhether to apply an lrpo-dependent demodulator. Lrpo comparison is never usedwhen evaluating the functions/predicates that perform lexical comparison ($LLT,$LGT, etc.).8.2.2 Orienting Equalities (lrpo)If the ag order_eq is set and if one argument of the equality literal (positive ornegative) is greater in the lrpo order, the greater argument is placed on the leftside. This rule applies to input demodulators, to inferred clauses, and, if the agprocess_input is set, to input usable and sos clauses.8.2.3 Determining Dynamic Demodulators (lrpo)If the ag dynamic_demod is set, Otter attempts to make all equalities into de-modulators (dynamic_demod_all is ignored when lrpo is set). If � � � in thelrpo order, the derived equality becomes a demodulator (� is not lrpo-less-than�, because orienting has already occurred). If dynamic_demod_lex_dep is set, ifneither argument is lrpo-less-than the other, and if every variable that occurs in �also occurs in �, the derived equality becomes an lrpo-dependent demodulator.8.2.4 lrpo-dependent Demodulation (lrpo)An lrpo-dependent demodulator is allowed to rewrite a term if and only if itsapplication produces an lrpo-less-than term.8.3 Knuth-Bendix CompletionThe Knuth-Bendix completion procedure [12] attempts to transform a set E ofequalities into a terminating, canonical set of rewrite rules (demodulators). If itis successful, the resulting set of rewrite rules, a complete set of reductions, is adecision procedure for equality of terms in the theory E. There are many variationsand re�nements of the Knuth-Bendix procedure.Setting the ag knuth_bendix causes Otter to automatically alter a set ofoptions so that its search will behave like a Knuth-Bendix completion procedure. IfOtter's search stops because its sos list is empty, and if certain other conditions aremet, then the resulting set of equalities is a complete set of reductions. (Otter wasnot designed to implement a completion procedure, and it has not been optimizedfor completion.)Claim. If (1) the set E of equalities, along with x=x, is input in list sos, (2) agknuth_bendix is set, (3) other options that are changed from the defaults do not33

a�ect the search, (4) Otter stops with \sos empty", and (5) other than x=x, the�nal usable list is the same as the �nal demodulators list, then the demodulatorslist is a complete set of reductions for E.Here is an input �le that causes Otter to search for and quickly �nd a completeset of reductions for free groups. Note that the predeclared (right associative) in�xoperator * is used.set(knuth_bendix).set(print_lists_at_end).lex([e, _*_, g(_)]).list(sos).x = x.e*x = x. % left identityg(x)*x = e. % left inverse(x*y)*z = x*y*z. % associativityend_of_list.The critical issue in most applications of the Knuth-Bendix completion procedureis the choice of ordering scheme and/or the speci�c ordering on symbols. Note, inthis case, that if the lex command is absent, the default symbol ordering su�cesbecause it is essentially the same as the one speci�ed.The knuth-bendix ag is also very useful when trying to prove equational the-orems. (Many open problems have been solved at Argonne in this way; see, e.g.,[17]). When using knuth_bendix to search for proofs, we are not bound by theconditions listed in the above claim; in fact, we usually apply additional strategiessuch as limiting the size of retained equalities, being more selective about makingequalities into demodulators, and disabling lrpo ordering.With the following input �le, Otter uses the knuth-bendix option to provethe di�cult half of a group theory theorem of Levi: The commutator operation isassociative if and only if the commutator of any two elements lies in the center ofthe group. (A textbook proof can be found in [13].) Note that, contrary to commonpractice, the symbol order does not cause the de�nition of the commutator operationh(_,_) to be used as a rewrite rule to eliminate commutator expressions in h.Note also that weight templates are used to eliminate clauses containing terms withparticular structures; this decision is purely heuristic, derived from experimentationand intuition. Otter �nds a proof in about half an hour on a SPARCstation 2 anduses about 6 megabytes of memory.set(knuth_bendix). lex([a,b,c,e,h(_,_),f(_,_),g(_)]).assign(max_weight, 20). assign(pick_given_ratio, 5).assign(max_mem, 8000).clear(print_kept). clear(print_new_demod). clear(print_back_demod).assign(report, 300).list(usable). 34

x = x.f(e,x) = x. % complete set of reductions for groupsf(x,e) = x.f(g(x),x) = e.f(x,g(x)) = e.f(f(x,y),z) = f(x,f(y,z)).g(e) = e.g(g(x)) = x.f(g(y),f(y,x)) = x.f(y,f(g(y),x)) = x.g(f(y,x)) = f(g(x),g(y)).end_of_list.list(sos).f(g(x),f(g(y),f(x,y))) = h(x,y). % definition of commutatorh(h(x,y),z) = h(x,h(y,z)). % commutator is associative% denial: there are two elements whose commutator is not in the centerf(h(a,b),c) != f(c,h(a,b)).end_of_list.weight_list(purge_gen).weight(h($(0),f($(0),h($(0),$(0)))), 100).weight(h(f($(0),h($(0),$(0))),$(0)), 100).weight(h($(0),f(h($(0),$(0)),$(0))), 100).weight(h(f(h($(0),$(0)),$(0)),$(0)), 100).weight(h($(0),h($(0),h($(0),$(0)))), 100).weight(h($(0),f($(0),f($(0),$(0)))), 100).weight(h(f($(0),f($(0),$(0))),$(0)), 100).end_of_list.9 Evaluable Functions and Predicates ($SUM, $LT, : : :)Otter can be used in a \programmed" mode that is quite di�erent from normalrefutational theorem proving. When using the programmed mode, one generally hasin mind a particular method for solving a problem; and when writing clauses for theprogrammed mode, one generally knows exactly how they will be used by Otter.The programmed mode frequently involves a set of evaluable function and pred-icate symbols known as the $-symbols (because each starts with $). Examples are$SUM and $LT for integer arithmetic and $AND for Boolean operations.The evaluable symbols operate on four types of Otter term: integer constants,bit-string constants, the Boolean constants $T and $F, and arbitrary terms. Thesymbols that evaluate to type Boolean can occur either as function symbols or aspredicate symbols. The integer and bit operations behave the same as the under-lying C operations applied to the data type \long int" and \unsigned long int",respectively. Table 7 lists the evaluable functions and predicates by type.Additional notes on the operations (unless otherwise stated, the term in questionevaluates if all arguments demodulate/evaluate to the appropriate type):35

Table 7: Evaluable Functions and Predicatesint � int! int $SUM, $PROD, $DIFF, $DIV, $MODint � int! bool $EQ, $NE, $LT, $LE, $GT, $GEbits� bits! bits $BIT_AND, $BIT_OR, $BIT_XORbits� int! bits $SHIFT_LEFT, $SHIFT_RIGHTbits! bits $BIT_NOTint! bits $INT_TO_BITSbits! int $BITS_TO_INTterm � term! bool (lexical) $ID, $LNE, $LLT, $LLE, $LGT, $LGE! bool $T, $Fbool � bool! bool $AND, $ORbool! bool $TRUE, $NOTterm! bool $ATOMIC, $INT, $BITS, $VAR, $GROUND! int $NEXT_CL_NUMbool � term� term! term $IF� int� int! int. The symbol $SUM is addition, $PROD is multiplication, $DIFFis subtraction, $DIV is integer division, and $MOD is remainder.� int � int ! bool. These are the ordinary relational operations on integers.The symbol $EQ is =, $NE is 6=, $LT is <, $LE is �, $GT is >, and $GE is �.� bits� int! bits. The shift operations $SHIFT_LEFT and $SHIFT_RIGHT shiftthe �rst argument by the number of places given by the second argument.� bits � bits ! bits. The symbols $BIT_AND, $BIT_OR, and $BIT_XOR are thebitwise conjunction, disjunction, and exclusive-or operations.� bits ! bits. The symbol $BIT_NOT is the one's complement operation on bitstrings.� int ! bits. The symbol $INTS_TO_BITS translates a decimal integer to a bitstring.� bits ! int. The symbol $BITS_TO_INT translates a bit string to the corre-sponding decimal integer.� term� term! bool. The term always evaluates. These operations are analo-gous to the six operations in int� int ! bool, except that the comparisons arelexical instead of arithmetic. The symbol $ID tests identity of terms. The lex-ical comparison is the same as in lex-dependent demodulation; in particular,the ag lex_order_vars (Secs. 6.1.5 and 8.1.1) has e�ect.� ! bool. The symbols $T and $F represent true and false. When they appear asliterals or atomic formulas in clauses, the clauses are simpli�ed as appropriate.� bool ! bool. The symbol $TRUE is essentially a \no operation" on Booleanconstants. It is used to trick hyperresolution into evaluating literals (see be-low). 36

� term! bool. A term is $ATOMIC i� it is a constant (including integer and bitstring), a term is a $INT i� it is an integer, a term is a $BITS i� it is a string off0,1g, a term is a $VAR i� it is a (unbound) variable, and a term is a $GROUNDi� it does not contain any variables.� ! int. The term $NEXT_CL_NUM (no arguments) evaluates to the next integerthat will be assigned as a clause identi�er (this is useful for placing the ID ofa clause within the clause).� bool � term � term ! term. The $IF function is the if-then-else operator.When inside-out (the default) demodulation encounters a term $IF(condition,t1, t2), demodulation takes a path di�erent from its normal inside-out behav-ior. The term condition is demodulated (evaluated); if the result is $T, thevalue of the $IF term is the result of demodulating t1; if the result is $F,the value of the $IF term is the result of demodulating t2; if the result isneither $T nor $F, demodulation returns to its normal behavior. Note thatif the condition evaluates to a Boolean value, demodulation deviates from itsinside-out behavior, because just one of t1 and t2 is demodulated. (If demod-ulation were always outside-in, $IF would not need to be built in, becauseit could be e�ciently de�ned with the two demodulators if($T,x,y)=x andif($F,x,y)=y.)Evaluation occurs as part of the demodulation process. In particular, if de-modulation comes across an evaluable term, say $SUM(2,3), it tries to convert thearguments into the appropriate type (integers for $SUM); then if the arguments havethe correct type, it rewrites the term to the result of the operation, in this case,just as if the demodulator $SUM(2,3)=5 had been present. The evaluation mech-anisms, along with ordinary demodulation, form a reasonably complete (althoughnot particularly speedy or convenient) equational programming subsystem.Evaluation/demodulation can also occur, in a very particular way, during hy-perresolution. (Recall that hyperresolution takes a clause, the nucleus, with somenegative literals, the conditions, and resolves each negative literal with a positiveclause, producing a clause with no negative literals.) Just as evaluation during de-modulation can be thought of as rewriting with an implicit demodulator, evaluationduring hyperresolution can be thought of resolving with the implicit positive unitclause $T (meaning \true"). The mechanism is this: if hyperresolution encountersa negative literal that has an evaluable predicate symbol, then it demodulates theatom (the literal without the sign); if the result of the demodulation is $T, then theliteral is considered to have been resolved.During hyperresolution, demodulation/evaluation is triggered by the presence ofan evaluable literal. In many cases, however, the user de�nes a Boolean functionthat he or she wishes to trigger the mechanism. Consider the following de�nition oflist membership, written as demodulators:member(x,[]) = $F.member(x,[y|z]) = $IF($ID(x,y),$T,member(x,y)).37

Because the symbol member is not evaluable, the demodulation/evaluation mecha-nism will not be activated; however, the unary evaluable predicate $TRUE can beused in the following way to trigger demodulation/evaluation.�L1 | � � � | -$TRUE(member(element, list)) | � � � | �Ln | M .Evaluable functions and predicates are useful to implement forward-chaining rule-based systems, for example, state-space search problems (Sec. 9.2).Hyperresolution operates on the conditions (negative literals) in order, left toright. (The preceding sentence is not quite true, because the �rst step is typicallyresolution of a positive given clause with any one of the conditions, but for thisparagraph, we may assume that it is true.) If a literal resolves or evaluates, the nextliteral is considered. If nothing more can be done with a literal, then hyperresolutionbacktracks to the preceding literal in search of an alternative. When a nucleuscontains evaluable conditions, the order of the conditions is important both fore�ciency and for actually deriving hyperresolvents. Evaluable conditions typicallyhave variables that must be instantiated when nonevaluable literals are resolved.If an evaluable literal is too far to the left, its variables will not be su�cientlyinstantiated when hyperresolution encounters it, evaluation will fail, and possiblepaths to hyperresolvents will be blocked. If an evaluable literal is too far to theright, then hyperresolution can explore many paths that are sure to fail.Technical Note and Advice. The evaluable symbols are an add-on feature rather thanan integral part ofOtter. In particular, the objects that are manipulated (integers,bit strings, etc.) in most cases are stored by Otter as character strings rather thanas the appropriate data type. To evaluate a term, say $SUM(2,3), Otter must�nd the strings "2" and "3" in a hash table, translate them to integers, add them,translate the result to the string "5", then look up "5", and possibly insert it intothe hash table. This procedure is obviously much slower than it needs to be. If theuser has a problem that requires a hundred million evaluations, he or she shouldconsider using something else, including writing a special-purpose C program.Warning. The evaluable symbols should not be thought of as theories \built in" toOtter. As theories, they are very incomplete, and Otter uses them only in veryconstrained ways.9.1 Using More Natural Expressions for EvaluationWriting complex evaluable expressions with $-symbols can be quite tedious. There-fore, a feature was added that allows more natural expressions. The commandmake_evaluable copies the evaluation properties from a $-symbol to any othersymbol of the same arity. The form of the command ismake evaluable(any-symbol,evaluable-symbol).The symbols in the command are given dummy arguments to specify the arity. Thefollowing list contains typical examples for integer arithmetic (assuming the symbolson the left are already known to be in�x).38

make_evaluable(_+_, $SUM(_,_)).make_evaluable(_-_, $DIFF(_,_)).make_evaluable(_>_, $GT(_,_)).make_evaluable(_>=_, $GE(_,_)).Warning 1. If a binary symbol that is recognized by paramodulation or demod-ulation as an equality symbol is given evaluation properties, it will no longer berecognized by paramodulation or demodulation. For example, if the commandmake_evaluable(_=_, $EQ(_,_)) is issued, paramodulation and demodulation willnot recognize a=b as an equality. The convention is to use == for evaluation.Warning 2. This is not an \alias" mechanism; the symbols remain distinct foruni�cation, matching, and identity testing.9.2 Evaluation ExamplesEquational Programming. The evaluable functions and predicates enable theuse of equalities with demodulation as a general-purpose equational programminglanguage. Here are some examples.gcd(x,y) = % greatest common divisor for nonnegative integers$IF($EQ(x,0),y,$IF($EQ(y,0),x,$IF($LT(x,y),gcd(x,$DIFF(y,x)),gcd(y,$DIFF(x,y))))).factorial(x) = % factorial for nonnegative integers$IF($EQ(x,0),1,$PROD(x,factorial($DIFF(x,1)))).quick_sort([]) = []. % naive quicksortquick_sort([x|y]) = append(quick_sort(le_list(x,y)),[x|quick_sort(gt_list(x,y))]).le_list(z,[]) = [].le_list(z,[x|y]) = $IF($LLE(x,z),[x|le_list(z,y)],le_list(z,y)).gt_list(z,[]) = [].gt_list(z,[x|y]) = $IF($LGT(x,z),[x|gt_list(z,y)],gt_list(z,y)).A State-Space Search. Here is a complete Otter input �le for a simple state-space search.% We have a 3-gallon jug and a 4-gallon jug, both empty, and a well.39

% Our goal is to have exactly 2 gallons in the 4-gallon jug. We% can fill a jug from the well, empty a jug onto the ground, and% carefully pour water from one jug into the other.%% j(m, n) is the state in which the 3-gallon jug contains m gallons,% and the 4-gallon jug contains n gallons.set(hyper_res).make_evaluable(_+_, $SUM(_,_)).make_evaluable(_-_, $DIFF(_,_)).make_evaluable(_<=_, $LE(_,_)).make_evaluable(_>_, $GT(_,_)).list(usable).-j(x, y) | j(3, y). % fill the 3-gallon jug-j(x, y) | j(0, y). % empty the 3-gallon jug-j(x, y) | j(x, 4). % fill the 4-gallon jug-j(x, y) | j(x, 0). % empty the 4-gallon jug-j(x, y) | -(x+y <= 4) | j(0, y+x). % small -> big; it all fits-j(x, y) | -(x+y > 4) | j(x - (4-y), 4). % small -> big, until full-j(x, y) | -(x+y <= 3) | j(x+y, 0). % big -> small; it all fits-j(x, y) | -(x+y > 3) | j(3, y - (3-x)). % big -> small, until full-j(x, 2). % goal state --- 4-gallon jug containing 2 gallonsend_of_list.list(sos).j(0, 0). % initial state --- both jugs emptyend_of_list.10 WeightingOtter recognizes four lists of weight templates. (See Sec. 5.4 for input of weighttemplate lists.)weight list(pick given). This list is used for selection of given clauses from listsos. When the weight of a clause is printed, it is the pick_given weight.weight list(purge gen). This list is used in conjunction with the max_weightparameter to discard generated clauses.weight list(pick and purge). In many cases, one can use the same weightingstrategy for both selecting given clauses and purging generated clauses. Thepick_and_purge list serves the purposes of both the pick_given and thepurge_gen lists. If the pick_and_purge list is present, then neither thepick_given nor the purge_gen list may be present.weight list(terms). This list is for calculating the weight of terms when usingthe weight-lex-order (Sec. 8.1.1) to compare terms. This occurs when the aglrpo is clear when orienting equality literals (Secs. 8.1.2 and 8.1.3).40

10.1 Weighing Clauses and LiteralsThe weight of a clause is always the sum of the weights of its literals (excludingany answer literals). The weight of a positive literal is the weight of its atom. Theweight of a negative literal is the weight of its atom plus the value of the neg_weightparameter (Sec. 6.2.5).10.2 Weighing Atoms and TermsAtoms and terms are weighed top-down. To weigh a given term, Otter searchesthe appropriate weight list (in the order input) for the �rst matching template. If amatch is found, then the subterms of the given term that match the integers in thetemplate are weighed. The weight of the given term is the sum of the products ofeach integer and the weight of its corresponding subterm, plus the second argumentof the weight template. For example, the templateweight(f(g($(2)),$(-3)), -50).matches the given termf(g(h(a)),f(b,x)).Let wt(t) be the weight of term or atom t. Thenwt(f(g(h(a)),f(b,x))) = 2 � wt(h(a)) + (�3) � wt(f(b,x)) + (�50).If a matching weight template is not found, then the weight of the given term is1 plus the sum of the weights of the subterms. (See the ags atom_wt_max_argsand term_wt_max_args, Sec. 6.1.9, for overrides.) Note that this weighting schemeimplies that if no weight templates are present, the default weight of a term or atomis the number of variable, constant, function, and predicate symbols (the symbolcount).Variables in weight templates are generic. A variable in a weight template willmatch any variable, and only a variable, in the given term. As a consequence, itis never necessary to use di�erent variable names in a weight template. For exam-ple, weight(f(x,x),-7) matches the term f(u,v), and weight(x,32) matches allvariables.Warning. The two occurrences of symbol f in the term f(f,x) are treated byOtter as di�erent symbols because they have di�erent arities. The weight templateweight(f, 0) applies to the second occurrence but not to the �rst.The default weight of an answer literal is 0, but templates can be used to assignweights to answer literals. The parameter neg_weight never applies to answerliterals.If one wishes to have a weight template containing a Skolem function or constantthat is generated by Otter, one must �rst make a short trial run to �nd out how41

the formulas are Skolemized, then return to the input �le and insert the weight listcontaining the Skolem symbol after the formula lists.11 Answer LiteralsThe main use of answer literals is to record, during a search for a refutation, instanti-ations of variables in input clauses. For example, if the theorem under considerationstates that an object exists, then the denial of the theorem contains a variable, andan answer literal containing the variable can be appended to the denial. If a refuta-tion is found, then the empty clause has an answer literal that contains the objectwhose existence has just been proved.Any literal whose predicate symbol starts with $ans, $Ans, or $ANS is an answerliteral. Most routines|including the ones that count literals and decide whether aclause is positive or negative|ignore any answer literals. The inference rules insert,into the children, the appropriate instances of any answer literals in the parents. Iffactoring is enabled, Otter does attempt to factor answer literals.12 The Passive ListEither clauses or formulas can be input to list passive. After input, the passivelist is �xed for the rest of the run. Clauses in the passive list are used for exactlytwo purposes: forward subsumption and unit conict. If forward subsumption isenabled, a newly generated clause will be deleted if it is subsumed by any clause inusable, sos, or passive, and newly kept unit clauses are checked for unit conictagainst unit clauses in usable, sos, or passive.The passive list has been most useful for monitoring the progress of a search.Suppose we are trying to prove a di�cult theorem, we have some lemmas in mind,and we would like to know whether Otter has proved the lemmas. Then denialsof the lemmas can be placed in the passive list, and Otter will report proofs ifit proves any lemmas, but the denials of the lemmas will not interfere with thesearch for the main theorem. (Recall that an appropriate value must be assigned tomax_proofs; otherwise Otter will stop at the �rst proof.)13 Completeness and Soundness13.1 CompletenessIf the clause set does not involve equality, or if it involves equality and includes theequality axioms, then many of the common refutation-complete resolution searchstrategies can be easily achieved with Otter. For example, hyperresolution andfactoring, with positive clauses in the list sos and nonpositive clauses in the listusable, is complete. If the input clause set is Horn, then factoring is not required.42

The default method of selecting the given clause (take one with the fewest symbols)does not interfere with completeness, and neither forward nor back subsumption, asimplemented in Otter, interferes with completeness of the basic inference rules.Completeness issues are more complex when paramodulation is the inferencerule, especially when the set of support strategy is considered. A simple and com-plete paramodulation strategy for Otter is (1) paramodulate from and into thegiven clause, (2) paramodulate from and into both sides of equality literals, (3)paramodulate from (but not into) variables, and (4) place all input clauses in thelist sos. The equality x=x is required, but the functionally reexive axioms are notrequired.Completeness of the basic inference rules is important, but incomplete restric-tions and re�nements are frequently required to �nd proofs. For example, I almostalways use the max_weight parameter; strictly speaking, it is incomplete, but itsaves a lot of time and memory, and careful use of it does not prevent Otter from�nding proofs in practice. For paramodulation, I generally use a search based onsome variation of the Knuth-Bendix completion procedure; some versions are knownto be incomplete, and others have not been analyzed. I sometimes use UR-resolutionon nonHorn sets, which is incomplete. And I make extensive use of weighting topurge \uninteresting clauses" and the options delete_identical_nested_skolem,max_distinct_vars, and max_literals, all of which interfere with completeness.13.2 SoundnessAs far as I know, no part of Otter has been formally veri�ed in any way. If it�nds a proof, it can print the proof line by line (excluding individual demodulationsteps), so the user has the option of checking it. If anything depends on the proof, Irecommend at least scanning the proof for obvious errors. The few soundness bugsin previous versions of Otter have surfaced in ways that are easy to spot in proofs,for example, deriving x = y from a nontrivial equational theory.I won't jump o� a bridge (even a small one) if someone �nds a bug that makesOtter unsound, but I will tell everyone about the the bug and try to �x it promptly.14 Interaction during the SearchOtter has a primitive interactive feature that allows the user to interrupt thesearch, modify the options, and then continue the search. The interrupt is trig-gered in two ways: (1) with Otter running in the foreground, the user typesthe \interrupt" character (often delete or control-C), or (2) if the parameterinterrupt_given is set to n, the search is interrupted after every n given clauses.When interrupted, Otter immediately goes into a simple loop to read and executecommands. The accepted commands are listed in Table 8.The following notes elaborate on the interactive feature.� The ag interactive_given (Sec. 6.1.1) can be useful with the interactive43

Table 8: Interaction Commandshelp. Give simple help.set(ag-name). Set a ag.clear(ag-name). Clear a ag.assign(param-name,value). Assign a value to a parameter.stats. Send statistics to std. output and the terminal.usable. Print list usable on the terminal.sos. Print list sos on the terminal.demodulators. Print list demodulators on the terminal.passive. Print list passive on the terminal.fork. Fork and run the child process;resume parent when child �nishes.continue. Continue the search.kill. Send statistics to standard output, and exit.feature. For example, if the user thinks the search is going to fail, he or shecan interrupt it, print list sos, set the interactive_given ag, then continue,selecting given clauses interactively.� The fork command creates a separate copy, called a child, of the entire Ot-ter process. Immediately after the fork, the child is running (waiting formore commands) and the original process, the parent, is waiting for the childto �nish. When the child �nishes, the parent resumes (waiting for more com-mands). Changes that the child makes to the clause space, options, etc., arenot reected in the parent; when the parent resumes, it is in exactly the samestate as when the fork occurred. (The timing statistics are not handled cor-rectly in child processes; CPU times are from the start of the current process;wall-clock time is correct; other timings are not reliable.)� The interactive routine is an area where a user who is also a C programmercan easily add features. For example, most of the ordinary input commandscould be made available in the interactive mode.Warning. Do not interactively change any option that a�ects term or literal index-ing.15 Output and Exit CodesOtter sends most of its output to \standard output", which is usually redirected bythe user to a �le; I'll just call it the output �le. The �rst part of the output �le is anecho of most of the input and some additional information, including identi�cationnumbers for clauses and description of some input processing. Comments are notechoed to the output. The second part of the output �le reects the search. Variousprint ags determine what is output. Given clauses, generated clauses, kept clauses,and several messages about the processing of generated and kept clauses can beprinted. Both statistics from the parameter report and proofs can also be printed44

during the search. The �nal part of the output �le lists counts of various events(such as clauses given and clauses kept) and times for various operations.Whenever a clause is printed, it is printed with its integer identi�er (ID) and ajusti�cation list, which is enclosed in brackets. Examples:4 [] -j(x,y)|j(x,0).13 [hyper,11,8,eval,demod] j(3,1).41 [31,demod] p([a,b,b,c,c,c,d,e,f]).14 [new_demod,13] f(y,f(y,f(y,x)))=x.71 [back_demod,58,demod,70,14,55,11,34,11] e!=e.12 [demod,9] f(a,f(b,f(g(a),g(b))))!=e.77 [binary,57.3,30.2] sm|mm| -sl.33,32 [para_from,26.1.1,15.1.1.2,demod,21] g(x)=f(x,x).36 [hyper,31,2,26,30,unit_del,19,18,20,19] p(k,g(k)).4 [factor_simp,factor_simp] p(x)|p($f1(x))| -q($f2(y))| -q(y)|p($c6).199 [binary,198.1,191.1,factor_simp] q($c14).If the justi�cation list is empty, the clause was input. Otherwise, the �rst item inthe justi�cation list is one of the following.An inference rule. The clause was generated by an inference rule. The IDs of theparents are listed after the inference rule with the given clause ID listed �rst(unless order_history is set).A clause identi�er. The clause was generated by the demod_inf rule.new demod. The clause is a dynamically generated demodulator; it is a copy of theclause whose ID is listed after new_demod.back demod. The clause was generated by back demodulating the clause whose IDis listed after back_demod.demod. The clause was generated by back demodulating an input clause.factor simp. The clause was generated by factor-simplifying an input clause. Forexample, p(x)|p(a) factor-simpli�es to p(a).The sublist [demod; id1; id2; : : :] indicates demodulation with id1; id2; : : :. The sublist[unit del; id1; id2; : : :] indicates unit deletion with id1; id2; : : :. The symbols evalindicates that a literal was \resolved" by evaluation (Sec. 9) during hyperresolu-tion. The sublist [factor simp; factor simp; : : :] indicates a sequence of factor-simpli�cation steps (Sec. 6.1.4).In proofs, some clauses are printed with two (consecutive) IDs. In such a case,the clause is a dynamically generated demodulator, and the two IDs refer to di�erentcopies of the same clause: the �rst ID refers to its use for inference rules, and thesecond to its use as a demodulator.If the ag detailed_history is set, then for the inference rules binary_res,para_from, and para_into, the positions of the uni�ed literals or terms are listed45

along with the parent IDs. For example, [binary,57.3,30.2]means that the thirdliteral of clause 57 was resolved with the second literal of clause 30. For paramod-ulation, the \from" parent is listed as ID:i:j, where i is the literal number of theequality literal, and j (either 1 or 2) is the number of the uni�ed equality argument;the \into" parent is listed as ID:i:j1: � � � :jn, where i is the literal number of the\into" term, and j1: � � � :jn is the position vector of the \into" term; for example,400.3.1.2 refers to the second argument of the �rst argument of third literal ofclause 400. If the ag para_all is set, then the paramodulation positions are notlisted.When the ag sos_queue is set, the search is breadth �rst (level saturation),and Otter sends a message to the output �le when given clauses start on a newlevel. (Input clauses have level 0, and generated clauses have level one greater thanthe maximum of the levels of the parents. Since clauses are given in the order inwhich they are retained, the level of given clauses never decreases.)Exit Codes. When Otter stops running, it returns with an exit code that givesthe reason for termination. The codes are useful when another program or systemcalls Otter. Table 9 lists the exit codes. Note that we do not follow the unixconvention of returning zero for normal and nonzero for abnormal termination.Table 9: Exit Codes101 Input error(s)102 Abnormal end (compile-time limit or Otter bug)103 Proof(s) found (stopped by max_proofs)104 sos list empty105 max_given parameter exceeded106 max_seconds parameter exceeded107 max_gen parameter exceeded108 max_kept parameter exceeded109 max_mem parameter exceeded110 Operating system out of memory111 Interactive exit112 Memory error (probable Otter bug)16 Controlling MemoryIn many Otter searches, the sos list accumulates many clauses that never enterthe search, possibly wasting a lot of memory. The normal way to conserve memoryis to put a maximum on the weight of kept clauses. It can be di�cult, however,to �nd an appropriate maximum. Otter has a feature, enabled by the commandset(control_memory), that attempts to automatically adjust the maximum.The memory-control feature operates as follows. When one third of availablememory (max_mem parameter) has been �lled, Otter assigns or reassigns a maxi-mum weight. The new maximum, say n, is such that 5% of all clauses in sos have46

weight � n. From then on, at every tenth iteration of the main loop, Otter calcu-lates a prospective new maximum n0 in the same way. If n0 < n, then the maximumis reset to n0. I arrived at the values 1=3 and 5% by trial and error. Perhaps thesevalues should be parameters.17 Fringe FeaturesThis section describes some features that are new, not well tested, and/or not welldocumented.17.1 Autonomous ModeIf the ag auto is set, Otter will scan the input clauses for some simple syntacticproperties and decide on inference rules and a search strategy. We think of the au-tonomous mode as providing a built-in metastrategy for selecting search strategies.The search strategy that Otter selects for a particular set of clauses is usuallyrefutation complete (except for the ag control_memory), but the user should notexpect it to be especially e�ective. It will �nd proofs for many easy theorems, andeven for cases in which it fails to �nd a proof, it provides a reasonable starting point.In the input �le, the command set(auto) must occur before any input clauses,and all input clauses must be in list usable; it is an error to place input clauses onany of the other lists when in autonomous mode. Otter will move some of the inputclauses to sos before starting the search. When Otter processes the set(auto)command, it alters some options, even before examining the input clauses. If theuser wishes to augment the autonomous mode by including some ordinary Ottercommands (including overriding Otter's choices), the commands should be placedafter set(auto) and before list(usable).After list(usable) has been read,Otter examines the input clauses for severalsyntactic properties and decides which inference rules and strategies should be used,and which clauses should be moved to sos. The user cannot override the decisionsthat Otter makes at this stage.Otter looks for the following syntactic properties of the set of input clauses: (1)whether it is propositional, (2) whether it is Horn, (3) whether equality is present,(4) whether equality axioms are present, and (5) the maximum number of literalsin a clause. The program then considers six basic combinations of the properties:(1) propositional, (2) equality in which all clauses are units, and (3{6) the fourcombinations of fequality, Horng. To see precisely what Otter does for thesecases, the reader can set up and run some simple experiments.Please be aware that the autonomous mode reects my own experiences withOtter; other users would certainly formulate di�erent metastrategies. For example,Larry Wos prefers UR-resolution to hyperresolution or in addition to hyperresolutionin rich Horn or nearly-Horn theories, and he prefers to add few or no dynamicdemodulators for equality theories. 47

17.2 The Hot ListThe hot list is a strategy that can be used to emphasize particular clauses. It wasinvented by Larry Wos in the context of paramodulation, and it has been extendedto most of Otter's inference rules. To use the strategy, the user simply inputs oneor more clauses in the special list named hot. Whenever a clause is generated andkept by Otter's ordinary mechanisms, it is immediately considered for inferencewith clauses in the hot list.Which Clauses Should Be Hot? Clauses input in the hot list are usually copiesof clauses that occur also in sos or usable. They are usually clauses that the userbelieves will play a key role in the search for a proof, for example, the specialhypothesis.Managing Hot-List Clauses. Input to the hot list is the same as input to otherlists and can be in either clause or formula form, for example,list(hot).f(x,x) = x. m(m(x)) = x.end_of_list.The ag process_input has no e�ect on hot-list clauses; they are never alteredduring input. Hot-list clauses are never deleted, for example by back subsumptionor back demodulation. Even if a hot-list clause is identical to a clause in anotherlist, it has a unique identifying number, and proofs that use hot-list clauses generallyrefer to two copies (with di�erent ID numbers) of those clauses.Hot Inference Rules. The inference rules that are applied to newly kept clausesand hot-list clauses are the same as the rules in e�ect for ordinary inference, withthe exceptions demod_inf, geometric_rule, and linked_ur_res, which are neverapplied to hot-list clauses.Applying Hot Inference. When hot inference is applied, the newly kept clauseis treated as the given clause, and the hot list is treated as the usable list. (Notethat the newly kept clause is not in the hot list, so it will not be considered forinference with itself, as happens with the given clause in ordinary inference.) Forinference rules such as hyperresolution or UR-resolution that can use more than twoparents, all of the other parents must be in the hot list; this generally means thatthe nucleus and other satellites must be in the hot list. Hot inference is not appliedto clauses that are \kept" during processing of the input.Level of Hot Inference (Parameter heat). To prevent long sequences of hotinferences (i.e., hot inference applied to a clause generated by hot inference, andso on) we consider the heat level of hot inference. The heat level of an ordinary48

inference is 0, and the heat level of a hotly inferred clause is one more than the heatlevel of the new-clause parent. The parameter heat, default 1, range [0..100], is themaximum heat level that will be generated. When a clause is printed, its heat level,if greater than 0, is also printed.Dynamic Hot Clauses (Parameter dynamic heat weight). Clauses can beadded to the hot list during a search. If the pick_given weight of a kept clauseis less than or equal to the parameter dynamic_heat_weight, default �max int,range [�max int..max int], then the clause will be added to the hot list and usedfor subsequent hot inference. Input clauses that are \kept" during processing of theinput are never made into dynamic hot clauses. Dynamic hot clauses can be addedto an empty hot list (i.e., no input hot list).17.3 Linked UR-ResolutionOtter has an inference rule, linked_ur_res, that is an application of the linkedinference principle [27] to UR-resolution. As this manual is written, there is notyet any documentation. The inference rule is still evolving and is highly experimen-tal. For current information on the status of linked UR-resolution, send e-mail towos@mcs.anl.gov and vero�@cs.unm.edu.17.4 Conditional DemodulationA conditional demodulator has the formcondition -> equality-literal.The equality is applied as a demodulator if and only if the instantiated conditionevaluates to $T. The equality of a conditional demodulator is not subjected oninput to being ipped or to being agged as a lex-dependent demodulator, andconditional demodulators are never back demodulated. In other ways, conditionaldemodulators behave as ordinary demodulators. Examples are (member and gcd arede�ned in Sec. 9.)$ATOMIC(x) -> conjunctive_normal_form(x)=x.member(gcd(4,x),y) -> Equal(f(x,y), g(y)).$GT($NEXT_CL_NUM,1000) -> e(x,x) = junk.17.5 Special Unary Function DemodulationA feature, activated by the special_unary command, allows Otter to avoid oneof the problems caused by the lack of associative-commutative matching duringdemodulation. The feature is useful when an associative-commutative function andan inverse are present, as in rings. Without this feature, the following lex commandand demodulators 49

lex([0,a,b,c,d,e,g(_),f(_,_)]).list(demodulators).f(x,y) = f(y,x).f(x,f(y,z)) = f(y,f(x,z)).f(x,g(x)) = 0.f(x,f(g(x),y)) = f(0,y).f(0,x) = x.end_of_list.will cause the expressionf(f(f(g(b),a),c),f(b,g(c)))to be sorted intof(a,f(b,f(c,f(g(b),g(c))))).One would like b and g(b) to be next to each other so that they could be canceledby one of the inverse demodulators. The special-unary feature accomplishes justthat. The commandspecial_unary([g(x)])causes g to be ignored during term comparisons, and the expression would be de-modulated to a. The special_unary command has no e�ect if the ag lrpo is set.This is an experimental feature. Its behavior has not been well analyzed.17.6 Ancestor SubsumptionOtter does not necessarily prefer short or simple proofs|it simply reports theproofs that it �nds. An option ancestor_subsume extends the concept of subsump-tion to include the derivation history, so that if two clause occurrences are logicallyidentical, the one with fewer ancestors is preferred. The motivation is to �nd shortproofs.ancestor_subsume | default clear. If this ag is set, the notion of subsump-tion (forward and back) is replaced with ancestor-subsumption. Clause C ancestor-subsumes clause D i� C properly subsumes D or if C and D are variants andsize(ancestorset(C)) � size(ancestorset(D)).When setting ancestor_subsume, we strongly recommend not clearing the agback_subsume, because doing so can cause many occurrences of the same clause tobe retained and used as given clauses. 50

17.7 Reducing max weight on the FlyIn many searches, the number of kept clauses grows much faster than the numberof given clauses. In other words, the list sos is very large, and most of those clausesnever participate in the search. To save memory, one can use the max_weightparameter to discard many of the clauses that will (probably) never become givenclauses.A few searches and proofs show a phenomenon we call the complexity hump. Toget a search started, one must use complex clauses; then one can continue the searchusing simpler clauses. That is, the �rst few steps in the proof are complex, and theremaining steps are simpler. If one needs to carefully conserve memory when acomplexity hump is present, one can use the parameters change_limit_after andnew_max_weight to change the value of max_weight after a speci�ed number ofgiven clauses.change_limit_after | default 0, range [0..max int]. If n (the value) is not 0,this parameter has e�ect. After n given clauses have been used, the parametermax_weight is automatically reset to the value of the parameter new_max_weight.new_max_weight| default max int, range [�max int..max int]. See the descrip-tion of the preceding parameter.Note that the memory-control feature (Sec. 16) can also address the complexityhump phenomenon.17.8 The Invisible ArgumentOtter recognizes a built-in unary function symbol $IGNORE(_). Forward subsump-tion treats each term that starts with $IGNORE as the constant $IGNORE, completelyignoring its argument. For example, p(a,$IGNORE(b)) subsumes p(a,$IGNORE(c)).All other operations (in particular, inference rules, demodulation, and back sub-sumption) treat $IGNORE as an ordinary function symbol.The purpose of $IGNORE is to record data about the derivation of a clause with-out having that data prevent the forward subsumption of clauses that would besubsumed without that data. The $IGNORE term is the term analog of the answerliteral. For example, one can use $IGNORE terms in the jugs and water puzzle (Sec.9.2) to record the sequence of pourings that leads to each state.17.9 Floating-Point OperationsTable 10 lists a set of oating-point evaluable functions and predicates that areanalogous to the integer arithmetic operations listed in Sec. 9. They operate in thesame way as the integer operations.The oating-point constants, however, are a little peculiar, both in the way theylook and in the way they behave. They are written as quoted strings, using eithersingle or double quotes. (Otherwise, they would not be able to contain decimal51

Table 10: Floating-Point Operationsfloat� float! float $FSUM, $FPROD, $FDIFF, $FDIV, $FMODfloat� float! bool $FEQ, $FNE, $FLT, $FLE, $FGT, $FGEpoints.) Other than the quotation marks, the form of the oating-point constantsaccepted by Otter is exactly the same as the form accepted by the C programminglanguage (actually the C library used by the compiler). Examples are "1.2", "10e6","-3.333E-5". A oating-point constant must contain either a decimal point or anexponent character e or E.The peculiar behavior comes from the fact Otter stores the oating pointnumbers as character strings instead of directly as oating point numbers. To applya oating-point operation, Otter starts with the operand strings, translates themto true oating-point numbers (the C data type \double" is used), performs theoperation, then translates the result into a string so that it can be an Otterconstant. As well as being ine�cient, this scheme also has a problem with precision,because a �xed format is used to translate the results back into strings. The defaultformat is "%.12f", and it can be changed with a command such asfloat_format("%17.8f")Caution. Otter does not check that the string in the float_format command isa well-formed format speci�cation. This is the user's responsibility.To fully understand how this works, see the standard C language reference [11,Appendix B]; in particular, the C library functions sscanf and sprintf are usedto translate to and from strings.17.10 Foreign Evaluable FunctionsOtter provides a general mechanism through which the user can create his orher own evaluable functions and predicates. The user (1) declares the function, itsargument types, and its result type, (2) inserts a call to the function in the Ottersource code, (3) writes a C routine to implement the function, and (4) recompilesOtter. The user must have his or her own copy of the source code to use thisfeature. See the source code �le foreign.h for step-by-step instructions, examples,templates, and test �les.Important note. Many times you can avoid having to do all of this by just writingyour function with demodulators and using existing built-in functions. For exam-ple, if you need the maximum of two doubles, you can just use the demodulatorfloat_max(x,y) = $IF($FGT(x,y), x, y).17.11 Sequent Notation for ClausesThere are two ags that enable the use of sequent notation for clauses.52

input_sequent | default clear. If this ag is set, clauses in the input �le must bein sequent notation.output_sequent | default clear. If this ag is set, then sequent notation is usedwhen clauses are output.Syntax:� All sequent clauses have an arrow.� The negative literals (if any) are written on the left side of the arrow, arewritten without the negation sign, and are separated by commas.� The positive literals (if any) are written on the right side of the arrow and areseparated by commas.Table 11 lists some examples.Table 11: Examples of Sequent ClausesOrdinary Clause Sequent Clause-p | -q | -r | s | t p,q,r->s,tp(a,b,c) -> p(a,b,c)a!=b a=b ->$F (the empty clause) ->Note that p,q->r,s is ordinarily thought of as (p and q) implies (r or s).Sequent clauses are treated as (parsed as) a special case, because they can't bemade to �t within Otter's ordinary syntax.17.12 The Inference Rule gL for Cubic CurvesBased on work of R. Padmanabhan and others, a new inference rule, gL (\geo-metric Law", or \Local to global"), was added to Otter. The rule implements alocal-to-global generalization principle that has a geometric interpretation for cubiccurves. The article [18] contains a description of the rule, some details about itsimplementation in Otter, and several new results obtained with its use.The rule gL applies to single positive unit equalities, and it is implemented intwo ways: as an inference rule, with uni�cation, and as a rewrite rule, for when thetarget terms are already identical. The following ags, usually used together, enablethe rule.geometric_rule| default clear. When this ag is set, gL is applied as an inferencerule (along with any other inference rules that are set) to each given clause. Therule gL applies to single positive unit equalities.geometric_rewrite| default clear. When this ag is set, gL is applied as a rewriterule, after ordinary demodulation, to each generated clause.53

Our experience has shown that given two equalities of equal weight, one the resultof gL and the other not, the gL result is usually more interesting. The followingparameter can give preference to gL results.geo_given_ratio | default 1, range [�1..max int]. When this parameter is not�1, it a�ects selection of the given clause in a way similar to pick_given_ratio.If the ratio is n, then for each n given clauses selected in the normal way by weight,one given clause is selected because it is the lightest gL result available in sos.If pick_given_ratio and geo_given_ratio are both in e�ect, then clashes areresolved in favor of geo_given_ratio.18 Limits, Abnormal Ends, and FixesOtter has several compile-time limits. If a limit is exceeded, a message containingthe name of the limit will appear in the output �le and/or at the terminal. To raisethe limit, �nd the appropriate de�nition (#define) in a .h or .c �le, increase thelimit, and recompile Otter. (Of course, one must have his or her own copy of thesource code to do this.) Some of the limits are as follows.MAX_NAME | Maximum number of characters in a variable, constant, function, orpredicate symbol.MAX_BUF | Maximum number of characters in an input string (clause, formula,command, weight template, etc.).MAX_VARS | Maximum number of distinct variables in a clause.MAX_FS_TERM_DEPTH | Maximum depth of terms in the forward subsumption dis-crimination tree.MAX_AL_TERM_DEPTH| Maximum depth of left-hand arguments of equalities in thedemodulation discrimination tree.Conserving Memory. Several steps can be taken if Otter is using too muchmemory.� Use max_weight to discard (more) generated clauses. This is a very e�ectiveway to save memory (and time).� Set the ag control_memory (Sec. 6.1.9), or use the parameterschange_limit_after and new_max_weight (Sec. 17.7).� Decrease (down to 0) the value of the fpa_literals and fpa_terms parame-ters.� Set the for_sub_fpa ag to switch forward subsumption indexing from dis-crimination tree to fpa indexing.� If the inference rules being used are binary resolution or paramodulation, clearthe ag detailed_history. 54

� If a lot of back subsumption or back demodulation is expected, set the agreally_delete_clauses (Sec. 6.1.9).� If applicable, set no_fapl or no_fanl (Sec. 6.1.8).� If back demodulation is being used, clear the ag index_for_back_demod.� Run an Otter job until memory runs out, collect interesting lemmas from theoutput �le, then rerun the job including the lemmas as input clauses. Repeat.(This can be a good strategy even when memory is not a problem.)19 Obtaining and Installing OtterOtter 3 is free, and there are no restrictions on copying or distributing it. Themain means of distribution is anonymous FTP from info.mcs.anl.gov. See the�le README in the directory pub/Otter for information on the current state andversions of Otter 3.Once you have a copy of the Otter 3 distribution directory, you can compileOtter. (There may be Macintosh and DOS binaries available; see below.) Thedirectory source contains all of the source code and a unix-style make�le. Onmany unix-like operating systems, including Linux 99.pl13, SunOS 4.1.3, AIX 3.2.2,NeXTStep 3.1, and IRIX 4.0.5, simply typing \make otter" should compile Otter.If compilation fails, see comments in the �le makefile for hints on getting Otterto compile on your system.Once you haveOtter compiled, go to the directory test and see the �le README.You can then run the test and example input �les in that directory.As I write this manual, Otter 3 has not been compiled for DOS or Macintoshcomputers; I hope that those versions will soon become available in binary as wellas in source form. Inquiries on Otter 3 for DOS or Macintosh systems can be sentto the author.AcknowledgmentsAside from writing and maintainingOtter, much of my work over the past few yearshas been in collaboration with LarryWos. Toward our goal of creating programs thatare expert assistants for mathematicians, logicians, engineers, and other scientists,we have worked together on many applications of automated deduction, and thatwork has led to many of Otter's current features.The basic design of the program, including the data structures and the useof indexing, descends mostly from early programs of Ross Overbeek. The indexingmechanisms, which are in large part responsible for the performance of the program,have bene�ted from discussions with Overbeek, Mark Stickel, and Rusty Lusk.The expert users of Otter, including Bob Vero�, Ken Kunen, John Kalman,and Art Quaife, have tracked down bugs and suggested useful enhancements.55

References[1] W. Bledsoe and D. Loveland, editors. Automated Theorem Proving: After 25Years, volume 29 of Contemporary Mathematics. AMS, 1984.[2] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, NewYork, 1979.[3] R. S. Boyer and J S. Moore. A Computational Logic Handbook. AcademicPress, New York, 1988.[4] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Prov-ing. Academic Press, New York, 1973.[5] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,3:69{116, 1987.[6] C. A. R. Hoare and M. J. C. Gordon, editors. Mechanized Reasoning andHardware Design. Prentice-Hall, 1992.[7] J S. Moore, editor. Special Issue on System Veri�cation. Journal of AutomatedReasoning, 5(4), 1989.[8] J.-P. Jouannaud, editor. Rewriting Techniques and Applications, Lecture Notesin Computer Science, Vol. 202, New York, 1985. Springer-Verlag.[9] D. Kapur, editor. Proceedings of the 11th International Conference on Auto-mated Deduction, Lecture Notes in Arti�cial Intelligence, Vol. 607, New York,1992. Springer-Verlag.[10] D. Kapur and H. Zhang. RRL: Rewrite rule laboratory user's manual. TechnicalReport 89-03, Department of Computer Science, University of Iowa, 1989.[11] B. Kernighan and D. Ritchie. The C Programming Language. Prentice-Hall,2nd ed., 1988.[12] D. Knuth and P. Bendix. Simple word problems in universal algebras. InJ. Leech, editor, Computational Problems in Abstract Algebras, pages 263{297.Pergamon Press, Oxford, U.K., 1970.[13] A. G. Kurosh. The Theory of Groups, volume 1. Chelsea, New York, 1956.[14] D. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland,Amsterdam, 1978.[15] E. Lusk and R. Overbeek. The automated reasoning system ITP. Tech. ReportANL-84/27, Argonne National Laboratory, Argonne, Ill., April 1984.[16] W. McCune. Skolem functions and equality in automated deduction. In Pro-ceedings of the Eighth National Conference on Arti�cial Intelligence, pages 246{251, Cambridge, Mass., 1990. MIT Press.[17] W. McCune. Single axioms for groups and Abelian groups with various opera-tions. Journal of Automated Reasoning, 10(1):1{13, 1993.56

[18] R. Padmanabhan and W. McCune. Automated reasoning about cubic curves.Computers and Mathematics with Applications, 1993. To appear.[19] A. Quaife. Automated development of Tarski's geometry. Journal of AutomatedReasoning, 5(1):97{118, 1989.[20] A. Quaife. Automated Development of Fundamental Mathematical Theories.Ph.D. thesis, University of California at Berkeley, 1990.[21] J. Siekmann and G. Wrightson, editors. Automation of Reasoning: ClassicalPapers on Computational Logic, volume 1 and 2. Springer-Verlag, Berlin, 1983.[22] B. Smith. Reference manual for the environmental theorem prover: An in-carnation of AURA. Tech. Report ANL-88-2, Argonne National Laboratory,Argonne, Ill., March 1988.[23] M. Stickel, editor. Proceedings of the 10th International Conference on Auto-mated Deduction, Lecture Notes in Arti�cial Intelligence, Vol. 449, New York,1990. Springer-Verlag.[24] L. Wos. Automated Reasoning: 33 Basic Research Problems. Prentice-Hall,Englewood Cli�s, N.J., 1988.[25] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: Introduc-tion and Applications, revised edition. McGraw-Hill, New York, 1992.[26] L. Wos, F. Pereira, R. Boyer, J Moore, W. Bledsoe, L. Henschen, B. Buchanan,G. Wrightson, and C. Green. An overview of automated reasoning and related�elds. Journal of Automated Reasoning, 1(1):5{48, 1985.[27] L. Wos, R. Vero�, B. Smith, and W. McCune. The linked inference principleII: The user's view. In R. Shostak, editor, Proceedings of the 7th InternationalConference on Automated Deduction, Lecture Notes in Computer Science, Vol.170, pages 316{332, New York, 1984. Springer-Verlag.
57

