
Distribution Category:Mathematics andComputer Science (UC-405)ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL-95/11PETSc 2.0 Users ManualRevision 2.0.16bySatish BalayWilliam GroppLois Curfman McInnesBarry SmithMathematics and Computer Science DivisionThis manual is intended for use with PETSc 2.0.16.February 1997This work was supported by the Mathematical, Information, and Comptuational Sciences Division subprogram of the O�ce ofComputational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

ContentsAbstract viiI Introduction to PETSc 11 Getting Started 31.1 Suggested Reading : 41.2 Running PETSc Programs : 51.3 Simple PETSc Examples : 71.4 Directory Structure : 17II Programming with PETSc 192 Vectors 212.1 Creating and Assembling Vectors : 212.2 Basic Vector Operations : 222.3 Vector Internals : 232.4 Index Sets : 232.5 Scatters and Gathers : 242.6 Application Orderings : 252.7 Local to Global Mappings : 262.8 Distributed Arrays : 262.8.1 Creating Distributed Arrays : 272.8.2 Local/Global Vectors and Scatters : 282.8.3 Grid Information : 282.9 Discrete Functions : 383 Matrices 403.1 Creating and Assembling Matrices : 403.1.1 Sparse Matrices : 413.1.2 Dense Matrices : 443.2 Basic Matrix Operations : 453.3 Matrix-Free Matrices : 463.4 Other Matrix Operations : 464 SLES: Linear Equations Solvers 484.1 Using SLES : 484.2 Solving Successive Linear Systems : 494.3 KSP Component : 494.3.1 Preconditioning within KSP : 504.3.2 Convergence Tests : 514.3.3 Convergence Monitoring : 514.3.4 Understanding the Operators Spectrum : 52iii

4.3.5 Other KSP Options : 524.4 Preconditioners : 534.4.1 ILU and ICC Preconditioners : 534.4.2 SOR and SSOR Preconditioners : 554.4.3 LU Factorization : 554.4.4 Block Jacobi, Block Gauss-Seidel, and Overlapping Additive Schwarz Preconditioners 564.4.5 Shell Preconditioners : 574.4.6 Multigrid Preconditioners : 575 SNES: Nonlinear Solvers 595.1 Basic Usage : 595.1.1 Solving Systems of Nonlinear Equations : 645.1.2 Solving Unconstrained Minimization Problems : 655.2 The Various Nonlinear Solvers : 655.2.1 Line Search Techniques : 655.2.2 Trust Region Methods : 665.3 General Options : 665.3.1 Convergence Tests : 665.3.2 Convergence Monitoring : 675.3.3 Checking Accuracy of Derivatives : 675.4 Inexact Newton-like Methods : 675.5 Matrix-Free Methods : 685.6 Finite-Di�erence Jacobian Approximations : 736 TS: Scalable ODE Solvers 766.1 Basic Usage : 776.1.1 Solving Time-dependent Problems : 776.1.2 Solving Steady-State Problems with Pseudo-Timestepping : : : : : : : : : : : : : : : : 787 Advanced Features of Matrices and Solvers 797.1 Matrix Factorization : 797.2 Unimportant Details of KSP : 817.3 Unimportant Details of PC : 818 Graphics 838.1 Windows as Viewers : 838.2 Simple Drawing : 838.3 Line Graphs : 848.4 Graphical Convergence Monitor : 858.5 Other Graphical Output Types : 869 PETSc Fortran Users 879.1 Di�erences between PETSc Interfaces for C and Fortran : 879.1.1 Include Files : 879.1.2 Error Checking : 889.1.3 Array Arguments : 889.1.4 Calling Fortran Routines from C (and C Routines from Fortran) : : : : : : : : : : : : 899.1.5 Passing Null Pointers : 909.1.6 Duplicating Multiple Vectors : 909.1.7 Matrix and Vector Indices : 909.1.8 Setting Routines : 909.1.9 Compiling and Linking Fortran Programs : 909.1.10 Routines with Di�erent Fortran Interfaces : 919.2 Sample Fortran 77 Programs : 91iv

III Additional Information 10310 Pro�ling 10510.1 Basic Pro�ling Information : 10510.1.1 Interpreting -log summary Output: The Basics : 10610.1.2 Interpreting -log summary Output: Parallel Performance : : : : : : : : : : : : : : : : 10610.1.3 Using -log and -log all with PETScView : 10710.1.4 Using -log mpe with Upshot/Nupshot : 10710.2 Pro�ling Application Codes : 10810.3 Pro�ling Multiple Sections of Code : 10810.4 Restricting Event Logging : 10910.5 Interpreting -log info Output: Informative Messages : 11010.6 Time : 11010.7 Saving Output to a File : 11010.8 Accurate Pro�ling: Overcoming the Overhead of Paging : 11011 Hints for Performance Tuning 11311.1 Compiler Options : 11311.2 Pro�ling : 11311.3 Aggregation : 11311.4 E�cient Memory Allocation : 11411.4.1 Sparse Matrix Assembly : 11411.4.2 Sparse Matrix Factorization : 11411.4.3 PetscMalloc() Calls : 11411.5 Data Structure Reuse : 11411.6 Numerical Experiments : 11511.7 Tips for E�cient Use of Linear Solvers : 11511.8 Finding Memory Leaks : 11511.9 Machine-speci�c Optimizations : 11611.10 System-related Problems : 11612 Other PETSc Features 11712.1 Options : 11712.2 Viewers: Looking at PETSc Objects : 11812.3 Error Handling : 11912.4 Incremental Debugging : 12012.5 Complex Numbers : 12112.6 Emacs Users : 12112.7 VI Users : 12212.8 Parallel Communication : 12213 Make�les 12313.1 Our Make�le System : 12313.1.1 Make�le Commands : 12313.1.2 Customized Make�les : 12413.2 PETSc Flags : 12413.3 Limitations : 12714 PETSc GUI Utilities 12814.1 Getting Started : 12814.2 Using PETScView : 12814.2.1 Running PETScView : 12914.2.2 Loading a Con�guration File : 13014.2.3 Printing a PETScView Object Tree : 13014.2.4 Exiting PETScView : 13014.2.5 The PETScView Simulation : 130v

14.2.6 Advanced Features : 13114.3 Using PETScOpts : 13314.3.1 Running PETScOpts : 13314.3.2 Getting Help : 13314.3.3 Exiting PETScOpts : 13315 Design and Implementations of the Abstract Classes 13415.1 Names : 13515.2 Coding Conventions and Style Guide : 13515.3 Option Names : 13615.4 Implementation of Pro�ling : 13615.5 The Various Matrix Classes : 13715.5.1 Sequential AIJ Sparse Matrices : 13715.5.2 Parallel AIJ Sparse Matrices : 13715.5.3 Sequential Block AIJ Sparse Matrices : 13715.5.4 Parallel Block AIJ Sparse Matrices : 13715.5.5 Sequential Dense Matrices : 13815.5.6 Parallel Dense Matrices : 13815.5.7 Parallel Cyclic Block Dense Matrices : 13815.5.8 Parallel BlockSolve Sparse Matrices : 13815.5.9 Block Diagonal Sparse Matrices : 13815.5.10Parallel Block Diagonal Sparse Matrices : 13915.6 Other Libraries and Packages : 139A PETSc Function Reference List 140A.1 Vector Routines : 140A.2 Matrix Routines : 143A.3 Simpli�ed Linear Solvers : 150A.4 Preconditioners : 151A.5 Krylov Subspace Methods : 156A.6 Nonlinear Solvers : 160A.7 Timestepping, ODE Solvers : 165A.8 Index Sets, Distributed Arrays, and Application Orderings : 167A.9 Utility and System Routines : 170A.10 Viewers : 175A.11 Pro�ling : 176A.12 Graphics Routines : 177Acknowledgments 181Bibliography 182Subject Index 184Function Index 186
vi

AbstractThis manual describes the use of PETSc 2.0 for the numerical solution of partial di�erential equations and re-lated problems on high-performance computers. The Portable, Extensible Toolkit for Scienti�c Computation(PETSc) is a suite of data structures and routines that provide the building blocks for the implementationof large-scale application codes on parallel (and serial) computers. PETSc 2.0 uses the MPI standard for allmessage-passing communication.PETSc includes an expanding suite of parallel linear and nonlinear equation solvers that may be usedin application codes written in Fortran, C, and C++. PETSc provides many of the mechanisms neededwithin parallel application codes, such as simple parallel matrix and vector assembly routines that allow theoverlap of communication and computation. In addition, PETSc includes growing support for distributedarrays. The library is organized hierarchically, enabling users to employ the level of abstraction that is mostappropriate for a particular problem. By using techniques of object-oriented programming, PETSc providesenormous
exibility for users.PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeperlearning curve than a simple subroutine library. In particular, for individuals without some computer sciencebackground or experience programming in C, Pascal, or C++, it may require a large amount of time to takefull advantage of the features that enable e�cient software use. However, the power of the PETSc design andthe algorithms it incorporates make the e�cient implementation of many application codes much simplerthan \rolling them" yourself. For many simple (or even relatively complicated) tasks a package such asMatlab is often the best tool; PETSc is not intended for the classes of problems for which e�ective Matlabcode can be written.Since PETSc is still under development, small changes in usage and calling sequences of PETSc routineswill continue to occur. Although keeping one's code up to date can be somewhat annoying, all PETSc userswill be rewarded in the long run with a cleaner, better designed, and easier-to-use interface.

vii

Part IIntroduction to PETSc

1

Chapter 1Getting StartedThe Portable, Extensible Toolkit for Scienti�c Computation (PETSc) has successfully demonstrated that theuse of modern programming paradigms can ease the development of large-scale scienti�c application codesin Fortran, C, and C++. Begun several years ago, the software has evolved into a powerful set of tools forthe numerical solution of partial di�erential equations and related problems on high-performance computers.PETSc consists of a variety of components (similar to classes in C++), which are discussed in detailin Parts II and III of the users manual. Each component manipulates a particular family of objects (forinstance, vectors) and the operations one would like to perform on the objects. The objects and operationsin PETSc are derived from our long experiences with scienti�c computation. Some of the PETSc modulesdeal with� index sets, including permutations;� vectors;� matrices (both sparse and dense);� distributed arrays (useful for parallelizing regular grid-based problems);� Krylov subspace methods;� preconditioners;� nonlinear solvers;� timesteppers for solving time dependent (nonlinear) PDEs; and� graphics devices.Each of these components consists of an abstract interface (simply a set of calling sequences) and one ormore implementations using particular data structures. Thus, PETSc provides clean and e�ective codes forthe various phases of solving PDEs, with a uniform approach for each class of problems. This design enableseasy comparison and use of di�erent algorithms (for example, to experiment with di�erent Krylov subspacemethods, preconditioners, or truncated Newton methods). Hence, PETSc provides a rich environment formodeling scienti�c applications as well as for rapid algorithm design and prototyping.The components enable easy customization and extension of both algorithms and implementations. Thisapproach promotes code reuse and
exibility, and separates the issues of parallelism from the choice ofalgorithms. In addition, the PETSc infrastructure creates a foundation for building large-scale applicationsand extended suites of numerical routines.It is useful to consider the interrelationships among di�erent pieces of PETSc 2.0. Figure 1 is a diagramof some of the components of PETSc; Figure 2 presents several of the individual components in more detail.These �gures illustrate the library's hierarchical organization, which enables users to employ the level ofabstraction that is most appropriate for a particular problem.3

Matrices

PC
(Preconditioners)

Vectors Index Sets

(Linear Equations Solvers)
SLES

LAPACKBLAS

Level of
Abstraction Application Codes

(Time Stepping)
TS

(Nonlinear Equations Solvers)
SNES

PDE Solvers

MPI

Draw

(Unconstrained Minimization)

KSP
(Krylov Subspace Methods)Figure 1: Organization of the PETSc Library1.1 Suggested ReadingThe PETSc 2.0 Users Manual replaces all of the previous PETSc users guides, including the SLES, KSP,and SNES manuals. The manual is divided into three parts:� Part I - Introduction to PETSc� Part II - Programming with PETSc� Part III - Additional InformationPart I describes the basic procedure for using the PETSc library and presents two simple examples ofsolving linear systems with PETSc. This section conveys the typical style used throughout the library andenables the application programmer to begin using the software immediately. Part I is also distributedseparately for individuals interested in an overview of the PETSc software, excluding the details of libraryusage. Readers of this separate distribution of Part I should note that all references within the text toparticular chapters and sections indicate locations in the complete users manual.Part II explains in detail the use of the various PETSc components, such as vectors, matrices, indexsets, linear and nonlinear solvers, and graphics. Part III describes a variety of useful information, includingpro�ling, the options database, viewers, error handling, make�les, and some details of PETSc design.The PETSc 2.0 Users Manual documents all of PETSc 2.0; thus, it can be rather intimidating for newusers. We recommend that one initially read the entire document before proceeding with serious use ofPETSc, but bear in mind that PETSc can be used e�ciently before one understands all of the materialpresented here.Note to Fortran Programmers: In most of the manual, the examples and calling sequences are givenfor the C/C++ family of programming languages. We follow this convention because we highly recommendthat PETSc applications be coded in C or C++. However, pure Fortran 77 programmers can use most of thefunctionality of PETSc from Fortran, with only minor di�erences in the user interface. Chapter 9 provides adiscussion of the di�erences between using PETSc from Fortran and C, as well as several complete Fortran77 examples.Man pages for all PETSc functions can be accessed in HTML format with the command $(PETSC DIR)-/bin/petscman [-xmosaic]. The option -xmosaic indicates viewing man pages via Mosaic. The HTML4

Krylov Subspace Methods

CG CGS OtherChebychevRichardsonTFQMRBi-CG-StabGMRES

Vectors
OtherStrideBlock Indices

Index Sets

Indices

Block Compressed

Sparse Row

(BAIJ)

Block

Diagonal

(BDiag)

Compressed

Sparse Row

(AIJ)

OtherDense

Matrices

Backward

Euler

Pseudo-Time

Stepping

Time Steppers

Euler Other

Block

Jacobi

Additive

Schwarz (sequential only)
LU

Parallel Numerical Components of PETSc

Jacobi ILU ICC Other

Preconditioners

Newton-based Methods

Trust RegionLine Search

Other

Nonlinear Solvers
Unconstrained Minimization

Figure 2: Numerical Components of PETScman pages provide hyperlinked indices (organized by both concepts and routine names) to the tutorialexamples and enables easy movement among related topics. Within the PETSc distribution, the directory$(PETSC DIR)/docs contains all documentation, including this manual and the man pages in PostScriptand HTML formats. Note that one can also view the man pages in HTML format by loading the �le$(PETSC DIR)/docs/www/www.html into an HTML browser session that has been independently initiated.Emacs users may �nd the etags option to be extremely useful for exploring the PETSc source code. Detailsof this feature are provided in Section 12.6. Similarly, VI users may �nd the ctags option to be extremelyuseful. Details of this feature are provided in Section 12.7.The PETSc source code is available by anonymous ftp from ftp://info.mcs.anl.gov/pub/petsc inthe compressed tar �les petsc.tar.Z and petsc.tar.gz. The �le manual.ps contains the PostScript formof the PETSc 2.0 Users Manual in its entirety, while intro.ps includes only the introductory segment,Part I. The �le Installation contains detailed instructions for installing PETSc. The complete PETScdistribution, users manual, man pages, and additional information are also available via the PETSc homepage on the World Wide Web at http://www.mcs.anl.gov/petsc/petsc.html. The PETSc home pagealso contains details regarding installation, new features and changes in recent versions of PETSc, machinesthat we currently support, a troubleshooting guide, and a FAQ list for frequently asked questions.1.2 Running PETSc ProgramsBefore using PETSc, the user must �rst set the environmental variable PETSC DIR, indicating the full path ofthe PETSc home directory. For example, under the UNIX C shell a command of the form setenv PETSC DIR$HOME/petsc can be placed in the user's .cshrc �le. In addition, the user must set the environmental variablePETSC ARCH to specify the architecture (e.g., rs6000, sun4, solaris) on which PETSc is being used. The utility$(PETSC DIR)/bin/petscarch can be used for this purpose. For example,setenv PETSC_ARCH `$PETSC_DIR/bin/petscarch`can be placed in a .cshrc �le. Thus, even if several machines of di�erent types share the same �lesystem,PETSC ARCH will be set correctly when logging into any of them.All PETSc programs use the MPI (Message Passing Interface) standard for message-passing communi-cation [14]. Thus, to execute PETSc programs, users must know the procedure for beginning MPI jobs ontheir selected computer system(s). For instance, when using the MPICH implementation of MPI [8], thefollowing command initiates a program that uses eight processors:5

mpirun -np 8 petsc_program_name petsc_optionsAll PETSc 2.0-compliant programs support the use of the -h or -help option as well as the -v or-version option. For C and C++ programs these options can be placed on the command line. For mostmachines, options for Fortran programs can also be speci�ed on the command line; otherwise, they canbe set in the environmental variable PETSC OPTIONS or placed in a �le called .petscrc in the user's homedirectory. Under the UNIX C shell the environmental variable can be set with a command such as setenvPETSC OPTIONS "-help -version". See Section 12.1 for details.Certain options are supported by all PETSc programs. We list a few particularly useful ones below; acomplete list can be obtained by running any PETSc program with the option -help.� -log summary - summarize the program's performance� -fp trap - stop on
oating-point exceptions� -trdump - enable memory tracing; dump list of unfreed memory at conclusion of the run� -trmalloc - enable memory tracing (by default this is activated for the debugging versions of PETSc)� -start in debugger [noxterm,dbx,xxgdb] [-display name] - start all processes in debugger� -on error attach debugger [noxterm,dbx,xxgdb] [-display name] - start debugger only on en-countering an errorBy default the GNU debugger gdb is used when -start in debugger or -on error attach debugger isspeci�ed. To employ either xxgdb or the common UNIX debugger dbx, one uses command line options asindicated above. On HP-UX machines the debugger xdb should be used instead of dbx; on RS/6000 machinesthe xldb debugger is supported as well. By default, the debugger will be started in a new xterm (to enablerunning separate debuggers on each process), unless the option noxterm is used. In order to handle theMPI startup phase, the debugger command \cont" should be used to continue execution of the programwithin the debugger. Rerunning the program through the debugger requires terminating the �rst job andrestarting the processor(s); the usual \run" option in the debugger will not correctly handle the MPI startupand should not be used. Not all debuggers work on all machines, so the user may have to experiment to �ndone that works correctly.Most PETSc programs begin with a call toierr = PetscInitialize(int *argc,char ***argv,char *file_name,char *help_message);which initializes PETSc and MPI. The arguments argc and argv are the command line arguments deliveredin all C and C++ programs. The argument file name optionally indicates an alternative name for thePETSc options �le, .petscrc, which resides by default in the user's home directory. Section 12.1 providesdetails regarding this �le and the PETSc options database, which can be used for runtime customization.The �nal argument, help message, is an optional character string that will be printed if the program is runwith the -help option. In Fortran the initialization command has the formcall PetscInitialize(character file_name,integer ierr)PetscInitialize()automatically calls MPI Init() if MPI has not been not previously initialized. In certaincircumstances in which MPI needs to be initialized directly (or is initialized by some other library), the usershould �rst call MPI Init() (or have the other library do it), and then call PetscInitialize().By default, PetscInitialize() sets the PETSc \world" communicator, given by PETSC COMM WORLD,to MPI COMM WORLD. This comunicator speci�es the processor group involved in certain operations (such asthe default parallel viewers and performance summaries). Users who wish to employ PETSc routines ononly a subset of processors within a larger parallel job, or who wish to use a \master" process to coordinatethe work of \slave" PETSc processes, should specify an alternative communicator for PETSC COMM WORLD bycallingierr = PetscSetCommWorld(MPI_Comm comm)before calling PetscInitialize(), but, obviously, after calling MPI Init(). PetscSetCommWorld() can onlybe called at most once per process. Most users will never need to use PetscSetCommWorld().As illustrated by the PetscInitialize() statements above, PETSc 2.0 routines return an integer indi-cating whether an error has occurred during the call. The error code is set to be nonzero if an error has beendetected; otherwise, it is zero. For the C/C++ interface, the error variable is the routine's return value,6

while for the Fortran version, each PETSc routine has as its �nal argument an integer error variable. Errortracebacks are discussed in the following section.All PETSc programs should call PetscFinalize() as their �nal (or nearly �nal) statement, as givenbelow in the C/C++ and Fortran formats, respectively:ierr = PetscFinalize();call PetscFinalize(ierr)This routine handles options to be called at the conclusion of the program and calls MPI Finalize() ifPetscInitialize() began MPI. If MPI was initiated externally from PETSc (by either the user or anothersoftware package), the user is responsible for calling MPI Finalize().1.3 Simple PETSc ExamplesTo help the user start using PETSc immediately, we begin with a simple uniprocessor example in Figure 3that solves the one-dimensional Laplacian problem with �nite di�erences. This sequential code, which can befound in $(PETSC DIR)/src/sles/examples/tutorials/ex1.c, illustrates the solution of a linear systemwith SLES, the simpli�ed interface to the preconditioners, Krylov subspace methods, and direct linear solversof PETSc. Following the code we highlight a few of the most important parts of this example.#ifndef lintstatic char vcid[] = "$Id: ex1.c,v 1.59 1997/02/06 15:19:31 curfman Exp $";#endifstatic char help[] = "Solves a tridiagonal linear system with SLES.\n\n";/*TConcepts: SLES^Solving a system of linear equations (basic uniprocessor example);Routines: SLESCreate(); SLESSetOperators(); SLESSetFromOptions();Routines: SLESSolve(); SLESView(); SLESGetKSP(); SLESGetPC();Routines: KSPSetTolerances(); PCSetType();Processors: 1T*//*Include "sles.h" so that we can use SLES solvers. Note that this fileautomatically includes:petsc.h - base PETSc routines vec.h - vectorssys.h - system routines mat.h - matricesis.h - index sets ksp.h - Krylov subspace methodsviewer.h - viewers pc.h - preconditioners*/#include "sles.h"#include <stdio.h>int main(int argc,char **args){ Vec x, b, u; /* approx solution, RHS, exact solution */Mat A; /* linear system matrix */SLES sles; /* linear solver context */PC pc; /* preconditioner context */KSP ksp; /* Krylov subspace method context */double norm; /* norm of solution error */int ierr, i, n = 10, col[3], its, flg, size;Scalar none = -1.0, one = 1.0, value[3];PetscInitialize(&argc,&args,(char *)0,help);MPI_Comm_size(MPI_COMM_WORLD,&size);if (size != 1) SETERRA(1,0,"This is a uniprocessor example only!");ierr = OptionsGetInt(PETSC_NULL,"-n",&n,&flg); CHKERRA(ierr);/* -Compute the matrix and right-hand-side vector that definethe linear system, Ax = b.- */7

/* Create matrix. When using MatCreate(), the matrix format canbe specified at runtime.*/ierr = MatCreate(MPI_COMM_WORLD,n,n,&A); CHKERRA(ierr);/* Assemble matrix*/value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;for (i=1; i<n-1; i++) {col[0] = i-1; col[1] = i; col[2] = i+1;ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES); CHKERRA(ierr);}i = n - 1; col[0] = n - 2; col[1] = n - 1;ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES); CHKERRA(ierr);i = 0; col[0] = 0; col[1] = 1; value[0] = 2.0; value[1] = -1.0;ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES); CHKERRA(ierr);ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY); CHKERRA(ierr);ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY); CHKERRA(ierr);/* Create vectors. Note that we form 1 vector from scratch andthen duplicate as needed.*/ierr = VecCreate(MPI_COMM_WORLD,n,&x); CHKERRA(ierr);ierr = VecDuplicate(x,&b); CHKERRA(ierr);ierr = VecDuplicate(x,&u); CHKERRA(ierr);/* Set exact solution; then compute right-hand-side vector.*/ierr = VecSet(&one,u); CHKERRA(ierr);ierr = MatMult(A,u,b); CHKERRA(ierr);/* -Create the linear solver and set various options- *//* Create linear solver context*/ierr = SLESCreate(MPI_COMM_WORLD,&sles); CHKERRA(ierr);/* Set operators. Here the matrix that defines the linear systemalso serves as the preconditioning matrix.*/ierr = SLESSetOperators(sles,A,A,DIFFERENT_NONZERO_PATTERN); CHKERRA(ierr);/* Set linear solver defaults for this problem (optional).- By extracting the KSP and PC contexts from the SLES context,we can then directly call any KSP and PC routines to setvarious options.- The following four statements are optional; all of theseparameters could alternatively be specified at runtime viaSLESSetFromOptions();*/ierr = SLESGetKSP(sles,&ksp); CHKERRA(ierr);ierr = SLESGetPC(sles,&pc); CHKERRA(ierr);ierr = PCSetType(pc,PCJACOBI); CHKERRA(ierr);ierr = KSPSetTolerances(ksp,1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT); CHKERRA(ierr);/*Set runtime options, e.g.,-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>These options will override those specified above as long asSLESSetFromOptions() is called _after_ any other customization8

routines.*/ierr = SLESSetFromOptions(sles); CHKERRA(ierr);/* -Solve the linear system- *//* Solve linear system*/ierr = SLESSolve(sles,b,x,&its); CHKERRA(ierr);/* View solver info; we could instead use the option -sles_view*/ierr = SLESView(sles,VIEWER_STDOUT_WORLD); CHKERRA(ierr);/* -Check solution and clean up- *//* Check the error*/ierr = VecAXPY(&none,u,x); CHKERRA(ierr);ierr = VecNorm(x,NORM_2,&norm); CHKERRA(ierr);if (norm > 1.e-12)PetscPrintf(MPI_COMM_WORLD,"Norm of error %g, Iterations %d\n",norm,its);elsePetscPrintf(MPI_COMM_WORLD,"Norm of error < 1.e-12, Iterations %d\n",its);/* Free work space. All PETSc objects should be destroyed when theyare no longer needed.*/ierr = VecDestroy(x); CHKERRA(ierr); ierr = VecDestroy(u); CHKERRA(ierr);ierr = VecDestroy(b); CHKERRA(ierr); ierr = MatDestroy(A); CHKERRA(ierr);ierr = SLESDestroy(sles); CHKERRA(ierr);PetscFinalize();return 0;} Figure 3: Example of Uniprocessor PETSc CodeInclude FilesThe C/C++ include �les for PETSc should be used via statements such as#include "sles.h"where sles.h is the include �le for the SLES component. Each PETSc program must specify an include �lethat corresponds to the highest-level PETSc objects needed within the program; all of the required lower-level include �les are automatically included within the higher-level �les. For example, sles.h includesmat.h (matrices), vector.h (vectors), and petsc.h (base PETSc �le). The PETSc include �les are locatedin the directory $(PETSC DIR)/include. See Section 9.1.1 for a discussion of PETSc include �les in Fortranprograms.The Options DatabaseAs shown in Figure 3, the user can input control data at run time using the options database. In thisexample the command OptionsGetInt(PETSC NULL,"-n",&n,&flg); checks whether the user has provideda command line option to set the value of n, the problem dimension. If so, the variable n is set accordingly;otherwise, n remains unchanged. A complete description of the options database may be found in Section12.1. 9

VectorsOne creates a new parallel or sequential vector, x, of global dimension M with the commandierr = VecCreate(MPI_Comm comm,int M,Vec *x);where comm denotes the MPI communicator. Additional vectors of the same type can be formed withierr = VecDuplicate(Vec old,Vec *new);The commandsierr = VecSet(Scalar *value,Vec x);ierr = VecSetValues(Vec x,int n,int *indices,Scalar *values,INSERT_VALUES);respectively set all the components of a vector to a particular scalar value and assign a di�erent valueto each component. More detailed information about PETSc vectors, including their basic operations,scattering/gathering, index sets, and distributed arrays, is discussed in Chapter 2.Note the use of the PETSc variable type Scalar in this example. The Scalar is simply de�ned to bedouble in C/C++ (or correspondingly double precision in Fortran) for versions of PETSc that have notbeen compiled for use with complex numbers. The Scalar data type enables identical code to be used whenthe PETSc libraries have been compiled for use with complex numbers. Section 12.5 discusses the use ofcomplex numbers in PETSc programs.MatricesUsage of PETSc matrices and vectors is similar. The user can create a new parallel or sequential matrix, A,that has M global rows and N global columns, with the routineierr = MatCreate(MPI_Comm comm,int M,int N,Mat *A);where the matrix format can be speci�ed at runtime. Values can then be set with the commandierr = MatSetValues(Mat A,int m,int *im,int n,int *in,Scalar *values,INSERT_VALUES);After all elements have been inserted into the matrix, it must be processed with the pair of commandsierr = MatAssemblyBegin(Mat A,MAT_FINAL_ASSEMBLY);ierr = MatAssemblyEnd(Mat A,MAT_FINAL_ASSEMBLY);Chapter 3 discusses various matrix formats as well as the details of some basic matrix manipulation routines.Linear SolversAfter creating the matrix and vectors that de�ne a linear system, Ax = b, the user can then use SLES tosolve the system with the following sequence of commands:ierr = SLESCreate(MPI_Comm comm,SLES *sles);ierr = SLESSetOperators(SLES sles,Mat A,Mat PrecA,MatStructure flag);ierr = SLESSetFromOptions(SLES sles);ierr = SLESSolve(SLES sles,Vec b,Vec x,int *its);ierr = SLESDestroy(SLES sles);The user �rst creates the SLES context and sets the operators associated with the system (linear systemmatrix and optionally di�erent preconditioning matrix). The user then sets various options for customizedsolution, solves the linear system, and �nally destroys the SLES context. We emphasize the commandSLESSetFromOptions(), which enables the user to customize the linear solution method at runtime by usingthe options database, which is discussed in Section 12.1. Through this database, the user not only canselect an iterative method and preconditioner, but also can prescribe the convergence tolerance, set variousmonitoring routines, and so forth (see, e.g., Figure 7).Chapter 4 describes in detail the SLES package, including the PC and KSP components for precondi-tioners and Krylov subspace methods. 10

Error CheckingAll PETSc 2.0 routines return an integer indicating whether an error has occurred during the call. ThePETSc macro CHKERRQ(ierr) checks the value of ierr and calls the PETSc 2.0 error handler upon error de-tection. CHKERRQ(ierr) should be used in all subroutines to enable a complete error traceback. A variant ofthis macro, CHKERRA(ierr), should be used in the main program to enable correct termination of all processeswhen an error is encountered. In Figure 4 we indicate a traceback generated by error detection within a sam-ple PETSc program. The error occurred on line 858 of the �le $(PETSC DIR)/src/mat/impls/aij/seq/aij.cand was caused by trying to allocate too large an array in memory. The routine was called in the programex3.c on line 49. See Section 9.1.2 for details regarding error checking when using the PETSc Fortraninterface.eagle>mpirun ex3 -m 100000000000mat/impls/aij/seq/aij.c line # 858 No memorymat/interface/matrix.c line # 123ex3.c line # 49Aborting program! Figure 4: Example of Error TracebackParallel ProgrammingSince PETSc uses the message-passing model for parallel programmingand employsMPI for all interprocessorcommunication, the user is free to employ MPI routines as needed throughout an application code. However,by default the user is shielded from many of the details of message passing within PETSc, since these arehidden within parallel objects, such as vectors, matrices, and solvers. In addition, PETSc provides toolssuch as generalized vector scatters/gathers and distributed arrays to assist in the management of paralleldata.Recall that the user must specify a communicator upon creation of any PETSc object (such as a vector,matrix, or solver) to indicate the processors over which the object is to be distributed. For example, asmentioned above, some commands for matrix, vector, and linear solver creation areierr = MatCreate(MPI_Comm comm,int M,int N,Mat *A);ierr = VecCreate(MPI_Comm comm,int M,Vec *x);ierr = SLESCreate(MPI_Comm comm,SLES *sles);The creation routines are collective over all processors in the communicator; thus, all processors in thecommunicator must call the creation routine. In addition, if a sequence of collective routines is being used,they must be called in the same order on each processor.The next example, given in Figure 5, illustrates the solution of a linear system in parallel. This code, corre-sponding to $(PETSC DIR)/src/sles/examples/tutorials/ex2.c, handles the two-dimensional Laplaciandiscretized with �nite di�erences, where the linear system is again solved with SLES. The code performs thesame tasks as the sequential version within Figure 3. Note that the user interface for initiating the program,creating vectors and matrices, and solving the linear system is exactly the same for the uniprocessor andmultiprocessor examples. The primary di�erence between the examples in Figures 3 and 5 is that eachprocessor forms only its local part of the matrix and vectors in the parallel case.
11

#ifndef lintstatic char vcid[] = "$Id: ex2.c,v 1.61 1997/02/06 15:19:35 curfman Exp $";#endif/* Usage: mpirun ex2 [-help] [all PETSc options] */static char help[] = "Solves a linear system in parallel with SLES.\n\Input parameters include:\n\-random_exact_sol : use a random exact solution vector\n\-view_exact_sol : write exact solution vector to stdout\n\-m <mesh_x> : number of mesh points in x-direction\n\-n <mesh_n> : number of mesh points in y-direction\n\n";/*TConcepts: SLES^Solving a system of linear equations (basic parallel example);Concepts: SLES^Laplacian, 2dConcepts: Laplacian, 2dRoutines: SLESCreate(); SLESSetOperators(); SLESSetFromOptions();Routines: SLESSolve(); SLESGetKSP(); SLESGetPC();Routines: KSPSetTolerances(); PCSetType();Processors: nT*//*Include "sles.h" so that we can use SLES solvers. Note that this fileautomatically includes:petsc.h - base PETSc routines vec.h - vectorssys.h - system routines mat.h - matricesis.h - index sets ksp.h - Krylov subspace methodsviewer.h - viewers pc.h - preconditioners*/#include "sles.h"#include <stdio.h>int main(int argc,char **args){ Vec x, b, u; /* approx solution, RHS, exact solution */Mat A; /* linear system matrix */SLES sles; /* linear solver context */PetscRandom rctx; /* random number generator context */double norm; /* norm of solution error */int i, j, I, J, Istart, Iend, ierr, m = 8, n = 7, its, flg;Scalar v, one = 1.0, neg_one = -1.0;/* These variables are currently unused *//* PC pc; */ /* preconditioner context *//* KSP ksp; */ /* Krylov subspace method context */PetscInitialize(&argc,&args,(char *)0,help);ierr = OptionsGetInt(PETSC_NULL,"-m",&m,&flg); CHKERRA(ierr);ierr = OptionsGetInt(PETSC_NULL,"-n",&n,&flg); CHKERRA(ierr);/* -Compute the matrix and right-hand-side vector that definethe linear system, Ax = b.- *//* Create parallel matrix, specifying only its global dimensions.When using MatCreate(), the matrix format can be specified atruntime. Also, the parallel partitioning of the matrix isdetermined by PETSc at runtime.*/ierr = MatCreate(MPI_COMM_WORLD,m*n,m*n,&A); CHKERRA(ierr);/* Currently, all PETSc parallel matrix formats are partitioned bycontiguous chunks of rows across the processors. Determine whichrows of the matrix are locally owned.*/ 12

ierr = MatGetOwnershipRange(A,&Istart,&Iend); CHKERRA(ierr);/* Set matrix elements for the 2-D, five-point stencil in parallel.- Each processor needs to insert only elements that it ownslocally (but any non-local elements will be sent to theappropriate processor during matrix assembly).- Always specify global rows and columns of matrix entries.*/for (I=Istart; I<Iend; I++) {v = -1.0; i = I/n; j = I - i*n;if (i>0) {J = I - n; MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES); CHKERRA(ierr);}if (i<m-1) {J = I + n; MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES); CHKERRA(ierr);}if (j>0) {J = I - 1; MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES); CHKERRA(ierr);}if (j<n-1) {J = I + 1; MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES); CHKERRA(ierr);}v = 4.0; MatSetValues(A,1,&I,1,&I,&v,INSERT_VALUES);}/* Assemble matrix, using the 2-step process:MatAssemblyBegin(), MatAssemblyEnd()Computations can be done while messages are in transitionby placing code between these two statements.*/ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY); CHKERRA(ierr);ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY); CHKERRA(ierr);/* Create parallel vectors.- When using VecCreate(), we specify only the vector's globaldimension; the parallel partitioning is determined at runtime.- When solving a linear system, the vectors and matrices MUSTbe partitioned accordingly. PETSc automatically generatesappropriately partitioned matrices and vectors when MatCreate()and VecCreate() are used with the same communicator.- Note: We form 1 vector from scratch and then duplicate as needed.*/ierr = VecCreate(MPI_COMM_WORLD,m*n,&u); CHKERRA(ierr);ierr = VecDuplicate(u,&b); CHKERRA(ierr);ierr = VecDuplicate(b,&x); CHKERRA(ierr);/* Set exact solution; then compute right-hand-side vector.By default we use an exact solution of a vector with allelements of 1.0; Alternatively, using the runtime option-random_sol forms a solution vector with random components.*/ierr = OptionsHasName(PETSC_NULL,"-random_exact_sol",&flg); CHKERRA(ierr);if (flg) {ierr = PetscRandomCreate(MPI_COMM_WORLD,RANDOM_DEFAULT,&rctx); CHKERRA(ierr);ierr = VecSetRandom(rctx,u); CHKERRA(ierr);ierr = PetscRandomDestroy(rctx); CHKERRA(ierr);} else {ierr = VecSet(&one,u); CHKERRA(ierr);}ierr = MatMult(A,u,b); CHKERRA(ierr);/* View the exact solution vector if desired*/ierr = OptionsHasName(PETSC_NULL,"-view_exact_sol",&flg); CHKERRA(ierr);if (flg) {ierr = VecView(u,VIEWER_STDOUT_WORLD); CHKERRA(ierr);}/* -Create the linear solver and set various options- *//* Create linear solver context 13

/ierr = SLESCreate(MPI_COMM_WORLD,&sles); CHKERRA(ierr);/ Set operators. Here the matrix that defines the linear systemalso serves as the preconditioning matrix.*/ierr = SLESSetOperators(sles,A,A,DIFFERENT_NONZERO_PATTERN); CHKERRA(ierr);/* Set linear solver defaults for this problem (optional).- By extracting the KSP and PC contexts from the SLES context,we can then directly call any KSP and PC routines to setvarious options.- The following four statements are optional; all of theseparameters could alternatively be specified at runtime viaSLESSetFromOptions(). All of these defaults can beoverridden at runtime, as indicated below.*//* We comment out this section of code since the Jacobipreconditioner is not a good general default.ierr = SLESGetKSP(sles,&ksp); CHKERRA(ierr);ierr = SLESGetPC(sles,&pc); CHKERRA(ierr);ierr = PCSetType(pc,PCJACOBI); CHKERRA(ierr);ierr = KSPSetTolerances(ksp,1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT); CHKERRA(ierr);*//*Set runtime options, e.g.,-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>These options will override those specified above as long asSLESSetFromOptions() is called _after_ any other customizationroutines.*/ierr = SLESSetFromOptions(sles); CHKERRA(ierr);/* -Solve the linear system- */ierr = SLESSolve(sles,b,x,&its); CHKERRA(ierr);/* -Check solution and clean up- *//* Check the error*/ierr = VecAXPY(&neg_one,u,x); CHKERRA(ierr);ierr = VecNorm(x,NORM_2,&norm); CHKERRA(ierr);/* Print convergence information. PetscPrintf() produces a singleprint statement from all processes that share a communicator.*/if (norm > 1.e-12)PetscPrintf(MPI_COMM_WORLD,"Norm of error %g iterations %d\n",norm,its);elsePetscPrintf(MPI_COMM_WORLD,"Norm of error < 1.e-12 Iterations %d\n",its);/* Free work space. All PETSc objects should be destroyed when theyare no longer needed.*/ierr = SLESDestroy(sles); CHKERRA(ierr); 14

ierr = VecDestroy(u); CHKERRA(ierr); ierr = VecDestroy(x); CHKERRA(ierr);ierr = VecDestroy(b); CHKERRA(ierr); ierr = MatDestroy(A); CHKERRA(ierr);/* Always call PetscFinalize() before exiting a program. This routine- finalizes the PETSc libraries as well as MPI- provides summary and diagnostic information if certain runtimeoptions are chosen (e.g., -log_summary). See PetscFinalize()manpage for more information.*/PetscFinalize();return 0;} Figure 5: Example of Multiprocessor PETSc CodeCompiling and Running ProgramsFigure 6 illustrates compiling and running a PETSc program using MPICH. Note that di�erent sites mayhave slightly di�erent library and compiler names. See Chapter 13 for a discussion about compiling PETScprograms. Users who are experiencing di�culties linking PETSc programs should refer to the troubleshootingguide via the PETSc WWW home page or given in the �le $(PETSC DIR)/Troubleshooting.eagle> make BOPT=g ex2gcc -DPETSC_ARCH_sun4 -pipe -c -I../../../ -I../../..//include-I/usr/local/mpi/include -I../../..//src -g-DPETSC_DEBUG -DPETSC_MALLOC -DPETSC_LOG ex1.cgcc -g -DPETSC_DEBUG -DPETSC_MALLOC -DPETSC_LOG -o ex1 ex1.o/home/bsmith/petsc/lib/libg/sun4/libpetscsles.a-L/home/bsmith/petsc/lib/libg/sun4 -lpetscstencil -lpetscgrid -lpetscsles-lpetscksp -lpetscmat -lpetscvec -lpetscsys -lpetscdraw/usr/local/lapack/lib/lapack.a /usr/local/lapack/lib/blas.a/usr/lang/SC1.0.1/libF77.a -lm /usr/lang/SC1.0.1/libm.a -lX11/usr/local/mpi/lib/sun4/ch_p4/libmpi.a/usr/lib/debug/malloc.o /usr/lib/debug/mallocmap.o/usr/lang/SC1.0.1/libF77.a -lm /usr/lang/SC1.0.1/libm.a -lmrm -f ex1.oeagle> mpirun ex2Norm of error 3.6618e-05 iterations 7eagle>eagle> mpirun -np 2 ex2Norm of error 5.34462e-05 iterations 9Figure 6: Running a PETSc ProgramAs shown in Figure 7, the option -log summary activates printing of a performance summary, includingtimes,
oating-point operation (
op) rates, and message-passing activity for the various PETSc events.Chapter 10 provides details about pro�ling, including interpretation of the output data within Figure 7 andmore information about monitoring parallel programs. This particular example involves the solution of alinear system on one processor using GMRES and ILU. The low
oating-point operation (
op) rates in thisexample are due to the fact that the code was run on a tiny matrix. We include this example merely todemonstrate the ease of extracting performance information from PETSc.15

eagle> mpirun ex1 -n 1000 -pc_type ilu -ksp_type gmres -ksp_rtol 1.e-7 -log_summary-------------------------------- PETSc Performance Summary: --------------------------------------ex1 on a sun4 named merlin.mcs.anl.gov with 1 processor, by curfman Wed Aug 7 17:24:27 1996Max Min Avg TotalTime (sec): 1.150e-01 1.0 1.150e-01Objects: 1.900e+01 1.0 1.900e+01Flops: 3.998e+04 1.0 3.998e+04 3.998e+04Flops/sec: 3.475e+05 1.0 3.475e+05MPI Messages: 0.000e+00 0.0 0.000e+00 0.000e+00MPI Messages: 0.000e+00 0.0 0.000e+00 0.000e+00 (lengths)MPI Reductions: 0.000e+00 0.0--Phase Count Time (sec) Flops/sec -- Global --Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R--MatMult 2 2.553e-03 1.0 3.9e+06 1.0 0.0e+00 0.0e+00 0.0e+00 2 25 0 0 0MatAssemblyBegin 1 2.193e-05 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0MatAssemblyEnd 1 5.004e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 4 0 0 0 0MatGetReordering 1 3.004e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3 0 0 0 0MatILUFctrSymbol 1 5.719e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 5 0 0 0 0MatLUFactorNumer 1 1.092e-02 1.0 2.7e+05 1.0 0.0e+00 0.0e+00 0.0e+00 9 7 0 0 0MatSolve 2 4.193e-03 1.0 2.4e+06 1.0 0.0e+00 0.0e+00 0.0e+00 4 25 0 0 0MatSetValues 1000 2.461e-02 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 21 0 0 0 0VecDot 1 2.060e-04 1.0 9.7e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 5 0 0 0VecNorm 3 5.870e-04 1.0 1.0e+07 1.0 0.0e+00 0.0e+00 0.0e+00 1 15 0 0 0VecScale 1 1.640e-04 1.0 6.1e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 3 0 0 0VecCopy 1 3.101e-04 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0VecSet 3 5.029e-04 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0VecAXPY 3 8.690e-04 1.0 6.9e+06 1.0 0.0e+00 0.0e+00 0.0e+00 1 15 0 0 0VecMAXPY 1 2.550e-04 1.0 7.8e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 5 0 0 0SLESSolve 1 1.288e-02 1.0 2.2e+06 1.0 0.0e+00 0.0e+00 0.0e+00 11 70 0 0 0SLESSetUp 1 2.669e-02 1.0 1.1e+05 1.0 0.0e+00 0.0e+00 0.0e+00 23 7 0 0 0KSPGMRESOrthog 1 1.151e-03 1.0 3.5e+06 1.0 0.0e+00 0.0e+00 0.0e+00 1 10 0 0 0PCSetUp 1 2.024e-02 1.0 1.5e+05 1.0 0.0e+00 0.0e+00 0.0e+00 18 7 0 0 0PCApply 2 4.474e-03 1.0 2.2e+06 1.0 0.0e+00 0.0e+00 0.0e+00 4 25 0 0 0---Memory usage is given in bytes:Object Type Creations Destructions Memory Descendants' Mem.Viewer 3 3 0 0Index set 3 3 12420 0Vector 8 8 65728 0Matrix 2 2 184924 4140Krylov Solver 1 1 16892 41080Preconditioner 1 1 0 64872SLES 1 1 0 122844Figure 7: Running a PETSc Program with Pro�lingWriting Application Codes with PETScThe examples throughout the PETSc library demonstrate the details of using the software and can serveas templates for developing custom application programs. We suggest that new PETSc users examine someprograms in the directories $(PETSC DIR)/src/<component>/examples/tutorials, where <component>denotes any of the PETSc component directories (listed in the following section), such as snes or sles.Note that we are in the process of organizing the examples in tutorial and test categories. Currently somePETSc components have examples only in the directory $(PETSC DIR)/src/<component>/examples/tests;more tutorial examples will be forthcoming. The HTML version of the man pages provides indices (organizedby both routine names and concepts) to the tutorial examples.To write a new application program using PETSc, we suggest the following procedure:1. Install and test PETSc according to the instructions in the �le $(PETSC DIR)/Installation.16

2. Copy one of the many PETSc examples in the component directory that corresponds to the class ofproblem of interest (e.g., for linear solvers, see $(PETSC DIR)/src/sles/examples/tutorials).3. Copy the corresponding make�le within the example directory; compile and run the example program.4. Use the example program as a starting point for developing a custom code.1.4 Directory StructureWe conclude this introduction with an overview of the organization of the PETSc software. As shown inFigure 8, the root directory of PETSc contains the following directories:� docs - All documentation for PETSc. The �les manual.ps and manual.html contain the users manualin PostScript and HTML formats, respectively. Includes the subdirectories- www (HTML man pages).� bin - Utilities and short scripts for use with PETSc, including- petscman (man page viewer),- petsarch (utility for setting PETSC ARCH environmental variable),- petscview (GUI utility for high-level visualization of program activity), and- petscopts (GUI utility for setting runtime options).� bmake - Base PETSc make�le directory. Includes subdirectories for various architectures.� include - All include �les for PETSc that are visible to the user.� include/FINCLUDE - PETSc include �les for Fortran programmers using the .F su�x (recommended).� include/finclude - PETSc include �les for Fortran programmers using the .f su�x.� include/pinclude - Private PETSc include �les that should not be used by application programmers.� src - The source code for all PETSc components, which currently includesis - index sets,vec - vectors,da - distributed arrays,mat - matrices,ksp - Krylov space accelerators,pc - preconditioners,sles - complete linear equations solvers,snes - nonlinear solvers,ts - ODE solvers and timestepping,sys - general system-related routines,plog - PETSc logging and pro�ling routines,draw - simple graphics,ao - application orderings,fortran - Fortran interface stubs,mpiuni - experimental, stripped-down uniprocessor MPI version, andcontrib - contributed modules that use PETSc but are not part of the o�cial PETSc package.We encourage users who have developed such code that they wish to share with others to let us knowby writing to petsc-maint@mcs.anl.gov. 17

petsc

include lib

libg

bmake

finclude

FINCLUDE
 pinclude

docs

www man
libO sun4 rs6000

is vec mat ksp pc ts

fortran

custom

auto

da

plog

mpiuni

sys

 benchmarks

snessles

....

src

implsinterface

jacobi

bjacobi

shell

 asm
ilu

sor
lu

interface impls

seq mpi mpi seq mpi seq mpi

baijbdiagrowbsaij dense

seq mpiFigure 8: Schematic of the PETSc Directory StructureEach PETSc source code component directory has the following subdirectories:� examples - Example programs for the component, including{ tutorials - Programs designed to teach users about PETSc. These codes can serve as templatesfor the design of custom applicatinos.{ tests - Programs designed for thorough testing of PETSc. As such, these codes are not intendedfor examination by users.� interface - The calling sequences for the abstract interface to the component. Code here does notknow about particular implementations.� impls - Source code for one or more implementations.� utils - Utility routines. Source here may know about the implementations, but ideally will not knowabout implementations for other components. 18

Part IIProgramming with PETSc

19

Chapter 2VectorsThe vector (denoted by Vec) is one of the simplest PETSc objects. We discuss the basic usage of vectorsin Sections 2.1 through 2.3. Sections 2.4 and 2.5 focus on index sets and their use in scatters and gathers.Section 2.6 describes the use of application-de�ned orderings with vectors, Section 2.7 discusses routines tomap indices from a local to the PETSc global numbering scheme, and Section 2.8 discusses the use of PETScdistributed arrays for the manipulation of vectors associated with regular grids. Section 2.9 concludes witha brief discussion of the discrete function component of PETSc.2.1 Creating and Assembling VectorsPETSc currently provides two basic vector types: sequential and parallel (MPI based). te a sequential vectorwith m components, one can use the commandierr = VecCreateSeq(MPI_COMM_SELF,int m,Vec *x);To create a parallel vector, one can either specify the number of components that will be stored on eachprocessor or let PETSc decide. The commandierr = VecCreateMPI(MPI_Comm comm,int m,int M,Vec *x);creates a vector that is distributed over all processors in the communicator, comm, where m indicates thenumber of components to store on the local processor, and M is the total number of vector components.Either the local or global dimension, but not both, can be set to PETSC DECIDE to indicate that PETScshould determine it. More generally, one can use the routineierr = VecCreate(MPI_Comm comm,int M,Vec *v);which automatically generates the appropriate vector type (sequential or parallel) over all processors in comm.The option -vec mpi can be used in conjunction with VecCreate() to specify the use of MPI vectors forthe uniprocessor case.We emphasize that all processors in comm must call the vector creation routines, since these routines arecollective over all processors in the communicator. In addition, if a sequence of VecCreateXXX() routines isused, they must be called in the same order on each processor in the communicator.One can assign a single value to all components of a vector with the commandierr = VecSet(Scalar *value,Vec x);Assigning values to individual components of the vector is more complicated, in order to make it possible towrite e�cient parallel code. Assigning a set of components is a two-step process: one �rst callsierr = VecSetValues(Vec x,int n,int *indices,Scalar *values,INSERT_VALUES);any number of times on any or all of the processors. The argument n gives the number of componentsbeing set in this insertion. The integer array indices contains the global component indices, and valuesis the array of values to be inserted. Any processor can set any components of the vector; PETSc insuresthat they are automatically stored in the correct location. Once all of the values have been inserted withVecSetValues(), one must callierr = VecAssemblyBegin(Vec x);followed by 21

ierr = VecAssemblyEnd(Vec x);to perform any needed message passing of nonlocal components. In order to allow the overlap of communi-cation and calculation, the user's code can perform any series of other actions between these two calls whilethe messages are in transition.Often, rather than inserting elements in a vector, one may wish to add values. This process is also donewith the commandierr = VecSetValues(Vec x,int n,int *indices, Scalar *values,ADD_VALUES);Again one must call the assembly routines VecAssemblyBegin() and VecAssemblyEnd() after all of the val-ues have been added. Note that addition and insertion calls to VecSetValues() cannot be mixed. Instead,one must add and insert vector elements in phases, with intervening calls to the assembly routines. Thisphased assembly procedure overcomes the nondeterministic behavior that would occur if two di�erent proces-sors generated values for the same location, with one processor adding while the other is inserting its value.(In this case the addition and insertion actions could be performed in either order, thus resulting in di�erentvalues at the particular location. Since PETSc does not allow the simultaneous use of INSERT VALUES andADD VALUES this nondeterministic behavior will not occur in PETSc.)There is no routine called VecGetValues(), since we provide an alternative method for extracting somecomponents of a vector using the vector scatter routines. See Section 2.5 for details.One can examine a vector with the commandierr = VecView(Vec x,Viewer v);To print the vector to the screen, one can use the viewer VIEWER STDOUT WORLD, which ensures that parallelvectors are printed correctly to stdout. The viewer VIEWER STDOUT SELF can be employed if the user doesnot care in what order the individual processors print their segments of the vector. To display the vector inan X-window, one can use the default X-windows viewer VIEWER DRAWX WORLD, or one can create a viewerwith the routine ViewerDrawOpenX(). A variety of viewers are discussed further in Section 12.2.To create a new vector of the same format as an existing vector, one uses the commandierr = VecDuplicate(Vec old,Vec *new);To create several new vectors of the same format as an existing vector, one uses the commandierr = VecDuplicateVecs(Vec old,int n,Vec **new);This routine creates an array of pointers to vectors. The two routines are very useful because they allowone to write library code that does not depend on the particular format of the vectors being used. Instead,the subroutines can automatically correctly create work vectors based on the speci�ed existing vector. Asdiscussed in Section 9.1.6, the Fortran interface for VecDuplicateVecs() di�ers slightly.When a vector is no longer needed, it should be destroyed with the commandierr = VecDestroy(Vec x);To destroy an array of vectors, one should use the commandierr = VecDestroyVecs(Vec *vecs,int n);Note that the Fortran interface for VecDestroyVecs() di�ers slightly, as described in Section 9.1.6.2.2 Basic Vector OperationsAs listed in Table 1, we have chosen certain basic vector operations to support within the PETSc vectorlibrary. These operations were selected because they often arise in application codes, not because they havesome inherent special properties.Several of these operations could easily be constructed by a combination of the other operations. Weimplement them directly to avoid a potentially large loss of e�ciency, mainly because in such cases thevectors would have to move from main memory to the CPU multiple times, rather than just once. Also, thearithmetic pipeline operations can be used more e�ectively in the hybrid vector operations.For parallel vectors that are distributed across the processors by ranges, it is possible to determine aprocessor's local range with the routineierr = VecGetOwnershipRange(Vec vec,int *low,int *high);The argument low indicates the �rst component owned by the local processor, while high speci�es one morethan the last owned by the local processor. This command is useful, for instance, in assembling parallelvectors. 22

Table 1: PETSc Vector OperationsFunction Name OperationVecAXPY(Scalar *a,Vec x, Vec y); y = y + a � xVecAYPX(Scalar *a,Vec x, Vec y); y = x+ a � yVecWAXPY(Scalar *a,Vec x,Vec y, Vec w); w = a � x+ yVecAXPBY(Scalar *a,Scalar *,Vec x,Vec y); y = a � x+ b � yVecScale(Scalar *a, Vec x); x = a � xVecDot(Vec x, Vec y, Scalar *r); r = �x0 � yVecTDot(Vec x, Vec y, Scalar *r); r = x0 � yVecNorm(Vec x,NormType type, double *r); r = jjxjjtypeVecSum(Vec x, Scalar *r); r =PxiVecCopy(Vec x, Vec y); y = xVecSwap(Vec x, Vec y); y = x while x = yVecPointwiseMult(Vec x,Vec y, Vec w); wi = xi � yiVecPointwiseDivide(Vec x,Vec y, Vec w); wi = xi=yiVecMDot(int n,Vec x, Vec *y,Scalar *r); r[i] = �x0 � y[i]VecMTDot(int n,Vec x, Vec *y,Scalar *r); r[i] = x0 � y[i]VecMAXPY(int n, Scalar *a,Vec x, Vec *y); y[i] = ai � x+ y[i]VecMax(Vec x, int *idx, double *r); r = maxxiVecMin(Vec x, int *idx, double *r); r = minxiVecAbs(Vec x); xi = jxijVecReciprocal(Vec x); xi = 1=xiVecShift(Scalar *s,Vec x); xi = s + xi2.3 Vector InternalsOn occasion, the user needs to access the actual elements of the vector. The routine VecGetArray() returnsa pointer to the elements local to the processor:ierr = VecGetArray(Vec v,Scalar **array);When access to the array is no longer needed, the user should callierr = VecRestoreArray(Vec v, Scalar **array);Minor di�erences exist in the Fortran interface for VecGetArray() and VecRestoreArray(), as discussed inSection 9.1.3. It is important to note that VecGetArray() and VecRestoreArray() do not copy the vectorelements; they merely give users direct access to the vector elements. Thus, these routines require essentiallyno time to call and can be used e�ciently.The number of elements stored locally can be accessed withierr = VecGetLocalSize(Vec v,int *size);The global vector length can be determined byierr = VecGetSize(Vec v,int *size);2.4 Index SetsTo facilitate general vector scatters and gathers, PETSc employs the concept of an index set. An index set,which is a generalization of a set of integer indices, is used to de�ne scatters, gathers, and similar operationson vectors and matrices.The following command creates a sequential index set based on a list of integers:ierr = ISCreateGeneral(MPI_Comm comm,int n,int *indices, IS *is);This routine essentially copies the n indices passed to it by the integer array indices. Thus, the usershould be sure to free the integer array indices when it is no longer needed, perhaps directly afterthe call to ISCreateGeneral(). The communicator, comm, should consist of only one processor (oftencomm=MPI COMM SELF).Another standard index set is de�ned by a starting point (first) and a stride (step) and can be createdwith the command 23

ierr = ISCreateStride(MPI_Comm comm,int n,int first,int step,IS *is);Again, the comm argument should always consist of a communicatorwith one processor, often MPI COMM SELF.There is no parallel general index set. Instead, one should create a sequential index set on each processorthat needs one. Index sets can be destroyed with the commandierr = ISDestroy(IS is);On rare occasions the user may have to access information directly from an index set. Several commandsassist in this process:ierr = ISGetSize(IS is,int *size);ierr = ISStrideGetInfo(IS is,int *first,int *stride);ierr = ISGetIndices(IS is,int **indices);The function ISGetIndices() returns a pointer to a list of the indices in the index set. For certain indexsets, this may be a temporary array of indices created speci�cally for a given routine. Thus, once the user�nishes using the array of indices, the routineierr = ISRestoreIndices(IS is, int **indices);should be called to ensure that the system can free the space it may have used to generate the list of indices.A blocked version of the index sets can be created with the commandierr = ISCreateBlock(MPI_Comm comm,int bs,int n,int *indices, IS *is);This version is used for de�ning operations in which each element of the index set refers to a block of bs vectorentries. Related routines analogous to those described above exist as well, including ISBlockGetIndices(),ISBlockGetSize(), ISBlockGetBlockSize(), and ISBlock(). See the man pages for details.One may reasonably ask why the scatter routines are based on using index sets while the vector assemblyroutines simply use arrays of integers. The reason for using index sets is to allow certain implementationsto deal with strides and dense blocks of elements e�ciently. In vector assembly, we are assuming that in themajority of cases the gain from using index sets is more than lost by requiring the users to build index setsfor each insertion.2.5 Scatters and GathersPETSc vectors have full support for general scatters and gathers. One can select any subset of the componentsof a vector to insert or add to any subset of the components of another vector. We refer to these operationsas generalized scatters, though they are actually a combination of scatters and gathers.To copy selected components from one vector to another, one uses the following set of commands:ierr = VecScatterCreate(Vec x,IS ix,Vec y,IS iy,VecScatter *ctx);ierr = VecScatterBegin(Vec x,Vec y,INSERT_VALUES,SCATTER_FORWARD,VecScatter ctx);ierr = VecScatterEnd(Vec x,Vec y,INSERT_VALUES,SCATTER_FORWARD,VecScatter ctx);ierr = VecScatterDestroy(VecScatter ctx);Here ix denotes the index set of the �rst vector, while iy indicates the index set of the destination vector.The vectors can be parallel or sequential. The only requirements are that the number of entries in theindex set of the �rst vector, ix, equal the number in the destination index set, iy, and that the vectors belong enough to contain all the indices referred to in the index sets. The argument INSERT VALUES speci�esthat the vector elements will be inserted into the speci�ed locations of the destination vector, overwritingany existing values. To add the components, rather than insert them, the user should select the optionADD VALUES instead of INSERT VALUES.To perform a conventional gather operation, the user simply makes the destination index set, iy, be astride index set with a stride of one. Similarly, a conventional scatter can be done with an initial (sending)index set consisting of a stride. For parallel vectors, all processors that own the vector must call the scatterroutines. When scattering from a parallel vector to sequential vectors, each processor has its own sequentialvector that receives values from locations as indicated in its own index set. Similarly, in scattering fromsequential vectors to a parallel vector, each processor has its own sequential vector that makes contributionsto the parallel vector.Caution: When INSERT VALUES is used, if two di�erent processors contribute di�erent values to the samecomponent in a parallel vector, either value may end up being inserted. When ADD VALUES is used, thecorrect sum is added to the correct location.In some cases one may wish to \undo" a scatter, that is, perform the scatter backwards switching theroles of the sender and receiver. This is done by using24

Vec p, x; /* initial vector, destination vector */VecScatter scatter; /* scatter context */IS from, to; /* index sets that define the scatter */Scalar *values;int idx_from[] = {100,200}, idx_to[] = {0,1};VecCreateSeq(MPI_COMM_SELF,2,&x);ISCreateGeneral(MPI_COMM_SELF,2,idx_from,&from);ISCreateGeneral(MPI_COMM_SELF,2,idx_to,&to);VecScatterCreate(p,from,x,to,&scatter);VecScatterBegin(p,x,INSERT_VALUES,SCATTER_FORWARD,scatter);VecScatterEnd(p,x,INSERT_VALUES,SCATTER_FORWARD,scatter);VecGetArray(x,&values);ISDestroy(from);ISDestroy(to);VecScatterDestroy(scatter);Figure 9: Example Code for Vector Scattersierr = VecScatterBegin(Vec y,Vec x,INSERT_VALUES,SCATTER_REVERSE,VecScatter ctx);ierr = VecScatterEnd(Vec y,Vec x,INSERT_VALUES,SCATTER_REVERSE,VecScatter ctx);Note that one must swap the roles of the �rst two arguments to these routines, whenever one uses theSCATTER REVERSE option.There is no PETSc routine that is the opposite of VecSetValues() , that is, VecGetValues(). Instead,the user should create a new vector where the components are to be stored and perform the appropriatevector scatter. For example, if one desires to obtain the values of the 100th and 200th entries of a parallelvector, p, one could use a code such as that within Figure 9. In this example, the values of the 100th and200th components are placed in the array values. In this example each processor now has the 100th and200th component, but obviously each processor could gather any elements it needed, or none by creating anindex set with no entries.The scatter comprises two stages, in order to allow overlap of communication and computation. Theintroduction of the VecScatter context allows the communication patterns for the scatter to be computedonce and then reused repeatedly. Generally, even setting up the communication for a scatter requirescommunication; hence, it is best to reuse such information when possible.2.6 Application OrderingsIn many applications it is desirable to work with one or more \orderings" of degrees of freedom, cells, nodes,and so on. Doing so in a parallel environment is complicated by the fact that each processor cannot keepcomplete lists of the mappings between di�erent orderings. In addition, the orderings used in the PETSclinear algebra routines may not correspond to the \natural" orderings for the application.PETSc provides certain utility routines that allow one to deal cleanly and e�ciently with the variousorderings. To de�ne a new application ordering (AO), one can call the routineierr = AOCreateDebug(MPI_Comm comm,int n,int *apordering,int *petscordering,AO *ao);The arrays apordering and petscordering, respectively, contain a list of integers in the application orderingand their corresponding mapped values in the PETSc ordering. Each processor can provide whatever subsetof the ordering it chooses, but multiple processors should never contribute duplicate values. The argumentn indicates the number of local contributed values.For example, consider a vector of length �ve, where node 0 in the application ordering corresponds tonode 3 in the PETSc ordering. In addition, nodes 1, 2, 3, and 4 of the application ordering correspond,respectively, to nodes 2, 1, 4, and 0 of the PETSc ordering. We can write this correspondence as f 0, 1, 2,3, 4 g ! f 3, 2, 1, 4, 0g. The user can create the PETSc-AO mappings in a number of ways. For example,if using two processors, one could call 25

ierr = AOCreateDebug(MPI_COMM_WORLD,2,{0,3},{3,4},&ao);on the �rst processor andierr = AOCreateDebug(MPI_COMM_WORLD,3,{1,2,4},{2,1,0},&ao);on the other processor.Once the application ordering has been created, it can be used with either of the commandsierr = AOPetscToApplication(AO ao,int n,int *indices);ierr = AOApplicationToPetsc(AO ao,int n,int *indices);Upon input, the n-dimensional array indices speci�es the indices to be mapped, while upon output, indicescontains the mapped values. Since we, in general, employ a parallel database for the AO mappings, it iscrucial that all processors that called AOCreateDebug() also call these routines; these routines cannot becalled by just a subset of processors.An alternative routine to create the application ordering, AO, isierr = AOCreateDebugIS(MPI_Comm comm,IS apordering,IS petscordering,AO *ao);where index sets are used instead of integer arrays. The corresponding mapping routines areierr = AOPetscToApplicationIS(AO ao,IS indices);ierr = AOApplicationToPetscIS(AO ao,IS indices);The AO context should be destroyed with AODestroy(AO ao) and viewed with AOView(AO ao,Viewerviewer).Although we refer to the two orderings as \PETSc" and \application" orderings, the user is free to usethem both for application orderings and to maintain relationships among a variety of orderings by employingseveral AO contexts.2.7 Local to Global MappingsIn many applications one works with a global representation of a vector (usually on a vector obtained withVecCreateMPI()) and a local representation of the same vector that includes ghost points required for localcomputation. PETSc provides routines to help map indices from a local numbering scheme to the PETScglobal numbering scheme. This is done via the following routinesierr = ISLocalToGlobalMappingCreate(int N,int* globalnumbers,ISLocalToGlobalMapping* ctx);ISLocalToGlobalMappingApply(ISLocalToGlobalMapping ctx,int n,int *in,int *out);ierr = ISLocalToGlobalMappingApplyIS(ISLocalToGlobalMapping ctx,IS isin,IS* isout);ierr = ISLocalToGlobalMappingDestroy(ISLocalToGlobalMapping ctx);Here N denotes the number of local indices, globalnumbers represents the global number of each local numberand ISLocalToGlobalMapping is the resulting PETSc object that contains the information needed to applythe mappingwith either the routine ISLocalToGlobalMappingApply()or ISLocalToGlobalMappingApplyIS().Note that the ISLocalToGlobalMapping routines serve a di�erent purpose from the AO routines. In theformer case they provide a mapping from a local numbering scheme (including ghost points) to a globalnumbering scheme; in the latter they provide a mapping between two global numbering schemes. In factmany applications may use both AO and ISLocalToGlobalMapping routines. The AO routines are �rst used tomap from an application global ordering (that has no relationship to parallel processing etc.) to the PETScordering scheme (where each processor has a contiguous set of indices in the numbering). Then in orderto perform function or Jacobian evaluations locally on each processor, one works with a local numberingscheme that includes ghost points; the mapping from this local numbering scheme back to the global PETScnumbering can be handled with the ISLocalToGlobalMapping routines.2.8 Distributed ArraysIn this section we consider a distributed array (DA) to be, not a matrix, but a one-, two-, or three-dimensionalarray of numbers distributed across the processors, so that each processor contains a rectangular subarray.Distributed arrays, which are used in conjunction with PETSc vectors, are intended for use with regularrectangular grids when communication of nonlocal data is needed before certain local computations can26

Box-type stencil Star-type stencilFigure 10: Ghost Points for Two Stencil Types on the Seventh Processoroccur. PETSc distributed arrays are designed only for the case in which data can be thought of as beingstored in a standard multidimensional array; thus, DAs are not intended for parallelizing unstructured gridproblems, and the like.For example, a typical situation one encounters in solving parallel PDEs is that, to evaluate a localfunction, f(x), each processor requires its local portion of the vector x as well as its ghost points (thebordering portions of the vector that are owned by neighboring processors). Figure 10 illustrates the ghostpoints for the seventh processor of a two-dimensional, regular parallel grid. Each box represents a processor;the ghost points for the seventh processor's local part of a parallel array are shown in gray.2.8.1 Creating Distributed ArraysOne creates a distributed array in two dimensions with the commandierr = DACreate2d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType st,int M,int N,int m,int n,int dof,int s,int *lx,int *ly,DA *da);The arguments M and N indicate the global numbers of grid points in each direction, while m and n denotethe processor partition in each direction; m*n must equal the number of processors in the MPI communi-cator, comm. Instead of specifying the processor layout, one may use PETSC DECIDE for m and n so thatPETSc will determine the partition. The type of periodicity of the array is speci�ed by wrap, which can beDA NONPERIODIC (no periodicity), DA XYPERIODIC (periodic in both x- and y-directions), DA XPERIODIC , orDA YPERIODIC. The argument dof indicates the number of degrees of freedom at each array point, and s isthe stencil width (i.e., the width of the ghost point region). The optional arrays lx and ly may contain thenumber of nodes along the x and y axis for each cell; that is, the dimension of lx is m and the dimension ofly is n; or PETSC NULL may be passed in.Two types of distributed arrays can be created, as speci�ed by st. Star-type stencils that radiate outwardonly in the coordinate directions are indicated by DA STENCIL STAR , while box-type stencils are speci�edby DA STENCIL BOX. For example, for the two-dimensional case, DA STENCIL STAR with width 1 correspondsto the standard 5-point stencil, while DA STENCIL BOX with width 1 denotes the standard 9-point stencil. Inboth instances the ghost points are identical, the only di�erence being that with star-type stencils certainghost points are ignored, potentially decreasing substantially the number of messages sent. Note that theDA STENCIL STAR stencils can save interprocessor communication in two and three dimensions.These DA stencils have nothing directly to do with any �nite-di�erence stencils one might chose to usefor a discretization; they ensure only that the correct values are in place for application of a user-de�ned�nite-di�erence stencil (or any other discretization technique).The commands for creating distributed arrays in one and three dimensions are analogous:ierr = DACreate1d(MPI_Comm comm,DAPeriodicType wrap,int M,int w,int s,int *lc,DA *inra);ierr = DACreate3d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType stencil_type,int M,int N,int P,int m,int n,int p,int w,int s,int *lx,int *ly,int *lz,DA *inra);27

DA ZPERIODIC, DA XZPERIODIC, DA YZPERIODIC, and DA XYZPERIODIC are additional options in three dimen-sions for DAPeriodicType. The routines to create distributed arrays are collective, so that all processors inthe communicator comm must call DACreateXXX().2.8.2 Local/Global Vectors and ScattersEach DA object contains two vectors: a distributed global vector and a local vector that includes the appro-priate ghost points. These vectors can be accessed with the routinesierr = DAGetDistributedVector(DA da,Vec *g);ierr = DAGetLocalVector(DA da,Vec *l);These two vectors will generally serve as the building blocks for local and global PDE solutions, and soon. Note that calling DAGetDistributedVector() or DAGetLocalVector() does not create a new vectorobject, but rather extracts the one existing vector of its type from the distributed array. Thus, if addi-tional vectors are needed in a code, they can be obtained by duplicating l or g via VecDuplicate() orVecDuplicateVecs().At certain stages of many applications, there is a need to work on a local portion of the vector, includingthe ghost points. This may be done by scattering a global vector into its local parts by using the two-stagecommandsierr = DAGlobalToLocalBegin(DA da,Vec g,InsertMode iora,Vec l);ierr = DAGlobalToLocalEnd(DA da,Vec g,InsertMode iora,Vec l);which allow the overlap of communication and computation. Since the global and local vectors, givenby g and l, respectively, must be compatible with the distributed array, da, they should be generatedby DAGetDistributedVector() and DAGetLocalVector() (or be duplicates of such a vector obtained viaVecDuplicate()). The InsertMode can be either ADD VALUES or INSERT VALUES.One can scatter the local patches into the distributed vector with the commandierr = DALocalToGlobal(DA da,Vec l,InsertMode mode,Vec g);Note that this function is not subdivided into beginning and ending phases, since it is purely local.A third type of distributed array scatter is from a local vector (including ghost points that containirrelevant values) to a local vector with correct ghost point values. This scatter may be done by commandsierr = DALocalToLocalBegin(DA da,Vec l1,InsertMode iora,Vec l2);ierr = DALocalToLocalEnd(DA da,Vec l1,InsertMode iora,Vec l2);Since both local vectors, l1 and l2, must be compatible with the distributed array, da, they should begenerated by DAGetLocalVector() (or be duplicates of such vectors obtained via VecDuplicate()). TheInsertMode can be either ADD VALUES or INSERT VALUES.It is possible to directly access the vector scatter contexts used in the local-to-global (ltog), global-to-local (gtol), and local-to-local (ltol) scatters with the commandierr = DAGetScatter(DA da,VecScatter *ltog,VecScatter *gtol,VecScatter *ltol);Most users should not need to use these contexts.2.8.3 Grid InformationThe global indices of the lower left corner of the local portion of the array as well as the local array size canbe obtained with the commandsierr = DAGetCorners(DA da,int *x,int *y,int *z,int *m,int *n,int *p);ierr = DAGetGhostCorners(DA da,int *x,int *y,int *z,int *m,int *n,int *p);The �rst version excludes any ghost points, while the second version includes them. Note that for interiorsubarrays the ghost corners can easily be calculated from the true corners. However, since the calculationof ghost corners for boundary subarrays is not so straightforward, both routines are provided. The routineDAGetGhostCorners() deals with the fact that subarrays along boundaries of the problem domain haveghost points only on their interior edges, but not on their boundary edges.When either type of stencil is used, DA STENCIL STAR or DA STENCIL BOX, the local vectors (with the ghostpoints) represent rectangular arrays, including the extra corner elements in the DA STENCIL STAR case. Thiscon�guration provides simple access to the elements by employing two- (or three-)dimensional indexing. Theonly di�erence between the two cases is that when DA STENCIL STAR is used, the extra corner componentsare not scattered between the processors and thus contain unde�ned values that should not be used.To assemble global sti�ness matrices, one needs to be able to determine the global node number of eachlocal node including the ghost nodes. The number may be determined by using the command28

Processor 2 Processor 3

22 23 24 29 3026 27 28 29 30

Processor 2 Processor 3

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

 6 7 8 9 10

 1 2 3 4 5

19 20 21 27 28

16 17 18 25 26

Natural Ordering PETSc Ordering

Processor 1Processor 0Processor 1Processor 0

 7 8 9 14 15

 4 5 6 12 13

 1 2 3 10 11Figure 11: Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processors)ierr = DAGetGlobalIndices(DA da,int *n,int **idx);The output argument n contains the number of local nodes, including ghost nodes, while idx contains a listof the global indices that correspond to the local nodes. Note that the Fortran interface di�ers slightly; seeSection 9.1.3 for details.Since the global ordering that PETSc uses to manage its parallel vectors (and matrices) does not usuallycorrespond to the \natural" ordering of a two- or three-dimensional array, the DA structure provides anapplication ordering AO (see Section 2.6) that maps between the natural ordering on a rectangular grid andthe ordering PETSc uses to parallize. This ordering context can be obtained with the commandierr = DAGetAO(DA da,AO *ao);In Figure 11 we indicate the orderings for a two-dimensional distributed array, divided among four processors.Figure 12, which corresponds to $(PETSC DIR)/src/snes/examples/tutorials/ex5.c, illustrates theuse of a distributed array in the solution of a nonlinear problem. The analogous Fortran program is$(PETSC DIR)/src/snes/examples/tutorials/ex5f.F; See Chapter 5 for a discussion of the nonlinearsolvers.#ifndef lintstatic char vcid[] = "$Id: ex5.c,v 1.75 1997/02/05 22:04:41 bsmith Exp $";#endifstatic char help[] = "Solves a nonlinear system in parallel with SNES.\n\We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular\n\domain, using distributed arrays (DAs) to partition the parallel grid.\n\The command line options include:\n\-par <parameter>, where <parameter> indicates the problem's nonlinearity\n\problem SFI: <parameter> = Bratu parameter (0 <= par <= 6.81)\n\-mx <xg>, where <xg> = number of grid points in the x-direction\n\-my <yg>, where <yg> = number of grid points in the y-direction\n\-Nx <npx>, where <npx> = number of processors in the x-direction\n\-Ny <npy>, where <npy> = number of processors in the y-direction\n\n";/*TConcepts: SNES^Solving a system of nonlinear equations (parallel Bratu example);Concepts: DA^Using distributed arrays;Routines: SNESCreate(); SNESSetFunction(); SNESSetJacobian();Routines: SNESSolve(); SNESSetFromOptions(); DAView();Routines: DACreate2d(); DADestroy(); DAGetDistributedVector(); DAGetLocalVector();Routines: DAGetCorners(); DAGetGhostCorners(); DALocalToGlobal();Routines: DAGlobalToLocalBegin(); DAGlobalToLocalEnd(); DAGetGlobalIndices();29

Processors: nT*//* --Solid Fuel Ignition (SFI) problem. This problem is modeled bythe partial differential equation-Laplacian u - lambda*exp(u) = 0, 0 < x,y < 1 ,with boundary conditionsu = 0 for x = 0, x = 1, y = 0, y = 1.A finite difference approximation with the usual 5-point stencilis used to discretize the boundary value problem to obtain a nonlinearsystem of equations.The uniprocessor version of this code is snes/examples/tutorials/ex4.c--- *//* Include "da.h" so that we can use distributed arrays (DAs).Include "snes.h" so that we can use SNES solvers. Note that thisfile automatically includes:petsc.h - base PETSc routines vec.h - vectorssys.h - system routines mat.h - matricesis.h - index sets ksp.h - Krylov subspace methodsviewer.h - viewers pc.h - preconditionerssles.h - linear solvers*/#include "da.h"#include "snes.h"#include <math.h>#include <stdio.h>/* User-defined application context - contains data needed by theapplication-provided call-back routines, FormJacobian() andFormFunction().*/typedef struct {double param; /* test problem parameter */int mx,my; /* discretization in x, y directions */Vec localX, localF; /* ghosted local vector */DA da; /* distributed array data structure */int rank; /* processor rank */} AppCtx;/* User-defined routines*/int FormFunction(SNES,Vec,Vec,void*), FormInitialGuess(AppCtx*,Vec);int FormJacobian(SNES,Vec,Mat*,Mat*,MatStructure*,void*);int main(int argc, char **argv){ SNES snes; /* nonlinear solver */Vec x, r; /* solution, residual vectors */30

Mat J; /* Jacobian matrix */AppCtx user; /* user-defined work context */int its; /* iterations for convergence */int Nx, Ny; /* number of preocessors in x- and y- directions */int matrix_free; /* flag - 1 indicates matrix-free version */int size; /* number of processors */int m, flg, N, ierr;double bratu_lambda_max = 6.81, bratu_lambda_min = 0.;PetscInitialize(&argc, &argv,(char *)0,help);MPI_Comm_rank(MPI_COMM_WORLD,&user.rank);/* Initialize problem parameters*/user.mx = 4; user.my = 4; user.param = 6.0;ierr = OptionsGetInt(PETSC_NULL,"-mx",&user.mx,&flg); CHKERRA(ierr);ierr = OptionsGetInt(PETSC_NULL,"-my",&user.my,&flg); CHKERRA(ierr);ierr = OptionsGetDouble(PETSC_NULL,"-par",&user.param,&flg); CHKERRA(ierr);if (user.param >= bratu_lambda_max || user.param <= bratu_lambda_min) {SETERRA(1,0,"Lambda is out of range");}N = user.mx*user.my;/* -Create nonlinear solver context- */ierr = SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,&snes); CHKERRA(ierr);/* -Create vector data structures; set function evaluation routine- *//* Create distributed array (DA) to manage parallel grid and vectors*/MPI_Comm_size(MPI_COMM_WORLD,&size);Nx = PETSC_DECIDE; Ny = PETSC_DECIDE;ierr = OptionsGetInt(PETSC_NULL,"-Nx",&Nx,&flg); CHKERRA(ierr);ierr = OptionsGetInt(PETSC_NULL,"-Ny",&Ny,&flg); CHKERRA(ierr);if (Nx*Ny != size && (Nx != PETSC_DECIDE || Ny != PETSC_DECIDE))SETERRA(1,0,"Incompatible number of processors: Nx * Ny != size");ierr = DACreate2d(MPI_COMM_WORLD,DA_NONPERIODIC,DA_STENCIL_STAR,user.mx,user.my,Nx,Ny,1,1,PETSC_NULL,PETSC_NULL,&user.da); CHKERRA(ierr);/* Visualize the distribution of the array across the processors*//* ierr = DAView(user.da,VIEWER_DRAWX_WORLD); CHKERRA(ierr); *//* Extract global and local vectors from DA; then duplicate for remainingvectors that are the same types*/ierr = DAGetDistributedVector(user.da,&x); CHKERRA(ierr);ierr = DAGetLocalVector(user.da,&user.localX); CHKERRA(ierr);ierr = VecDuplicate(x,&r); CHKERRA(ierr);ierr = VecDuplicate(user.localX,&user.localF); CHKERRA(ierr);31

/* Set function evaluation routine and vector*/ierr = SNESSetFunction(snes,r,FormFunction,(void*)&user); CHKERRA(ierr);/* -Create matrix data structure; set Jacobian evaluation routine- *//* Set Jacobian matrix data structure and default Jacobian evaluationroutine. User can override with:-snes_fd : default finite differencing approximation of Jacobian-snes_mf : matrix-free Newton-Krylov method with no preconditioning(unless user explicitly sets preconditioner)-snes_mf_operator : form preconditioning matrix as set by the user,but use matrix-free approx for Jacobian-vectorproducts within Newton-Krylov methodNote: For the parallel case, vectors and matrices MUST be partitionedaccordingly. When using distributed arrays (DAs) to create vectors,the DAs determine the problem partitioning. We must explicitlyspecify the local matrix dimensions upon its creation for compatibilitywith the vector distribution. Thus, the generic MatCreate() routineis NOT sufficient when working with distributed arrays.Note: Here we only approximately preallocate storage space for theJacobian. See the users manual for a discussion of better techniquesfor preallocating matrix memory.*/ierr = OptionsHasName(PETSC_NULL,"-snes_mf",&matrix_free); CHKERRA(ierr);if (!matrix_free) {if (size == 1) {ierr = MatCreateSeqAIJ(MPI_COMM_WORLD,N,N,5,PETSC_NULL,&J); CHKERRA(ierr);} else {ierr = VecGetLocalSize(x,&m); CHKERRA(ierr);ierr = MatCreateMPIAIJ(MPI_COMM_WORLD,m,m,N,N,5,PETSC_NULL,3,PETSC_NULL,&J); CHKERRA(ierr);}ierr = SNESSetJacobian(snes,J,J,FormJacobian,&user); CHKERRA(ierr);}/* -Customize nonlinear solver; set runtime options- *//* Set runtime options (e.g., -snes_monitor -snes_rtol <rtol> -ksp_type <type>)*/ierr = SNESSetFromOptions(snes); CHKERRA(ierr);/* -Evaluate initial guess; then solve nonlinear system- *//* Note: The user should initialize the vector, x, with the initial guessfor the nonlinear solver prior to calling SNESSolve(). In particular,to employ an initial guess of zero, the user should explicitly setthis vector to zero by calling VecSet().*/ 32

ierr = FormInitialGuess(&user,x); CHKERRA(ierr);ierr = SNESSolve(snes,x,&its); CHKERRA(ierr);PetscPrintf(MPI_COMM_WORLD,"Number of Newton iterations = %d\n", its);/* -Free work space. All PETSc objects should be destroyed when theyare no longer needed.- */if (!matrix_free) {ierr = MatDestroy(J); CHKERRA(ierr);}ierr = VecDestroy(user.localX); CHKERRA(ierr); ierr = VecDestroy(x); CHKERRA(ierr);ierr = VecDestroy(user.localF); CHKERRA(ierr); ierr = VecDestroy(r); CHKERRA(ierr);ierr = SNESDestroy(snes); CHKERRA(ierr); ierr = DADestroy(user.da); CHKERRA(ierr);PetscFinalize();return 0;}/* --- *//* FormInitialGuess - Forms initial approximation.Input Parameters:user - user-defined application contextX - vectorOutput Parameter:X - vector*/int FormInitialGuess(AppCtx *user,Vec X){ int i, j, row, mx, my, ierr, xs, ys, xm, ym, gxm, gym, gxs, gys;double one = 1.0, lambda, temp1, temp, hx, hy, hxdhy, hydhx,sc;Scalar *x;Vec localX = user->localX;mx = user->mx; my = user->my; lambda = user->param;hx = one/(double)(mx-1); hy = one/(double)(my-1);sc = hx*hy*lambda; hxdhy = hx/hy; hydhx = hy/hx;temp1 = lambda/(lambda + one);/* Get a pointer to vector data.- For default PETSc vectors, VecGetArray() returns a pointer tothe data array. Otherwise, the routine is implementation dependent.- You MUST call VecRestoreArray() when you no longer need access tothe array.*/ierr = VecGetArray(localX,&x); CHKERRQ(ierr);/* Get local grid boundaries (for 2-dimensional DA):xs, ys - starting grid indices (no ghost points)xm, ym - widths of local grid (no ghost points)gxs, gys - starting grid indices (including ghost points)gxm, gym - widths of local grid (including ghost points)*/ierr = DAGetCorners(user->da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL); CHKERRQ(ierr);ierr = DAGetGhostCorners(user->da,&gxs,&gys,PETSC_NULL,&gxm,&gym,PETSC_NULL); CHKERRQ(ierr);33

/* Compute initial guess over the locally owned part of the grid*/for (j=ys; j<ys+ym; j++) {temp = (double)(PetscMin(j,my-j-1))*hy;for (i=xs; i<xs+xm; i++) {row = i - gxs + (j - gys)*gxm;if (i == 0 || j == 0 || i == mx-1 || j == my-1) {x[row] = 0.0;continue;}x[row] = temp1*sqrt(PetscMin((double)(PetscMin(i,mx-i-1))*hx,temp));}}/* Restore vector*/ierr = VecRestoreArray(localX,&x); CHKERRQ(ierr);/* Insert values into global vector*/ierr = DALocalToGlobal(user->da,localX,INSERT_VALUES,X); CHKERRQ(ierr);return 0;}/* --- *//* FormFunction - Evaluates nonlinear function, F(x).Input Parameters:. snes - the SNES context. X - input vector. ptr - optional user-defined context, as set by SNESSetFunction()Output Parameter:. F - function vector*/int FormFunction(SNES snes,Vec X,Vec F,void *ptr){ AppCtx *user = (AppCtx *) ptr;int ierr, i, j, row, mx, my, xs, ys, xm, ym, gxs, gys, gxm, gym;double two = 2.0, one = 1.0, lambda,hx, hy, hxdhy, hydhx,sc;Scalar u, uxx, uyy, *x,*f;Vec localX = user->localX, localF = user->localF;mx = user->mx; my = user->my; lambda = user->param;hx = one/(double)(mx-1); hy = one/(double)(my-1);sc = hx*hy*lambda; hxdhy = hx/hy; hydhx = hy/hx;/* Scatter ghost points to local vector, using the 2-step processDAGlobalToLocalBegin(), DAGlobalToLocalEnd().By placing code between these two statements, computations can bedone while messages are in transition.*/ierr = DAGlobalToLocalBegin(user->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);ierr = DAGlobalToLocalEnd(user->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);34

/* Get pointers to vector data*/ierr = VecGetArray(localX,&x); CHKERRQ(ierr);ierr = VecGetArray(localF,&f); CHKERRQ(ierr);/* Get local grid boundaries*/ierr = DAGetCorners(user->da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL); CHKERRQ(ierr);ierr = DAGetGhostCorners(user->da,&gxs,&gys,PETSC_NULL,&gxm,&gym,PETSC_NULL); CHKERRQ(ierr);/* Compute function over the locally owned part of the grid*/for (j=ys; j<ys+ym; j++) {row = (j - gys)*gxm + xs - gxs - 1;for (i=xs; i<xs+xm; i++) {row++;if (i == 0 || j == 0 || i == mx-1 || j == my-1) {f[row] = x[row];continue;}u = x[row];uxx = (two*u - x[row-1] - x[row+1])*hydhx;uyy = (two*u - x[row-gxm] - x[row+gxm])*hxdhy;f[row] = uxx + uyy - sc*exp(u);}}/* Restore vectors*/ierr = VecRestoreArray(localX,&x); CHKERRQ(ierr);ierr = VecRestoreArray(localF,&f); CHKERRQ(ierr);/* Insert values into global vector*/ierr = DALocalToGlobal(user->da,localF,INSERT_VALUES,F); CHKERRQ(ierr);PLogFlops(11*ym*xm);return 0;}/* --- *//* FormJacobian - Evaluates Jacobian matrix.Input Parameters:. snes - the SNES context. x - input vector. ptr - optional user-defined context, as set by SNESSetJacobian()Output Parameters:. A - Jacobian matrix. B - optionally different preconditioning matrix. flag - flag indicating matrix structureNotes:Due to grid point reordering with DAs, we must always workwith the local grid points, and then transform them to the new35

global numbering with the "ltog" mapping (via DAGetGlobalIndices()).We cannot work directly with the global numbers for the originaluniprocessor grid!*/int FormJacobian(SNES snes,Vec X,Mat *J,Mat *B,MatStructure *flag,void *ptr){ AppCtx *user = (AppCtx *) ptr; /* user-defined application context */Mat jac = *J; /* Jacobian matrix */Vec localX = user->localX; /* local vector */int *ltog; /* local-to-global mapping */int ierr, i, j, row, mx, my, col[5];int nloc, xs, ys, xm, ym, gxs, gys, gxm, gym, grow;Scalar two = 2.0, one = 1.0, lambda, v[5], hx, hy, hxdhy, hydhx, sc, *x;mx = user->mx; my = user->my; lambda = user->param;hx = one/(double)(mx-1); hy = one/(double)(my-1);sc = hx*hy; hxdhy = hx/hy; hydhx = hy/hx;/* Scatter ghost points to local vector, using the 2-step processDAGlobalToLocalBegin(), DAGlobalToLocalEnd().By placing code between these two statements, computations can bedone while messages are in transition.*/ierr = DAGlobalToLocalBegin(user->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);ierr = DAGlobalToLocalEnd(user->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);/* Get pointer to vector data*/ierr = VecGetArray(localX,&x); CHKERRQ(ierr);/* Get local grid boundaries*/ierr = DAGetCorners(user->da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL); CHKERRQ(ierr);ierr = DAGetGhostCorners(user->da,&gxs,&gys,PETSC_NULL,&gxm,&gym,PETSC_NULL); CHKERRQ(ierr);/* Get the global node numbers for all local nodes, including ghost points*/ierr = DAGetGlobalIndices(user->da,&nloc,<og); CHKERRQ(ierr);/* Compute entries for the locally owned part of the Jacobian.- Currently, all PETSc parallel matrix formats are partitioned bycontiguous chunks of rows across the processors. The "grow"parameter computed below specifies the global row numbercorresponding to each local grid point.- Each processor needs to insert only elements that it ownslocally (but any non-local elements will be sent to theappropriate processor during matrix assembly).- Always specify global row and columns of matrix entries.- Here, we set all entries for a particular row at once.*/for (j=ys; j<ys+ym; j++) {row = (j - gys)*gxm + xs - gxs - 1;for (i=xs; i<xs+xm; i++) {row++;grow = ltog[row]; 36

/* boundary points */if (i == 0 || j == 0 || i == mx-1 || j == my-1) {ierr = MatSetValues(jac,1,&grow,1,&grow,&one,INSERT_VALUES); CHKERRQ(ierr);continue;}/* interior grid points */v[0] = -hxdhy; col[0] = ltog[row - gxm];v[1] = -hydhx; col[1] = ltog[row - 1];v[2] = two*(hydhx + hxdhy) - sc*lambda*exp(x[row]); col[2] = grow;v[3] = -hydhx; col[3] = ltog[row + 1];v[4] = -hxdhy; col[4] = ltog[row + gxm];ierr = MatSetValues(jac,1,&grow,5,col,v,INSERT_VALUES); CHKERRQ(ierr);}}/* Assemble matrix, using the 2-step process:MatAssemblyBegin(), MatAssemblyEnd().By placing code between these two statements, computations can bedone while messages are in transition.*/ierr = MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);ierr = VecRestoreArray(localX,&x); CHKERRQ(ierr);ierr = MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);/* Set flag to indicate that the Jacobian matrix retains an identicalnonzero structure throughout all nonlinear iterations (although thevalues of the entries change). Thus, we can save some work in settingup the preconditioner (e.g., no need to redo symbolic factorization forILU/ICC preconditioners).- If the nonzero structure of the matrix is different duringsuccessive linear solves, then the flag DIFFERENT_NONZERO_PATTERNmust be used instead. If you are unsure whether the matrixstructure has changed or not, use the flag DIFFERENT_NONZERO_PATTERN.- Caution: If you specify SAME_NONZERO_PATTERN, PETScbelieves your assertion and does not check the structureof the matrix. If you erroneously claim that the structureis the same when it actually is not, the new preconditionerwill not function correctly. Thus, use this optimizationfeature with caution!*/*flag = SAME_NONZERO_PATTERN;return 0;}/* Demonstrates how you can restrict the linking in of solvers, etcto those that you KNOW you are going to use. This decreases the sizeof your executable and decreases the time it takes to link your program.*//* ------------- Note currently these are commented out -----------------extern int SNESCreate_EQ_LS(SNES);int SNESRegisterAll(){ SNESRegisterAllCalled = 1;SNESRegister(SNES_EQ_LS, 0,"ls", SNESCreate_EQ_LS);return 0;} 37

extern int KSPCreate_GMRES(KSP);int KSPRegisterAll(){ KSPRegisterAllCalled = 1;KSPRegister(KSPGMRES , 0,"gmres", KSPCreate_GMRES);return 0;}extern int PCCreate_BJacobi(PC);extern int PCCreate_ILU(PC);int PCRegisterAll(){ PCRegisterAllCalled = 1;PCRegister(PCBJACOBI ,0, "bjacobi", PCCreate_BJacobi);PCRegister(PCILU ,0, "ilu", PCCreate_ILU);return 0;}extern int MatLoad_SeqAIJ(Viewer,MatType,Mat*);extern int MatLoad_MPIAIJ(Viewer,MatType,Mat*);int MatLoadRegisterAll(){ int ierr;ierr = MatLoadRegister(MATSEQAIJ,MatLoad_SeqAIJ); CHKERRQ(ierr);ierr = MatLoadRegister(MATMPIAIJ,MatLoad_MPIAIJ); CHKERRQ(ierr);return 0;}int MatConvertRegisterAll(){ return 0;}extern int MatOrder_Natural(Mat,MatReordering,IS*,IS*);int MatReorderingRegisterAll(){ int ierr;MatReorderingRegisterAllCalled = 1;ierr = MatReorderingRegister(ORDER_NATURAL,0,"natural",MatOrder_Natural);CHKERRQ(ierr);return 0;}--*/Figure 12: Use of Distributed Arrays2.9 Discrete FunctionsThe discrete functions component of PETSc will be replaced in a future PETSc release.In mathematical terms, vectors are linear algebraic objects that do not incorporate any concept of ge-ometry, grid, or ordering. But often users want to work with numerical values (stored as a vector or matrix)in relation to where they lie on a grid or graph. PETSc thus provides an enhanced vector object, known as38

a discrete function vector or DFVec, that is, a vector of values and its associated geometry or grid. Thus,any vector action that requires the geometric information (e.g., contour plotting) can be performed only ondiscrete function vectors and not on basic vectors.The vectors created by PETSc distributed arrays (as discussed in Section 2.8) automatically are DFVec's,as they are associated with a regular grid in one, two, or three dimensions. Thus, any vector obtained fromDAGetDistributedVector() or DAGetLocalVector() (or copied from such vectors via VecDuplicate() orVecDuplicateVecs()) can immediately be used with the DFVec routines.In addition to all of the conventional vector operations, the support for discrete function vectors includesviewing, contour plotting, interpolating, and extracting various components for problems with multipledegrees of freedom for each node of a grid. One useful routine for viewing discrete function vectors isierr = DFVecView(DFVec dfv,Viewer viewer);which views the components in the same ordering that would be used for the single processor case, inde-pendent of the number of processors, layout, and so forth. This routine supports all of the standard vectorviewers; the only di�erence is that in the parallel case, the display always employs the standard uniprocessorordering. DFVecView() is particularly useful for checking correctness of parallel vector computations fordi�erent processor con�gurations and for restarting calculations on di�erent numbers of processors. Oneroutine for visualization of vector �elds isierr = DFVecDrawTensorContoursX(DFVec dfv,int width,int height);which draws in an X-window a contour plot for each component within a multicomponent vector. Anotherroutine for viewing vector �elds isierr = DFVecDrawTensorSurfaceContoursVRML(DFVec dfv);which generates surface contour data view use with a VRML reader. See the man page for details.

39

Chapter 3MatricesPETSc 2.0 provides a variety of matrix implementations because no single matrix format is appropriate forall problems. Currently we support dense storage and compressed sparse row storage (both sequential andparallel versions), as well as several specialized formats. Additional formats can be added easily.This chapter describes the basics of using PETSc matrices in general (regardless of the particular formatchosen) and discusses tips for e�cient use of the several simple uniprocessor and parallel matrix types.Details regarding the ever-expanding suite of PETSc matrices are given in Section 15.5. The use of PETScmatrices involves the following actions: create a particular type of matrix, insert values into it, process thematrix, use the matrix for various computations, and �nally destroy the matrix. The application code doesnot need to know or care about the particular storage formats of the matrices.3.1 Creating and Assembling MatricesThe simplest routine for forming a PETSc matrix, A, isierr = MatCreate(MPI_Comm comm,int M,int N,Mat *A)This routine generates a sequential matrix when running on one processor and a parallel matrix for two ormore processors; the particular matrix format is set by the user via options database commands. The userspeci�es only the global matrix dimensions, given by M and N, while PETSc determines the appropriate localdimensions and completely controls memory allocation. This routine facilitates switching among variousmatrix types, for example, to determine the format that is most e�cient for a certain application. Bydefault, MatCreate() employs the sparse AIJ format, which is discussed in detail Section 3.1.1. See the manpage for further information about available matrix formats.To insert or add entries to a matrix, one can call a variant of MatSetValues, eitherierr = MatSetValues(Mat A,int m,int *im,int n,int *in,Scalar *values,INSERT_VALUES);or ierr = MatSetValues(Mat A,int m,int *im,int n,int *in,Scalar *values,ADD_VALUES);This routine inserts or adds a logically dense subblock of dimension m*n into the matrix. The integer indicesim and in, respectively, indicate the global row and column numbers to be inserted. MatSetValues() usesthe standard C convention, where the row and column matrix indices begin with zero regardless of thestorage format employed. The array values is logically two dimensional, containing the values that are tobe inserted. By default the values are given in row major order, which is the opposite of the Fortran 77convention. To allow the insertion of values in column major order, one can call the commandierr = MatSetOption(Mat A,MAT_COLUMN_ORIENTED);Warning: Several of the sparse implementations do not currently support the column-oriented option!This notation should not be a mystery to anyone. For example, to insert one matrix into another whenusing Matlab, one uses the command A(im,in) = B; where im and in contain the indices for the rows andcolumns. This action is identical to the calls above to MatSetValues().The function MatSetOption() accepts several other inputs. We discuss two of these, which are relatedto the e�ciency of the assembly process. To indicate to PETSc that the row (im) or column (in) indices setwith MatSetValues() are sorted, one uses the command40

ierr = MatSetOption(Mat A,MAT_ROWS_SORTED);or ierr = MatSetOption(Mat A,MAT_COLUMNS_SORTED);After the matrix elements have been inserted or added into the matrix, it must be processed before itcan be used. The routines for matrix processing areierr = MatAssemblyBegin(Mat A,MAT_FINAL_ASSEMBLY);ierr = MatAssemblyEnd(Mat A,MAT_FINAL_ASSEMBLY);By placing other code between these two calls, the user can perform computations while messages are intransition. Calls to MatSetValues() with the INSERT VALUES and ADD VALUES options cannot be mixedwithout intervening calls to the assembly routines. For such intermediate assembly calls the second routineargument typically should be MAT FLUSH ASSEMBLY, which omits some of the work of the full assembly process.MAT FINAL ASSEMBLY is required only in the last matrix assembly before a matrix is used.Even though one may insert values into PETSc matrices without regard to which processor eventuallystores them, for e�ciency reasons we usually recommend generating most entries on the processor wherethey are destined to be stored. To help the application programmer with this task for matrices that aredistributed across the processors by ranges, the routineierr = MatGetOwnershipRange(Mat A,int *first_row,int *last_row);informs the user that all rows from first row to last row-1 will be stored on the local processor.In the sparse matrix implementations, once the assembly routines have been called, the matrices arecompressed and can be used for matrix-vector multiplication, and so on. Inserting new values into thematrix at this point will be expensive, since it requires copies and possible memory allocation. Thus,whenever possible one should completely set the values in the matrices before calling the �nal assemblyroutines.If one wishes to repeatedly assemble matrices that retain the same nonzero pattern (such as within anonlinear or time-dependent problem), the optionierr = MatSetOption(Mat mat,MAT_NO_NEW_NONZERO_LOCATIONS);should be speci�ed after the �rst matrix has been fully assembled. This option ensures that certain datastructures and communication information will be reused (instead of regenerated) during successive steps,thereby increasing e�ciency. See $(PETSC DIR)/src/sles/examples/tutorials/ex5.c for a simple exam-ple of solving two linear systems that use the same matrix data structure.3.1.1 Sparse MatricesThe default matrix representation within PETSc is the general sparse AIJ format (also called the Yale sparsematrix format or compressed sparse row format, CSR). This section discusses tips for e�ciently using thismatrix format for large-scale applications. Additional formats (such as block compressed row and blockdiagonal storage, which are generally much more e�cient for problems with multiple degrees of freedom pernode) are further discussed in Section 15.5. Beginning users need not concern themselves initially with suchdetails and may wish to proceed directly to Section 3.2. However, when an application code progresses tothe point of tuning for e�ciency and/or generating timing results, it is crucial to read this information.Sequential AIJ Sparse MatricesIn the PETSc AIJ matrix formats, we store the nonzero elements by rows, along with an array of corre-sponding column numbers and an array of pointers to the beginning of each row. Note that the diagonalmatrix entries are stored with the rest of the nonzeros (not separately).To create a sequential AIJ sparse matrix, A, with m rows and n columns, one uses the commandierr = MatCreateSeqAIJ(MPI_COMM_SELF,int m,int n,int nz,int *nzz,Mat *A);where nz or nnz can be used to preallocate matrix memory, as discussed below. The user can set nz=0 andnzz=PETSC NULL for PETSc to control all matrix memory allocation.The sequential and parallel AIJ matrix storage formats by default employ i-nodes (identical nodes)when possible. We search for consecutive rows with the same nonzero structure, thereby reusing matrixinformation for increased e�ciency. Related options database keys are -mat aij no inode (do not useinodes) and -mat aij inode limit <limit> (set inode limit (max limit=5)).41

By default the internal data representation for the AIJ formats employs zero-based indexing. For com-patibility with standard Fortran 77 storage, thus enabling use of external Fortran software packages such asSPARSKIT, the option -mat aij oneindex enables one-based indexing, where the stored row and columnindices begin at one, not zero. All user calls to PETSc routines, regardless of this option, use zero-basedindexing.Preallocation of Memory for Sequential AIJ Sparse MatricesThe dynamic process of allocating new memory and copying from the old storage to the new is intrinsicallyvery expensive. Thus, to obtain good performance when assembling an AIJ matrix, it is crucial to preallocatethe memory needed for the sparse matrix. The user has two choices for preallocating matrix memory viaMatCreateSeqAIJ().One can use the scalar nz to specify the expected number of nonzeros for each row. This is generally �neif the number of nonzeros per row is roughly the same throughout the matrix (or as a quick and easy �rststep for preallocation). If one underestimates the actual number of nonzeros in a given row, then during theassembly process PETSc will automatically allocate additional needed space. However, this extra memoryallocation can slow the computation,Thus, if di�erent rows have very di�erent numbers of nonzeros, one should attempt to indicate (nearly)the exact number of elements intended for the various rows with the optional array, nzz of length m, wherem is the number of rows, for example,int nnz[m];nnz[0] = <nonzeros in row 0>nnz[1] = <nonzeros in row 1>....nnz[m-1] = <nonzeros in row m-1>In this case, the assembly process will require no additional memory allocations if the nnz estimates arecorrect. If, however, the nnz estimates are incorrect, PETSc will automatically obtain the additional neededspace, at a slight loss of e�ciency.Using the array nnz to preallocate memory is especially important for e�cient matrix assembly if thenumber of nonzeros varies considerably among the rows. One can generally set nnz either by knowing inadvance the problem structure (e.g., the stencil for �nite di�erence problems on a structured grid) or byprecomputing the information by using a segment of code similar to that for the regular matrix assembly.The overhead of determining the nnz array will be quite small compared with the overhead of the inherentlyexpensive mallocs and moves of data that are needed for dynamic allocation during matrix assembly.Thus, when assembling a sparse matrix with very di�erent numbers of nonzeros in various rows, onecould proceed as follows for �nite di�erence methods:- Allocate integer array nnz.- Loop over grid, counting the expected number of nonzeros for the row(s)associated with the various grid points.- Create the sparse matrix via MatCreateSeqAIJ() or alternative.- Loop over the grid, generating matrix entries and inserting in matrix via MatSetValues().For (vertex-based) �nite element-type calculations, an analogous procedure is as follows:- Allocate integer array nnz.- Loop over vertices, computing the number of neighbor vertices, which determines thenumber of nonzeros for the corresponding matrix row(s).- Create the sparse matrix via MatCreateSeqAIJ() or alternative.- Loop over elements, generating matrix entries and inserting in matrix via MatSetValues().The -log info option causes the routines MatAssemblyBegin() and MatAssemblyEnd() to print infor-mation about the success of the preallocation. Consider the following example for the MATSEQAIJ matrixformat:MatAssemblyEnd_SeqAIJ:Matrix size 100 X 100; storage space: 2000 unneeded, 1000 usedMatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 042

The �rst line indicates that the user preallocated 3000 spaces but only 1000 were used. The second lineindicates that the user preallocated enough space so that PETSc did not have to internally allocate additionalspace (an expensive operation). In the next example the user did not preallocate su�cient space, as indicatedby the fact that the number of mallocs is very large (bad for e�ciency):MatAssemblyEnd_SeqAIJ:Matrix size 1000 X 1000; storage space: 47 unneeded, 100000 usedMatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 40000Although at �rst glance such procedures for determining the matrix structure in advance may seemunusual, they are actually very e�cient because they alleviate the need for dynamic construction of thematrix data structure, which can be very expensive.Parallel AIJ Sparse MatricesParallel sparse matrices with the AIJ format can be created with the commandierr = MatCreateMPIAIJ(MPI_Comm comm,int m,int n,int M,int N,int d_nz,int *d_nnz, int o_nz,int *o_nnz,Mat *A);A is the newly created matrix, while the arguments m, n, M, and N, indicate the number of local rows andcolumns and the number of global rows and columns, respectively. Either the local or global parameterscan be replaced with PETSC DECIDE, so that PETSc will determine them. The matrix is stored with a �xednumber of rows on each processor, given by m, or determined by PETSc if m is PETSC DECIDE.If one does not use PETSC DECIDE for m and n, then one must ensure that they are chosen to be com-patible with the vectors. To do this, one �rst considers the product y = Ax. The m that one uses inMatCreateMPIAIJ() must match the local size used in the VecCreateMPI() for y. The n used must matchthat used as the local size in VecCreateMPI() for x.The user must set d nz=0, o nz=0, d nnz=PETSC NULL, and o nnz=PETSC NULL for PETSc to controldynamic allocation of matrix memory space. Analogous to nz and nnz for the routine MatCreateSeqAIJ(),these arguments optionally specify nonzero information for the diagonal (d nz and d nnz) and o�-diagonal(o nz and o nnz) parts of the matrix. For a square global matrix, we de�ne each processor's diagonalportion to be its local rows and the corresponding columns (a square submatrix); each processor's o�-diagonal portion encompasses the remainder of the local matrix (a rectangular submatrix). The rank inthe MPI communicator determines the absolute ordering of the blocks. That is, the process with rank 0 inthe communicator given to MatCreateMPIAIJ contains the top rows of the matrix; the ith process in thatcommunicator contains the ith block of the matrix.Preallocation of Memory for Parallel AIJ Sparse MatricesAs discussed above, preallocation of memory is critical for achieving good performance during matrix as-sembly, as this reduces the number of allocations and copies required. We present an example for threeprocessors to indicate how this may be done for the MATMPIAIJ matrix format. Consider the 8 by 8 matrix,which is partitioned by default with three rows on the �rst processor, three on the second and two on thethird. 0BBBBBBBBBBBB@ 1 2 0 j 0 3 0 j 0 40 5 6 j 7 0 0 j 8 09 0 10 j 11 0 0 j 12 013 0 14 j 15 16 17 j 0 00 18 0 j 19 20 21 j 0 00 0 0 j 22 23 0 j 24 025 26 27 j 0 0 28 j 29 030 0 0 j 31 32 33 j 0 34 1CCCCCCCCCCCCAThe \diagonal" submatrix, d, on the �rst processor is given by 1 2 00 5 69 0 10 ! ;43

while the \o�-diagonal" submatrix, o, matrix is given by 0 3 0 0 47 0 0 8 011 0 0 12 0 ! :For the �rst processor one could set d nz to 2 (since each row has 2 nonzeros) or, alternatively, set d nzz tof2,2,2g. The o nz could be set to 2 (since each row of the o matrix has 2 nonzeros), or o nzz could be setto f2,2,2g.For the second processor the d submatrix is given by 15 16 1719 20 2122 23 0 ! :Thus, one could set d nz to 3, since the maximum number of nonzeros in each row is 3, or alternatively onecould set d nzz to f3,3,2g, thereby indicating that the �rst two rows will have 3 nonzeros while the thirdhas 2. The corresponding o submatrix for the second processor is 13 0 14 0 00 18 0 0 00 0 0 24 0 !so that one could set o nz to 2 or o nzz to f2,1,1g.Note that the user never directly works with the d and o submatrices, except when preallocating storagespace as indicated above. Also, the user need not preallocate exactly the correct amount of space; as longas a su�ciently close estimate is given, the high e�ciency for matrix assembly will remain.As described above, the option -log info will print information about the success of preallocation duringmatrix assembly. For the MATMPIAIJ format, PETSc will also list the number of elements owned by on eachprocessor that were generated on a di�erent processor. For example, the statements[0]MatAssemblyBegin_MPIAIJ:Number of off processor values 10[1]MatAssemblyBegin_MPIAIJ:Number of off processor values 7[2]MatAssemblyBegin_MPIAIJ:Number of off processor values 5indicate that very few values have been generated on di�erent processors. On the other hand, the statements[0]MatAssemblyBegin_MPIAIJ:Number of off processor values 100000[1]MatAssemblyBegin_MPIAIJ:Number of off processor values 77777indicate that many values have been generated on the \wrong" processors. This situation can be veryine�cient, since the transfer of values to the \correct" processor is generally expensive. By using thecommand MatGetOwnershipRange() in application codes, the user should be able to generate most entrieson the owning processor.Note: It is �ne to generate some entries on the \wrong" processor. Often this can lead to cleaner, simpler,less buggy codes. One should never make code overly complicated in order to generate all values locally.Rather, one should organize the code in such a way that most values are generated locally.3.1.2 Dense MatricesPETSc provides both sequential and parallel dense matrix formats, where each processor stores its entriesin a column-major array in the usual Fortran 77 style. To create a sequential, dense PETSc matrix, A ofdimensions m by n, the user should callierr = MatCreateSeqDense(MPI_COMM_SELF,int m,int n,Scalar *data,Mat *A);The variable data enables the user to optionally provide the location of the data for matrix storage (intendedfor Fortran users who wish to allocate their own storage space). Most users should merely set data toPETSC NULL for PETSc to control matrix memory allocation. To create a parallel, dense matrix, A, the usershould callierr = MatCreateMPIDense(MPI_Comm comm,int m,int n,int M,int N,Scalar *data,Mat *A)The arguments m, n, M, and N, indicate the number of local rows and columns and the number of global rowsand columns, respectively. Either the local or global parameters can be replaced with PETSC DECIDE, so thatPETSc will determine them. The matrix is stored with a �xed number of rows on each processor, given bym, or determined by PETSc if m is PETSC DECIDE.PETSc does not currently provide parallel dense direct solvers. Our focus is on sparse iterative solvers.44

3.2 Basic Matrix OperationsTable 2 summarizes basic PETSc matrix operations. We brie
y discuss a few of these routines in more detailbelow.The parallel matrix can multiply a vector with n local entries, returning a vector with m local entries.That is, to form the productierr = MatMult(Mat A,Vec x,Vec y);the vectors x and y should be generated withierr = VecCreateMPI(MPI_Comm comm,n,N,&x);ierr = VecCreateMPI(MPI_Comm comm,m,M,&y);By default, if the user lets PETSc decide the number of components to be stored locally (by passing inPETSC DECIDE as the second argument to VecCreateMPI() or using VecCreate()), vectors and matrices ofthe same dimension are automatically compatible for parallel matrix-vector operations.Along with the matrix-vector multiplication routine, there is a version for the transpose of the matrix,ierr = MatMultTrans(Mat A,Vec x,Vec y);There are also versions that add the result to another vector:ierr = MatMultAdd(Mat A,Vec x,Vec y,Vec w);ierr = MatMultTransAdd(Mat A,Vec x,Vec y,Vec w);These routines, respectively, produce w = A � x+ y and w = AT � x + y . In C it is legal for the vectors yand w to be identical. In Fortran 77, this situation is forbidden by the language standard, but we allow itanyway.One can print a matrix (sequential or parallel) to the screen with the commandierr = MatView(Mat mat,VIEWER_STDOUT_WORLD);Other viewers can be used as well. For instance, one can draw the nonzero stucture of the matrix into thedefault X-window with the commandierr = MatView(Mat mat,VIEWER_DRAWX_WORLD);or ierr = MatView(Mat mat,Viewer viewer);where viewer was obtained with ViewerDrawOpenX(). Additional viewers and options are given in theMatView() man page and Section 12.2.Table 2: PETSc Matrix OperationsFunction Name OperationMatAXPY(Scalar *a,Vec X, Vec Y); Y = Y + a �XMatMult(Mat A,Vec x, Vec y); y = A � xMatMultAdd(Mat A,Vec x, Vec y,Vec z); z = y +A � xMatMultTrans(Mat A,Vec x, Vec y); y = AT � xMatMultTransAdd(Mat A,Vec x, Vec y,Vec z); z = y +AT � xMatNorm(Mat A,NormType type, double *r); r = jjAjjtypeMatDiagonalScale(Mat A,Vec l,Vec r); A = diag(l) �A � diag(r)MatScale(Scalar *a,Mat A); A = a �AMatConvert(Mat A,MatType type,Mat *B); B = AMatCopy(Mat A,Mat B); B = AMatGetDiagonal(Mat A,Vec x); x = diag(A)MatTranspose(Mat A,Mat* B); B = ATMatZeroEntries(Mat A); A = 045

3.3 Matrix-Free MatricesSome people like to use matrix-free methods, which do not require explicit storage of the matrix, for thenumerical solution of partial di�erential equations. To support matrix-free methods in PETSc, one can usethe following command to create a Mat structure without ever actually generating the matrix:ierr = MatCreateShell(MPI_Comm comm,int m,int n,int M,int N,void *ctx,Mat *mat);Here M and N are the global matrix dimensions (rows and columns), m and n are the local matrix dimensions,and ctx is a pointer to data needed by any user-de�ned shell matrix operations; the man page has additionaldetails about these parameters. Most matrix-free algorithms require only the application of the linearoperator to a vector. To provide this action, the user must write a routine with the calling sequenceierr = UserMult(Mat mat,Vec x,Vec y);and then associate it with the matrix, mat, by using the commandierr = MatShellSetOperation(Mat mat,MatOperation MATOP_MULT,int (*UserMult)(Mat,Vec,Vec));Here MATOP MULT is the name of the operation for matrix-vector multiplication. Within each user-de�nedroutine (such as UserMult()), the user should call MatShellGetContext() to obtain the user-de�ned context,ctx, that was set by MatCreateShell(). This shell matrix can be used with the iterative linear equationsolvers discussed in the following chapters.The routine MatShellSetOperation() can be used to set any other shell matrix operations as well.The �le $(PETSC DIR)/include/mat.h provides a complete list of matrix operations, which have the formMATOP <OPERATION>, where <OPERATION> is the name (in all capital letters) of the user interface routine (forexample, MatMult()! MATOP MULT). All user-provided functions have the same calling sequence as the usualmatrix interface routines, since the user-de�ned functions are intended to be accessed through interface (forexample, MatMult(Mat,Vec,Vec)! UserMult(Mat,Vec,Vec)).Note that MatShellSetOperation() can also be used as a \backdoor" means of introducing user-de�nedchanges in matrix operations for other storage formats (for example, to override the default LU factorizationroutine supplied within PETSc for the MATSEQAIJ format). However, we urge anyone who introduces suchchanges to use caution, since it would be very easy to accidentally create a bug in the new routine that coulda�ect other routines as well.3.4 Other Matrix OperationsIn many iterative calculations (for instance, in a nonlinear equations solver), it is important for e�ciencypurposes to reuse the nonzero structure of a matrix, rather than determining it anew every time the matrixis generated. To retain a given matrix but reinitialize its contents, one can employierr = MatZeroEntries(Mat A);For sparse matrices this routine will zero the matrix entries in the data structure but keep all the data thatindicates where the nonzeros are located. In this way a new matrix assembly will be much less expensive,since no memory allocations or copies will be needed. Of course, one can also explicitly set selected matrixelements to zero by calling MatSetValues().In the numerical solution of elliptic partial di�erential equations, it can be cumbersome to deal withDirichlet boundary conditions. In particular, one would like to assemble the matrix without regard toboundary conditions and then at the end apply the Dirichlet boundary conditions. In numerical analysisclasses this process is usually presented as moving the known boundary conditions to the right-hand side andthen solving a smaller linear system for the interior unknowns. Unfortunately, implementing this requiresextracting a large submatrix from the original matrix and creating its corresponding data structures. Thisprocess can be expensive in terms of both time and memory.One simple way to deal with this di�culty is to replace those rows in the matrix associated with knownboundary conditions, by rows of the identity matrix (or some scaling of it). This action can be done withthe commandierr = MatZeroRows(Mat A,IS rows,Scalar *diag_value);For sparse matrices this removes the data structures for certain rows of the matrix. If the pointer diag valueis PETSC NULL, it even removes the diagonal entry. If the pointer is not null, it uses that given value at thepointer location in the diagonal entry of the eliminated rows.Another matrix routine of interest is 46

ierr = MatConvert(Mat mat,MatType newtype,Mat *M)which converts the matrix mat to new matrix, M, that has either the same or di�erent format. The user shouldset newtype to MATSAME to copy the matrix, keeping the same matrix format. See $(PETSC DIR)/include/mat.hfor other available matrix types.In certain applications it may be necessary for application codes to directly access elements of a matrix.This may be done by using the the commandierr = MatGetRow(Mat A,int row, int *ncols,int **cols,Scalar **vals);The argument ncols returns the number of nonzeros in that row, while cols and vals returns the columnindices (with indices starting at zero) and values in the row. If only the column indices are needed (and notthe corresponding matrix elements), one can use PETSC NULL for the vals argument. Similarly, one can usePETSC NULL for the cols argument. The user can only examine the values extracted with MatGetRow(); thevalues cannot be altered. To change the matrix entries, one must use MatSetValues().Once the user has �nished using a row, he or she must callierr = MatRestoreRow(Mat A,int row,int *ncols,int **cols,Scalar **vals);to free any space that was allocated during the call to MatGetRow(). The reason for the MatRestoreRow()command is that most of the sparse matrix storage formats require MatGetRow() to allocate some space forreorganizing matrix data before presenting it to the user.

47

Chapter 4SLES: Linear Equations SolversSLES is the heart of PETSc, because it provides uniform and e�cient access to all of the package's linearsystem solvers, both parallel and sequential, direct and iterative. SLES is intended for solving nonsingularsystems of the form Ax = b; (4:1)where A denotes the matrix representation of a linear operator, b is the right-hand-side vector, and x isthe solution vector. SLES uses the same calling sequence for both direct and iterative solution of a linearsystem. In addition, particular solution techniques and their associated options can be selected at runtime.The combination of a Krylov subspace method and a preconditioner is at the center of most modernnumerical codes for the iterative solution of linear systems. See, for example, [6] for an overview of thetheory of such methods. SLES creates a simpli�ed interface to the lower-level KSP and PC modules withinthe PETSc package. The KSP component, discussed in Section 4.3, provides many popular Krylov subspaceiterative methods; the PC module, described in Section 4.4, includes a variety of preconditioners. Althoughboth KSP and PC can be used directly, users should employ the interface of SLES.4.1 Using SLESTo solve a linear system with SLES, one must �rst create a solver context with the commandierr = SLESCreate(MPI_Comm comm,SLES *sles);Here comm is the MPI communicator, and sles is the newly formed solver context. Before actually solvinga linear system with SLES, the user must call the following routine to set the matrices associated with thelinear system:ierr = SLESSetOperators(SLES sles,Mat Amat,Mat Pmat,MatStructure flag);The argument Amat, representing the matrix that de�nes the linear system, is a symbolic place holder forany kind of matrix. In particular, SLES does support matrix-free methods. The routine MatCreateShell()in Section 3.3 provides further information regarding matrix-free methods. Typically the preconditioningmatrix, Pmat, is the same as the matrix that de�nes the linear system, Amat; however, occasionally thesematrices di�er (for instance, when preconditioning a matrix obtained from a high order method with thatfrom a low order method). The argument flag can be used to eliminate unnecessary work when repeatedlysolving linear systems of the same size with the same preconditioning method; when solving just one linearsystem, this
ag is ignored. The user can set flag as follows:� SAME NONZERO PATTERN - the preconditioning matrix has the same nonzero structure during successivelinear solves,� DIFFERENT NONZERO PATTERN - the preconditioning matrix does not have the same nonzero structureduring successive linear solves,� SAME PRECONDITIONER - the preconditioner matrix is identical to that of the previous linear solve.If in doubt about the structure of a matrix, one should use the
ag DIFFERENT NONZERO PATTERN.Much of the power of SLES can be accessed through the single routine48

ierr = SLESSetFromOptions(SLES sles);This routine accepts the options -h and -help as well as any of the KSP and PC options discussed below.To solve a linear system, one merely executes the commandierr = SLESSolve(SLES sles,Vec b,Vec x,int *its);where b and x respectively denote the right-hand-side and solution vectors. On return, the parameterits contains either the iteration number at which convergence was successfully reached, or the negativeof the iteration at which divergence or breakdown was detected. Section 4.3.2 gives for details regardingconvergence testing. Note that multiple linear solves can be performed by the same SLES context. Once theSLES context is no longer needed, it should be destroyed with the commandierr = SLESDestroy(SLES sles);The above procedure is su�cient for general use of the SLES package. One additional step is required forusers who wish to customize certain preconditioners (e.g., see Section 4.4.4) or to log certain performancedata using the PETSc pro�ling facilities (as discussed in Chapter 10). In this case, the user can optionallyexplicitly callierr = SLESSetUp(SLES sles,Vec b,Vec x);before calling SLESSolve() to perform any setup required for the linear solvers. The explicit call of thisroutine enables the separate monitoring of any computations performed during the set up phase, such asincomplete factorization for the ILU preconditioner.To allow application programmers to set any of the preconditioner or Krylov subspace options directlywithin the code, we provide routines that extract the PC and KSP contexts,ierr = SLESGetPC(SLES sles,PC *pc);ierr = SLESGetKSP(SLES sles,KSP *ksp);The application programmer can then directly call any of the PC or KSP routines to modify the correspondingdefault options.To solve a linear system with a direct solver (currently supported only for sequential matrices), one mayuse the options -pc type lu -ksp type preonly (see below).By default, if a direct solver is used, the factorization is not done in-place. This approach is to pre-vent the user from the unexpected surprise of having a corrupted matrix after a linear solve. The routinePCLUSetUseInPlace(), discussed below, causes factorization to be done in-place.4.2 Solving Successive Linear SystemsWhen solving multiple linear systems of the same size with the same method, several options are available.To solve successive linear systems having the same preconditioner matrix (i.e., the same data structurewith exactly the same matrix elements) but di�erent right-hand-side vectors, the user should simply callSLESSolve() multiple times. The preconditioner setup operations (e.g., factorization for ILU) will be doneduring the �rst call to SLESSolve() only; such operations will not be repeated for successive solves.To solve successive linear systems that have di�erent preconditioner matrices (i.e., the matrix elementsand/or the matrix data structure change), the user must call SLESSetOperators() and SLESSolve() foreach solve. See Section 4.1 for a description of various
ags for SLESSetOperators() that can save work forsuch cases.4.3 KSP ComponentThe Krylov subspace methods accept a number of options, many of which are discussed below. First, to setthe Krylov subspace method that is to be used, one calls the commandierr = KSPSetType(KSP ksp,KSPType method);The type can be one of KSPRICHARDSON, KSPCHEBYCHEV, KSPCG, KSPGMRES, KSPTCQMR, KSPBCGS, KSPCGS,KSPTFQMR, KSPCR, KSPLSQR, or KSPPREONLY. The KSP method can also be set with the options databasecommand -ksp type, followed by one of the options richardson, chebychev, cg, gmres, tcqmr, bcgs,cgs, tfqmr, cr, lsqr, or preonly. There are method-speci�c options for the Richardson, Chebychev,and GMRES methods. 49

ierr = KSPRichardsonSetScale(KSP ksp,double damping_factor);ierr = KSPChebychevSetEigenvalues(KSP ksp,double emax,double emin);ierr = KSPGMRESSetRestart(KSP ksp,int max_steps);The default parameter values are damping factor=1.0, emax=0.01, emin=100.0, and max steps=30. TheGMRES restart and Richardson damping factor can also be set with the options -ksp gmres restart <n>and -ksp richardson scale <factor>.The default technique for orthogonalization of the Hessenberg matrix in GMRES is the modi�ed Gram-Schmidt method, which employs many VecDot() operations and can thus be slow in parallel. A fast approachis to use the unmodi�ed Gram-Schmidt method, which can be set withierr = KSPGMRESSetOrthogonalization(KSP ksp,KSPGMRESUnmodifiedGramSchmidtOrthogonalization);or the options database command -ksp gmres unmodifiedgramschmidt. Note that this algorithm is numer-ically unstable, but may deliver much better speed performance. One can also use unmodifed Gram-Schmidtwith iterative re�nement, by setting the orthogonalization routine, KSPGMRESIROrthog(), by using the com-mand line option -ksp gmres irorthog.By default, KSP assumes an initial guess of zero by zeroing the initial value for the solution vector thatis given. To use a nonzero initial guess, the user must callierr = KSPSetInitialGuessNonzero(KSP ksp);For the conjugate gradient method with complex numbers, there are two slightly di�erent algorithmsdepending on whether the matrix is Hermitian symmetric or truly symmetric (the default is to assume thatit is Hermitian symmetric). To indicate that it is symmetric, one uses the commandierr = KSPCGSetType(KSP ksp,KSPCGType KSP_CG_SYMMETRIC);4.3.1 Preconditioning within KSPSince the rate of convergence of Krylov projection methods for a particular linear system is strongly dependenton its spectrum, preconditioning is typically used to alter the spectrum and hence accelerate the convergencerate of iterative techniques. Preconditioning can be applied to the system (4.1) by(M�1L AM�1R) (MRx) = M�1L b; (4:2)where ML and MR indicate preconditioning matrices. If ML = I in (4.2), right preconditioning results, andthe residual of (4.1), r � b�Ax = b�AM�1R MRx;is preserved. In contrast, the residual is altered for left (MR = I) and symmetric preconditioning, as givenby rL �M�1L b�M�1L Ax = M�1L r:By default, all KSP implementations use left preconditioning. Right preconditioning can be activated forsome methods by using the options database command -ksp right pc or calling the routineierr = KSPSetPreconditionerSide(KSP ksp,PCSide PC_RIGHT);Attempting to use right preconditioning for a method that does not currently support it results in an errormessage of the formKSPSetUp_Richardson:No right preconditioning for KSPRICHARDSONWe summarize the defaults for the residuals used in KSP convergence monitoring within Table 3. Detailsregarding speci�c convergence tests and monitoring routines are presented in the following sections. Thepreconditioned residual is used by default for convergence testing of all left-preconditioned KSP methodsexcept for the conjugate gradient, Richardson, and Chebyshev methods. For these three cases the trueresidual is used by default, but the preconditioned residual can be employed instead with the options databasecommand ksp preres or by calling the routineierr = KSPSetUsePreconditionedResidual(KSP ksp);50

Table 3: KSP Defaults. All methods use left preconditioning by default.Options DefaultDatabase ConvergenceMethod KSPType Name Monitor yRichardson KSPRICHARDSON richardson trueChebychev KSPCHEBYCHEV chebychev trueConjugate Gradient [10] KSPCG cg trueGeneralized Minimal Residual [15] KSPGMRES gmres precondBiCGSTAB [19] KSPBCGS bcgs precondConjugate Gradient Squared [17] KSPCGS cgs precondTranspose-Free Quasi-Minimal Residual (1) [7] KSPTFQMR tfqmr precondTranspose-Free Quasi-Minimal Residual (2) KSPTCQMR tcqmr precondConjugate Residual KSPCR cr precondLeast Squares Method KSPLSQR lsqr precondShell for no KSP method KSPPREONLY preonly precondy true - denotes true residual norm, precond - denotes preconditioned residual norm4.3.2 Convergence TestsThe default convergence test, KSPDefaultConverged(), is based on the l2-norm of the residual. Convergence(or divergence) is decided by three quantities: the relative decrease of the residual norm, rtol; the absolutesize of the residual norm, atol; and the relative increase in the residual, dtol. Convergence is detected atiteration k if krkk2 < max(rtol � kr0k2; atol);where rk = b�Axk. Divergence is detected ifkrkk2 > dtol � kr0k2:These parameters, as well as the maximum number of allowable iterations, can be set with the routineierr = KSPSetTolerances(KSP ksp,double rtol,double atol,double dtol,int maxits);The user can retain the default value of any of these parameters by specifying PETSC DEFAULT as the corre-sponding tolerance; the defaults are rtol=10�5, atol=10�50, dtol=105, and maxits=105. These parame-ters can also be set from the options database with the commands -ksp rtol <rtol>, -ksp atol <atol>,-ksp divtol <dtol>, and -ksp max it <its>.In addition to providing an interface to a simple convergence test, KSP allows the application programmerthe
exibility to provide customized convergence-testing routines. The user can specify a customized routinewith the commandierr = KSPSetConvergenceTest(KSP ksp,int (*test)(KSP ksp,int it,double rnorm,void *ctx),void *ctx);The �nal routine argument, ctx, is an optional context for private data for the user-de�ned convergenceroutine, test. Other test routine arguments are the iteration number, it, and the residual's l2 norm,rnorm. The routine for detecting convergence, test, should return the integer 1 for convergence, 0 for noconvergence, and �1 on error or failure to converge.4.3.3 Convergence MonitoringBy default, the Krylov solvers run silently without displaying information about the iterations. The usercan indicate that the norms of the residuals should be displayed by using -ksp monitor within the optionsdatabase. To display the residual norms in a graphical window (running under X Windows), one shoulduse -ksp xmonitor [x,y,w,h], where either all or none of the options must be speci�ed. Applicationprogrammers can also provide their own routines to perform the monitoring by using the command51

ierr = KSPSetMonitor(KSP ksp,int (*mon)(KSP ksp,int it,double rnorm,void *ctx),void *ctx);The �nal routine argument, ctx, is an optional context for private data for the user-de�ned monitoring rou-tine, mon. Other mon routine arguments are the iteration number (it) and the residual's l2 norm (rnorm). Ahelpful routine within user-de�ned monitors is PetscObjectGetComm((PetscObject)ksp,MPI Comm *comm),which returns in comm the MPI communicator for the KSP context. See Chapter 15 for more discussion ofthe use of MPI communicators within PETSc.Several monitoring routines are supplied with PETSc, includingierr = KSPDefaultMonitor(KSP,int,double, void *);ierr = KSPSingularValueMonitor(KSP,int,double, void *);ierr = KSPTrueMonitor(KSP,int,double, void *);The default monitor simply prints an estimate of the l2-norm of the residual at each iteration. The routineKSPSingularValueMonitor() is appropriate only for use with the conjugate gradient method or GMRES,since it prints estimates of the extreme singular values of the preconditioned operator at each iteration. SinceKSPTrueMonitor() prints the true residual at each iteration by actually computing the residual using theformula r = b� Ax, the routine is slow and should be used only for testing or convergence studies, not fortiming. These monitors may be accessed with the command line options -ksp monitor, -ksp singmonitor,and -ksp truemonitor.To employ the default graphical monitor, one should use the commandsDrawLG lg;ierr = KSPLGMonitorCreate(char *display,char *title,int x,int y,int w,int h,DrawLG *lg);ierr = KSPSetMonitor(KSP ksp,KSPLGMonitor,(void *)lg);When no longer needed, the line graph should be destroyed with the commandierr = KSPLGMonitorDestroy(DrawLG lg);The user can change aspects of the graphs with the DrawLG*() and DrawAxis*() routines. One can alsoaccess this functionality from the options database with the command -ksp xmonitor [x,y,w,h], wherex, y, w, h are the optional location and size of the window.Once can cancel all hardwired monitoring routines for KSP at runtime with -ksp cancelmonitors.4.3.4 Understanding the Operators SpectrumSince the convergence of Krylov subspace methods depends strongly on the spectrum (eigenvalues) of the pre-conditioned operator, PETSc has speci�c routines for their approximation via Arnoldi or Lanczos iteration.First, before the linear solve one must callierr = KSPSetComputeEigenvalues(KSP ksp);Then after the SLES solve one callsierr = KSPComputeEigenvalues(KSP ksp, int n,double *realpart,double *complexpart);Here, n is the size of the two arrays and the eigenvalues are inserted into those two arrays. There is anadditional routineierr = KSPComputeEigenvaluesExplicitly(KSP ksp, int n,double *realpart,double *complexpart);that is useful only for very small problems. It explicitly computes the full representation of the preconditionedoperator and calles LAPACK to compute its eigenvalues. It should be used only for matrices of size up to acouple of hundred. The DrawSP*() routines are very useful for drawing scatter plots of the eigenvalues.The eigenvalues may also be computed and displayed graphically with the options data base commands-ksp plot eigenvalues and -ksp plot eigenvalues explicitly. Or they can be dumped to the screenin ASCII text via -ksp compute eigenvalues and -ksp compute eigenvalues explicitly.4.3.5 Other KSP OptionsTo obtain the solution vector and right-hand side from a KSP context, one usesierr = KSPGetSolution(KSP ksp,Vec *x);ierr = KSPGetRhs(KSP ksp,Vec *rhs); 52

Table 4: PETSc PreconditionersMethod PCType Options Database NameJacobi PCJACOBI jacobiBlock Jacobi PCBJACOBI bjacobiBlock Gauss-Seidel (sequential only) PCBGS bgsSOR (and SSOR) PCSOR sorSOR with Eisenstat trick PCEISENSTAT eisenstatIncomplete Cholesky PCICC iccIncomplete LU PCILU iluAdditive Schwarz PCASM asmLU PCLU luNo preconditioning PCNONE noneShell for user-de�ned PC PCSHELL shellThese routines return the original vectors that the user set with KSPSetSolution() and KSPSetRhs().During the iterative process the solution may not yet have been calculated or it may be stored in a di�erentlocation. To access the approximate solution during the iterative process, one uses the commandierr = KSPBuildSolution(KSP ksp,Vec w,Vec *v);where the solution is returned in v. The user can optionally provide a vector in w as the location to store thevector; however, if w is PETSC NULL, space allocated by PETSc in the KSP context is used. One should notdestroy this vector. For certain KSP methods, (e.g., GMRES), the construction of the solution is expensive,while for many others it requires not even a vector copy.Access to the residual is done in a similar way with the commandierr = KSPBuildResidual(KSP ksp,Vec t,Vec w,Vec *v);Again, for GMRES and certain other methods this is an expensive operation.4.4 PreconditionersAs discussed in Section 4.3.1, the Krylov space methods are typically used in conjunction with a precon-ditioner. To employ a particular preconditioning method, the user can either select it from the optionsdatabase using input of the form -pc type <methodname> or set the method with the commandierr = PCSetType(PC pc,PCType method);In Table 4 we summarize the most basic preconditioning methods supported in PETSc. The PCSHELLpreconditioner uses a speci�c, application-provided preconditioner. The direct preconditioner, PCLU, is, infact, a direct solver for the linear system that uses LU factorization. PCLU is included as a preconditioner sothat PETSc has a consistent interface among direct and iterative linear solvers.Each preconditioner may have associated with it a set of options, which can be set with routines andoptions database commands provided for this purpose. Such routine names and commands are all of theform PC<TYPE>Option and -pc <type> option [value]. A complete list can be found by consulting theman pages; we discuss just a few in the sections below.4.4.1 ILU and ICC PreconditionersSome of the options for ILU preconditioner areierr = PCILUSetLevels(PC pc,int levels);ierr = PCILUSetReuseReordering(PC pc,PetscTruth flag);ierr = PCILUSetUseDropTolerance(PC pc,double dt,int dtcount);ierr = PCILUSetReuseFill(PC pc,PetscTruth flag);ierr = PCILUSetUseInPlace(PC pc); 53

When repeatedly solving linear systems with the same SLES context, one can reuse some informationcomputed during the �rst linear solve. In particular, PCILUSetReuseReordering() causes the reordering (forexample, set with -mat order order) computed in the �rst factorization to be reused for later factorizations.The PCILUSetReuseFill() causes the �ll computed during the �rst drop tolerance factorization to be reusedin later factorizations. PCILUSetUseInPlace() is often used with PCASM or PCBJACOBI when zero �ll is used,since it reuses the matrix space to store the incomplete factorization it saves memory and copying time.Note that in-place factorization is not appropriate with any ordering besides natural and cannot be usedwith the drop tolerance factorization. These options may be set in the database with-pc_ilu_levels <levels>-pc_ilu_reuse_reordering-pc_ilu_use_drop_tolerance <dt>,<dtcount>-pc_ilu_reuse_fill-pc_ilu_in_place-pc_ilu_nonzeros_along_diagonalSee Section 11.4.2 for information on preallocation of memory for anticipated �ll during factorization. Byalleviating the considerable overhead for dynamic memory allocation, such tuning can signi�cantly enhanceperformance.We support incomplete factorization preconditioners for several matrix types for the uniprocessor case. Inaddition, for the parallel case we provide an interface to the ILU and ICC preconditioners of BlockSolve95 [11].BlockSolve95 is available by anonymous ftp at info.mcs.anl.gov in the directory pub/BlockSolve95; forfurther information see the WWWaddress: http://www.mcs.anl.gov/blocksolve95/index.html. PETScenables users to employ the preconditioners within BlockSolve95 by using the BlockSolve95 matrix formatMATMPIROWBS and invoking either the PCILU or PCICC method within the linear solvers. Since PETScautomatically handles matrix assembly, preconditioner setup, pro�ling, and so on, users who employ Block-Solve95 through the PETSc interface need not concern themselves with many details provided within theBlockSolve95 users manual.One can create a matrix that is compatible with BlockSolve95 by using MatCreate() with the option-mat mpirowbs, or by directly callingierr = MatCreateMPIRowbs(MPI_Comm comm,int m,int M,int nz,int *nnz,void *proci,Mat *A)A is the newly created matrix, while the arguments m and M indicate the number of local and global rows,respectively. Either the local or global parameter can be replaced with PETSC DECIDE, so that PETSc willdetermine it. The matrix is stored with a �xed number of rows on each processor, given by m, or determinedby PETSc if m is PETSC DECIDE. The arguments nz and nnz can be used to preallocate storage space, asdiscussed in Section 3.1 for increasing the e�ciency of matrix assembly; one sets nz=0 and nzz=PETSC NULLfor PETSc to control all matrix memory allocation. The argument proci is an optional BlockSolve95BSprocinfo context; most users should set this parameter to PETSC NULL, so that PETSc will create andinitialize this context.If the matrix is symmetric, one may callierr = MatSetOption(Mat mat,MAT_SYMMETRIC);to improve e�ciency, but in this case one cannot use the ILU preconditioner, only ICC.Internally, PETSc inserts zero elements into matrices of the MATMPIROWBS format if necessary, so thatnonsymmetric matrices are considered to be symmetric in terms of their sparsity structure; this format is re-quired for use of the parallel communication routines within BlockSolve95. In particular, if the matrix elementA[i; j] exists, then PETSc will internally allocate a 0 value for the element A[j; i] during MatAssemblyEnd()if the user has not already set a value for the matrix element A[j; i] .When manipulating a preconditioning matrix, A, BlockSolve95 internally works with a scaled and per-muted matrix, Â = PD�1=2AD�1=2; where D is the diagonal ofA, and P is a permutation matrix determinedby a graph coloring for e�cient parallel computation. Thus, when solving a linear system, Ax = b, usingILU/ICC preconditioning and the matrix format MATMPIROWBS for both the linear system matrix and thepreconditioning matrix, one actually solves the scaled and permuted system Âx̂ = b̂ , where x̂ = PD1=2xand b̂ = PD�1=2b . PETSc handles the internal scaling and permutation of x and b , so the user does notdeal with these conversions, but instead always works with the original linear system. In this case, by defaultthe scaled residual norm is monitored; one must use the option -ksp bsmonitor to print both the scaledand unscaled residual norms. Note: If one is using ILU/ICC via BlockSolve95 and the MATMPIROWBS matrix54

format for the preconditioner matrix, but using a di�erent format for a di�erent linear system matrix, thisscaling and permuting are done only internally during the application of the preconditioner; ksp bsmonitorshould not be used in this case.Users who wish to use these preconditioners via the PETSc interface and who have not already installedBlockSolve95 should see the �le $(PETSC DIR)/Installation for details on building PETSc when Block-Solve95 is being used. In particular, one must edit the �le $(PETSC DIR)/bmake/$(PETSC ARCH)/base.siteso that BS LIB and BS INCLUDE indicate the library location, and the PCONF variable speci�es the
ag-DHAVE BLOCKSOLVE. Then the PETSc library must be (re)compiled.4.4.2 SOR and SSOR PreconditionersThe options for SOR preconditioning areierr = PCSORSetOmega(PC pc,double omega);ierr = PCSORSetIterations(PC pc,int its);ierr = PCSORSetSymmetric(PC pc,MatSORType type);The �rst of these commands sets the relaxation factor for successive over (under) relaxation. The secondcommand sets the number of inner iterations of SOR, given by its, to use between steps of the Krylovspace method. The third command sets the kind of SOR sweep, where the argument type can be one ofSOR FORWARD SWEEP, SOR BACKWARD SWEEP or SOR SYMMETRIC SWEEP, the default being SOR FORWARD SWEEP.Setting the type to be SOR SYMMETRIC SWEEP produces the SSOR method. In addition, each processor canlocally and independently perform the speci�ed variant of SOR with the types SOR LOCAL FORWARD SWEEP,SOR LOCAL BACKWARD SWEEP, and SOR LOCAL SYMMETRIC SWEEP. These variants can also be set with the op-tions -pc sor omega <omega>, -pc sor its <its>, -pc sor backward, -pc sor symmetric,-pc sor local forward, -pc sor local backward, and -pc sor local symmetric.The Eisenstat trick [4] for SSOR preconditioning can be employed with the method PCEISENSTAT(-pc type eisenstat). By using both left and right preconditioning of the linear system, this variant ofSSOR requires about half of the
oating-point operations for conventional SSOR. The option-pc eisenstat diagonal scaling) (or the routine PCEisenstatUseDiagonalScaling()) activates diag-onal scaling in conjunction with Eisenstat SSOR method, while the option -pc eisenstat omega <omega>(or the routine PCEisenstatSetOmega(PC pc,double omega)) sets the SSOR relaxation coe�cient, omega,as discussed above.4.4.3 LU FactorizationThe LU preconditioner provides several options. The �rst, given by the commandierr = PCLUSetUseInPlace(PC pc);causes the factorization to be performed in-place and hence destroys the original matrix. The optionsdatabase variant of this command is -pc lu in place. Another direct preconditioner option is selecting theordering of equations with the command-mat_order <ordering>The possible orderings are� ORDER NATURAL - Natural� ORDER ND - Nested Dissection� ORDER 1WD - One-way Dissection� ORDER RCM - Reverse Cuthill-McKee� ORDER QMD - Quotient Minimum DegreeThese orderings can also be set through the options database by specifying one of the following: -mat ordernatural, -mat order nd, -mat order 1wd, -mat order rcm, -mat order qmd. In addition, seeMatGetReordering(), discussed in Section 7.1.The sparse LU factorization provided in PETSc does not perform pivoting for numerical stability (sincethey are designed to preserve nonzero structure); thus, occasionally a LU factorization will fail with a zero55

pivot when, in fact, the matrix is nonsingular. The option -pc lu nonzeros along diagonal will often helpeliminate the zero pivot, by preprocessing the the column ordering to remove small values from the diagonal.In addition, Section 11.4.2 provides information on preallocation of memory for anticipated �ll during fac-torization. Such tuning can signi�cantly enhance performance, since it eliminates the considerable overheadfor dynamic memory allocation.4.4.4 Block Jacobi, Block Gauss-Seidel, and Overlapping Additive Schwarz Pre-conditionersThe block Jacobi and overlapping additive Schwarz methods in PETSc are supported in parallel; how-ever, only the uniprocessor version of the block Gauss-Seidel method is currently in place. By default, thePETSc implentations of these methods employ ILU(0) factorization on each individual block (PCType=PCILU,KSPType=KSPPREONLY); the user can set alternative linear solvers via the options -sub ksp type and-sub pc type. In fact, all of the KSP and PC options can be applied to the subproblems by insertingthe pre�x -sub at the beginning of the option name. These options database commands set the particularoptions for all of the blocks within the global problem. In addition, the routinesierr = PCBJacobiGetSubSLES(PC pc,int *n_local,int *first_local,SLES **subsles);ierr = PCBGSGetSubSLES(PC pc,int *n_local,int *first_local,SLES **subsles);ierr = PCASMGetSubSLES(PC pc,int *n_local,int *first_local,SLES **subsles);extract the SLES context for each local block. The argument n local is the number of blocks on the callingprocessor, and first local indicates the global number of the �rst block on the processor. The blocks arenumbered successively by processors from zero through gb�1 , where gb is the number of global blocks. Thearray of SLES contexts for the local blocks is given by subsles. This mechanism enables the user to set com-pletely di�erent solvers for the various blocks. To set the appropriate data structures, the user must explicitlycall SLESSetUp() before calling PCBJacobiGetSubSLES(), PCBGSGetSubSLES(), or PCASMGetSubSLES(). Forfurther details, see the example $(PETSC DIR)/src/sles/examples/tutorials/ex7.c.The block Jacobi, block Gauss-Seidel, and additive Schwarz preconditioners allow the user to set thenumber of blocks into which the problem is divided. The options database commands to set this value are-pc bjacobi blocks n and -pc bgs blocks n, and, within a program, the corresponding routines areierr = PCBJacobiSetTotalBlocks(PC pc,int blocks,int *size);ierr = PCBGSSetTotalBlocks(PC pc,int blocks,int *size);ierr = PCASMSetTotalSubdomains(PC pc,int n,IS *is);ierr = PCASMSetType(PC pc,PCASMType type);The optional argument size is an array indicating the size of each block. Currently, for certain parallelmatrix formats, only a single block per processor is supported. However, the MATMPIAIJ and MATMPIBAIJformats support the use of general blocks as long as no blocks are shared among processors. The is argumentcontains the index sets that de�ne the subdomains.PCASMType is one of PC ASM BASIC, PC ASM INTERPOLATE, PC ASM RESTRICT, PC ASM NONE and may alsobe set with the options database -pc asm type [basic,interpolate,restrict,none]. The typePC ASM BASIC (or -pc asm type basic) corresponds to the standard additive Schwarz method that uses thefull restriction and interpolation operators. The type PC ASM RESTRICT (or -pc asm type restrict) usesa full restriction operator, but during the interpolation process ignores the o�-processor values. Similarly,PC ASM INTERPOLATE (or -pc asm type interpolate) uses a limited restriction process in conjunction with afull interpolation, while PC ASM NONE (or -pc asm type none) ignores o�-processor valies for both restrictionand interpolation. The ASM types with limited restriction or interpolation were suggested by Xiao-ChuanCai. PC ASM RESTRICT is the PETSc default, as it saves substantial communication and for many problemshas the added bene�t of requiring fewer iterations for convergence than the standard additive Schwarzmethod.The user can also set the number of blocks and sizes on a per-processor basis with the commandsierr = PCBJacobiSetLocalBlocks(PC pc,int blocks,int *size);ierr = PCBGSSetLocalBlocks(PC pc,int blocks,int *size);ierr = PCASMSetTotalSubdomains(PC pc,int N,IS *is);For the ASM preconditioner one can use the following command to set the overlap to compute in con-structing the subdomains. 56

ierr = PCASMSetOverlap(PC pc,int overlap);The overlap defaults to 1, so if one desires that no additional overlap be computed, one must set an overlapof 0. Note that one can de�ne initial index sets is with any overlap; the PCASMSetOverlap()merely allowsPETSc to extend that overlap further, if desired.4.4.5 Shell PreconditionersThe shell preconditioner simply uses an application-provided routine to implement the preconditioner. Toset this routine, one uses the commandierr = PCShellSetApply(PC pc,int (*apply)(void *ctx,Vec,Vec),void *ctx);The �nal argument ctx is a pointer to the application-provided data structure needed by the preconditionerroutine. The three routine arguments of apply() are this context, the input vector, and the output vector,respectively.4.4.6 Multigrid PreconditionersA large suite of routines is available for using multigrid as a preconditioner. In the PC framework the useris required to provide the coarse grid solver, smoothers, restriction, and interpolation, as well as the codeto calculate residuals. The PC component allows all of that to be wrapped up into a PETSc compliantpreconditioner. We fully support both matrix-free and matrix-based multigrid solvers.A multigrid preconditioner is created with the four commandsierr = SLESCreate(MPI_Comm comm,SLES *sles);ierr = SLESGetPC(SLES sles,PC *pc);ierr = PCSetType(PC pc,PCMG);ierr = MGSetLevels(pc,int levels);A large number of parameters a�ect the multigrid behavior. The commandierr = MGSetType(PC pc,MGType mode);indicates which form of multigrid to apply [16]. For standard V or W-cycle multigrids, one sets the mode tobe MGMULTIPLICATIVE; for the additive form (which in certain cases reduces to the BPX method, or additivemultilevel Schwarz, or multilevel diagonal scaling), one uses MGADDITIVE as the mode. For a variant of fullmultigrid, one can use MGFULL, and for the Kaskade algorithm MGKASKADE. For the multiplicative and fullmultigrid options, one can use a W-cycle by callingierr = MGSetCycles(PC pc,int cycles);with a value of MG W CYCLE for cycles. The commands above can also be set from the options database.The option names are -pc mg method [multiplicative, additive, full, kaskade], and -pc mg cyclescycles.The user can control the amount of pre- and postsmoothing by using either the options -pc mg smoothup mand -pc mg smoothdown n or the routinesierr = MGSetNumberSmoothUp(PC pc,int m);ierr = MGSetNumberSmoothDown(PC pc,int n);Note that if the command MGSetSmoother() (discussed below) has been employed, the same amounts ofpre- and postsmoothing must be used.The remainder of the multigrid routines, which determine the solvers and interpolation/restriction oper-ators that are used, are mandatory. To set the coarse grid solver, one must callierr = MGGetCoarseSolve(PC pc,SLES *sles);and set the appropriate options in sles. Similarly, the smoothers are set by callingierr = MGGetSmoother(PC pc,int level,SLES *sles);and setting the various options in sles. To use a di�erent pre- and postsmoother, one should call thefollowing routines instead operations to be matrix free (see Section 3.3), he or she should make sure that theseoperations are de�ned. Note that this system is arranged so that if the interpolation is the transpose of therestriction, the same mat argument can be passed to both MGSetRestriction() and MGSetInterpolation().On each level except the coarsest, one must also set the routine to compute the residual. The followingcommand su�ces: 57

MGSetResidual(PC pc,int level,int (*residual)(Mat,Vec,Vec,Vec),Mat mat);The residual() function can be set to be MGDefaultResidual() if one's operator is stored in a Mat format.In certain circumstances, where it is much cheaper to calculate the residual directly, rather than throughthe usual formula b� Ax, the user may wish to provide an alternative.Finally, the user must provide three work vectors for each level (except on the �nest, where only theresidual work vector is required). The work vectors are set with the commandsierr = MGSetRhs(PC pc,int level,Vec b);ierr = MGSetX(PC pc,int level,Vec x);ierr = MGSetR(PC pc,int level,Vec r);The user is responsible for freeing these vectors once the iteration is complete.

58

Chapter 5SNES: Nonlinear SolversThe solution of large-scale nonlinear problems pervades many facets of computational science and demandsrobust and
exible solution strategies. The SNES component of PETSc provides a powerful suite of data-structure-neutral numerical routines for such problems. Built on top of the linear solvers and data structuresdiscussed in preceding chapters, SNES enables the user to easily customize the nonlinear solvers accordingto the application at hand. Also, the SNES interface is identical for the uniprocessor and parallel cases; theonly di�erence in the parallel version is that each processor typically forms only its local contribution tovarious matrices and vectors.SNES includes methods for solving systems of nonlinear equations of the formF (x) = 0; (5:1)where F : <n ! <n. SNES also contains solvers for unconstrained minimization problems of the formminff(x)g; (5:2)where f : <n ! <. Newton-like methods provide the core of the package, including both line search andtrust region techniques, which are discussed further in Section 5.2. Following the PETSc design philosophy,the interfaces to the various solvers are all virtually identical. In addition, the SNES software is completely
exible, so that the user can at runtime change any facet of the solution process.The general form of the n-dimensional Newton's method for solving (5.1) isxk+1 = xk � [F 0(xk)]�1F (xk); k = 0; 1; : : :; (5:3)where x0 is an initial approximation to the solution and F 0(xk) is nonsingular. In practice, the Newtoniteration (5.3) is implemented by the following two steps:1: (Approximately) solve F 0(xk)�xk = �F (xk): (5.4)2: Update xk+1 = xk +�xk: (5.5)Similarly, the general form of Newton's method for solving (5.2) isxk+1 = xk � [r2f(xk)]�1rf(xk); k = 0; 1; : : : ; (5:6)where x0 2 <n is an initial approximation to the solution, and r2f(xk) is positive de�nite. The iteration(5.6) is usually implemented by1: (Approximately) solve r2f(xk)�xk = �rf(xk): (5.7)2: Update xk+1 = xk +�xk: (5.8)5.1 Basic UsageIn the simplest usage of the nonlinear solvers, the user must merely provide a C, C++, or Fortran routine toevaluate the nonlinear function of Equation (5.1) or (5.2). The corresponding Jacobian matrix (or gradient59

and Hessian matrix) can be approximated with �nite di�erences. For codes that are typically more e�cientand accurate, the user can provide a routine to compute the Jacobian (or gradient and Hessian); detailsregarding these application-provided routines are discussed below. To provide an overview of the use ofthe nonlinear solvers, we �rst introduce a complete and simple example in Figure 13, corresponding to$(PETSC DIR)/src/snes/examples/tutorials/ex1.c. Note that the procedures for solving systems ofnonlinear equations and unconstrained minimization problems are quite similar. We present the detailsunique to each class of problems in Sections 5.1.1 and 5.1.2.#ifndef lintstatic char vcid[] = "$Id: ex1.c,v 1.5 1997/01/01 03:41:24 bsmith Exp $";#endifstatic char help[] = "Uses Newton's method to solve a two-variable system.\n\n";/*TConcepts: SNES^Solving a system of nonlinear equations (basic uniprocessor example);Routines: SNESCreate(); SNESSetFunction(); SNESSetJacobian(); SNESGetSLES();Routines: SNESSolve(); SNESSetFromOptions();Routines: SLESGetPC(); SLESGetKSP(); KSPSetTolerances(); PCSetType();Processors: 1T*//* Include "snes.h" so that we can use SNES solvers. Note that thisfile automatically includes:petsc.h - base PETSc routines vec.h - vectorssys.h - system routines mat.h - matricesis.h - index sets ksp.h - Krylov subspace methodsviewer.h - viewers pc.h - preconditionerssles.h - linear solvers*/#include "snes.h"#include <stdio.h>/* User-defined routines*/int FormJacobian(SNES,Vec,Mat*,Mat*,MatStructure*,void*);int FormFunction(SNES,Vec,Vec,void*);int main(int argc, char **argv){ SNES snes; /* nonlinear solver context */SLES sles; /* linear solver context */PC pc; /* preconditioner context */KSP ksp; /* Krylov subspace method context */Vec x, r; /* solution, residual vectors */Mat J; /* Jacobian matrix */int ierr, its, size;Scalar pfive = .5;PetscInitialize(&argc, &argv,(char *)0,help);MPI_Comm_size(MPI_COMM_WORLD,&size);if (size != 1) SETERRA(1,0,"This is a uniprocessor example only!");/* -Create nonlinear solver context- */ierr = SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,&snes); CHKERRA(ierr);60

/* -Create matrix and vector data structures; set corresponding routines- *//* Create vectors for solution and nonlinear function*/ierr = VecCreateSeq(MPI_COMM_SELF,2,&x); CHKERRA(ierr);ierr = VecDuplicate(x,&r); CHKERRA(ierr);/* Create Jacobian matrix data structure*/ierr = MatCreate(MPI_COMM_SELF,2,2,&J); CHKERRA(ierr);/* Set function evaluation routine and vector.*/ierr = SNESSetFunction(snes,r,FormFunction,PETSC_NULL); CHKERRA(ierr);/* Set Jacobian matrix data structure and Jacobian evaluation routine*/ierr = SNESSetJacobian(snes,J,J,FormJacobian,PETSC_NULL); CHKERRA(ierr);/* -Customize nonlinear solver; set runtime options- *//* Set linear solver defaults for this problem. By extracting theSLES, KSP, and PC contexts from the SNES context, we can thendirectly call any SLES, KSP, and PC routines to set various options.*/ierr = SNESGetSLES(snes,&sles); CHKERRA(ierr);ierr = SLESGetKSP(sles,&ksp); CHKERRA(ierr);ierr = SLESGetPC(sles,&pc); CHKERRA(ierr);ierr = PCSetType(pc,PCNONE); CHKERRA(ierr);ierr = KSPSetTolerances(ksp,1.e-4,PETSC_DEFAULT,PETSC_DEFAULT,20); CHKERRA(ierr);/* Set SNES/SLES/KSP/PC runtime options, e.g.,-snes_view -snes_monitor -ksp_type <ksp> -pc_type <pc>These options will override those specified above as long asSNESSetFromOptions() is called _after_ any other customizationroutines.*/ierr = SNESSetFromOptions(snes); CHKERRA(ierr);/* -Evaluate initial guess; then solve nonlinear system- *//* Note: The user should initialize the vector, x, with the initial guessfor the nonlinear solver prior to calling SNESSolve(). In particular,to employ an initial guess of zero, the user should explicitly setthis vector to zero by calling VecSet().*/ 61

ierr = VecSet(&pfive,x); CHKERRA(ierr);ierr = SNESSolve(snes,x,&its); CHKERRA(ierr);PetscPrintf(MPI_COMM_SELF,"number of Newton iterations = %d\n\n", its);/* -Free work space. All PETSc objects should be destroyed when theyare no longer needed.- */ierr = VecDestroy(x); CHKERRA(ierr); ierr = VecDestroy(r); CHKERRA(ierr);ierr = MatDestroy(J); CHKERRA(ierr); ierr = SNESDestroy(snes); CHKERRA(ierr);PetscFinalize();return 0;}/* --- *//* FormFunction - Evaluates nonlinear function, F(x).Input Parameters:. snes - the SNES context. x - input vector. dummy - optional user-defined context (not used here)Output Parameter:. f - function vector*/int FormFunction(SNES snes,Vec x,Vec f,void *dummy){ int ierr;Scalar *xx, *ff;/* Get pointers to vector data.- For default PETSc vectors, VecGetArray() returns a pointer tothe data array. Otherwise, the routine is implementation dependent.- You MUST call VecRestoreArray() when you no longer need access tothe array.*/ierr = VecGetArray(x,&xx); CHKERRQ(ierr);ierr = VecGetArray(f,&ff); CHKERRQ(ierr);/* Compute function*/ff[0] = xx[0]*xx[0] + xx[0]*xx[1] - 3.0;ff[1] = xx[0]*xx[1] + xx[1]*xx[1] - 6.0;/* Restore vectors*/ierr = VecRestoreArray(x,&xx); CHKERRQ(ierr);ierr = VecRestoreArray(f,&ff); CHKERRQ(ierr);return 0;}/* --- *//* FormJacobian - Evaluates Jacobian matrix. 62

Input Parameters:. snes - the SNES context. x - input vector. dummy - optional user-defined context (not used here)Output Parameters:. jac - Jacobian matrix. B - optionally different preconditioning matrix. flag - flag indicating matrix structure*/int FormJacobian(SNES snes,Vec x,Mat *jac,Mat *B,MatStructure *flag,void *dummy){ Scalar *xx, A[4];int ierr, idx[2] = {0,1};/* Get pointer to vector data*/ierr = VecGetArray(x,&xx); CHKERRQ(ierr);/* Compute Jacobian entries and insert into matrix.- Since this is such a small problem, we set all entries forthe matrix at once.*/A[0] = 2.0*xx[0] + xx[1]; A[1] = xx[0];A[2] = xx[1]; A[3] = xx[0] + 2.0*xx[1];ierr = MatSetValues(*jac,2,idx,2,idx,A,INSERT_VALUES); CHKERRQ(ierr);*flag = SAME_NONZERO_PATTERN;/* Restore vector*/ierr = VecRestoreArray(x,&xx); CHKERRQ(ierr);/* Assemble matrix*/ierr = MatAssemblyBegin(*jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);ierr = MatAssemblyEnd(*jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);return 0;} Figure 13: Example of Uniprocessor SNES CodeTo create a SNES solver, one must �rst call SNESCreate() and indicate the class of problem being solved,using one of the following:ierr = SNESCreate(MPI_Comm comm,SNES_NONLINEAR_EQUATIONS,SNES *snes);ierr = SNESCreate(MPI_Comm comm,SNES_UNCONSTRAINED_MINIMIZATION,SNES *snes);When solving a system of nonlinear equations, the user must then set routines for evaluating the functionof equation (5.1) and its associated Jacobian matrix. Likewise, when solving an unconstrained minimizationproblem, the user must indicate routines for computing the function of Equation (5.2), as well as thecorresponding gradient and Hessian. Such details are discussed in Sections 5.1.1 and 5.1.2.To choose a nonlinear solution method, the user can either callierr = SNESSetType(SNES snes,SNESType method);63

or use the the option -snes type <method>, where details regarding the available methods are presented inSection 5.2. The application code can take complete control of the linear and nonlinear techniques used inthe Newton-like method by callingierr = SNESSetFromOptions(snes);This routine provides an interface to the PETSc options database, so that at runtime the user can selecta particular nonlinear solver, set various parameters and customized routines (e.g., specialized line searchvariants), prescribe the convergence tolerance, and set monitoring routines. With this routine the user canalso control all linear solver options in the SLES, KSP, and PC modules, as discussed in Chapter 4.After having set these routines and options, the user solves the problem by callingierr = SNESSolve(SNES snes,Vec x,int *iters);where iters is the number of nonlinear iterations required for convergence and x indicates the solutionvector. The user should initialize this vector to the initial guess for the nonlinear solver prior to callingSNESSolve(). In particular, to employ an initial guess of zero, the user should explicitly set this vector tozero by calling VecSet(). Finally, after solving the nonlinear system (or several systems), the user shoulddestroy the SNES context withierr = SNESDestroy(SNES snes);5.1.1 Solving Systems of Nonlinear EquationsWhen solving a system of nonlinear equations, the user must provide a vector, f, for storing the function ofEquation (5.1), as well as a routine that evaluates this function at the vector x. This information should beset with the commandierr = SNESSetFunction(SNES snes,Vec f,int (*FormFunction)(SNES snes,Vec x,Vec f,void *ctx),void *ctx);The argument ctx is an optional user-de�ned context, which can store any private, application-speci�c datarequired by the function evaluation routine; PETSC NULL should be used if such information is not needed.In C and C++, a user-de�ned context is merely a structure in which various objects can be stashed; inFortran a user context can be an integer array that contains both parameters and pointers to PETSc objects.$(PETSC DIR)/src/snes/examples/tutorials/ex5.cand $(PETSC DIR)/src/snes/examples/ex5f.Fgiveexamples of user-de�ned application contexts in C and Fortran, respectively.The user must also specify a routine to form some approximation of the Jacobian matrix, A, at the currentiterate, x, as is typically done withierr = SNESSetJacobian(SNES snes,Mat A,Mat B,int (*FormJacobian)(SNES snes,Vec x,Mat *A,Mat *B,MatStructure *flag,void *ctx),void *ctx);The arguments of the routine FormJacobian() are the current iterate, x; the Jacobian matrix, A; the precon-ditioner matrix, B (which is usually the same as A); a flag indicating information about the preconditionermatrix structure; and an optional user-de�ned Jacobian context, ctx, for application-speci�c data. Theoptions for flag are identical to those for the
ag of SLESSetOperators(), discussed in Section 4.1. Notethat the SNES solvers are all data-structure neutral, so the full range of PETSc matrix formats (including\matrix-free" methods) can be used. Chapter 3 discusses information regarding available matrix formatsand options, while Section 5.5 focuses on matrix-free methods in SNES. We brie
y touch on a few details ofmatrix usage that are particularly important for e�cient use of the nonlinear solvers.During successive calls to FormJacobian(), the user can either insert new matrix contexts or reuseold ones, depending on the application requirements. For many sparse matrix formats, reusing the oldspace (and merely changing the matrix elements) is more e�cient; however, if the matrix structure com-pletely changes, then creating an entirely new matrix context may be preferable. Upon subsequent callsto the FormJacobian() routine, the user may wish to reinitialize the matrix entries to zero by callingMatZeroEntries(). See Section 3.4 for details on the reuse of the matrix context.If the preconditioning matrix retains identical nonzero structure during successive nonlinear iterations,setting the parameter, flag, in the FormJacobian() routine to be SAME NONZERO PATTERN and reusing thematrix context can save considerable overhead. For example, when one is using a parallel preconditioner suchas incomplete factorization in solving the linearized Newton systems for such problems, matrix colorings andcommunication patterns can be determined a single time and then reused repeatedly throughout the solutionprocess. In addition, if using di�erent matrices for the actual Jacobian and the preconditioner, the user canhold the preconditioner matrix �xed for multiple iterations by setting flag to SAME PRECONDITIONER. Seethe discussion of SLESSetOperators() in Section 4.1 for details.The directory $(PETSC DIR)/src/snes/examples/tutorials provides a variety of examples.64

Table 5: PETSc Nonlinear SolversMethod SNES Type Options Name Default Convergence TestLine search SNES EQ LS ls SNESConverged EQ LS()Trust region SNES EQ TR tr SNESConverged EQ TR()Test Jacobian SNES EQ TEST testLine search SNES UM LS umls SNESConverged UM LS()Trust region SNES UM TR umtr SNESConverged UM TR()5.1.2 Solving Unconstrained Minimization ProblemsAs previously discussed, use of SNES for solving systems of nonlinear equations and unconstrained minimiza-tion problems is quite similar. When solving minimization problems, the user typically provides routines forevaluating the function, gradient, and Hessian corresponding to Equation (5.2). The routine to evaluate thescalar minimization function, f(x), should be set withierr = SNESSetMinimizationFunction(SNES snes,int (*FormMinFunction)(SNES snes,Vec x,double *f,void *ctx),void *ctx);The gradient vector, g(x), and gradient evaluation routine should be set withierr = SNESSetGradient(SNES snes,Vec g,int (*FormGradient)(SNES snes,Vec x,Vec g,void *ctx),void *ctx);In these routines, the argument ctx speci�es an optional context for application-speci�c data, as describedin Section 5.1.1.The user must also set a routine to form some approximation of the Hessian matrix, A, as is typicallydone withierr = SNESSetHessian(SNES snes,Mat A,Mat B,int (*FormHessian)(SNES snes,Vec x,Mat *A,Mat *B,MatStructure *flag,void *ctx),void *ctx);The arguments of the routine FormHessian() are the current iterate, x; the Hessian matrix, A; the precon-ditioner matrix, B (which is usually the same as A); a flag indicating information about the preconditionerstructure; and an optional user-de�ned Hessian context, ctx. Reuse of matrix and preconditioner data dur-ing successive iterations of the nonlinear solvers is often critical for achieving good performance. This topicis discussed in detail for the case of solving systems of nonlinear equations in Section 5.1.1; the options areidentical for solving unconstrained minimization problems, and thus are not repeated here.The directory $(PETSC DIR)/src/snes/examples/tests/uminprovides examples of solving unconstrainedminimization problems.5.2 The Various Nonlinear SolversAs summarized in Table 5, SNES includes several Newton-like nonlinear solvers based on line search tech-niques and trust region methods. The methods for solving systems of nonlinear equations and unconstrainedminimization problems employ the pre�xes SNES EQ and SNES UM, respectively.Each solver may have associated with it a set of options, which can be set with routines and optionsdatabase commands provided for this purpose. A complete list can be found by consulting the manual pagesor by running a program with the -help option; we discuss just a few in the sections below.5.2.1 Line Search TechniquesThe method SNES EQ NLS (-snes type ls) provides a line search Newton method for solving systems ofnonlinear equations. By default, this technique employs cubic backtracking [3]. An alternative line searchroutine can be set with the commandierr = SNESSetLineSearch(SNES snes,int (*ls)(SNES,Vec,Vec,Vec,Vec,double,double*,double*));65

Other line search methods provided by PETSc are SNESNoLineSearch() and SNESQuadraticLineSearch(),which can be set with the option -snes line search [basic,quadratic,cubic]. The line search routinesinvolve several parameters, which are set to defaults that are reasonable for many applications. The user canoverride the defaults by using the options -snes line search alpha <alpha>, -snes line search maxstep<max>, and -snes line search steptol <tol>.The method SNES UM NLS (-snes type umls) provides a line search Newton method for solving uncon-strained minimization problems. The default line search algorithm is taken from Mor�e and Thuente [13].Again, the user can set a variety of parameters to control the line search; one should run a SNES programwith the option -help for details. Users may write their own customized line search codes by modeling themafter one of the defaults provided by PETSc.5.2.2 Trust Region MethodsThe most basic trust region method in SNES for solving systems of nonlinear equations, SNES EQ NTR(-snes type tr), is taken from the MINPACK project [12]. Several parameters can be set to controlthe variation of the trust region size during the solution process. In particular, the user can control theinitial trust region radius, computed by � = �0kF0k2;by setting �0 via the option -snes trust region delta0 <delta0>.The default trust region method for unconstrained minimization, SNES UM NTR (-snes type umtr), isbased on the work of Steihaug [18]. This method uses the preconditioned conjugate gradient method viathe KSP solver KSPQCG to determine the approximate minimizer of the resulting quadratic at each nonlineariteration. This formulation requires the use of a symmetric preconditioner, where the currently availableoptions are Jacobi, incomplete Cholesky, and the null preconditioners, which can be set with the options-pc type jacobi, -pc type icc, and -pc type none, respectively.5.3 General OptionsThis section discusses options and routines that apply to all SNES solvers and problem classes. In particular,we focus on convergence tests, monitoring routines, and tools for checking derivative computations.5.3.1 Convergence TestsConvergence of the nonlinear solvers can be detected in a variety of ways; the user can even specify acustomized test, as discussed below. The default convergence routines for the various nonlinear solverswithin SNES are listed in Table 5; see the corresponding man pages for detailed descriptions. Each of theseconvergence tests involves several parameters, which are set by default to values that should be reasonablefor a wide range of problems. The user can customize the parameters to the problem at hand by using someof the following routines and options.One method of convergence testing is to declare convergence when the norm of the change in the solutionbetween successive iterations is less than some tolerance, stol. Convergence can also be determined basedon the norm of the function (or gradient for a minimization problem). Such a test can use either the absolutesize of the norm, atol, or its relative decrease, rtol, from an initial guess. The following routine sets theseparameters, which are used in many of the default SNES convergence tests:ierr = SNESSetTolerances(SNES snes,double rtol,double atol,double stol,int its,int fcts);This routine also sets the maximumnumbers of allowable nonlinear iterations, its, and function evaluations,fcts. The corresponding options database commands for setting these parameters are -snes atol <atol>,-snes rtol <rtol>, -snes stol <stol>, -snes max it <its>, and -snes max funcs <fcts>. A relatedroutine is SNESGetTolerances(). .Convergence tests for trust regions methods often use an additional parameter that indicates the minim-ium allowable trust region radius. The user can set this parameter with the option -snes trtol <trtol>or with the routineierr = SNESSetTrustRegionTolerance(SNES snes,double trtol);66

An additional parameter is sometimes used for unconstrained minimization problems, namely, the minimumfunction tolerance, ftol, which can be set with the option -snes fmin <ftol> or with the routineierr = SNESSetMinimizationFunctionTolerance(SNES snes,double ftol);Users can set their own customized convergence tests in SNES by using the commandierr = SNESSetConvergenceTest(SNES snes,int (*test)(SNES snes,double xnorm,double gnorm,double f,void *cctx),void *cctx);The �nal argument of the convergence test routine, cctx, denotes an optional user-de�ned context for privatedata. When solving systems of nonlinear equations, the arguments xnorm, gnorm, and f are the currentiterate norm, current step norm, and function norm, respectively. Likewise, when solving unconstrainedminimization problems, the arguments xnorm, gnorm, and f are the current iterate norm, current gradientnorm, and the function value.5.3.2 Convergence MonitoringBy default the SNES solvers run silently without displaying information about the iterations. The user caninitiate monitoring with the commandierr = SNESSetMonitor(SNES snes,int (*mon)(SNES,int its,double norm,void* mctx),void *mctx);The routine, mon, indicates a user-de�ned monitoring routine, where its and mctx respectively denote theiteration number and an optional user-de�ned context for private data for the monitor routine. The argumentnorm is the function norm (or gradient norm for unconstrained minimization problems).The routine set by SNESSetMonitor() is called once after every successful step computation within thenonlinear solver. Hence, the user can employ this routine for any application-speci�c computations thatshould be done after the solution update. The option -snes monitor activates the default SNES monitorroutine, SNESDefaultMonitor(), while -snes xmonitor draws a simple line graph of the residual norm'sconvergence.One can cancel all hardwired monitoring routines for SNES at runtime with -snes cancelmonitors.The routinesierr = SNESGetSolution(SNES snes,Vec *x);ierr = SNESGetFunction(SNES snes,Vec *r);return the solution vector and function vector from a SNES context. These routines are useful, for instance, ifthe convergence test requires some property of the solution or function other than those passed with routinearguments.5.3.3 Checking Accuracy of DerivativesSince hand-coding routines for Jacobian and Hessian matrix evaluation can be error prone, SNES provideseasy-to-use support for checking these matrices against �nite di�erence versions. In the simplest formof comparison, users can employ the option -snes type test to compare the matrices at several points.Although not exhaustive, this test will generally catch obvious problems. One can compare the elements ofthe two matrices by using the option -snes test display, which causes the two matrices to be printed tothe screen.Another means for verifying the correctness of a code for Jacobian or Hessian computation is runningthe problem with either the �nite di�erence or matrix-free variant, -snes fd or -snes mf (see Section 5.6or Section 5.5). If a problem converges well with these matrix approximations but not with a user-providedroutine, the problem probably lies with the hand-coded matrix.5.4 Inexact Newton-like MethodsSince exact solution of the linear Newton systems within (5.3) and (5.6) at each iteration can be costly,modi�cations are often introduced that signi�cantly reduce these expenses and yet retain the rapid conver-gence of Newton's method. Inexact or truncated Newton techniques approximately solve the linear systemsusing an iterative scheme. In comparison with using direct methods for solving the Newton systems, iter-ative methods have the virtue of requiring little space for matrix storage and potentially saving signi�cant67

computational work. Within the class of inexact Newton methods, of particular interest are Newton-Krylovmethods, where the subsidiary iterative technique for solving the Newton system is chosen from the class ofKrylov subspace projection methods. Note that at runtime the user can set any of the linear solver optionsdiscussed in Chapter 4, such as -ksp type <ksp method> and -pc type <pc method>, to set the Krylovsubspace and preconditioner methods.Two levels of iterations occur for the inexact techniques, where during each global or outer Newtoniteration a sequence of subsidiary inner iterations of a linear solver is performed. Appropriate control of theaccuracy to which the subsidiary iterative method solves the Newton system at each global iteration is critical,since these inner iterations determine the asymptotic convergence rate for inexact Newton techniques. Whilethe Newton systems must be solved well enough to retain fast local convergence of the Newton's iterates,use of excessive inner iterations, particularly when kxk � x�k is large, is neither necessary nor economical.Thus, the number of required inner iterations typically increases as the Newton process progresses, so thatthe truncated iterates approach the true Newton iterates.A sequence of nonnegative numbers f�kg can be used to indicate the variable convergence criterion. Inthis case, when solving a system of nonlinear equations, the update step of the Newton process remainsunchanged, and direct solution of the linear system is replaced by iteration on the system until the residualsr(i)k = F 0(xk)�xk + F (xk)satisfy kr(i)k kkF (xk)k � �k � � < 1:Here x0 is an initial approximation of the solution, and k � k denotes an arbitrary norm in <n .By default a constant relative convergence tolerance is used for solving the subsidiary linear systemswithin the Newton-like methods of SNES. When solving a system of nonlinear equations, one can insteademploy the techniques of Eisenstat and Walker [5] to compute �k at each step of the nonlinear solver byusing the option -snes ksp ew conv . In addition, by adding one's own KSP convergence test (see Section4.3.2), one can easily create one's own problem-dependent, inner convergence tests.5.5 Matrix-Free MethodsSNES fully supports matrix-free methods. The matrices speci�ed in the Jacobian and Hessian evaluationroutine need not be conventional matrices; instead, they can point to the data required to implement aparticular matrix-free method. The matrix-free variant is allowed only when the linear systems are solvedby an iterative method in combination with no preconditioning (PCNONE or -pc type none), a user-providedpreconditioner matrix, or a user-provided preconditioner shell (PCSHELL, discussed in Section 4.4); that is,obviously matrix-free methods cannot be used if a direct solver is to be employed.The user can create a matrix-free context for use within SNES with the routineierr = SNESDefaultMatrixFreeMatCreate(SNES snes,Vec x, Mat *mat);This routine creates the data structures needed for the matrix-vector products that arise within Krylovspace iterative methods [2] by employing the matrix type MATSHELL, discussed in Section 3.3. The defaultSNES matrix-free approximations can also be invoked with the command -snes mf. Or, one can retainthe user-provided Jacobian preconditioner, but replace the user-provided Jacobian matrix with the defaultmatrix free variant with the option -snes mf operator.The user can set two parameters to control the Jacobian-vector product approximationwith the commandierr = SNESSetMatrixFreeParameters(SNES snes,double rerror,double umin);The parameter rerror should be set to the square root of the relative error in the function evaluations, erel;the default is 1:0e � 8 , which assumes that the functions are evaluated to full double precision accuracy.The second parameter, umin (or umin), is a bit more involved; its default is 1:0e� 8 . The Jacobian-vectorproduct is approximated via the formulaF 0(u)a � F (u+ h � a) � F (u)h ;68

where h is computed via h = erel � uTa=jjajj2 ifju0aj > umin � jjajj1= erel � umin � sign(uT a) � jjajj1=jjajj2 otherwise:This approach is taken from Brown and Saad [2]. These parameters can also be set from the options databasewith-snes_mf_err <err>-snes_mf_umin <umin>Note that setting these parameter appropriately is crucial for achieving fast convergence with matrix-freeNewton-Krylov methods.We include an example in Figure 14 that explicitly uses a matrix-free approach. Note that by using theoption -snes mf one can easily convert any SNES code to use a matrix-free Newton-Krylov method without apreconditioner. As shown in this example, SNESSetFromOptions()must be called after SNESSetJacobian()to enable runtime switching between the user-speci�ed Jacobian and the default SNES matrix-free form.Table 6 summarizes the various matrix situations that SNES supports. In particular, di�erent linear sys-tem matrices and preconditioning matrices are allowed, as well as both matrix-free and application-providedpreconditioners. All combinations are possible, as demonstrated by the example, $(PETSC DIR)/src/snes/-examples/ex5.c, in Figure 14.Table 6: Jacobian and Hessian Matrix OptionsMatrix Use Conventional Matrix Formats Matrix-Free VersionsJacobian Create matrix with MatCreate(). � Create matrix with MatCreateShell().(or Hessian) Assemble matrix with user-de�ned Use MatShellSetOperation() to setMatrix routine. y various matrix actions.Preconditioning Create matrix with MatCreate(). � Create PC with PCShellCreate().Matrix Assemble matrix with user-de�ned Use SNESGetSLES() and SLESGetPC()routine. y to set the preconditioner.� Use either the generic MatCreate() or a format-speci�c variant such as MatCreateMPIAIJ().y Set user-de�ned matrix formation routine with SNESSetJacobian() or SNESSetHessian().#ifndef lintstatic char vcid[] = "$Id: ex6.c,v 1.45 1997/01/28 20:24:15 balay Exp $";#endifstatic char help[] = "Uses Newton-like methods to solve u`` + u^{2} = f. Different\n\matrices are used for the Jacobian and the preconditioner. The code also\n\demonstrates the use of matrix-free Newton-Krylov methods in conjunction\n\with a user-provided preconditioner. Input arguments are:\n\-snes_mf : Use matrix-free Newton methods\n\-user_precond : Employ a user-defined preconditioner. Used only with\n\matrix-free methods in this example.\n\n";/*TConcepts: SNES^Using different matrices for the Jacobian and preconditioner;Concepts: SNES^Using matrix-free methods and a user-provided preconditioner;69

Routines: SNESCreate(); SNESSetFunction(); SNESSetJacobian();Routines: SNESSolve(); SNESSetFromOptions(); SNESGetSLES();Routines: SLESGetPC(); PCSetType(); PCShellSetApply(); PCSetType();Processors: 1T*//* Include "snes.h" so that we can use SNES solvers. Note that thisfile automatically includes:petsc.h - base PETSc routines vec.h - vectorssys.h - system routines mat.h - matricesis.h - index sets ksp.h - Krylov subspace methodsviewer.h - viewers pc.h - preconditionerssles.h - linear solvers*/#include "snes.h"#include <math.h>/* User-defined routines*/int FormJacobian(SNES,Vec,Mat*,Mat*,MatStructure*,void*);int FormFunction(SNES,Vec,Vec,void*);int MatrixFreePreconditioner(void*,Vec,Vec);int main(int argc, char **argv){ SNES snes; /* SNES context */SLES sles; /* SLES context */PC pc; /* PC context */Vec x, r, F; /* vectors */Mat J, JPrec; /* Jacobian, preconditioner matrices */int ierr, its, n = 5, i, size, flg;double h, xp = 0.0;Scalar v, pfive = .5;PetscInitialize(&argc, &argv,(char *)0,help);MPI_Comm_size(MPI_COMM_WORLD,&size);if (size != 1) SETERRA(1,0,"This is a uniprocessor example only!");ierr = OptionsGetInt(PETSC_NULL,"-n",&n,&flg); CHKERRA(ierr);h = 1.0/(n-1);/* -Create nonlinear solver context- */ierr = SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,&snes); CHKERRA(ierr);/* -Create vector data structures; set function evaluation routine- */ierr = VecCreate(MPI_COMM_SELF,n,&x); CHKERRA(ierr);ierr = VecDuplicate(x,&r); CHKERRA(ierr);ierr = VecDuplicate(x,&F); CHKERRA(ierr);ierr = SNESSetFunction(snes,r,FormFunction,(void*)F); CHKERRA(ierr);/* -Create matrix data structures; set Jacobian evaluation routine70

- */ierr = MatCreateSeqAIJ(MPI_COMM_SELF,n,n,3,PETSC_NULL,&J); CHKERRA(ierr);ierr = MatCreateSeqAIJ(MPI_COMM_SELF,n,n,1,PETSC_NULL,&JPrec); CHKERRA(ierr);/* Note that in this case we create separate matrices for the Jacobianand preconditioner matrix. Both of these are computed in theroutine FormJacobian()*/ierr = SNESSetJacobian(snes,J,JPrec,FormJacobian,0); CHKERRA(ierr);/* -Customize nonlinear solver; set runtime options- *//* Set preconditioner for matrix-free method */ierr = OptionsHasName(PETSC_NULL,"-snes_mf",&flg); CHKERRA(ierr);if (flg) {ierr = SNESGetSLES(snes,&sles); CHKERRA(ierr);ierr = SLESGetPC(sles,&pc); CHKERRA(ierr);ierr = OptionsHasName(PETSC_NULL,"-user_precond",&flg); CHKERRA(ierr);if (flg) { /* user-defined precond */ierr = PCSetType(pc,PCSHELL); CHKERRA(ierr);ierr = PCShellSetApply(pc,MatrixFreePreconditioner,PETSC_NULL);CHKERRA(ierr);} else {ierr = PCSetType(pc,PCNONE); CHKERRA(ierr);}}ierr = SNESSetFromOptions(snes); CHKERRA(ierr);/* -Initialize application:Store right-hand-side of PDE and exact solution- */xp = 0.0;for (i=0; i<n; i++) {v = 6.0*xp + pow(xp+1.e-12,6.0); /* +1.e-12 is to prevent 0^6 */ierr = VecSetValues(F,1,&i,&v,INSERT_VALUES); CHKERRA(ierr);xp += h;}/* -Evaluate initial guess; then solve nonlinear system- */ierr = VecSet(&pfive,x); CHKERRA(ierr);ierr = SNESSolve(snes,x,&its); CHKERRA(ierr);PetscPrintf(MPI_COMM_SELF,"number of Newton iterations = %d\n\n", its);/* -Free work space. All PETSc objects should be destroyed when theyare no longer needed.- */ierr = VecDestroy(x); CHKERRA(ierr); ierr = VecDestroy(r); CHKERRA(ierr);ierr = VecDestroy(F); CHKERRA(ierr); ierr = MatDestroy(J); CHKERRA(ierr);ierr = MatDestroy(JPrec); CHKERRA(ierr); ierr = SNESDestroy(snes); CHKERRA(ierr);PetscFinalize(); 71

return 0;}/* --- *//* FormInitialGuess - Forms initial approximation.Input Parameters:user - user-defined application contextX - vectorOutput Parameter:X - vector*/int FormFunction(SNES snes,Vec x,Vec f,void *dummy){ Scalar *xx, *ff,*FF,d;int i, ierr, n;ierr = VecGetArray(x,&xx); CHKERRQ(ierr);ierr = VecGetArray(f,&ff); CHKERRQ(ierr);ierr = VecGetArray((Vec)dummy,&FF); CHKERRQ(ierr);ierr = VecGetSize(x,&n); CHKERRQ(ierr);d = (double) (n - 1); d = d*d;ff[0] = xx[0];for (i=1; i<n-1; i++) {ff[i] = d*(xx[i-1] - 2.0*xx[i] + xx[i+1]) + xx[i]*xx[i] - FF[i];}ff[n-1] = xx[n-1] - 1.0;ierr = VecRestoreArray(x,&xx); CHKERRQ(ierr);ierr = VecRestoreArray(f,&ff); CHKERRQ(ierr);ierr = VecRestoreArray((Vec)dummy,&FF); CHKERRQ(ierr);return 0;}/* --- *//* FormJacobian - This routine demonstrates the use of differentmatrices for the Jacobian and preconditionerInput Parameters:. snes - the SNES context. x - input vector. ptr - optional user-defined context, as set by SNESSetJacobian()Output Parameters:. A - Jacobian matrix. B - different preconditioning matrix. flag - flag indicating matrix structure*/int FormJacobian(SNES snes,Vec x,Mat *jac,Mat *prejac,MatStructure *flag,void *dummy){ Scalar *xx, A[3], d;int i, n, j[3], ierr;ierr = VecGetArray(x,&xx); CHKERRQ(ierr);ierr = VecGetSize(x,&n); CHKERRQ(ierr);d = (double)(n - 1); d = d*d;/* Form Jacobian. Also form a different preconditioning matrix thathas only the diagonal elements. */ 72

i = 0; A[0] = 1.0;ierr = MatSetValues(*jac,1,&i,1,&i,&A[0],INSERT_VALUES); CHKERRQ(ierr);ierr = MatSetValues(*prejac,1,&i,1,&i,&A[0],INSERT_VALUES); CHKERRQ(ierr);for (i=1; i<n-1; i++) {j[0] = i - 1; j[1] = i; j[2] = i + 1;A[0] = d; A[1] = -2.0*d + 2.0*xx[i]; A[2] = d;ierr = MatSetValues(*jac,1,&i,3,j,A,INSERT_VALUES); CHKERRQ(ierr);ierr = MatSetValues(*prejac,1,&i,1,&i,&A[1],INSERT_VALUES); CHKERRQ(ierr);}i = n-1; A[0] = 1.0;ierr = MatSetValues(*jac,1,&i,1,&i,&A[0],INSERT_VALUES); CHKERRQ(ierr);ierr = MatSetValues(*prejac,1,&i,1,&i,&A[0],INSERT_VALUES); CHKERRQ(ierr);ierr = MatAssemblyBegin(*jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);ierr = MatAssemblyBegin(*prejac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);ierr = MatAssemblyEnd(*jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);ierr = MatAssemblyEnd(*prejac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);ierr = VecRestoreArray(x,&xx); CHKERRQ(ierr);*flag = SAME_NONZERO_PATTERN;return 0;}/* --- *//* MatrixFreePreconditioner - This routine demonstrates the use of auser-provided preconditioner. This code implements just the nullpreconditioner, which of course is not recommended for general use.Input Parameters:. ctx - optional user-defined context, as set by PCShellSetApply(). x - input vectorOutput Parameter:. y - preconditioned vector*/int MatrixFreePreconditioner(void *ctx,Vec x,Vec y){ int ierr;ierr = VecCopy(x,y); CHKERRQ(ierr);return 0;} Figure 14: Example of Uniprocessor SNES Code - Both Conventional and Matrix-Free Jacobians5.6 Finite-Di�erence Jacobian ApproximationsPETSc provides some tools to help approximate the Jacobian matrices e�ciently via �nite di�erences. Thesetools are intended for use in certain situations where one is unable to compute Jacobian matrices analytically,and matrix-free methods do not work because of very poor conditioning. The approximation requires severalsteps:� First, one colors the columns of the (not yet built) Jacobian matrix, so that columns of the same colordo not share any common rows.� Next, one creates a MatFDColoring data structure that will be used later in actually computing theJacobian.� Finally, one tells SNES to use the SNESDefaultComputeJacobianWithColoring() routine to computethe Jacobians. 73

A code fragment that demonstrates this process is given below.ISColoring iscoloring;MatFDColoring fdcoloring;MatStructure str;/* This initializes the nonzero structure of the Jacobian. This is artificialbecause clearly if we had a routine to compute the Jacobian we wouldn'tneed to use finite differences.*/FormJacobian(snes,x,&J,&J,&str,&user);/* Color the matrix, i.e. determine groups of columns that share no commonrows. These columns in the Jacobian can all be computed simulataneously.*/MatGetColoring(J,COLORING_NATURAL,&iscoloring);/* Create the data structure that SNESDefaultComputeJacobianWithColoring() usesto compute the actual Jacobians via finite differences.*/MatFDColoringCreate(J,iscoloring,&fdcoloring);MatFDColoringSetFromOptions(fdcoloring);/* Tell SNES to use the routine SNESDefaultComputeJacobianWithColoring()to compute Jacobians.*/SNESSetJacobian(snes,J,J,SNESDefaultComputeJacobianWithColoring,fdcoloring);ISColoringDestroy(iscoloring);Of course, we are cheating a bit. If we do not have an analytic formula for computing the Jacobian,how do we know what its nonzero structure is so that it may be colored? Determining the structure isproblem dependent, but fortunately, for most grid-based problems (the class of problems for which PETScis designed) if one knows the stencil used for the nonlinear problem, one can usually fairly easily obtain anestimate of the location of nonzeros in the matrix.One need not necessarily use the routine MatGetColoring() to determine a coloring. For example,if a grid can be colored directly (without using the associated matrix), that coloring can be provided toMatFDColoringCreate(). Note that the user must always preset the nonzero structure in the matrix re-gardless of which coloring routine is used.For sequential matrices PETSc provides three matrix coloring routines from the MINPACK package [12].These may be accessed with the command line options-mat_coloring sl, id, or lfAlternatively, one can set a coloring type of COLORING SL, COLORING ID, or COLORING LF when callingMatGetColoring().As for the matrix-free computation of Jacobians (see Section 5.5), two parameters a�ect the accuracy ofthe �nite di�erence Jacobian approximation. These are set with the commandierr = MatFDColoringSetParameters(MatFDColoring fdcoloring,double rerror,double umin);The parameter rerror is the square root of the relative error in the function evaluations, erel; the defaultis 1:0e � 8 , which assumes that the functions are evaluated to full double-precision accuracy. The secondparameter, umin, is a bit more involved; its default is 1:0e� 8 . Column i of the Jacobian matrix (denotedby F : i) is approximated by the formulaF 0:i � F (u+ h � dxi)� F (u)h ;74

where h is computed via h = erel � ui if ui > uminh = erel � umin � sign(ui) otherwise:These parameters may be set from the options database with-mat_fd_coloring_err <err>-mat_fd_coloring_umin <umin>Note that these coloring and �nite di�erence Jacobian calculation routines currently work only on se-quential routines. Extensions may be forthcoming.

75

Chapter 6TS: Scalable ODE SolversThis chapter introduces an early release of the TS component of PETSc. We encourage users to give usinput on needed functionality and the interface. We expect to re�ne the component based on such feedback.The TS component provides a framework for the scalable solution of ODEs arising from the discretizationof time-dependent PDEs and of steady-state problems using pseudo-timestepping.Time-Dependent Problems: Consider the ODEut = F (u; t);where u is a �nite-dimensional vector, usually obtained from discretizing a PDE with �nite di�erences, �niteelements, and so forth. For example, discretizing the heat equationut = uxxwith centered �nite di�erences results in(ui)t = ui+1 � 2ui + ui�1h2 :The TS component provides code to solve these equations (currently using the forward or backward Eulermethod), in a clean and easy manner, where the user need only provide code for the evaluation of F (u; t)and (optionally) its associated Jacobian matrix.Steady-State Problems: In addition, TS provides a general code for performing pseudo timestepping witha variable timestep at each physical node point. For example, instead of directly attacking the steady-stateproblem F (u) = 0;we can use pseudo-transient continuation by solvingut = F (u):By using time di�erencing with the backward Euler method, we obtainun+1 � undtn = F (un+1):More generally we can consider a diagonal matrix Dtn that has a pseudo-timestep for each node point toobtain the series of nonlinear equationsDtn�1 (un+1 � un) = F (un+1):For this problem the user must provide F (u) and the diagonal matrix Dtn (or optionally, if the timestep isposition independent, a scalar timestep); in addition, the Jacobian of F (u) may be provided.76

6.1 Basic UsageThe user �rst creates a TS object with the commandierr = int TSCreate(MPI_Comm comm,TSProblemType problemtype,TS *ts);The TSProblemType is one of TS LINEAR or TS NONLINEAR, to indicate whether F (u; t) is given by a matrixA , or A(t) , or a function F (u; t):One can set the solution method with the routineierr = TSSetType(TS ts,TSType type);Currently supported types are TS EULER, TS BEULER, and TS PSEUDO or the command line option -ts typeeuler, beuler.Set the initial time and timestep with the commandierr = TSSetInitialTimeStep(TS ts,double time,double dt);One can change the timestep with the commandierr = TSSetTimeStep(TS ts,double dt);One can determine the current timestep with the routineierr = TSGetTimeStep(TS ts,double* dt);Here, \current" refers to the timestep being used to attempt to promote the solution form un to un+1:One sets the total number of timesteps to run or the total time to run (whatever is �rst) with thecommandierr = TSSetDuration(TS ts,int maxsteps,double maxtime);One sets up the timestep context withierr = TSSetUp(TS ts);destroys it withierr = TSDestroy(TS ts);and views it withierr = TSView(TS ts,Viewer viewer);6.1.1 Solving Time-dependent ProblemsTo set up TS for solving an ODE, one must set the following:� Solution:ierr = TSSetSolution(TS ts, Vec initialsolution);The vector initialsolution should contain the \initial conditions" for the PDE.� Function:� For linear functions (solved with implicit timestepping), the user must callierr = TSSetRHSMatrix(TS ts,Mat A, Mat B,int (*f)(TS,double,Mat*,Mat*,MatStructure*,void*),void *fP);The matrix B (although usually the same as A) allows one to provide a di�erent matrix to be used inthe construction of the preconditioner. The function f is used to form the matrices A and B at eachtimestep if the matrices are time dependent. If the matrix does not depend on time, the user shouldpass in PETSC NULL for f. The variable fP allows users to pass in an application context that is passedto the f() function whenever it is called, as the �nal argument. The user must provide the matricesA and B; if they have the right-hand side only as a linear function, they must construct a MatShellmatrix. Note that this is the same interface as that for SNESSetJacobian().� For nonlinear problems (or linear problems solved using explicit timestepping methods) the userpasses the function with the routineierr = TSSetRHSFunction(TS ts,int (*f)(TS,double,Vec,Vec,void*),void *fP);77

The arguments to the function f() are the timestep context, the current time, the input for thefunction, the output for the function, and the (optional) user-provided context variable fP.� Jacobian: For nonlinear problems the user must also provide the (approximate) Jacobian matrix ofF(u,t) and a function to compute it at each Newton iteration. This is done with the commandierr = TSSetRHSJacobian(TS ts,Mat A, Mat B,int (*f)(TS,double,Vec,Mat*,Mat*,MatStructure*,void*),void *fP);The arguments for the function f() are the timestep context, the current time, the location where theJacobian is to be computed, the Jacobian matrix, an alternative approximate Jacobian matrix used asa preconditioner, and the optional user-provided context, passed in as fP. The user must provide theJacobian as a matrix; thus, if using a matrix-free approach is used, the user must create a MatShellmatrix. Again, note the similarity to SNESSetJacobian().6.1.2 Solving Steady-State Problems with Pseudo-TimesteppingFor solving steady-state problems with pseudo-timestepping, one proceeds as follows.� Provide the function F(u) with the routineierr = TSSetRHSFunction(TS ts,int (*f)(TS,double,Vec,Vec,void*),void *fP);The arguments to the function f() are the timestep context, the current time, the input for thefunction, the output for the function and the (optional) user-provided context variable fP.� Provide the (approximate) Jacobian matrix of F(u,t) and a function to compute it at each Newtoniteration. This is done with the commandierr = TSSetRHSJacobian(TS ts,Mat A, Mat B,int (*f)(TS,double,Vec,Mat*,Mat*,MatStructure*,void*),void *fP);The arguments for the function f() are the timestep context, the current time, the location where theJacobian is to be computed, the Jacobian matrix, an alternative approximate Jacobian matrix used asa preconditioner, and the optional user-provided context, passed in as fP. The user must provide theJacobian as a matrix; thus, if one is using a matrix-free approach, one must create a MatShellmatrix.In addition, the user must provide a routine that computes the pseudo-timestep. This is slightly di�erentdepending on whether one is using a constant timestep over the entire grid or one that varies with location.� For location-independent pseudo-timestepping, one uses the routineierr = TSPseudoSetTimeStep(TS ts,int(*dt)(TS,double*,void*),void* dtctx);The function dt is a user-provided function that computes the next pseudo-timestep. As a default onecan use TSPseudoDefaultTimeStep(TS,double*,void*) for dt. This routine updates the pseudo-timestep with one of two strategies: the defaultdtn = dt increment � dtn�1 � jjF (un�1)jjjjF (un)jjor the alternative dtn = dt increment � dt0 � jjF (u0)jjjjF (un)jj ;which can be set with the callierr = TSPseudoIncrementDtFromInitialDt(TS ts);or the option -ts pseudo increment dt from initial dt. The value dt increment is by default 1:1,but can be reset with the callierr = TSPseudoSetTimeStepIncrement(TS ts,double inc);or the option -ts pseudo increment <inc>.� For location-dependent pseudo-timestepping, the interface function has not yet been created.78

Chapter 7Advanced Features of Matrices andSolversThis chapter introduces additional features of the PETSc matrices and solvers. Since most PETSc usersshould not need to use these features, we recommend skipping this chapter during an initial reading.7.1 Matrix FactorizationNormally, PETSc users will access the matrix solvers through the SLES interface, as discussed in Chapter4, but the underlying factorization and triangular solve routines are also directly accessible to the user.The LU and Cholesky matrix factorizations are split into two or three stages depending on the user'sneeds. The �rst stage is to calculate an ordering for the matrix. The ordering generally is done to reduce�ll in a sparse factorization; it does not make much sense for a dense matrix.ierr = MatGetReordering(Mat matrix,MatReordering type,IS* rowperm,IS* colperm);The currently available alternatives for the ordering type are� ORDER NATURAL - Natural� ORDER ND - Nested Dissection� ORDER 1WD - One-Way Dissection� ORDER RCM - Reverse Cuthill-McKee� ORDER QMD - Quotient Minimum DegreeThese orderings can also be set through the options database by specifying one of the following: -mat ordernatural, -mat order nd, -mat order 1wd, -mat order rcm, -mat order qmd. Certain matrix formatsmay support only a subset of these; more options may be added. Check the man pages for up-to-dateinformation. All of these orderings are symmetric at the moment; ordering routines that are not symmetricmay be added. Currently we support reorderings only for sequential matrices.Users can add their own reordering routines by providing a function with the calling sequenceint reorder(Mat A,MatReordering type,IS* rowperm,IS* colperm);Here A is the matrix for which we wish to generate a new ordering, type may be ignored, and rowperm andcolperm are the row and column permutations generated by the reordering routine. The user registers thereordering routine with the commandierr = MatReorderingRegister(MatReordering inname,MatReordering *name,char *sname,int (*reorder)(Mat,MatReordering,IS*,IS*)));79

The input argument *sname is a string of the user's choice; iname is either an ordering de�ned in mat.hor ORDER NEW , to indicate one is introducing a new ordering; and the output argument *name is theregistration number returned to the user. See the code in src/mat/impls/order/sorder.c and other �lesin that directory for examples on how the reordering routines may be written.Once the reordering routine has been registered, it can be selected for use at runtime with the commandline option -mat order sname. If reordering directly, the user should provide the name as the second inputargument of MatGetReordering().The following routines perform complete, in-place, symbolic, and numerical factorizations for symmetricand nonsymmetric matrices, respectively:ierr = MatCholeskyFactor(Mat matrix,IS permutation,double pf);ierr = MatLUFactor(Mat matrix,IS rowpermutation,IS columnpermutation,double pf);The argument pf � 1 is the predicted �ll expected in the factored matrix, as a ratio of the original �ll. Forexample, pf=2.0 would indicate that one expects the factored matrix to have twice as many nonzeros as theoriginal.For sparse matrices it is very unlikely that the factorization is actually done in-place. More likely, newspace is allocated for the factored matrix and the old space deallocated, but to the user it appears in-placebecause the factored matrix replaces the unfactored matrix.The two factorization stages can also be performed separately, by using the out-of-place mode:ierr = MatCholeskyFactorSymbolic(Mat matrix,IS perm, double pf,Mat *result);ierr = MatLUFactorSymbolic(Mat matrix,IS rowperm,IS colperm,double pf,Mat *result);ierr = MatCholeskyFactorNumeric(Mat matrix,Mat *result);ierr = MatLUFactorNumeric(Mat matrix, Mat *result);In this case, the contents of the matrix result is unde�ned between the symbolic and numeric factorizationstages. It is possible to reuse the symbolic factorization. For the second and succeeding factorizations, onesimply calls the numerical factorization with a new input matrix and the same factored result matrix. It isessential that the new input matrix have exactly the same nonzero structure as the original factored matrix.(The numerical factorization merely overwrites the numerical values in the factored matrix and does not dis-turb the symbolic portion, thus enabling reuse of the symbolic phase.) In general, calling XXXFactorSymbolicwith a dense matrix will do nothing except allocate the new matrix; the XXXFactorNumeric routines will doall of the work.Why provide the plain XXXfactor routines when one could simply call the two-stage routines? Theanswer is that if one desires in-place factorization of a sparse matrix, the intermediate stage between thesymbolic and numeric phases cannot be stored in a result matrix, and it does not make sense to store theintermediate values inside the original matrix that is being transformed. We originally made the combinedfactor routines do either in-place or out-of-place factorization, but then decided that this approach was notneeded and could easily lead to confusion.We do not currently support sparse matrix factorization with pivoting for numerical stability. This isbecause trying to both reduce �ll and do pivoting can become quite complicated. Instead, we provide apoor stepchild substitute. After one has obtained a reordering, with MatGetRordering(Mat A,MatOrderingtype,IS *row,IS *col) one may callierr = MatReorderForNonzeroDiagonal(Mat A,double tol,IS row, IS col);which will try to reorder the columns to ensure that no values along the diagonal are smaller than tol ina absolute value. If small values are detected and corrected for, a nonsymmetric permutation of the rowsand columns will result. This is not guaranteed to work, but may help if one was simply unlucky in theoriginal ordering. When using the SLES solver interface the options -pc ilu nonzeros along diagonaland -pc ilu nonzeros along diagonal may be used.Once a matrix has been factored, it is natural to solve linear systems. The following four routines enablethis process:ierr = MatSolve(Mat A,Vec x, Vec y);ierr = MatSolveTrans(Mat A, Vec x, Vec y);ierr = MatSolveAdd(Mat A,Vec x, Vec y, Vec w);ierr = MatSolveTransAdd(Mat A, Vec x, Vec y, Vec w);The matrix A of these routines must have been obtained from a factorization routine; otherwise, an errorwill be generated. In general, the user should use the SLES solvers introduced in the next chapter ratherthan using these factorization and solve routines directly.80

7.2 Unimportant Details of KSPAgain, virtually all users should use KSP through the SLES interface and, thus, will not need to know thedetails that follow.It is possible to generate a Krylov subspace context with the commandierr = KSPCreate(MPI_Comm comm,KSP *kps);Before using the Krylov context, one must set the matrix-vector multiplication routine and the preconditionerwith the commandsierr = PCSetOperators(PC pc,Mat mat,Mat pmat,MatStructure flag);ierr = KSPSetPC(KSP ksp,PC pc);In addition, the KSP solver must be initialized withierr = KSPSetUp(KSP ksp);Solving a linear system is done with the commandierr = KSPSolve(KSP ksp,int *its);Finally, the KSP context should be destroyed withierr = KSPDestroy(KSP ksp);It may seem strange to put the matrix in the preconditioner rather than directly in the KSP; this decisionwas the result of much agonizing. The reason is that for SSOR with Eisenstat's trick, and certain otherpreconditioners, the preconditioner has to change the matrix-vector multiply. This procedure could not bedone cleanly if the matrix were stashed in the KSP context that PC cannot access.Any preconditioner can supply not only the preconditioner, but also a routine that essentially performsa complete Richardson step. The reason for this is mainly SOR. To use SOR in the Richardson framework,that is, un+1 = un +B(f �Aun);is much more expensive than just updating the values. With this addition it is reasonable to state that allour iterative methods are obtained by combining a preconditioner from the PC component with a Krylovmethod from the KSP component. This strategy makes things much simpler conceptually, so (we hope) cleancode will result. Note: We had this idea already implicitly in older versions of SLES, but, for instance, justdoing Gauss-Seidel with Richardson in old SLES was much more expensive than it had to be. With PETSc2.0 this should not be a problem.7.3 Unimportant Details of PCMost users will obtain their preconditioner contexts from the SLES context with the command SLESGetPC().It is possible to create, manipulate, and destroy PC contexts directly, although this capability should rarelybe needed. To create a PC context, one uses the commandierr = PCCreate(MPI_Comm comm,PC *pc);The routineierr = PCSetType(PC pc,PCType method);sets the preconditioner method to be used. The two routinesierr = PCSetOperators(PC pc,Mat mat,Mat pmat,MatStructure flag);ierr = PCSetVector(PC pc,Vec vec);set the matrices and type of vector that are to be used with the preconditioner. The vec argument is neededby the PC routines to determine the format of the vectors. The routineierr = PCGetOperators(PC pc,Mat *mat,Mat *pmat,MatStructure *flag);returns the values set with PCSetOperators().The preconditioners in PETSc can be used in several ways. The two most basic routines simply applythe preconditioner or its transpose and are given, respectively, byierr = PCApply(PC pc,Vec x,Vec y);ierr = PCApplyTrans(PC pc,Vec x,Vec y); 81

In particular, for a preconditioner matrix, B, that has been set via PCSetOperators(pc,A,B,flag), theroutine PCApply(pc,x,y) computes y = B�1x by solving the linear system By = x with the speci�edpreconditioner method.Additional preconditioner routines areierr = PCApplyBAorAB(PC pc,int right,Vec x,Vec y,Vec work,int its);ierr = PCApplyBAorABTrans(PC pc,int right,Vec x,Vec y,Vec work,int its);ierr = PCApplyRichardson(PC pc,Vec x,Vec y,Vec work,int its);The �rst two routines apply the action of the matrix followed by the preconditioner or the preconditionerfollowed by the matrix depending on whether the integer right is zero or one. The �nal routine appliesits iterations of Richardson's method. The last three routines are provided to improve e�ciency for certainKrylov subspace methods.A PC context that is no longer needed can be destroyed with the commandierr = PCDestroy(PC pc);

82

Chapter 8GraphicsPETSc graphics components are not intended to compete with high-quality graphics packages. Instead,they are intended to be easy to use interactively with PETSc programs. We urge users to generate theirpublication-quality graphics using a professional graphics package. If a user wants to hook certain packages inPETSc, he or she should send a message to petsc-maint@mcs.anl.gov, and we will see whether it is reasonableto try to provide direct interfaces.8.1 Windows as ViewersFor drawing prede�ned PETSc objects such as matrices and vectors, one must �rst create a viewer using thecommandierr = ViewerDrawOpenX(MPI_Comm comm,char *display,char *title,int x,int y,int w,int h,Viewer *viewer);This viewer may be passed to any of the XXXView() routines. To draw into the viewer, one must obtain theDraw object with the commandierr = ViewerDrawGetDraw(Viewer viewer,Draw *draw);Then one can call any of the DrawXXX commands on the draw object. If one obtains the draw object in thismanner, one does not call the DrawOpenX() command discussed below.Prede�ned viewers, VIEWER DRAWX WORLD and VIEWER DRAWX SELF, may be used at any time. Their initialuse will cause the appropriate window to be created.If the colormap on one's machine is incorrect, so colors in contour plots and so on are incorrect, onecan use the option -draw x private colormap to have PETSc use a seperate colormap for its windows.This will correct the color problem, but one will get
ashing of colors as one moves the mouse between thePETSc windows and other windows. The user can also try stopping programs (like Netscape) that changethe default colormap.8.2 Simple DrawingOne can open a window under the X11 Window System with the commandierr = DrawOpenX(MPI_Comm comm,char *display,char *title,int x,int y,int w,int h,Draw *win);All drawing routines are done relative to the windows coordinate system and viewport. By default thedrawing coordinates are from (0,0) to (1,1), where (0,0) indicates the lower left corner of the window.The application program can change the window coordinates with the commandierr = DrawSetCoordinates(Draw win,double xl,double yl,double xr,double yr);By default, graphics will be drawn in the entire window. To restrict the drawing to a portion of the window,one may use the commandierr = DrawSetViewPort(Draw win,double xl,double yl,double xr,double yr);83

These arguments, which indicate the fraction of the window in which the drawing should be done, mustsatisfy 0 � xl � xr � 1 and 0 � yl � yr � 1:To draw a line, one uses the commandierr = DrawLine(Draw win,double xl,double yl,double xr,double yr,int cl);The argument cl indicates the color of the line.To ensure that all graphics actually have been displayed, one should use the commandierr = DrawFlush(Draw win);When displaying by using double bu�ering, which is set with the commandierr = DrawSetDoubleBuffer(Draw win);all processors must callierr = DrawSyncFlush(Draw win);in order to swap the bu�ers. From the options database one may use -draw pause n, which causes thePETSc application to pause n seconds at each DrawPause(). A time of -1 indicates that the applicationshould pause until receiving mouse input from the user.Text can be drawn with either of the two commandsierr = DrawText(Draw win,double x,double y,int color,char *text);ierr = DrawTextVertical(Draw win,double x,double y,int color,char *text);The user can set the text font size or determine it with the commandsierr = DrawTextSetSize(Draw win,double width,double height);ierr = DrawTextGetSize(Draw win,double *width,double *height);8.3 Line GraphsPETSc includes a set of routines for manipulating simple two-dimensional graphs. These routines, whichbegin with DrawAxisDraw(), are usually not used directly by the application programmer. Instead, theprogrammer employs the line graph routines to draw simple line graphs. As shown in the program inFigure 15, line graphs are created with the commandierr = DrawLGCreate(Draw win,int ncurves,DrawLG *ctx);The argument ncurves indicates how many curves are to be drawn. Points can be added to each of thecurves with the commandierr = DrawLGAddPoint(DrawLG ctx,double *x,double *y);The arguments x and y are arrays containing the next point value for each curve. Several points for eachcurve may be added withierr = DrawLGAddPoints(DrawLG ctx,int n,double **x,double **y);The line graph is drawn (or redrawn) with the commandierr = DrawLGDraw(DrawLG ctx);A line graph that is no longer needed can be destroyed with the commandierr = DrawLGDestroy(DrawLG ctx);To plot new curves, one can reset a linegraph with the commandierr = DrawLGReset(DrawLG ctx);The line graph automatically determines the range of values to display on the two axes. The user can changethese defaults with the commandierr = DrawLGSetLimits(DrawLG ctx,double xmin,double xmax,double ymin,double ymax);It is also possible to change the display of the axes and to label on them. This procedure is done by �rstobtaining the axes context with the commandierr = DrawLGGetAxis(DrawLG ctx,DrawAxis *axis);One can set the axes' colors and labels, respectively, by using the commandsierr = DrawAxisSetColors(DrawAxis axis,int axis_lines,int ticks,int text);ierr = DrawAxisSetLabels(DrawAxis axis,char *top,char *x,char *y);84

#ifndef lintstatic char vcid[] = "$Id: ex3.c,v 1.24 1996/03/19 21:28:29 bsmith Exp $";#endifstatic char help[] = "Plots a simple line graph\n";#include "draw.h"#include <math.h>int main(int argc,char **argv){ Draw draw;DrawLG lg;DrawAxis axis;int n = 20, i, ierr, x = 0, y = 0, width = 300, height = 300,flg;char *xlabel, *ylabel, *toplabel;double xd, yd;xlabel = "X-axis Label";toplabel = "Top Label";ylabel = "Y-axis Label";PetscInitialize(&argc,&argv,(char*)0,help);OptionsGetInt(PETSC_NULL,"-width",&width,&flg);OptionsGetInt(0,"-height",&height,&flg);OptionsGetInt(PETSC_NULL,"-n",&n,&flg);OptionsHasName(PETSC_NULL,"-nolabels",&flg);if (flg) {xlabel = (char *)0; toplabel = (char *)0;}ierr = DrawOpenX(MPI_COMM_SELF,0,"Title",x,y,width,height,&draw);CHKERRA(ierr);ierr = DrawLGCreate(draw,1,&lg); CHKERRA(ierr);ierr = DrawLGGetAxis(lg,&axis); CHKERRA(ierr);ierr = DrawAxisSetColors(axis,DRAW_BLACK,DRAW_RED,DRAW_BLUE); CHKERRA(ierr);ierr = DrawAxisSetLabels(axis,toplabel,xlabel,ylabel); CHKERRA(ierr);for (i=0; i<n ; i++) {xd = (double)(i - 5); yd = xd*xd;ierr = DrawLGAddPoint(lg,&xd,&yd); CHKERRA(ierr);}ierr = DrawLGIndicateDataPoints(lg); CHKERRA(ierr);ierr = DrawLGDraw(lg); CHKERRA(ierr);ierr = DrawFlush(draw); CHKERRA(ierr); PetscSleep(2);ierr = DrawLGDestroy(lg); CHKERRA(ierr);ierr = DrawDestroy(draw); CHKERRA(ierr);PetscFinalize();return 0;} Figure 15: Example of Drawing PlotsIt is possible to turn o� all graphics with the option -nox. This will prevent any windows from beingopen or any drawing actions to be done. This is useful for timing or for running large jobs when the graphicsoverhead is too large.8.4 Graphical Convergence MonitorFor both the linear and nonlinear solvers default routines allow one to graphically monitor convergence ofthe iterative method. These are accessed via the command line with -ksp xmonitor and -snes xmonitor.85

See also Sections 4.3.3 and 5.3.2.The two functions used are KSPLGMonitor() and KSPLGMonitorCreate() . These can easily be modi�edto serve specialized needs.8.5 Other Graphical Output TypesPETSc contains some code to generate output in Postscript and VRML (Virtual RealityModeling Language).This code is currently undergoing revision but is available for the adventurous.

86

Chapter 9PETSc Fortran UsersMost of the functionality of PETSc can be obtained by people who program purely in Fortran. Note, however,that we recommend the use of C and/or C++ because these languages contain several extremely powerfulconcepts that the Fortran 77/90 family does not.Since Fortran 77 does not provide type checking of routine input/output parameters, we �nd that manyerrors encountered within PETSc Fortran 77 programs result from accidentally using incorrect calling se-quences. Such mistakes are immediately detected during compilation when using C/C++. Thus, using amixture of C/C++ and Fortran often works well for programmers who wish to employ Fortran for the corenumerical routines within their applications. In particular, one can e�ectively write PETSc driver routines inC/C++, thereby preserving
exibility within the program, and still use Fortran when desired for underlyingnumerical computations.9.1 Di�erences between PETSc Interfaces for C and FortranOnly a few di�erences exist between the C and Fortran PETSc interfaces, all of which are due to limitationsin Fortran syntax. All Fortran routines have the same names as the corresponding C versions, and PETSccommand line options are fully supported on most machines. The routine arguments follow the usual Fortranconventions; the user need not worry about passing pointers or values. The calling sequences for the Fortranversion are in most cases identical to the C version, except for the error checking variable discussed in Section9.1.2 and a few routines listed in Section 9.1.10. Note that use of the PETSc Fortran interface requires �rstcompiling the interface library, which is discussed in Section 9.1.9.9.1.1 Include FilesPETSc Fortran users have two choices for including the PETSc header �les.Recommended Approach: In the �rst approach, the Fortran include �les for PETSc are located in thedirectory $(PETSC DIR)/include/FINCLUDE and should be used via statements such as the following:#include "include/FINCLUDE/includefile.h"Since one must be very careful to include each �le no more than once in a Fortran routine, application pro-grammers must manually include each �le needed for the various PETSc components within their program.This approach di�ers from the PETSc C/C++ interface, where the user need only include the highest level�le, for example, snes.h, which then automatically includes all of the required lower level �les. As shownin the examples of Section 9.2, in Fortran one must explicitly list each of the include �les. If using thisapproach, one must employ the Fortran �le su�x .F rather than .f. This convention enables use of theCPP preprocessor, which allows the use of the #include statements that de�ne PETSc objects and variables.(Familarity with the CPP preprocessor is not needed for writing PETSc Fortran code; one can simply beginby copying a PETSc Fortran example and its corresponding make�le.)Alternative Approach: If working with .f �les is absolutely essential (perhaps as part of a heritage code),the conventional Fortran style include statement can be employed. The weakness of this approach is thateither the complete path of the include �le must be hardwired with a statement such as87

include '/home/username/petsc/include/finclude/includefile.h'or a link must be estabilished in the directory containing the Fortran source �le to the �leln -s /home/username/petsc/include/finclude/includefile.h includefile.hSome Fortran compilers will accept a -I<directory>, but depending on the Fortran compiler, they may usethe -I list only for the #include style of include. In addition, the user must declare all PETSc objects asinteger rather than by their name. For example, declarations within Fortran .F �les have the formSLES solverMat A, BVec x, yinteger iwhile the analogous statements within .f �les areinteger solverinteger A, Binteger x, yinteger i9.1.2 Error CheckingIn the Fortran version, each PETSc routine has as its �nal argument an integer error variable, in contrastto the C convention of providing the error variable as the routine's return value. The error code is set tobe nonzero if an error has been detected; otherwise, it is zero. For example, the Fortran and C variants ofSLESSolve() are given, respectively, below, where ierr denotes the error variable:call SLESSolve(SLES sles,Vec b,Vec x,int its,int ierr)ierr = SLESSolve(SLES sles,Vec b,Vec x,int *its);Fortran programmers using the .F �le su�x, as discussed in Section 9.1.1, can check these error codeswith CHKERRA(ierr), which terminates all process when an error is encountered. Likewise, one can set errorcodes within Fortran programs by using SETERRA(ierr,p,' '), which again terminates all processes upondetection of an error. Note that complete error tracebacks with CHKERRQ() and SETERRQ(), as described inSection 1.3 for C routines, are not directly supported for Fortran routines; however, Fortran programmerscan easily use the error codes in writing their own tracebacks. For example, one could use code such as thefollowing:call SLESSolve(sles,x,y,ierr)if (ierr .ne. 0) thenprint*, 'Error in routine ...'returnendifNote that users of the Fortran .f su�x cannot employ the macros SETERRA() and CHKERRA().9.1.3 Array ArgumentsSince Fortran does not allow arrays to be returned in routine arguments, all PETSc routines that returnarrays, such as VecGetArray(), MatGetArray(), ISGetIndices(), and DAGetGlobalIndices() are de�nedslightly di�erently in Fortran than in C. Instead of returning the array itself, these routines accept as inputa user-speci�ed array of dimension one and return an integer index to the actual array used for data storagewithin PETSc. The Fortran interface for several routines is as follows:double precision xx_v(1), aa_v(1)integer ss_v(1), dd_v(1), dd_i, ss_i, xx_i, aa_i, ierr, nlocVec xMat AIS sDA dcall VecGetArray(x,xx_v,xx_i,ierr)call MatGetArray(A,aa_v,aa_i,ierr)call ISGetIndices(s,ss_v,ss_i,ierr)call DAGetGlobalIndices(d,nloc,dd_v,dd_i,ierr)88

To access array elements directly, both the user-speci�ed array and the integer index must then beused together. For example, the following Fortran program fragment illustrates directly setting the valuesof a vector array instead of using VecSetValues(). Note the (optional) use of the preprocessor #definestatement to enable array manipulations in the conventional Fortran manner.#define xx_a(ib) xx_v(xx_i + (ib))double precision xx_v(1)integer xx_i, i, ierr, nVec xcall VecGetArray(x,xx_v,xx_i,ierr)call VecGetLocalSize(x,n,ierr)do 10, i=1,nxx_a(i) = 3*i + 110 continuecall VecRestoreArray(x,xx_v,xx_i,ierr)Figure 17 contains an example of using VecGetArray() within a Fortran routine.Note: If using VecGetArray(), MatGetArray(), ISGetIndices(), or DAGetGlobalIndices() from For-tran, the user must not compile the Fortran code with options to check for \array entries out of bounds"(e.g., on the IBM RS/6000 this is done with the -C compiler option, so never use the -C option with this).9.1.4 Calling Fortran Routines from C (and C Routines from Fortran)Since the use of both Fortran and C routines is sometimes needed in application codes, we provide twoPETSc commands to facilitate passing PETSc objects (such as Mat and SLES) between the two languages.These routines must be called within any C/C++ routines that pass/receive PETSc objects to/from Fortranroutines to ensure that the objects are properly handled, since Fortran treats PETSc objects simply asintegers.To pass a PETSc object from a C routine to a Fortran routine, one must �rst convert the C pointer toa Fortran integer with PetscCObjectToFortranObject(PetscObject,int *), for example,int fmat;Mat mat;....ierr = PetscCObjectToFortranObject(mat,&fmat);fortranroutine(&fmat,...other arguments);The Fortran routine can then directly use the received object. When calling C from Fortran, the user shouldperform the pointer conversion within the C routine using PetscFortranObjectToCObject(int,PetscObject*), for example,int cfunction(int *fmat,....)Mat mat;ierr = PetscFortranObjectToCObject(*fmat,&mat);See $(PETSC DIR)/src/vec/examples/tests/ex24.c for a complete example demonstrating this interface.Note that the pointer conversion is always done in the C/C++ routines, but not in the Fortran routines.Di�erent machines have di�erent methods of naming Fortran routines called from C (or C routines calledfrom Fortran). Most Fortran compilers change all the capital letters in Fortran routines to small. On somemachines, the Fortran compiler appends an underscore to the end of each Fortran routine name; for example,the Fortran routine Dabsc() would be called from C with dabsc (). Other machines change all the lettersin Fortran routine names to capitals.PETSc provides two macros (de�ned in C/C++) to help write portable code that mixes C/C++and Fortran. They are HAVE FORTRAN UNDERSCORE and HAVE FORTRAN CAPS , which are de�ned in the �le$(PETSC DIR)/bmake/$(PETSC ARCH)/base.site. The macros are used, for example, as follows:#if defined(HAVE_FORTRAN_CAPS)#define dabsc_ DABSC#elif !defined(HAVE_FORTRAN_UNDERSCORE)#define dabsc_ dabsc 89

#endif.....dabsc_(&n,x,y); /* call the Fortran function */9.1.5 Passing Null PointersIn several PETSc C functions, one has the option of passing a 0 (null) argument (for example, the �fthargument of MatCreateSeqAIJ()). From Fortran, users must pass PETSC NULL to indicate a null argument;passing 0 from Fortran will crash the code. When passing character strings as routine arguments, Fortranprogrammers should be sure to pass PETSC NULL CHARACTER whenever a null character is desired. Note thatthe C convention of passing PETSC NULL (or 0) cannot be used. For example, when no options pre�x isdesired in the routine OptionsGetInt(), one must use the following command in Fortran:call OptionsGetInt(PETSC_NULL_CHARACTER,'-name',N,flg,ierr)This Fortran requirement is inconsistent with C, where the user can employ PETSC NULL for all nullarguments. The reason for this di�erence is that some machines (e.g., the Cray T3D) handle strings inFortran in an unusual manner, so that the only way we can provide support for portable code is to requirethe use of PETSC NULL CHARACTER.9.1.6 Duplicating Multiple VectorsThe Fortran interface to VecDuplicateVecs() di�ers slightly from the C/C++ variant because Fortrandoes not allow arrays to be returned in routine arguments. To create n vectors of the same format as anexisting vector, the user must declare a vector array, v new of size n. Then, after VecDuplicateVecs() hasbeen called, v new will contain (pointers to) the new PETSc vector objects. When �nished with the vectors,the use should destroy them by calling VecDestroyVectors(). For example, the following code fragmentduplicates v old to form two new vectors, v new(1) and v new(2).Vec v_old, v_new(2)integer ierrScalar alphacall VecDuplicateVecs(v_old,2,v_new,ierr)alpha = 4.3call VecSet(alpha,v(1),ierr)alpha = 6.0call VecSet(alpha,v(2),ierr)call VecDestroyVecs(v_new,2,ierr)9.1.7 Matrix and Vector IndicesAll matrices and vectors in PETSc use zero-based indexing, regardless of whether C or Fortran is beingused. The interface routines, such as MatSetValues() and VecSetValues(), always use zero indexing. SeeSection 3.2 for further details.9.1.8 Setting RoutinesWhen a routine is set from within a Fortran program by a routine such as KSPSetConvergenceTest(), thatroutine is assumed to be a Fortran routine. Likewise, when a routine is set from within a C program, thatroutine is assumed to be written in C.9.1.9 Compiling and Linking Fortran ProgramsBefore any PETSc Fortran programs are compiled, the Fortran interface library must be built from thePETSc home directory, $(PETSC DIR), with the commandmake BOPT=[g,O,Opg] fortran 90

The Fortran interface library for a particular architecture and BOPT value resides in the same directory as theother PETSc libraries, as given by $(PETSC DIR)/lib/lib$(BOPT)/$(PETSC ARCH)/libpetscfortran.a.Figure 22 shows a sample make�le that can be used for PETSc programs. In this make�le, one cancompile and run a debugging version of the Fortran program ex3.F with the actions make BOPT=g ex3 andmake runex3, respectively. The compilation command is restated below:ex3: ex3.o-$(FLINKER) -o ex3 ex3.o $(PETSC_FORTRAN_LIB) $(PETSC_LIB)$(RM) ex3.oNote that the PETSc Fortran interface library, given by $(PETSC FORTRAN LIB), must precede the basePETSc libraries, given by $(PETSC LIB), on the link line.9.1.10 Routines with Di�erent Fortran InterfacesThe following Fortran routines di�er slightly from their C counterparts; see the man pages and previousdiscussion in this chapter for details:� PetscInitialize(char *�lename,int ierr)� PetscError(int errno,char *message,int ierr)� VecGetArray(), MatGetArray()� ISGetIndices(), DAGetGlobalIndices()� VecDuplicateVecs(), VecDestroyVecs()The following functions are not supported in Fortran:� PetscBinaryRead(), PetscBinaryWrite()� PetscFClose(), PetscFOpen(), PetscFPrintf(), PetscPrintf()� PetscPopErrorHandler(), PetscPushErrorHandler()� PLogInfo()� PetscSetDebugger()� VecGetArrays(), VecRestoreArrays()� ViewerASCIIGetPointer(), ViewerBinaryGetDescriptor()� ViewerStringOpen(), ViewerStringSPrintf()9.2 Sample Fortran 77 ProgramsSample programs that illustrate the PETSc interface for Fortran are given in Figures 16 - 19, corresponding to$(PETSC DIR)/src/vec/examples/tests/ex19.F, $(PETSC DIR)/src/vec/examples/tutorials/ex4f.F,$(PETSC DIR)/src/draw/examples/tests/ex5.F, and $(PETSC DIR)/src/snes/examples/ex1f.F, respec-tively. We also refer Fortran programmers to the C examples listed throughout the manual, since PETScusage within the two languages di�ers only slightly.C "$Id: ex19.F,v 1.25 1996/08/27 20:24:13 curfman Exp $";#include "include/FINCLUDE/petsc.h"#include "include/FINCLUDE/vec.h"CC This example demonstrates basic use of the PETSc Fortran interfaceC to vectors. 91

C integer n, ierr,flgScalar one, two, three, dotDouble norm,rdotVec x,y,wn = 20one = 1.0two = 2.0three = 3.0call PetscInitialize(PETSC_NULL_CHARACTER,ierr)call OptionsGetInt(PETSC_NULL_CHARACTER,'-n',n,flg,ierr)C Create a vector, then duplicate itcall VecCreate(MPI_COMM_WORLD,n,x,ierr)call VecDuplicate(x,y,ierr)call VecDuplicate(x,w,ierr)call VecSet(one,x,ierr)call VecSet(two,y,ierr)call VecDot(x,y,dot,ierr)rdot = PetscReal(dot)write(6,100) rdot100 format('Result of inner product ',f10.4)call VecScale(two,x,ierr)call VecNorm(x,NORM_2,norm,ierr)write(6,110) norm110 format('Result of scaling ',f10.4)call VecCopy(x,w,ierr)call VecNorm(w,NORM_2,norm,ierr)write(6,120) norm120 format('Result of copy ',f10.4)call VecAXPY(three,x,y,ierr)call VecNorm(y,NORM_2,norm,ierr)write(6,130) norm130 format('Result of axpy ',f10.4)call VecDestroy(x,ierr)call VecDestroy(y,ierr)call VecDestroy(w,ierr)call PetscFinalize(ierr)stopend Figure 16: Sample Fortran Program: Using PETSc VectorsC "$Id: ex4f.F,v 1.16 1996/11/27 22:51:13 bsmith Exp $";C Description: Illustrates the use of VecSetValues() to setC multiple values at once; demonstrates VecGetArray().C 92

C/*TC Concepts: Vectors^Assembling vectors; Using vector arrays;C Routines: VecCreateSeq(); VecDuplicate(); VecSetValues(); VecView();C Routines: VecCopy(); VecView(); VecGetArray(); VecRestoreArray();C Routines: VecAssemblyBegin(); VecAssemblyEnd(); VecDestroy();C Processors: 1CT*/C ---program ex4fimplicit noneC -C Include filesC -CC The following include statements are required for Fortran programsC that use PETSc vectors:C petsc.h - base PETSc routinesC vec.h - vectors#include "include/FINCLUDE/petsc.h"#include "include/FINCLUDE/vec.h"C -C Macro definitionsC -CC Macros to make clearer the process of setting values in vectors andC getting values from vectors.CC - The element xx_a(ib) is element ib+1 in the vector xC - Here we add 1 to the base array index to facilitate the use ofC conventional Fortran 1-based array indexing.C#define xx_a(ib) xx_v(xx_i + (ib))#define yy_a(ib) yy_v(yy_i + (ib))C -C Beginning of programC -Scalar xwork(6)Scalar xx_v(1), yy_v(1)integer i, n, ierr, loc(6), xx_i, yy_iVec x, ycommon xx_v, yy_vcall PetscInitialize(PETSC_NULL_CHARACTER,ierr)n = 6C Create initial vector and duplicate itcall VecCreateSeq(MPI_COMM_SELF,n,x,ierr)call VecDuplicate(x,y,ierr)C Fill work arrays with vector entries and locations. Note thatC the vector indices are 0-based in PETSc (for both Fortran andC C vectors) 93

do 10 i=1,nloc(i) = i-1xwork(i) = 10.0*i10 continueC Set vector values. Note that we set multiple entries at once.C Of course, usually one would create a work array that is theC natural size for a particular problem (not one that is as longC as the full vector).call VecSetValues(x,6,loc,xwork,INSERT_VALUES,ierr)C Assemble vectorcall VecAssemblyBegin(x,ierr)call VecAssemblyEnd(x,ierr)C View vectorwrite(6,20)20 format('initial vector:')call VecView(x,VIEWER_STDOUT_SELF,ierr)call VecCopy(x,y,ierr)C Get a pointer to vector data.C - For default PETSc vectors, VecGetArray() returns a pointer toC the data array. Otherwise, the routine is implementation dependent.C - You MUST call VecRestoreArray() when you no longer need access toC the array.C - Note that the Fortran interface to VecGetArray() differs from theC C version. See the users manual for details.call VecGetArray(x,xx_v,xx_i,ierr)call VecGetArray(y,yy_v,yy_i,ierr)C Modify vector datado 30 i=1,nxx_a(i) = 100.0*iyy_a(i) = 1000.0*i30 continueC Restore vectorscall VecRestoreArray(x,xx_v,xx_i,ierr)call VecRestoreArray(y,yy_v,yy_i,ierr)C View vectorswrite(6,40)40 format('new vector 1:')call VecView(x,VIEWER_STDOUT_SELF,ierr)write(6,50)50 format('new vector 2:')call VecView(y,VIEWER_STDOUT_SELF,ierr)C Free work space. All PETSc objects should be destroyed when theyC are no longer needed. 94

call VecDestroy(x,ierr)call VecDestroy(y,ierr)call PetscFinalize(ierr)end Figure 17: Sample Fortran Program: Using VecSetValues() and VecGetArray()C "$Id: ex5.F,v 1.15 1996/09/12 16:27:09 bsmith Exp $";#include "include/FINCLUDE/petsc.h"#include "include/FINCLUDE/draw.h"CC This example demonstrates basic use of the Fortran interface forC Draw routines.C Draw drawDrawLG lgDrawAxis axisinteger n,i, ierr, x, y, width, height,flgScalar xd,ydn = 20x = 0y = 0width = 300height = 300call PetscInitialize(PETSC_NULL_CHARACTER,ierr)call OptionsGetInt(PETSC_NULL_CHARACTER,'-width',width,flg,ierr)call OptionsGetInt(PETSC_NULL_CHARACTER,'-height',height,flg,ierr)call OptionsGetInt(PETSC_NULL_CHARACTER,'-n',n,flg,ierr)call DrawOpenX(MPI_COMM_SELF,PETSC_NULL_CHARACTER,& PETSC_NULL_CHARACTER,x,y,width,height,draw,ierr)call DrawLGCreate(draw,1,lg,ierr)call DrawLGGetAxis(lg,axis,ierr)call DrawAxisSetColors(axis,DRAW_BLACK,DRAW_RED,DRAW_BLUE,ierr)call DrawAxisSetLabels(axis,'toplabel','xlabel','ylabel',ierr)do 10, i=0,n-1xd = i - 5.0yd = xd*xdcall DrawLGAddPoint(lg,xd,yd,ierr)10 continuecall DrawLGIndicateDataPoints(lg,ierr)call DrawLGDraw(lg,ierr)call DrawFlush(draw,ierr)call PetscSleep(10)call DrawLGDestroy(lg,ierr)call DrawDestroy(draw,ierr)call PetscFinalize(ierr)stop 95

end Figure 18: Sample Fortran Program: Using PETSc Draw RoutinesC "$Id: ex1f.F,v 1.10 1997/01/01 03:41:24 bsmith Exp $";CC/*TC Concepts: SNES^Solving a system of nonlinear equations (basic uniprocessor example)C Routines: SNESCreate(); SNESSetFunction(); SNESSetJacobian();C Routines: SNESSolve(); SNESSetFromOptions(); SNESGetSLES();C Routines: SLESGetPC(); SLESGetKSP(); KSPSetTolerances(); PCSetType();C Processors: 1CT*/CC Description: Uses the Newton method to solve a two-variable system.CC ---program mainimplicit noneC -C Include filesC -CC The following include statements are generally used in SNES FortranC programs:C petsc.h - base PETSc routinesC vec.h - vectorsC mat.h - matricesC ksp.h - Krylov subspace methodsC pc.h - preconditionersC sles.h - SLES interfaceC snes.h - SNES interfaceC Other include statements may be needed if using additional PETScC routines in a Fortran program, e.g.,C viewer.h - viewersC is.h - index setsC#include "include/FINCLUDE/petsc.h"#include "include/FINCLUDE/vec.h"#include "include/FINCLUDE/mat.h"#include "include/FINCLUDE/ksp.h"#include "include/FINCLUDE/pc.h"#include "include/FINCLUDE/sles.h"#include "include/FINCLUDE/snes.h"CC -C Variable declarationsC -CC Variables:C snes - nonlinear solverC sles - linear solverC pc - preconditioner contextC ksp - Krylov subspace method contextC x, r - solution, residual vectors 96

C J - Jacobian matrixC its - iterations for convergenceC SNES snesSLES slesPC pcKSP kspVec x, rMat Jinteger ierr, its, size, rankScalar pfiveDouble tolC Note: Any user-defined Fortran routines (such as FormJacobian)C MUST be declared as external.external FormFunction, FormJacobianC -C Macro definitionsC -CC Macros to make clearer the process of setting values in vectors andC getting values from vectors. These vectors are used in the routinesC FormFunction() and FormJacobian().C - The element lx_a(ib) is element ib in the vector xC#define lx_a(ib) lx_v(lx_i + (ib))#define lf_a(ib) lf_v(lf_i + (ib))CC -C Beginning of programC -call PetscInitialize(PETSC_NULL_CHARACTER,ierr)call MPI_Comm_size(MPI_COMM_WORLD,size,ierr)if (size .ne. 1) thencall MPI_Comm_rank(MPI_COMM_WORLD,rank,ierr)if (rank .eq. 0)& write(6,*) 'This is a uniprocessor example only!'SETERRA(1,0,' ')endifC - - - - - - - - - -- -C Create nonlinear solver contextC - - - - - - - - - -- -call SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,snes,ierr)C -C Create matrix and vector data structures; set corresponding routinesC -C Create vectors for solution and nonlinear functioncall VecCreateSeq(MPI_COMM_SELF,2,x,ierr)call VecDuplicate(x,r,ierr)C Create Jacobian matrix data structure 97

call MatCreate(MPI_COMM_SELF,2,2,J,ierr)C Set function evaluation routine and vectorcall SNESSetFunction(snes,r,FormFunction,PETSC_NULL,ierr)C Set Jacobian matrix data structure and Jacobian evaluation routinecall SNESSetJacobian(snes,J,J,FormJacobian,PETSC_NULL,ierr)C -C Customize nonlinear solver; set runtime optionsC -C Set linear solver defaults for this problem. By extracting theC SLES, KSP, and PC contexts from the SNES context, we can thenC directly call any SLES, KSP, and PC routines to set various options.call SNESGetSLES(snes,sles,ierr)call SLESGetKSP(sles,ksp,ierr)call SLESGetPC(sles,pc,ierr)call PCSetType(pc,PCNONE,ierr)tol = 1.e-4call KSPSetTolerances(ksp,tol,PETSC_DEFAULT_DOUBLE_PRECISION,& PETSC_DEFAULT_DOUBLE_PRECISION,20,ierr)C Set SNES/SLES/KSP/PC runtime options, e.g.,C -snes_view -snes_monitor -ksp_type <ksp> -pc_type <pc>C These options will override those specified above as long asC SNESSetFromOptions() is called _after_ any other customizationC routines.call SNESSetFromOptions(snes,ierr)C -C Evaluate initial guess; then solve nonlinear systemC -C Note: The user should initialize the vector, x, with the initial guessC for the nonlinear solver prior to calling SNESSolve(). In particular,C to employ an initial guess of zero, the user should explicitly setC this vector to zero by calling VecSet().pfive = 0.5call VecSet(pfive,x,ierr)call SNESSolve(snes,x,its,ierr)if (rank .eq. 0) thenwrite(6,100) itsendif100 format('Number of Newton iterations = ',i5)C -C Free work space. All PETSc objects should be destroyed when theyC are no longer needed.C -call VecDestroy(x,ierr)call VecDestroy(r,ierr)call MatDestroy(J,ierr)call SNESDestroy(snes,ierr) 98

call PetscFinalize(ierr)stopendC ---CC FormFunction - Evaluates nonlinear function, F(x).CC Input Parameters:C snes - the SNES contextC x - input vectorC dummy - optional user-defined context (not used here)CC Output Parameter:C f - function vectorC subroutine FormFunction(snes,x,f,dummy)implicit none#include "include/FINCLUDE/petsc.h"#include "include/FINCLUDE/vec.h"#include "include/FINCLUDE/snes.h"SNES snesVec x, finteger ierr, dummy(*)C Declarations for use with local arraysScalar lx_v(1), lf_v(1)common lx_v, lf_vinteger lx_i, lf_iC Get pointers to vector data.C - For default PETSc vectors, VecGetArray() returns a pointer toC the data array. Otherwise, the routine is implementation dependent.C - You MUST call VecRestoreArray() when you no longer need access toC the array.C - Note that the Fortran interface to VecGetArray() differs from theC C version. See the Fortran chapter of the users manual for details.call VecGetArray(x,lx_v,lx_i,ierr)call VecGetArray(f,lf_v,lf_i,ierr)C Compute functionlf_a(1) = lx_a(1)*lx_a(1)& + lx_a(1)*lx_a(2) - 3.0lf_a(2) = lx_a(1)*lx_a(2)& + lx_a(2)*lx_a(2) - 6.0C Restore vectorscall VecRestoreArray(x,lx_v,lx_i,ierr)call VecRestoreArray(f,lf_v,lf_i,ierr)returnendC ---99

CC FormJacobian - Evaluates Jacobian matrix.CC Input Parameters:C snes - the SNES contextC x - input vectorC dummy - optional user-defined context (not used here)CC Output Parameters:C A - Jacobian matrixC B - optionally different preconditioning matrixC flag - flag indicating matrix structureC subroutine FormJacobian(snes,X,jac,B,flag,dummy)implicit none#include "include/FINCLUDE/petsc.h"#include "include/FINCLUDE/vec.h"#include "include/FINCLUDE/mat.h"#include "include/FINCLUDE/pc.h"#include "include/FINCLUDE/snes.h"SNES snesVec XMat jac, BMatStructure flagScalar A(4)integer ierr, idx(2), dummy(*)C Declarations for use with local arraysScalar lx_v(1)integer lx_iC Get pointer to vector datacall VecGetArray(x,lx_v,lx_i,ierr)C Compute Jacobian entries and insert into matrix.C - Since this is such a small problem, we set all entries forC the matrix at once.C - Note that MatSetValues() uses 0-based row and column numbersC in Fortran as well as in C (as set here in the array idx).idx(1) = 0idx(2) = 1A(1) = 2.0*lx_a(1) + lx_a(2)A(2) = lx_a(1)A(3) = lx_a(2)A(4) = lx_a(1) + 2.0*lx_a(2)call MatSetValues(jac,2,idx,2,idx,A,INSERT_VALUES,ierr)flag = SAME_NONZERO_PATTERNC Restore vectorcall VecRestoreArray(x,lx_v,lx_i,ierr)C Assemble matrixcall MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr)100

call MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr)returnend Figure 19: Sample Fortran Program: Using PETSc Nonlinear Solvers

101

102

Part IIIAdditional Information

103

Chapter 10Pro�lingPETSc includes a consistent, lightweight scheme to allow the pro�ling of application programs. The PETScroutines automatically log performance data if certain options are speci�ed at runtime. The user can also loginformation about application codes for a complete picture of performance. In addition, as described in Sec-tion 10.5, PETSc provides a mechanism for printing informative messages about computations. Section 10.1introduces the various pro�ling options in PETSc, while the remainder of the chapter focuses on details suchas monitoring application codes and tips for accurate pro�ling. See Section 15.4 for implementation details.10.1 Basic Pro�ling InformationIf an application code and the PETSc libraries have been compiled with the -DPETSC LOG
ag (which isthe default for all versions), then various kinds of pro�ling of code between calls to PetscInitialize()and PetscFinalize() can be activated at runtime. Note that the
ag -DPETSC LOG can be speci�ed foran installation of PETSc in the �le $(PETSC DIR)/bmake/$(PETSC ARCH)/base.$(BOPT), as discussed inSection 13.2. The pro�ling options include the following:� -log summary - Prints an ASCII version of performance data at program's conclusion. These statisticsare comprehensive and concise and require little overhead; thus, -log summary is intended as theprimary means of monitoring the performance of PETSc codes.� -log [logfile] - Generates a log �le of basic data for examination with PETScView, a GUI utilitydescribed in Chapter 14 that provides a high-level view of the interrelationships among various codemodules. Since the overhead for this monitoring is minor, it can be used for production runs.� -log all [logfile] - Generates a log �le with extensive data for examination with PETScView.This option is thus intended to provide an overview of the computations within a program. Sincethe detailed event logging can signi�cantly slow program execution, -log all is not recommended forproduction runs.� -log info - Prints verbose information about code to stdout. This option provides details aboutalgorithms, data structures, and so on. Since the overhead of printing such output slows a code, thisoption should not be used when evaluating a program's performance.� -log trace [logfile] - Traces the beginning and ending of all PETSc events. This option, which canbe used in conjunction with -log info, is useful to see where a program is hanging, without runningin the debugger.For the options -log and -log file, the �le logfile stores pro�ling information for later interpretationwith PETScView; if logfile is not given, the �le Log.processor rank is used, where processor rank is 0for the �rst processor, etc. As discussed in Section 10.1.4, additional pro�lng can be done with of MPE.105

10.1.1 Interpreting -log summary Output: The BasicsAs shown in Figure 7 (in Part I), the option -log summary activates printing of pro�le data to standardoutput at the conclusion of a program. Pro�ling data can also be printed at any time within a program bycalling PLogPrintSummary().We print performance data for each routine, organized by PETSc components, followed by any user-de�ned events (discussed in Section 10.2). For each routine, the output data include the maximum time and
op rate over all processors. Information about parallel performance is also included, as discussed in thefollowing section.For simplicity, the remainder of this discussion focuses on interpreting pro�le data for the SLES component,which provides the linear solvers at the heart of the PETSc package. Recall the hierarchical organization ofthe PETSc library, as shown in Figure 1. Each SLES solver is composed of a PC (preconditioner) and KSP(Krylov subspace) component, which are in turn built on top of the Mat (matrix) and Vec (vector) modules.Thus, operations in the SLES module are composed of lower-level operations in these components. Notealso that the nonlinear solvers component, SNES, is build on top of the SLES module, and the timesteppingcomponent, TS, is in turn built on top of SNES.We brie
y discuss interpretation of the sample output in Figure 7, which was generated by solving alinear system on one processor using restarted GMRES and ILU preconditioning. The linear solvers in SLESconsist of two basic phases, SLESSetUp() and SLESSolve(), each of which consists of a variety of actions,depending on the particular solution technique. For the case of using the PCILU preconditioner and KSPGMRESKrylov subspace method, the breakdown of PETSc routines is listed below. As indicated by the levels ofindentation, the operations in SLESSetUp() include all of the operations within PCSetUp(), which in turninclude MatILUFactor(), and so on.� SLESSetUp - Set up linear solver� PCSetUp - Set up preconditioner� MatILUFactor - Factor preconditioning matrix� MatILUFactorSymbolic - Symbolic factorization phase� MatLUFactorNumeric - Numeric factorization phase� SLESSolve - Solve linear system� PCApply - Apply preconditioner� MatSolve - Forward/backward triangular solves� KSPGMRESOrthog - Orthogonalization in GMRES� VecDot or VecMDot - Inner products� MatMult - Matrix-vector product� MatMultAdd - Matrix-vector product + vector addition� VecScale, VecNorm, VecAXPY, VecCopy, ...The summaries printed via -log summary re
ect this routine hierarchy. For example, the performancesummaries for a particular high-level routine such as SLESSolve include all of the operations accumulatedin the lower-level components that make up the routine. Using the GUI utility PETScView (described inChapter 14) for a small example problem can help to provide the user with an understanding of the operationswithin an application code, thus making this hierarchy more apparent for a particular application.Admittedly, we do not currently present the output with -log summary so that the hierarchy of PETScoperations is completely clear, primarily because we have not determined a clean and uniform way to doso throughout the library. Improvements may follow. However, for a particular problem, the user shouldgenerally have an idea of the basic operations that are required for its implementation (e.g., which operationsare performed when using GMRES and ILU, as described above), so that interpreting the -log summarydata should be relatively straightforward.10.1.2 Interpreting -log summary Output: Parallel PerformanceWe next discuss performance summaries for parallel programs, as shown within Figures 20 and 21, whichpresent the combined output generated by the -log summary option. The program that generated this datais $(PETSC DIR)/src/sles/examples/ex21.c. The code loads a matrix and right-hand-side vector from abinary �le and then solves the resulting linear system; the program then repeats this process for a second106

linear system. This particular case was run on four processors of an IBM SP, using restarted GMRES andthe block Jacobi preconditioner, where each block was solved with ILU.Figure 20 presents an overall performance summary, including times,
oating-point operations, compu-tational rates, and message-passing activity (such as the number and size of messages sent and collectiveoperations). Summaries for various user-de�ned stages of monitoring (as discussed in Section 10.3) arealso given. Information about the various phases of computation then follow (as shown separately here inFigure 21). Finally, a summary of memory usage and object creation and destruction is presented.We next focus on the summaries for the various phases of the computation, as given in the table withinFigure 21. The summary for each phase presents the maximum times and
op rates over all processors, aswell as the ratio of maximum to minimum times and
op rates for all processors. A ratio of approximately1 indicates that computations within a given phase are well balanced among the processors; as the ratioincreases, the balance becomes increasingly poor. Also, the total computational rate (in units of MFlops/sec)is given for each phase in the �nal column of the phase summary table.TotalM
op=sec = 10�6 � (sum of
ops over all processors)=(max time over all processors)Note: Total computational rates < 1 MFlop are listed as 0 in this column of the phase summary table.Additional statistics for each phase include the total number of messages sent, the average message length,and the number of global reductions.As discussed in the preceding section, the performance summaries for higher-level PETSc routines includethe statistics for the lower levels of which they are made up. For example, the communication within matrix-vector products MatMult() consists of vector scatter operations, as given by the routines VecScatterBegin()and VecScatterEnd().The �nal data presented are the percentages of the various statistics (time (%T),
ops/sec (%F), mes-sages(%M), average message length (%L), and reductions (%R)) for each event relative to the total computationand to any user-de�ned stages (discussed in Section 10.3). These statistics can aid in optimizing perfor-mance, since they indicate the sections of code that could bene�t from various kinds of tuning. Chapter 11gives suggestions about achieving good performance with PETSc codes.10.1.3 Using -log and -log all with PETScViewThe PETSc utility $(PETSC DIR)/bin/petscview [logfile] can be used to examine the pro�le data gen-erated by -log and -log all. Chapter 14 provides details regarding this Tk/Tcl tool, which provides ahigh-level view of the interrelationships among various code modules. Also, Section 10.4 gives informationon restricting event logging.10.1.4 Using -log mpe with Upshot/NupshotIt is also possible to use the Upshot (or Nupshot) package [9] to visualize PETSc events. This package comeswith the MPE software, which is part of the MPICH [8] implementation of MPI. The option-log_mpe [logfile]creates a log�le of events appropriate for viewing with Upshot. The user can either use the default logging�le, mpe.log, or specify an optional name via logfile.To use this logging option, the user must employ the MPICH implementationof MPI and must compile thePETSc library with the -DHAVE MPE
ag, which is not activated by default. The user can turn on MPE loggingby specifying -DHAVE MPE in the PCONF variable within $(PETSC DIR)/bmake/$(PETSC ARCH)/base.siteand(re)compiling all of PETSc.By default, not all PETSc events are logged with MPE. For example, since MatSetValues() may becalled thousands of times in a program, by default its calls are not logged with MPE. To activate MPElogging of a particular event, one should use the commandPLogEventMPEActivate(int event);To deactivate logging of an event for MPE, one should usePLogEventMPEDeactivate(int event); 107

The eventmaybe either a prede�ned PETSc event (as listed in the �le $(PETSC DIR)/include/petsclog.h)or one obtained with PetscEventRegister() (as described in Section 10.2). These routines may be calledas many times as desired in an application program, so that one could restrict MPE event logging only tocertain code segments.To see what events are logged by default, you can use the source; see �les src/plot/src/plogmpe.c andinclude/petsclog.h . A simple program and GUI interface to see the events that are prede�ned and theirde�nition is being developed.You can also log the MPI events. To do this, just view the PETSc application as any MPI application,and follow the instructions on logging MPI calls that are appropriate for your MPI implementation. For theMPICH implementation, this simply involves adding -llmpi to the library list ahead of -lmpi.10.2 Pro�ling Application CodesPETSc automatically logs object creation, times, and
oating-point counts for the library routines. Users caneasily supplement this information by monitoring their application codes as well. The basic steps involvedin logging a user-de�ned portion of code, called an event, are shown in the code fragment below:#include "petsclog.h"int USER_EVENT;PLogEventRegister(&USER_EVENT,"User event name","Color:");PLogEventBegin(USER_EVENT,0,0,0,0);/* application code segment to monitor */PLogFlops(number of flops for this code segment);PLogEventEnd(USER_EVENT,0,0,0,0);One must register the event by calling PLogEventRegister(), which assigns a unique integer to identifythe event for pro�ling purposes:ierr = PLogEventRegister(int *e,char *string,char *color);Here string is a user-de�ned event name, and color is an optional user-de�ned event color (for use withUpshot/Nupshot logging); one should see the man page for details. The argument returned in e should thenbe passed to the PLogEventBegin() and PLogEventEnd() routines.Events are logged by using the pairPLogEventBegin(int event,PetscObject o1,PetscObject o2,PetscObject o3,PetscObject o4);PLogEventEnd(int event,PetscObject o1,PetscObject o2,PetscObject o3,PetscObject o4);The four objects are the PETSc objects that are most closely associated with the event. For instance, ina matrix-vector product they would be the matrix and the two vectors. These objects can be omitted byspecifying 0 for o1 - o4. The code between these two routine calls will be automatically timed and loggedas part of the speci�ed event.The user can log the number of
oating-point operations for this segment of code by callingPLogFlops(number of flops for this code segment);between the calls to PLogEventBegin() and PLogEventEnd(). This value will automatically be added tothe global
op counter for the entire program.10.3 Pro�ling Multiple Sections of CodeBy default, the pro�ling produces a single set of statistics for all code between the PetscInitialize()and PetscFinalize() calls within a program. One can independently monitor up to ten stages of code byswitching among the various stages with the comandsPLogStagePush(int stage);PLogStagePop();where stage is an integer (0-9); see the man pages for details. The commandPLogStageRegister(int stage,char *name) 108

allows one to associate a name with a stage; these names are printed whenever summaries are generatedwith -log summary or PLogPrintSummary(). The following code fragment uses three pro�ling stages withina program.PetscInitialize(int *argc,char ***args,0,0);/* [stage 0 of code here] */PLogStageRegister(0,"Stage 0 of Code");for (i=0; i<ntimes; i++) {PLogStagePush(1);PLogStageRegister(1,"Stage 1 of Code");/* [stage 1 of code here] */PLogStagePop()PLogStagePush(2);PLogStageRegister(1,"Stage 2 of Code");/* [stage 2 of code here] */PLogStagePop()}PetscFinalize();Figures 20 and 21 show output generated by -log summary for a program that employs several pro�lingstages. In particular, this program is subdivided into six stages: loading a matrix and right-hand-sidevector from a binary �le, setting up the preconditioner, and solving the linear system; this sequence isthen repeated for a second linear system. For simplicity, Figure 21 contains output only for stages 4 and5 (linear solve of the second system), which represent the part of this computation of most interest to usin terms of performance monitoring. This code organization (solving a small linear system followed by alarger system) enables generation of more accurate pro�ling statistics for the second system by overcomingthe often considerable overhead of paging, as discussed in Section 10.8.10.4 Restricting Event LoggingBy default, all PETSc operations are logged. To enable or disable the PETSc logging of individual events,one uses the commandsPLogEventActivate(int event);PLogEventDeactivate(int event);The eventmaybe either a prede�ned PETSc event (as listed in the �le $(PETSC DIR)/include/petsclog.h)or one obtained with PetscEventRegister() (as described in Section 10.2).PETSc also provides routines that deactivate (or activate) logging for entire components of the library.Currently, the components that support such logging (de)activation are Mat (matrices), Vec (vectors), SLES(linear solvers, including KSP and PC components), and SNES (nonlinear solvers):PLogEventDeactivateClass(MAT_COOKIE);PLogEventDeactivateClass(SLES_COOKIE); /* includes PC and KSP */PLogEventDeactivateClass(VEC_COOKIE);PLogEventDeactivateClass(SNES_COOKIE);andPLogEventActivateClass(MAT_COOKIE);PLogEventActivateClass(SLES_COOKIE); /* includes PC and KSP */PLogEventActivateClass(VEC_COOKIE);PLogEventActivateClass(SNES_COOKIE);Recall that the option -log all produces extensive pro�le data, which can be a challenge for PETScViewto handle because of the memory limitations of Tcl/Tk. Thus, one should generally use -log all whenrunning programs with a relatively small number of events or when disabling some of the events that occurmany times in a code (e.g., VecSetValues(), MatSetValues()).Section 10.1.4 gives information on the restriction of events in MPE logging.109

10.5 Interpreting -log info Output: Informative MessagesUsers can activate the printing of verbose information about algorithms, data structures, and so on tostdout by using the option -log info or by calling PLogInfoAllow(PETSC TRUE). Such logging, which isused throughout the PETSc libraries, can aid the user in understanding algorithms and tuning programperformance. For example, as discussed in Section 3.1.1, -log info activates the printing of informationabout memory allocation during matrix assembly.Application programmers can employ this logging as well, by using the routinePLogInfo(void* obj,char *message,...)where obj is the PETSc object associated most closely with the logging statement, message. For example,in the line search Newton methods, we use a statement such asPLogInfo(snes,"Cubically determined step, lambda %g\n",lambda);One can selectively turn o� informative messages about any of the basic PETSc objects (e.g., Mat, SNES)with the commandPLogInfoDeactivateClass(int object_cookie)where object cookie is one of MAT COOKIE, SNES COOKIE, and so on. Messages can be reactivated with thecommandPLogInfoActivateClass(int object_cookie)Such deactivation can be useful when one wishes to view information about higher level PETSc components(e.g., TS and SNES) without seeing all lower level data as well (e.g., Mat).10.6 TimePETSc application programmers can access the wall clock time directly with the commanddouble time = PetscGetTime();In addition, as discussed in Section 10.2, PETSc can automatically pro�le user-de�ned segments of code.10.7 Saving Output to a FileAll output from PETSc programs (including informative messages, pro�ling information, and convergencedata) can be saved to a �le by using the command line option -log history [filename]. If no �le nameis speci�ed, the output is stored in the �le $HOME/.petschistory. Note that this option only saves out-put printed with the PetscPrintf() and PetscFPrintf() commands, not the standard printf() andfprintf() statements.10.8 Accurate Pro�ling: Overcoming the Overhead of PagingOne factor that often plays a signi�cant role in pro�ling a code is paging by the operating system. Generally,when running a program, only a few pages required to start it are loaded into memory, rather than theentire executable. When the execution procedes to code segments that are not in memory, a pagefaultoccurs, prompting the required pages to be loaded from the disk (a very slow process). This activity distortsthe results signi�cantly. (The paging e�ects are noticeable in the log �les generated by -log mpe, which isdescribed in Section 10.1.4.)To eliminate the e�ects of paging when pro�ling the performance of a program, we have found an e�ectiveprocedure is to run the exact same code on a small dummy problem before running it on the actual problemof interest. We thus ensure that all code required by a solver is loaded into memory during solution of thesmall problem. When the code procedes to the actual (larger) problem of interest, all required pages havealready been loaded into main memory, so that the performance numbers are not distorted.When this procedure is used in conjunction with the user-de�ned stages of pro�ling described in Sec-tion 10.3, we can focus easily on the problem of interest. For example, we used this technique in the program$(PETSC DIR)/src/sles/examples/tutorials/ex10.c to generate the timings within Figures 20 and 21.In this case, the pro�led code of interest (solving the linear system for the larger problem) occurs withinevent stages 4 and 5. Section 10.1.2 provides details about interpreting such pro�ling data.110

mpirun ex21 -f0 medium -f1 arco6 -ksp_gmres_unmodifiedgramschmidt -log_summary -mat_mpibaij \-matload_block_size 3 -pc_type bjacobi -optionsleftNumber of iterations = 19Residual norm = 7.7643e-05Number of iterations = 55Residual norm = 6.3633e-01-- PETSc Performance Summary: --ex21 on a rs6000 named p039 with 4 processors, by mcinnes Wed Jul 24 16:30:22 1996Max Min Avg TotalTime (sec): 3.289e+01 1.0 3.288e+01Objects: 1.130e+02 1.0 1.130e+02Flops: 2.195e+08 1.0 2.187e+08 8.749e+08Flops/sec: 6.673e+06 1.0 2.660e+07MPI Messages: 2.205e+02 1.4 1.928e+02 7.710e+02MPI Message Lengths: 7.862e+06 2.5 5.098e+06 2.039e+07MPI Reductions: 1.850e+02 1.0Summary of Stages: ---- Time ------ ----- Flops ------- -- Messages -- -- Message-lengths -- Reductions --Avg %Total Avg %Total counts %Total avg %Total counts %Total0: Load System 0: 1.191e+00 3.6% 3.980e+06 0.5% 3.800e+01 4.9% 6.102e+04 0.3% 1.800e+01 9.7%1: SLESSetup 0: 6.328e-01 2.5% 1.479e+04 0.0% 0.000e+00 0.0% 0.000e+00 0.0% 0.000e+00 0.0%2: SLESSolve 0: 2.269e-01 0.9% 1.340e+06 0.0% 1.520e+02 19.7% 9.405e+03 0.0% 3.900e+01 21.1%3: Load System 1: 2.680e+01 87.3% 0.000e+00 0.0% 2.100e+01 2.7% 1.799e+07 88.2% 1.600e+01 8.6%4: SLESSetup 1: 1.867e-01 0.7% 1.088e+08 2.3% 0.000e+00 0.0% 0.000e+00 0.0% 0.000e+00 0.0%5: SLESSolve 1: 3.831e+00 15.3% 2.217e+08 97.1% 5.600e+02 72.6% 2.333e+06 11.4% 1.120e+02 60.5%--.... [Summary of various phases, see part II below] ...--Memory usage is given in bytes:Object Type Creations Destructions Memory Descendants' Mem.Viewer 5 5 0 0Index set 10 10 127076 0Vector 76 76 9152040 0Vector Scatter 2 2 106220 0Matrix 8 8 9611488 5.59773e+06Krylov Solver 4 4 33960 7.5966e+06Preconditioner 4 4 16 9.49114e+06SLES 4 4 0 1.71217e+07Figure 20: Pro�ling a PETSc Program: Part I - Overall Summary111

mpirun ex21 -f0 medium -f1 arco6 -ksp_gmres_unmodifiedgramschmidt -log_summary -mat_mpibaij \-matload_block_size 3 -pc_type bjacobi -optionsleft-- PETSc Performance Summary: --.... [Overall summary, see part I] ...Phase summary info:Count: number of times phase was executedTime and Flops/sec: Max - maximum over all processorsRatio - ratio of maximum to minimum over all processorsMess: number of messages sentAvg. len: average message lengthReduct: number of global reductionsGlobal: entire computationStage: optional user-defined stages of a computation. Set stages with PLogStagePush() and PLogStagePop().%T - percent time in this phase %F - percent flops in this phase%M - percent messages in this phase %L - percent message lengths in this phase%R - percent reductions in this phaseTotal Mflop/s: 10^6 * (sum of flops over all processors)/(max time over all processors)--Phase Count Time (sec) Flops/sec --- Global --- --- Stage --- TotalMax Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s--...--- Event Stage 4: SLESSetUp 1MatGetReordering 1 3.491e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 2 0 0 0 0 0MatILUFctrSymbol 1 6.970e-03 1.2 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 3 0 0 0 0 0MatLUFactorNumer 1 1.829e-01 1.1 3.2e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 90 99 0 0 0 110SLESSetUp 2 1.989e-01 1.1 2.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 99 99 0 0 0 102PCSetUp 2 1.952e-01 1.1 2.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 97 99 0 0 0 104PCSetUpOnBlocks 1 1.930e-01 1.1 3.0e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 96 99 0 0 0 105--- Event Stage 5: SLESSolve 1MatMult 56 1.199e+00 1.1 5.3e+07 1.0 1.1e+03 4.2e+03 0.0e+00 5 28 99 23 0 30 28 99 99 0 201MatSolve 57 1.263e+00 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 5 27 0 0 0 33 28 0 0 0 187VecNorm 57 1.528e-01 1.3 2.7e+07 1.3 0.0e+00 0.0e+00 2.3e+02 1 1 0 0 31 3 1 0 0 51 81VecScale 57 3.347e-02 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 0 1 0 0 0 1 1 0 0 0 184VecCopy 2 1.703e-03 1.1 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0VecSet 3 2.098e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0VecAXPY 3 3.247e-03 1.1 5.4e+07 1.1 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 200VecMDot 55 5.216e-01 1.2 9.8e+07 1.2 0.0e+00 0.0e+00 2.2e+02 2 20 0 0 30 12 20 0 0 49 327VecMAXPY 57 6.997e-01 1.1 6.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 3 21 0 0 0 18 21 0 0 0 261VecScatterBegin 56 4.534e-02 1.8 0.0e+00 0.0 1.1e+03 4.2e+03 0.0e+00 0 0 99 23 0 1 0 99 99 0 0VecScatterEnd 56 2.095e-01 1.2 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 1 0 0 0 0 5 0 0 0 0 0SLESSolve 1 3.832e+00 1.0 5.6e+07 1.0 1.1e+03 4.2e+03 4.5e+02 15 97 99 23 61 99 99 99 99 99 222KSPGMRESOrthog 55 1.177e+00 1.1 7.9e+07 1.1 0.0e+00 0.0e+00 2.2e+02 4 39 0 0 30 29 40 0 0 49 290PCSetUpOnBlocks 1 1.180e-05 1.1 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0PCApply 57 1.267e+00 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 5 27 0 0 0 33 28 0 0 0 186--.... [Conclusion of overall summary, see part I] ...Figure 21: Pro�ling a PETSc Program: Part II - Phase Summaries112

Chapter 11Hints for Performance TuningThis chapter presents some tips on achieving good performance within PETSc 2.0 codes. We urge users toread these hints before evaluating the performance of PETSc application codes.11.1 Compiler OptionsCode compiled with the BOPT=O option generally runs two to three times faster than that compiled withBOPT=g, so we recommend using one of the optimized versions of code (BOPT=O, BOPT=O c++, or BOPT=O complex)when evaluating performance.The user can specify alternative compiler options instead of the defaults set in the PETSc distribution.One can set the compiler options for a particular architecture (PETSC ARCH) and BOPT by editing the �le$(PETSC DIR)/bmake/$(PETSC ARCH)/base.$(BOPT). Section 13.1.2 gives details.11.2 Pro�lingUsers should not spend time optimizing a code until after having determined where it spends the bulk of itstime on realistically sized problems. As discussed in detail in Chapter 10, the PETSc routines automaticallylog performance data if certain runtime options are speci�ed. We brie
y highlight usage of these featuresbelow.� Run the code with the option -log summary to print a performance summary for various phases of thecode.� Run the code with the option -log (or -log all), and use the utility $(PETSC DIR)/bin/petscviewto see where the code is fast and slow and what PETSc objects are being created.� Compile the code with BOPT=Opg and then run gprof for a good-sized problem. This will provide anidea of where most of the run time is being spent. Generally, gprof cannot be used when running withmore than one processor because all processors attempt to generate the same pro�ling log �le.� Run the code with the option -log mpe [logfilename], which creates a log�le of events suitable forviewing with Upshot or Nupshot (part of MPICH).11.3 AggregationPerforming operations on chunks of data rather than a single element at a time can signi�cantly enhanceperformance.� Insert several (many) elements of a matrix or vector at once, rather than looping and inserting a singlevalue at a time. In order to access vector elements repeatedly, employ VecGetArray() to allow directmanipulation of the vector elements. 113

� When using MatSetValues(), if the column indices of the values being inserted have been sortedin monotonically increasing order, call the routine MatSetOption(mat,MAT COLUMNS SORTED) beforesetting the values to reduce the insertion time signi�cantly.� When possible, use VecMDot() rather than a series of calls to VecDot().11.4 E�cient Memory Allocation11.4.1 Sparse Matrix AssemblySince dynamic memory allocation for sparse matrices is inherently very expensive, accurate preallocationof memory is crucial for e�cient sparse matrix assembly. One should use the matrix creation routines forparticular data structures, such as MatCreateSeqAIJ() and MatCreateMPIAIJ() for compressed, sparse rowformats, instead of the generic MatCreate() routine. For problems with multiple degrees of freedom per node,the block, compressed, sparse row formats, created by MatCreateSeqBAIJ() and MatCreateMPIBAIJ(), cansigni�cantly enhance performance. Also, Section 3.1.1 includes extensive details and examples regardingpreallocation.11.4.2 Sparse Matrix FactorizationWhen symbolically factoring an AIJ matrix, PETSc has to guess how much �ll there will be. Careful useof the parameter 'f' (�ll estimate) when calling MatLUFactorSymbolic() or MatILUFactorSymbolic() canreduce greatly the number of mallocs and copies required, and thus greatly improve the performance of thefactorization. One way to determine a good value for f is to run a program with the option -log info. Thesymbolic factorization phase will then print information such asInfo:MatILUFactorSymbolic_AIJ:Realloc 12 Fill ratio:given 1 needed 2.16423This indicates that the user should have used a �ll estimate factor of about 2.17 (instead of 1) to preventthe 12 required mallocs and copies. The command line option-mat_ilu_fill 2.17will cause PETSc to preallocate the correct amount of space for incomplete (ILU) factorization. The corre-sponding option for direct (LU) factorization is -mat lu fill <fill amount>.11.4.3 PetscMalloc() CallsUsers should employ a reasonable number of PetscMalloc() calls in their codes. Hundreds or thousandsof memory allocations may be appropriate; however, if tens of thousands are being used, then reducing thenumber of PetscMalloc() calls may be warranted. For example, reusing space or allocating large chunksand dividing it into pieces can produce a signi�cant savings in allocation overhead. Section 11.5 gives details.11.5 Data Structure ReuseData structures should be reused whenever possible. For example, if a code often creates new matrices orvectors, there often may be a way to reuse some of them. Very signi�cant performance improvements can beachieved by reusing matrix data structures with the same nonzero pattern. If a code creates thousands ofmatrix or vector objects, performance will be degraded. For example, when solving a nonlinear problem ortimestepping, reusing the matrices and their nonzero structure for many steps when appropriate can makethe code run signi�cantly faster.A simple technique for saving work vectors, matrices, and so on is employing a user-de�ned context.In C and C++ such a context is merely a structure in which various objects can be stashed; in Fortran auser context can be an integer array that contains both parameters and pointers to PETSc objects. See$(PETSC DIR)/snes/examples/tutorials/ex5.c and $(PETSC DIR)/snes/examples/tutorials/ex5f.Ffor examples of user-de�ned application contexts in C and Fortran, respectively.114

11.6 Numerical ExperimentsPETSc users should run a variety of tests. For example, there are a large number of options for the linear andnonlinear equation solvers in PETSc, and di�erent choices can make a very big di�erence in convergence ratesand execution times. PETSc employs defaults that are generally reasonable for a wide range of problems,but clearly these defaults cannot be best for all cases. Users should experiment with many combinations todetermine what is best for a given problem and customize the solvers accordingly.� Use the options -snes view, -sles view, and so on (or the routines SLESView(), SNESView(), etc.)to view the options that have been used for a particular solver.� Run the code with the option -help for a list of the available runtime commands.� Use the option -log info to print details about the solvers' operation.� Use the PETSc monitoring discussed in Chapter 10 to evaluate the performance of various numericalmethods.11.7 Tips for E�cient Use of Linear SolversAs discussed in Chapter 4, the default linear solvers are� uniprocessor: GMRES(30) with ILU(0) preconditioning� multiprocessor: GMRES(30) with block Jacobi preconditioning, where there is 1 block per processor,and each block is solved with ILU(0)One should experiment to determine alternatives that may be better for various applications. Recall thatone can specify the KSP methods and preconditioners at runtime via the options-ksp_type <ksp_name> -pc_type <pc_name>One can also specify a variety of runtime customizations for the solvers, as discussed throughout the manual.In particular, note that the default restart parameter for GMRES is 30, which may be too small for somelarge-scale problems. One can alter this parameter with the option -ksp gmres restart <restart> or bycalling KSPGMRESSetRestart(). Section 4.3 gives information on setting alternative GMRES orthogonaliza-tion routines, which may provide much better parallel performance.11.8 Finding Memory LeaksPETSc provides a number of tools to aid in detection of problems with memory allocation. We brie
ydescribe these below.� The PETSc memory allocation (which collects statistics and performs error checking), is employedby default for codes compiled in a debug mode (BOPT=g, BOPT=g c++, BOPT=g complex). PETScmemory allocation can be activated for other other cases, such as BOPT=O, with the option -trmalloc,while -notrmalloc forces the use of conventional memory allocation for the BOPT=g, BOPT=g c++, andBOPT=g complex versions. When running timing tests, one should always use -notrmalloc or theBOPT=O version of the libraries.� When the PETSc memory allocation routines are used, the option -trdump will print a list of un-freed memory at the conclusion of a program. If all memory has been freed, only a message statingthe maximum allocated space will be printed. However, if some memory remains unfreed, this in-formation will be printed. Note that the option -trdump merely activates a call to TrDump() duringPetscFinalize(); the user can also call TrDump() elsewhere in a program.115

� The utility $(PETSC DIR)/bin/petscview can illustrate graphically what PETSc objects have neverbeen properly destroyed during a run. First, one should check that the source has been compiled withthe -DPETSC LOG
ag (which is the default for all versions). Then one runs the program with the -logoption, and views the resulting log �le with petscview, which uses colors to illustrate di�erent levelsof object activity. When PETSc objects have been destroyed, they change color (gray, by default).Any objects that have not been properly destroyed (so that their memory remains allocated) shouldnot turn gray.11.9 Machine-speci�c Optimizations� On the IBM SP, using the mpirun option -nopoll may improve the performance of some PETScprograms.11.10 System-related ProblemsThe performance of a code can be a�ected by a variety of factors, including the cache behavior and otherusers on the machine. Below we brie
y describe some common problems and possibilities for overcomingthem.� Problem too large for physical memory size: When timing a program, one should always leaveat least a 10 percent margin between the total memory a process is using and the physical size of themachine's memory. One way to estimate the amount of memory used by given process is with theUNIX ps command. Also, the PETSc option -log summary prints the amount of memory used by thebasic PETSc objects, thus providing a lower bound on the memory used.� E�ects of other users: If other users are running jobs on the same physical processor nodes on whicha program is being pro�led, the timing results are essentially meaningless.� Overhead of timing routines on certain machines: On certain machines, even calling the systemclock in order to time routines is slow; this skews all of the
op rates and timing results. The �le$(PETSC DIR)/src/benchmarks/PetscTime.c contains a simple test problem that will approximatethe amount of time required to get the current time in a running program. On good systems it will onthe order of 1.e-6 seconds or less.� Problem too large for good cache performance: Certain machines with low memory bandwidths(slow memory access) attempt to compensate by having a very large cache; Sun UltraSparcs and DECAlphas are examples of such machines. Thus, if a signi�cant portion of an application �ts within thecache, the program will achieve very good performance; if the code is too large, the performance candegrade markedly. To analyze whether this situation a�ects a particular code, one can try plottingthe total
op rate as a function of problem size. If the
op rate decreases rapidly at some point, theproblem may likely be too large for the cache size. There is really no solution to this performanceproblem, except not purchasing such equipment. For example, IBM RS/6000 machines do not displaythis problem.� Inconsistent timings: Inconsistent timings are likely due to other users on the machine, thrashing(using more virtual memory than available physical memory), or paging in of the initial executable.Section 10.8 provides information on overcoming paging overhead when pro�ling a code.
116

Chapter 12Other PETSc Features12.1 OptionsAllowing the user to modify parameters and options easily at runtime is very desirable for many applica-tions. PETSc 2.0 provides a simple mechanism to enable such runtime customization. Each PETSc processmaintains a database of option names and values (stored as text strings). This database is generated withthe command PETScInitialize(), which is listed below in its C/C++ and Fortran variants, respectively:ierr = PetscInitialize(int *argc,char ***args,char *file_name,char *help_message);call PetscInitialize(character file_name,integer ierr)The arguments argc and args (in the C/C++ version only) are the usual command line arguments, whilethe file name is a name of a �le that can contain additional options. By default this �le is called .petscrc inthe user's home directory. The user can also specify options via the environmental variable PETSC OPTIONS.The options are processed in the following order:� �le� environmental variable� command lineThus, the command line options supersede the environmental variable options, which in turn supersede theoptions �le.The �le format for specifying options is-optionname possible_value-anotheroptionname possible_value...All of the option names must begin with a dash (-) and have no intervening spaces. The option values canhave no intervening spaces in them either. The user can employ any naming convention. For uniformitythroughout PETSc, we employ the format -package option (for instance, -ksp type and -mat view info).Users can specify an alias for any option name (to avoid typing the sometimes lengthy default name) byadding an alias to the .petscrc �le in the formatalias -newname -oldnameFor example:alias -kspt -ksp_typealias -sd -start_in_debuggerComments can be placed in the .petscrc �le by using one of the following symbols in the �rst column of aline: #, %, or !.Any subroutine in a PETSc program can add entries to the database with the commandierr = OptionsSetValue(char *name,char *value);though this is rarely done. To locate options in the database, one should use the commands117

ierr = OptionsHasName(char *pre,char *name,int *flg);ierr = OptionsGetInt(char *pre,char *name,int *value,int *flg);ierr = OptionsGetDouble(char *pre,char *name,double *value,int *flg);ierr = OptionsGetString(char *pre,char *name,char *value,int maxlen,int *flg);ierr = OptionsGetIntArray(char *pre,char *name,int *value,int *nmax,int *flg);ierr = OptionsGetDoubleArray(char *pre,char *name,double *value, int *nmax,int *flg);All of these routines set flg=1 if the corresponding option was found, flg=0 if it was not found. Theoptional argument pre indicates that the true name of the option is the given name (with the dash \-"removed) prepended by the pre�x pre. Usually pre should be set to PETSC NULL (or PETSC NULL CHARACTERfor Fortran); its purpose is to allow someone to rename all the options in a package without knowing thenames of the individual options. For example, when using block Jacobi preconditioning, the KSP and PCmethods used on the individual blocks can be controlled via the options -sub ksp type and -sub pc type.One useful means of keeping track of user-speci�ed runtime options is use of -optionstable, whichprints to stdout during PetscFinalize() a table of all runtime options that the user has speci�ed. Arelated option is -optionsleft, , which prints the options table and indicates any options that have notbeen requested upon a call to PetscFinalize(). This feature is useful to check whether an option has beenactivated for a particular PETSc object (such as a solver or matrix format) or whether an option name mayhave been accidentally misspelled.Since PETSc has a large number of options that can be easily forgotten, we have included a Tk/Tclprogram, $PETSC DIR/bin/petscopts, that provides a GUI interface to set the options. This program setsthe options in the user's .petscrc �le. Chapter 14.3 gives details.12.2 Viewers: Looking at PETSc ObjectsPETSc employs a consistent scheme for examining, printing, and saving objects through commands of theformierr = XXXView(XXX obj,Viewer viewer);Here obj is any PETSc object of type XXX, where XXX is Mat, Vec, SNES, and so forth. There are severalprede�ned viewers:� Passing in a zero for the viewer causes the object to be printed to stdout; this is most useful whenviewing an object in a debugger.� VIEWER STDOUT SELF causes the object to be printed to stdout. For parallel objects the parts ownedby individual processors are printed in random order.� VIEWER STDOUT WORLD is similar to VIEWER STDOUT SELF, except that parallel objects are printed inthe natural order that would occur if only a single processor were in use for the entire problem; thisviewer uses the communicator MPI COMM WORLD.� VIEWER DRAWX WORLD causes the object to be drawn in a default X window.� VIEWER DRAWX SELF causes the object to be drawn in a default X window.� Passing in a viewer obtained by ViewerDrawOpenX() causes the object to be displayed graphically.� To save an object to a �le in ASCII format, the user creates the viewer object with the commandViewerFileOpenASCII(MPI Comm comm, char* file, Viewer *viewer). This object is analogous toVIEWER STDOUT SELF (for a communicator of MPI COMM SELF) and VIEWER STDOUT WORLD (for a parallelcommunicator).� To save an object to a �le in binary format, the user creates the viewer object with the commandViewerFileOpenBinary(MPI Comm comm,char* file,ViewerBinaryType type, Viewer *viewer).Details of binary I/O are discussed below. 118

� Vector and matrix objects can be passed to a running Matlab process with a viewer created byViewerMatlabOpen(MPI Comm comm, char *machine, int port, Viewer *viewer). On the Mat-lab side, one must �rst run v = openport(int port) and then A = receive(v) to obtain the matrixor vector. Once all objects have been received, the port can be closed from the Matlab end withcloseport(v). On the PETSc side, one should destroy the viewer object with ViewerDestroy(). Thecorresponding Matlab mex �les are located in $(PETSC DIR)/src/viewer/impls/matlab.The user can control the format of ASCII printed objects with viewers created by ViewerFileOpenASCII()by callingierr = ViewerSetFormat(Viewer viewer,int format,char *name);Possible formats include VIEWER FORMAT ASCII DEFAULT, VIEWER FORMAT ASCII MATLAB, andVIEWER FORMAT ASCII IMPL. The implementation-speci�c format, VIEWER FORMAT ASCII IMPL, displays theobject in the most natural way for a particular implementation. For example, when viewing a block diagonalmatrix that has been created with MatCreateSeqBDiag(), VIEWER FORMAT ASCII IMPL prints by diagonals,while VIEWER FORMAT ASCII DEFAULT uses the conventional row-oriented format.The routinesierr = ViewerPushFormat(Viewer viewer,int format,char *name);ierr = ViewerPopFormat(Viewer viewer);allow one to temporarily change the format of a viewer.As discussed above, one can output PETSc objects in binary format by �rst opening a binary viewerwith ViewerFileOpenBinary() and then using MatView(), VecView(), and the like. The correspondingroutines for input of a binary object have the form XXXLoad(). In particular, matrix and vector binary inputis handled by the following routines:ierr = MatLoad(Viewer viewer,MatType outtype,Mat *newmat);ierr = VecLoad(Viewer viewer,Vec *newvec);These routines generate parallel matrices and vectors if the viewer's communicator has more than oneprocessor. The particular matrix and vector formats are determined from the options database; see the manpages for details.One can provide additional information about matrix data for matrices stored on disk by providing anoptional �le matrixfilename.info, where matrixfilename is the name of the �le containing the matrix.The format of the optional �le is the same as the .petscrc �le and can (currently) contain the following:-matload_block_size <bs>-matload_bdiag_diags <s1,s2,s3,...>The block size indicates the size of blocks to use if the matrix is read into a block oriented data structure (forexample, MATSEQBDIAG or MATMPIBAIJ). The diagonal information s1,s2,s3,... indicates which (block)diagonals in the matrix have nonzero values. Section 15.5.9 gives details.12.3 Error HandlingErrors are handled through the routine PetscError(). This routine checks a stack of error handlers andcalls the one on the top. If the stack is empty, it selects PetscTraceBackErrorHandler(), which tries toprint a traceback. A new error handler can be put on the stack withierr = PetscPushErrorHandler(int (*HandlerFunction)(int line,char *dir,char *file,char *message,int number,void*),void *HandlerContext)The arguments to HandlerFunction() are the line number where the error occurred, the �le in which the er-ror was detected, the corresponding directory, the error message, the error integer, and the HandlerContext.The routineierr = PetscPopErrorHandler()removes the last error handler and discards it.PETSc provides two additional error handlers besides PetscTraceBackErrorHandler():PetscAbortErrorHandler()PetscAttachErrorHandler() 119

PetscAbortErrorHandler() calls abort on encountering an error, while PetscAttachErrorHandler() at-taches a debugger to the running process if an error is detected. At runtime, these error handlers canbe set with the options -on error abort or -on error attach debugger [noxterm, dbx, xxgdb, xldb][-display DISPLAY].All PETSc calls can be traced (useful for determining where a program is hanging without running inthe debugger) with the option-log_trace [filename]where filename is optional. By default the traces are printed to the screen. This can also be set with thecommand PLogTraceBegin(FILE*).It is also possible to trap signals by using the commandierr = PetscPushSignalHandler(int (*Handler)(int,void *),void *ctx);The default handler PetscDefaultSignalHandler() calls PetscError() and then terminates. In general,a signal in PETSc indicates a catastrophic failure. Any error hander that the user provides should try toclean up only before exiting. By default all PETSc programs use the default signal handler, although theuser can turn this o� at runtime with the option -no signal handler .There is a separate signal handler for
oating-point exceptions. The option -fp trap turns on the
oating-point trap at runtime, and the routineierr = PetscSetFPTrap(int flag);can be used in-line. A flag of PETSC FP TRAP ON indicates that
oating-point exceptions should be trapped,while a value of PETSC FP TRAP OFF (the default) indicates that they should be ignored. Note that on certainmachines, in particular the IBM RS/6000, trapping is very expensive.A small set of macros is used to make the error handling lightweight. These macros are used throughoutthe PETSc libraries and can be employed by the application programmer as well. When an error is �rstdetected, one should set it by callingSETERRQ(int flag,int pflag,char *message);The user should check the return codes for all PETSc routines (and possibly user-de�ned routines as well)withierr = PetscRoutine(...); CHKERRQ(int ierr);Likewise, all memory allocations should be checked withptr = (double *) PetscMalloc(n*sizeof(double)); CHKPTRQ(void *ptr);If this procedure is followed throughout all of the user's libraries and codes, any error will by default generatea clean traceback of the location of the error. In any main programs, however, the variants SETERRA(),CHKERRA(), and CHKPTRA() should be used instead to cause all processes of program to abort when an errorhas been detected. Use of the abort variant of the error checking commands is critical in the main program,since they ensure that MPI Abort() is called before the process ends; otherwise, other MPI processes thatdid not generate errors may remain unterminated.Note that the macro FUNC is used to keep track of routine names during error tracebacks. Users neednot worry about this macro in their application codes; however, users can take advantage of this featureif desired by setting this macro before each user-de�ned routine that may call SETERRQ(), SETERRA(),CHKERRQ(), or CHKERRA(). A simple example of usage is given below.#undef __FUNC__#define __FUNC__ "MyRoutine1"int MyRoutine1() {/* code here */return 0;}12.4 Incremental DebuggingWhen developing large codes, one is often in the position of having a correctly (or at least believed to becorrectly) running code; making a change to the code then changes the results for some unknown reason.Often even determining the precise point at which the old and new codes diverge is a major pain. Inother cases, a code generates di�erent results when run on di�erent numbers of processors, although in exact120

arithmetic the same answer is expected. (Of course, this assumes that exactly the same solver and parametersare used in the two cases.)PETSc provides some support for determining exactly where in the code the computations lead to di�erentresults. Frist, one should compile both programs with di�erent names. Next, one should start running bothprograms as a single MPI job. This procedure is dependent on the particular MPI implementation beingused. For example, when using MPICH on workstations, procgroup �les can be used to specify the processorson which the job is to be run. Thus, to run two programs, old and new, each on two processors, one shouldcreate the procgroup �le with the following contents:local 0workstation1 1 /home/bsmith/oldworkstation2 1 /home/bsmith/newworkstation3 1 /home/bsmith/new(Of course, workstation1, etc. can be the same machine.) Then, one can execute the commandmpirun -p4pg <procgroup_filemame> old -compare <tolerance> [your_program_options]Note that the same runtime options must be used for the two programs. The �rst time an inner product ornorm detects an inconsistency larger than <tolerance>, PETSc will generate an error. The usual runtimeoptions -start in debugger and -on error attach debugger may be used. The user can also place thecommandsPetscCompareDouble()PetscCompareScalar()PetscCompareInt()in portions of the application code to check for consistency between the two versions.12.5 Complex NumbersPETSc supports the use of complex numbers in application programs written in C, C++, and Fortran.To do so, we employ C++ versions of the PETSc libraries in which the basic \scalar" datatype, given inPETSc codes by Scalar, is de�ned as complex (or complex<double> for machines using templated complexclass libraries). To work with complex numbers, the user should compile the PETSc libraries (includingthe Fortran interface library) and the application code with BOPT=[g complex,O complex,Opg complex] fordebugging, optimized, and pro�ling versions, respectively. The �le $(PETSC DIR)/Installation providesdetailed instructions for installing PETSc.Recall that each variant of the PETSc libraries is stored in a di�erent directory, given by$(PETSC DIR)/lib/lib$(BOPT)/$(PETSC ARCH), according to the architecture and BOPT optimization vari-able. Thus, the libraries for complex numbers are maintained separately from those for real numbers. Whenusing any of the complex numbers versions of PETSc, all vector and matrix elements are treated as complex,even if their imaginary components are zero. Of course, one can elect to use only the real parts of thecomplex numbers when using the complex versions of the PETSc libraries; however, when working only withreal numbers in a code, one should use a version of PETSc for real numbers for best e�ciency.The program $(PETSC DIR)/src/sles/examples/tutorials/ex11.c solves a linear system with a com-plex coe�cient matrix. Its Fortran counterpart is $(PETSC DIR)/src/sles/examples/tutorials/ex11f.F.12.6 Emacs UsersIf users develop application codes on UNIX machines using Emacs (which we highly recommend), the etagsfeature can be used to search PETSc �les quickly and e�ciently. To use this feature, one should �rst checkthat the �le $(PETSC DIR)/TAGS exists. If this �le is not present, it should be generated by running makeetags from the PETSc home directory. Once the �le exists, from Emacs the user should issue the command\M-x visit-tags-table", where \M" denotes the Emacs Meta key, and enter the name of the TAGS �le.Then the command \M-." will cause Emacs to �nd the �le and line number where a desired PETSc functionis de�ned. Any string in any of the PETSc �les can be found with the command \M-x tags-search". To�nd repeated occurrences, one can simply use \M-," to �nd the next occurrence.121

12.7 VI UsersIf users develop application codes on UNIX machines using VI, the ctags feature can be used to browsePETSc �les quickly and e�ciently. To use this feature, one should �rst check that the �le, $(PETSC DIR)/tagsexists. If this �le is not present, it should be generated by running make tags from the PETSc home direc-tory. Once the �le exists, from VI, the user should issue the command \:set tags=$(PETSC DIR)/tags"or the user should add to his \~/.exrc " �le the line \set tags=$(PETSC DIR)/tags". Then the command\:tag FunctionName" will cause VI to �nd the �le and line number where a desired PETSc function isde�ned.12.8 Parallel CommunicationWhen used in a message-passing environment, all communication within PETSc is done through MPI, theMessage Passing Interface standard [14]. Any �le that includes petsc.h (or any other PETSc include �le),can freely use any MPI routine.

122

Chapter 13Make�lesThis chapter describes the design of the PETSc make�les, which are the key to managing code across a widevariety of Unix systems.13.1 Our Make�le SystemTo make a program named ex1, one may use the commandmake BOPT=[g,O,Opg] PETSC_ARCH=arch ex1which will compile a debugging, optimized, or pro�ling version of the example and automatically link theappropriate libraries. The architecture, arch, is one of sun4, solaris, rs6000, IRIX, hpux, freebsd,and so on. Note that when using command line options with make (as illustrated above), one must not placespaces on either side of the \=" signs. The variables BOPT and PETSC ARCH can also be set as environmentalvariables. Although PETSc is written in C, it can be compiled with a C++ compiler. For many C++ usersthis may be the preferred route. To compile with the C++ compiler, one should use the option BOPT=g c++or BOPT=O c++, or BOPT=Opg c++. The options BOPT=g complex, BOPT=O complex, and BOPT=Opg complexwill create versions that use complex double-precision numbers.13.1.1 Make�le CommandsThe directory $(PETSC DIR)/bmake contains virtually all make�le commands and customizations to enableportability across di�erent architectures. Most make�le commands for maintaining the PETSc system arede�ned in the �le $(PETSC DIR)/bmake/common. These commands, which process all appropriate �les withinthe directory of execution, include� lib - Updates the PETSc libraries based on the source code in the directory.� libfast - Updates the libraries faster. Since libfast recompiles all source �les in the directory atonce, rather than individually, this command saves time when many �les must be compiled.� clean - Removes garbage �les.Most other commands are intended for PETSc developers are generally not needed by users.� ci - Uses the RCS ci mechanism to check in all �les in the directory.� co - Uses the RCS co mechanism to check out all �les in the directory.� fortranstubs - Generates the Fortran wrapper routines.� latexpages - Updates the LaTeX version of the man pages.� wwwpages - Updates the HTML version of the man pages.123

The tree command enables the user to execute a particular action within a directory and all of itssubdirectories. The action is speci�ed by ACTION=[action], where action is one of the basic commandslisted above. For example, if the commandmake BOPT=g ACTION=lib treewere executed from the directory $(PETSC DIR)/src/ksp, the debugging library for all Krylov subspacesolvers would be built.13.1.2 Customized Make�lesThe directory $(PETSC DIR)/bmake contains a subdirectory for each architecture that contains machine-speci�c information, enabling the portability of our make�le system. For instance, for Sun SPARCstationsrunning OS 4.1.3, the directory is called sun4. Each architecture directory contains several base make�les:� base.site - locations of all needed include and library �les for a particular site. This �le (discussedbelow) is usually the only one that the user needs to alter.� base - de�nitions of the compilers, linkers, etc.� base.g - debugging options for C version.� base.O - optimization options for C version.� base.Opg - optimization options for C version, with gprof pro�ling.� base.g complex - debugging options for complex version.� base.O complex - optimization options for complex version.� base.Opg complex - optimization options for complex version, with gprof pro�ling.� base.g c++ - debugging options for C++ version.� base.O c++ - optimization options for C++ version.� base.Opg c++ - optimization options for C++ version, with gprof pro�ling.Each architecture base �le, denoted by $(PETSC DIR)/bmake/$(PETSC ARCH)/base, includes the �le$(PETSC DIR)/bmake/common, which contains the rules discussed in Section 13.1.1 that are common toall machines.We discovered that for no apparent reason, under freeBSD the include syntax is di�erent from that of allother make�les. Thus, under freeBSD gnumake must be used.13.2 PETSc FlagsPETSc has several
ags that determine how the source code will be compiled. The default
ags for particularversions are speci�ed by the variable PETSCFLAGSwithin the base �les of $(PETSC DIR)/bmake/$(PETSC ARCH),discussed in Section 13.1.2. The
ags include� PETSC DEBUG - The PETSc debugging options are activated. We recommend always using this.� PETSC COMPLEX - The version with scalars represented as complex numbers is used.� PETSC LOG - Various monitoring statistics on
oating-point operations and message-passing activityare kept. 124

Sample Make�lesMaintaining portable PETSc make�les is very simple. In Figures 22, 23, and 24 we present three samplemake�les.The �rst is a minimumMake�le for maintaining a single program that uses the PETSc libraires.ALL: ex2CFLAGS = $(CPPFLAGS)FFLAGS =SOURCEC =SOURCEF =SOURCEH =OBJSC =OBJSF =LIBBASE = libpetscslesDIRS =include $(PETSC_DIR)/bmake/$(PETSC_ARCH)/baseex2: ex2.o chkopts$(CLINKER) -o ex2 ex2.o $(PETSC_LIB)$(RM) ex2.oFigure 22: Sample PETSc Make�le for Building a Single ProgramThe most important line in this make�le is the line starting include; this line includes other make�lesthat provide the needed de�nitions and rules.The second controls the generation of several example programs.CFLAGS = $(CONF) $(PETSC_INCLUDE)SOURCEC =SOURCEF =SOURCEH =OBJSC =OBJSF =LIBBASE = libpetscslesRUNEXAMPLES_1 = runex1 runex2RUNEXAMPLES_2 = runex4RUNEXAMPLES_3 = runex3EXAMPLESC = ex1.c ex2.c ex4.cEXAMPLESF = ex3.FEXAMPLES_1 = ex1 ex2EXAMPLES_2 = ex4EXAMPLES_3 = ex3ex1: ex1.o-$(CLINKER) -o ex1 ex1.o $(PETSC_LIB)$(RM) ex1.oex2: ex2.o-$(CLINKER) -o ex2 ex2.o $(PETSC_LIB)$(RM) ex2.oex3: ex3.o-$(FLINKER) -o ex3 ex3.o $(PETSC_FORTRAN_LIB) $(PETSC_LIB)$(RM) ex3.oex4: ex4.o-$(CLINKER) -o ex4 ex4.o $(PETSC_LIB)$(RM) ex4.o 125

runex1:-@$(MPIRUN) ex1runex2:-@$(MPIRUN) -np 2 ex2 -mat_seqdense -optionsleftrunex3:-@$(MPIRUN) ex3 -v -log_summaryrunex4:-@$(MPIRUN) -np 4 ex4 -trdumpinclude $(PETSC_DIR)/bmake/$(PETSC_ARCH)/baseFigure 23: Sample PETSc Make�le for Example ProgramsThe two most important lines in the make�le of Figure 23 are the location of the PETSc home directory,set with PETSC DIR, and the include line that includes the �les de�ning all of the macro variables. Thevariable PETSC DIR is automatically de�ned for the examples within the PETSc library structure. In general,the user should set PETSC DIR to be the location of the local PETSc library. As listed in the sample make�le,the appropriate include �le is automatically completely speci�ed; the user should not alter this statementwithin the make�le. Some additional variables used in the make�le are de�ned as follows:� CLINKER, FLINKER - the C and Fortran linkers.� RM - the remove command for deleting �les.� PETSC INCLUDE - the directory locations of any PETSc (or PETSc needed) �les that are included inprograms.� CONF - various de�nes that indicate what packages are available.� PCONF - de�ned in $(PETSC ARCH)/base.site to indicate which external packages are available at aparticular site.� COPTFLAGS -
ags de�ned for each system and level of optimization (C/C++ compiler).� FOPTFLAGS -
ags de�ned for each system and level of optimization (Fortran compiler).� CPPFLAGS -
ags de�ned for each system and level of optimization for C/C++ preprocessor.� EXAMPLES 1 - examples that will be built with make BOPT=[g,O,Opg] examples (see Section 13.1.1)� RUNEXAMPLES 1 - examples that will be run with make runexamples (see Section 13.1.1)� EXAMPLESC - all C examples that will be checked in/out of RCS with make ci and make co (notgenerally needed by users).� EXAMPLESF - all Fortran examples that will be checked in/out of RCS with make ci and make co (notgenerally needed by users).� PETSC LIB - all of the base PETSc libraries.� PETSC FORTRAN LIB - the PETSc Fortran interface library.Note that the PETSc example programs are divided into several categories, which currently include:EXAMPLES 1 - basic C suite used in installation testsEXAMPLES 2 - additional C suite including graphicsEXAMPLES 3 - basic Fortran .F suiteEXAMPLES 4 - subset of 1 and 2 that runs on only a single processorEXAMPLES 5 - examples that require complex numbersEXAMPLES 6 - C examples that do not work with complex numbersEXAMPLES 7 - C examples that require BlockSolveEXAMPLES 8 - Fortran .F examples that do not work with complex numbers126

EXAMPLES 9 - uniprocessor version of 3EXAMPLES 10 - Fortran .F examples that require complex numbersWe next list in Figure 24 a make�le that maintains a PETSc library. Although most users do not needto understand or deal with such make�les, they are also easily used.ALL: libCFLAGS = $(PETSC_INCLUDE) -I../../.. -I$(PETSC_DIR)/pinclude $(CONF)SOURCEC = sp1wd.c spinver.c spnd.c spqmd.c sprcm.cSOURCEF = degree.f fnroot.f genqmd.f qmdqt.f rcm.f fn1wd.f gen1wd.f \genrcm.f qmdrch.f rootls.f fndsep.f gennd.f qmdmrg.f qmdupd.fSOURCEH =OBJSC = sp1wd.o spinver.o spnd.o spqmd.o sprcm.oOBJSF = degree.o fnroot.o genqmd.o qmdqt.o rcm.o fn1wd.o gen1wd.o \genrcm.o qmdrch.o rootls.o fndsep.o gennd.o qmdmrg.o qmdupd.oLIBBASE = libpetscmatMANSEC = 2include $(PETSC_DIR)/bmake/$(PETSC_ARCH)/baseFigure 24: Sample PETSc Make�le for Library MaintenanceThe library's name is libpetscmat.a, and the source �les being added to it are indicated by SOURCEC(for C �les) and SOURCEF (for Fortran �les). Note that the OBJSF and OBJSC are identical to SOURCEF andSOURCEC, respectively, except they use the su�x .o rather than .c or .f.The variable MANSEC indicates that any manual pages generated from this source should be included inthe second section.13.3 LimitationsThis approach to portable make�les has some minor limitations, including the following:� Each make�le must be called \make�le".� Each make�le can maintain at most one archive library.
127

Chapter 14PETSc GUI UtilitiesPETSc includes two GUI utilities, PETScView and PETScOpts, that facilitate library use and interpretationof computational results. We acknowledge the contributions of Matt Hille (Washington State University),who focused on the design and documentation of these tools while a participant in Argonne's SummerStudent Research Participation Program, 1995.As discussed in Chapter 10, PETSc incorporates uniform event logging throughout the library in theform of statistics regarding object creation and destruction,
oating-point operations, execution time, andmemory usage. The utility PETScView provides an abstract interpretation of the pro�le data for a high-levelview of the interrelationships among various code modules. PETScView assists in debugging, analysis, andperformance enhancement and is especially useful for complex simulations that employ a combination ofnumerical methods and modeling techniques.An additional GUI tool is PETScOpts, which provides a simple interface to the full range of PETScoptions database commands. As discussed in Section 12.1, these options enable the user to set particularsolvers, data structures, pro�ling options, and so on at runtime, thereby facilitating the customization andcomparison of various algorithms and storage schemes.14.1 Getting StartedPETScView and PETScOpts use the Tcl and the Tk Toolkit [1]. Therefore, in order to use the PETScutility programs, the Tcl and Tk packages must be installed on the user's local system. See the followingWWW site for information about Tcl/Tk: http://www.sunlabs.com/research/tcl/.In order for PETScView and PETScOptions to work properly, a slight modi�cation of the sourcecode is required. Using any text editor, the user should load the �le $(PETSC DIR)/bin/petscview (or$(PETSC DIR)/bin/petscopts) and change the �rst line in the source code to point to the proper location ofwhere wish can be found. For example, if wish is located at /usr/bin/wish, the �rst line for each programshould be changed to#! /usr/local/wish -fAfter this modi�cation, PETScView and PETScOpts are ready to run.Since Tcl/Tk are constantly changing (even faster than PETSc), it is di�cult to keep PetscView andPetscOpts compatible with the latest release of Tcl/Tk, while still working with earlier releases. Thus, theuser may have to modify the PetscView and PetscOpts script slightly to get them working with a particularversion of Tcl/Tk.14.2 Using PETScViewWhenever a PETSc program is executed with the -log all or -log option, a log �le is produced that canthen be interpreted by PETScView. PETScView generates a dynamic tree-shaped hierarchy whose nodescontain icons that uniquely identify PETSc objects (such as linear solvers, matrices, and distributed arrays).The objects are color coded to denote the various states of activity, so that PETScView illustrates the128

X SNES LS

SLES

GMRES Jacobi

Figure 25: A Sample PETScView Object Treechanging relationships among objects during program execution. A sample PETScView object tree is shownin Figure 25 for a parallel linear solver.A number of built-in commands enable the application programmer to navigate easily through the simu-lation. In addition, PETScView can display performance statistics for particular objects and their children,thus enabling users to focus performance tuning e�orts. This section provides introductory informationregarding PETScView. Additional details are available via the \help" feature of the utility.14.2.1 Running PETScViewBecause of fundamental limitations of Tcl/Tk, PETScView can be run only with relatively small log �les(at most a couple of thousand events). If the user generates a very large log �le, Tcl/Tk will hang and oftenswamp the machine.To begin PETScView, the user should type petscview from the UNIX shell prompt. To load a PETSclog �le, one runs PETScView, giving the log �le name as a command line argument:petscview Log.0This command invokes PETScView and automatically loads and interprets the pro�ling data contained inthe �le Log.0. PETScView can also be run without a log �le given as a command line argument. In thiscase, the user must load the log �le from within PETScView. To do this, the user selects the \Open File"command from the �le menu. PETScView will automatically present the user with another window fromwhich the �le can be selected.PETScView supports several additional command line arguments, as listed in Table 7. Note that the129

Table 7: PETScView Command Line OptionsArgument Purpose-def file filename The location of the de�nitions �le-time Show the time-notime Do not show the time-stepsize N Set the stepsize to N-delay N Set the delay to N milliseconds-printer dest DESTINATION Set the destination (File or Printer)-print command COMMAND Set the postscript print command-printer PRINTER Specify the printer-print orientation 1 or 0 1 = landscape , 0 = portrait-print color Specify color mode (color, gray, mono)command line options override the default values within the user's .petscviewrc �le, which is discussedfurther in the following section.14.2.2 Loading a Con�guration FilePETSc con�guration �les contain information that determines the graphical representation of PETSc objectswithin PETScView. Whenever PETScView is invoked, a con�guration �le is automatically read. Thelocation of this �le is speci�ed in .petscviewrc, which is stored in the user's home directory. By default,.petscviewrc points to the con�guration �le, ($PETSC DIR/bin/petscview.cfg); however, this can bechanged to point to a con�guration �le created by the application programmer. Section 14.2.6 gives moreinformation about changing the .petscviewrc �le.Even though PETScView loads a de�nitions �le whenever it is initially run, a �le of new de�nitions canbe loaded from within PETScView at any time. This command is found in the �le menu. Loading a newde�nitions �le will automatically update all PETSc objects.14.2.3 Printing a PETScView Object TreeThe \print" command of the �le menu displays a dialog box from which the user can change the printingoptions. The default values are loaded from .petscviewrc when PETScView is �rst run. When the properoptions are set for printing, one clicks on the \print" button or presses \return". If the user is printing to a�le, another dialog box will appear from which the user may specify the output �lename.Note: Currently, PETScView prints trees of size less than 1024 x 768 (measured in pixels). If thescrollbars are needed to view any parts of a tree, it is very unlikely that the whole tree will be printed. Thissituation presents no problem, however, when the tree is printed to a �le.14.2.4 Exiting PETScViewTo exit PETScView, one selects the \Exit" option of the �le menu. When this action is con�rmed,PETScView will terminate and return the user to the calling shell.14.2.5 The PETScView SimulationNavigationOnce a �le has been loaded by PETScView, the user can navigate through the simulationby using PETScView'splay bar. The play bar is located at the bottom of the window and contains buttons whose appearancesand functioning resemble the buttons on a tape player. From left to right, these buttons have the followingfunctions:� Rewind - Rewinds the simulation to the zeroth step.130

� Step Backward - Steps backward through the simulation.� Play Backward - Plays the simulation in reverse with an appropriate delay between steps.� Stop - Brings the simulation to a halt.� Play Forward - Plays forward through the simulation with an appropriate delay between steps.� Step Forward - Steps forward through the simulation� Finish - Immediately jumps to the last step of the simulation.In addition to the play bar buttons, the scale directly below these buttons enables the user to navigateto an arbitrary position in the simulation. To use the scale, one clicks the left mouse button at the desiredposition on the scale. (The scale ranges from the zeroth step to the last step of the simulation.) The scaleis scaled and labeled appropriately.All of the above functions can also be accessed through the \player" menu. Selecting the player menulists the commands in addition to their accelerator keys. The player menu also contains two additionalcommands that allow the user to jump to an arbitrary step in the simulation or to an arbitrary time duringthe simulation. When one of these commands is invoked, the user is prompted for the proper target jumpvalue.The View MenuThe View menu contains several additional commands that can be useful in the pro�ling of a PETSc program.These commands enable the user to view the raw pro�ling data as well as various statistics about programperformance.Changing Viewer OptionsThe options menu allows the user to change certain options that are set by default whenever PETScViewis initially invoked. (The default values are de�ned in .petscviewrc.) These options include the step sizewhen stepping through the simulation, the delay between events when playing through the simulation, andthe colors chosen to denote the internal states of the PETSc objects.The simulation's step size can be changed at any time during the simulation by selecting the \stepsize" command of the Options menu. Whenever the user clicks on the this selection, a dialog box appearsprompting the user for the desired step size. Valid step sizes range from 1 to the total number of events inthe simulation.To change the delay, one selects the \delay" command of the options menu. A cascading menu presentsthe user with a few built-in delays, which include none, real-time, and second delay. (The real-time delayoption causes delays between events in the simulation to be proportionate to the delays in the actual executionof the PETSc program.) To specify a user-de�ned delay, the user clicks on the \after delay" selection. Thenthe user will be presented with a dialog box in which the user can specify the desired delay in milliseconds.Only values ranging from 1 to 2000 are valid.The �nal selection on the Options menu presents the user with a cascading menu with entries that allowthe user to change PETScView's object color-coding scheme. Selecting any one of the entries presents the userwith another window fromwhich the color may be chosen. (The colors are taken from /usr/lib/X11/rgb.txt.)14.2.6 Advanced FeaturesPETScView allows the user to de�ne/rede�ne the graphical representation of PETSc objects. To do so, theuser creates a con�guration �le, a Tcl script �le, which includes speci�c de�nitions for group shapes, grouplabels, object icons, object labels, and action strings. Whenever PETScView is invoked, a con�guration �le isread from the location speci�ed in the .petscviewrc �le. By default, it is set to point to the con�guration �leincluded with the PETSc package ($PETSC DIR/bin/petscview.cfg). Allowing the application programmerto create a customized con�guration �le enables PETScView to interpret the pro�ling data even when newPETSc objects have been created. 131

Table 8: PETSc Object Group De�nitionsGroup Object cookieViewers 0Index Sets 1Vectors 2Vector Scattering 3Matrices 4Draw (simple graphics) 5Line Graphs 6Krylov Subspace Solvers 7Preconditioners 8Simpli�ed Linear Equations Solvers 9Grids 10Stencils 11Simpli�ed Nonlinear Solvers 12Distributed Arrays 13Matrix Scattering 14Group De�nitionsEach PETSc object group is identi�ed by its integer-valued object cookie. Table 8 lists the currentlyavailable object groups and their associated object cookies. For each group of objects, the PETScViewrequires the following de�nitions:set GroupShape(OBJECT_COOKIE) SHAPEset GroupDesc(OBJECT_COOKIE) "GROUP DESCRIPTION"where OBJECT COOKIE is the integer used to identify the group of objects and SHAPE is one of the prede�nedshapes used by PETScView. These shapes includeSquare Wide_Rectangle Down_TriangleThin_RectangleV Tall_Oval OctagonThin_RectangleH Wide_Oval CircleRectangle Up_TriangleGROUP DESCRIPTION is a line of text enclosed by quotes to describe the object group. For example,vectors have the following group descriptions:set GroupShape(2) Thin_RectangeVset GroupDesc(2) VectorsObject De�nitionsWithin each group, the object is identi�ed with the use of a second integer (OBJECT TYPE). This speci�esthe type of object within the object group. PETScView requires both a name and an icon to be de�ned forevery object. These de�nitions have the following syntax:set Icon(OBJECT_COOKIE,OBJECT_TYPE) "-text TEXT" orset Icon(OBJECT_COOKIE,OBJECT_TYPE) "-bitmap @BITMAP_LOC"set Name(OBJECT_COOKIE,OBJECT_TYPE) "OBJECT DESCRIPTION"where TEXT is a short description of the object (used if a bitmap is inappropriate) and BITMAP LOC is thelocation of the bitmap graphic. The OBJECT DESCRIPTION is a line of text used to describe the object. Asan example, we give the following de�nitions:set Icon(2,0) "-bitmap @$env(PETSC_DIR)/bitmaps/vector.bit"set Name(2,0) "Sequential Vector"set Icon(2,1) "-bitmap @$env(PETSC_DIR)/bitmaps/vectorp.bit"set Name(2,1) "Parallel Vector" 132

Notice the syntax that Tcl requires for the location of the bitmap. The bitmap location must be precededby a @ in order for PETScView the work properly. $env($PETSC DIR) is used to access the value of theenvironmental variable PETSC DIR. To use the value of any other environmental variables in specifying a �lelocation, one must use in the expression the following syntax:$env(ENVIRONMENTAL_VARIABLE)To create one's own bitmap picture to represent an object, the user creates the bitmap using a programsuch as bitmap. Once this is done, PETScView must know the location of the bitmap. The user mustspecify the precise location in the �le system where the bitmap graphic can be found. For example, supposethat one creates a new bitmap to symbolize a parallel vector. Since the bitmap is located in the user's homedirectory, the following de�nition will not create an error:set Icon(2,1) "-bitmap $env(HOME)/vectorp.bit"More examples on de�ning additional PETSc objects and information about how PETSc de�nes theobject types are given in $PETSC DIR/bin/petscview.cfg.Action StringsWhen certain actions occur during the execution of a PETSc program, these actions are also recorded inthe pro�ling data. Once again, PETSc uses an integer to specify the type of action that is being performed.PETScView interprets the actions using the de�nitions contained in action() string de�nitions. Thesede�nitions are also located in the con�guration �le. An action de�nition has the following syntax:set Action(ACTION_ID) "ACTION"where ACTION ID is an integer that encodes the action and ACTION is a descriptive string. Currently,PETScView uses the action de�nitions as de�ned in petscview.cfg.14.3 Using PETScOptsPETScOpts is a PETSc utility program that enables the application programmer to modify his or herpersonal .petscrc �le. As described in Section 12.1, the .petscrc �le contains a list of options that will bepassed to a PETSc program whenever it is executed. This �le has the following format:-optionname possible_value-anotheroptionname possible_valueEven though this �le can be manually modi�ed by the application programmer with any text editor,PETScOpts greatly simpli�es this task.14.3.1 Running PETScOptsThe command petscopts will invoke PETScOpts from the UNIX shell prompt. Any entries contained inthe .petscrc �le of the user's home directory will automatically be interpreted by PETScOpts. Once insidePETScOpts, a number of entry boxes, check buttons, radio buttons, and other widgets allow the applicationprogrammer to specify the options that should be saved in the .petscrc �le for future use.PETScOpts can also write the PETSc command line options to a �le other than the default .petscrc�le. To do so, run PETScOpts with the �le name as a command line argument:petscopts file_nameFrom within PETScOpts, a di�erent �le can be loaded at any time by selecting the \Open �le" option ofthe �le menu.14.3.2 Getting HelpEven though many of PETSc's command line options are self-explanatory, a single descriptive line of textis displayed at the bottom of the window whenever the pointer is positioned over any check button, radiobutton, or entry that speci�es an option.14.3.3 Exiting PETScOptsThe user can exit PETScOpts at any time by selecting the exit button from the �le menu. If a .petscrc�le was loaded when PETScOpts was initiated, the user is asked whether the current or original settings (orneither) should be saved in .petscrc. 133

Chapter 15Design and Implementations of theAbstract ClassesPETSc 2.0 is designed using strong data encapsulation. Hence, any collection of data (for instance, a sparsematrix) is stored in a way that is completely private from the application code. The application codecan manipulate the data only through a well-de�ned interface, as it does not know how the data is storedinternally.PETSc is designed around several components (e.g., Vec (vectors), Mat (matrices, both dense and sparse)).Each component has� Its own include �le $(PETSC DIR)/include/<component>.h� Its own directory, $(PETSC DIR)/src/<component>� An abstract data structure de�ned in the �le $(PETSC DIR)/src/<component>/<component>impl.h.This data structure is shared by all the di�erent implementations of the component. For example, formatrices it is shared by dense, sparse, parallel, and sequential formats.� An abstract interface that de�nes the application callable functions for the component. These arede�ned in the directory $(PETSC DIR)/src/<component>/interface.� One or more actual implementations of the components (for example, sparse uniprocessor and par-allel matrices implemented with the AIJ storage format). These are each in a subdirectory of$(PETSC DIR)/src/<component>/impls. Except in rare circumstances, data structures de�ned hereshould not be referenced from outside this directory.Each type of object, for instance a vector, is de�ned in its own include �le, by typedef Object*Object;, (for example, typedef Vec* Vec;). This organization allows the compiler to perform type check-ing while at the same time completely removing the details of the implementation of Object from theapplication code. The exact details of Object may be changed at link time. This capability is extremelyimportant because it allows the library internals to be changed without altering or recompiling the applicationcode.Polymorphism is supported through the directory $(PETSC DIR)/src/<component>/interface, whichcontains the code that implements the abstract interface to the operations on the object. Essentially, theseroutines do some error checking of arguments and logging of pro�ling information and then call the func-tion appropriate for the particular implementation of the object. The name of the abstract function isObjectOperation, for instance, MatMult or PCCreate, while the name of a particular implementation isObjectOperation Implementation, for instance, MatMult SeqAIJ or PCCreate ILU. These naming conven-tions are used to simplify code maintenance.Each object structure (named Object) consists of three parts: a common PETSc header (de�ned ininclude/phead.h, a pointer to a list of operations for the object, and any additional information that isappropriate for the particular abstract object. The PETSc header includes an integer cookie, an integertype, an MPI communicator, a function pointer that indicates a destroy routine, and a function pointer that134

indicates a viewer routine. The header can also contain additional records. Several routines are provided formanipulating data within the header, includingint PetscObjectGetComm(PetscObject object,MPI_Comm *comm)which returns in comm the MPI communicator associated with the speci�ed object.After the header, each PETSc object contains a pointer to a list of operations for the object. For example,the vector operations include norms, assembly routines, scatters, and gathers. Finally, information that isappropriate for the particular abstract object is included. Generally, this information includes a pointer todata used by a particular implementation. For example, the Vec structure is given bystruct _Vec {PETSCHEADERstruct _VeOps ops;void *data;};15.1 NamesConsistency of names for variables, functions, and the like is extremely important in making the packageboth usable and maintainable. We use several conventions:� All function names and enum types consist of words, each of which is capitalized, for example,SLESSolve() and MatGetReordering().� All enum elements and macro variables are capitalized. When they consist of several complete words,there is an underscore between each word.� Functions that are private to PETSc (not callable by the application code) eitherhave an appended Private (for example, StashValues Private) orhave an appended ObjectSubtype (for example, MatMult SeqAIJ).In addition, functions that are not intended for use outside of a particular �le are declared static.� Function names in structures are the same as the base application function name without the objectpre�x, and all are in small letters. For example, MatMultTrans() has a structure name of multtrans().� Each application usable function begins with the name of the object, for example, ISInvertPermutationor MatMult.15.2 Coding Conventions and Style GuideWithin the PETSc source code, we adhere to the following guidelines so that the code is uniform and easilymaintainable:� All PETSc function bodies are indented two characters.� Each additional level of loops, if statements, and so on is indented two more characters.� Wrapping lines should be avoided whenever possible.� Source code lines should not be more than 120 characters wide.� The macros SETERRQ() and CHKERRQ() should be on the same line as the routine to be checked unlessthis violates the 120-character-width rule. Try to make error messages short, but informative.� The local variable declarations should be aligned. For example, use the styleint i,j;Scalar a;instead of 135

int i,j;Scalar a;� All local variables of a particular type (e.g., int) should be listed on the same line if possible; otherwise,they should be listed on adjacent lines.� Equal signs should be aligned in regions where possible.� For routines of more than a few lines, there should be a blank line between the local variable declarationsand the body of the function.� Indentation for if statements should be done either asif () {....}else {....}or asif () {....} else {....}� No tabs are allowed in any of the source code.15.3 Option NamesSince consistency simpli�es usage and code maintenance, the names of PETSc routines,
ags, options, and soon have been selected with great care. The default option names are of the form -package subpackage name.For example, the option name for the basic convergence tolerance for the KSP package is -ksp atol. Inaddition, operations in di�erent packages of a similar nature have a similar name. For example, the optionname for the basic convergence tolerance for the SNES package is -snes atol.15.4 Implementation of Pro�lingThis section provides details about the implementation of event logging and pro�ling within PETSc. Chap-ter 10 gives information about using the pro�ling in application codes.The interface for pro�ling in PETSc is contained in the �le $(PETSC DIR)/include/petsclog.h. ItincludesPLogObjectCreate(PetscObject h);which logs the creation of any PETSc object. This should be included in any PETSc source code that usesPetscHeaderCreate().Just before an object is destroyed, it is logged withPLogObjectDestroy(PetscObject h);If an object has a clearly de�ned parent object (for instance, when a work vector is generated for use ina Krylov solver), this information is logged with the command,PLogObjectParent(PetscObject parent,PetscObject child);It is also useful to log information about the state of an object, as can be done with the command#if defined(PETSC_LOG)PLogObjectState(PetscObject h,char *format,...);#endif 136

For example, for sparse matrices we usually log the matrix dimensions and number of nonzeros.As discussed in the preceding section, events are logged using the pairPLogEventBegin(int event,PetscObject o1,PetscObject o2,PetscObject o3,PetscObject o4);PLogEventEnd(int event,PetscObject o1,PetscObject o2,PetscObject o3,PetscObject o4);This logging is usually done in the abstract interface �le for the operations, for example, src/mat/src/matrix.c.Several routines that will be used rarely by the application programmer arePLogBegin();PLogAllBegin();PLogDump(char *filename);PLogPrintSummary(FILE *fd);These routines are normally called by the PetscInitialize() and PetscFinalize() routines when theoption -log, -log summary, or -log all is given.15.5 The Various Matrix ClassesPETSc provides a variety of matrix implementations, since no single matrix format is appropriate for allproblems. The following sections brie
y describe the ever-expanding assortment of matrix types withinPETSc.15.5.1 Sequential AIJ Sparse MatricesThe default matrix representation within PETSc is the general sparse AIJ format (also called the Yale sparsematrix format or compressed sparse row format, CSR). Section 3.1.1 describes this matrix type.15.5.2 Parallel AIJ Sparse Matrices15.5.3 Sequential Block AIJ Sparse MatricesThe sequential and parallel block AIJ formats, which are extensions of the AIJ formats described above,are intended especially for use with multicomponent PDEs. The block variants store matrix elements by�xed-sized dense nb � nb blocks, where currently nb ranges from two through �ve. These formats are fullycompatible with standard Fortran 77 storage. That is, the stored row and column indices can begin at eitherone (as in Fortran) or zero.The routine for creating a sequential block AIJ matrix with m rows, n columns, and a block size of nb isierr = MatCreateSeqBAIJ(MPI_Comm comm,int nb,int m,int n,int nz,int *nnz, Mat *A)The arguments nz and nnz can be used to preallocate matrix memory by indicating the number of blocknonzeros per row. For good performance during matrix assembly, preallocation is crucial; however, the usercan set nz=0 and nzz=PETSC NULL for PETSc to dynamically allocate matrixmemory as needed. Section 3.1.1discusses preallocation for the AIJ format; extension to the block AIJ format is straightforward.15.5.4 Parallel Block AIJ Sparse MatricesParallel block AIJ matrices with block size �nb can be created with the commandierr = MatCreateMPIBAIJ(MPI_Comm comm,int nb,int m,int n,int M,int N,int d_nz,int *d_nnz, int o_nz,int *o_nnz,Mat *A);A is the newly created matrix, while the arguments m, n, M, and N, indicate the number of local rows andcolumns and the number of global rows and columns, respectively. Either the local or global parameterscan be replaced with PETSC DECIDE, so that PETSc will determine them. The matrix is stored with a �xednumber of rows on each processor, given by m, or determined by PETSc if m is PETSC DECIDE.If one does not use PETSC DECIDE for m and n, one must ensure that they are chosen to be compatible withthe vectors. To do this, one �rst considers the product y = Ax. The m that one uses in MatCreateMPIBAIJ()must match the local size used in the VecCreateMPI() for y. The n used must match that used as the localsize in VecCreateMPI() for x. 137

The user must set d nz=0, o nz=0, d nnz=PETSC NULL, and o nnz=PETSC NULL for PETSc to controldynamic allocation of matrix memory space. Analogous to nz and nnz for the routine MatCreateSeqBAIJ(),these arguments optionally specify block nonzero information for the diagonal (d nz and d nnz) and o�-diagonal (o nz and o nnz) parts of the matrix. For a square global matrix, we de�ne each processor'sdiagonal portion to be its local rows and the corresponding columns (a square submatrix); each processor'so�-diagonal portion encompasses the remainder of the local matrix (a rectangular submatrix). Section 3.1.1gives an example of preallocation for the parallel AIJ matrix format; extension to the block parallel AIJ caseis straightforward.15.5.5 Sequential Dense MatricesPETSc provides both sequential and parallel dense matrix formats, where each processor stores its entries ina column-major array in the usual Fortran 77 style. Section 3.1.2 provides details on creating these matrices.15.5.6 Parallel Dense MatricesThe parallel dense matrices are partitioned by rows across the processors, so that each local rectangularsubmatrix is stored in the dense format described above.15.5.7 Parallel Cyclic Block Dense MatricesNot yet implemented.15.5.8 Parallel BlockSolve Sparse MatricesPETSc provides a parallel, sparse, row-based matrix format that is intended for use in conjunction with theILU and ICC preconditioners in BlockSolve95. Section 4.4.1 gives details on this matrix type.15.5.9 Block Diagonal Sparse MatricesStorage by block diagonals is available in both uniprocessor and parallel versions, although currently only asubset of matrix operations is supported. Each element of a block diagonal is de�ned to be a square denseblock of size nb � nb, where conventional diagonal storage results for nb=1. Such storage is particularlyuseful for multicomponent PDEs discretized on regular grids.The routine for creating a uniprocessor block diagonal matrix with m rows, n columns, and a block sizeof nb isierr = MatCreateSeqBDiag(MPI_COMM_SELF,int m,int n,int nd,int nb,int *diag,Scalar **diagv,Mat *A);The argument nd is the number of block diagonals, and diag is an array of block diagonal numbers. Forthe matrix element Aij, where i and j respectively denote the row and column number of the element, theblock diagonal number is computed using integer division bydiag = i=nb� j=nb:If matrix storage space is allocated by the user, the argument diagv is a pointer to the actual diagonals (inthe same order as the diag array). For PETSc to control memory allocation, the user should merely setdiagv=PETSC NULL.A simple example of this storage format is illustrated below for block size nb=1. Here nd = 4 and diag= [2, 1, 0, -3]. The diagonals need not be listed in any particular order, so that diag = [-3, 0, 1, 2] or diag= [0, 2, -3, 1] would also be valid values for the diag array.a00 0 0 a03 0 0a10 a11 0 0 a14 0a20 a21 a22 0 0 a250 a31 a32 a33 0 00 0 a42 a43 a44 00 0 0 a53 a54 a55138

15.5.10 Parallel Block Diagonal Sparse MatricesThe parallel block diagonal matrices are partitioned by rows across the processors, so that each local rect-angular submatrix is stored by block diagonals as described above. The routine for creating a parallel blockdiagonal matrix with m local rows, M global rows, n global columns, and a block size of nb isierr = MatCreateMPIBDiag(MPI_COMM_SELF,int m,int M,int N,int nd,int nb,int *diag,Scalar **diagv,Mat *A);Either the m or M can be set to PETSC DECIDE for PETSc to determine the corresponding quantity.15.6 Other Libraries and PackagesIt is not the intention of PETSc to provide all of the software pieces to solve a user's application problem.The intention is that other libraries can provide the pieces that are not in PETSc. Unfortunately, not manyrobust, general-purpose, easy-to-use software packages are available, and some of those that do exist have avery low-level user interface.To simplify the use of certain packages, we have integrated into PETSc an interface to those pack-ages. At the moment, these include parts of LAPACK, BLAS, BlockSolve95, and the reordering routinesin SPARSPAK. We invite users to let us know (by writing to petsc-maint@mcs.anl.gov) whether they needparticular libraries that are related to PETSc for an application; we may try to provide easy-to-use PETScinterfaces for them.To allow the portable use of BLAS and LAPACK from C, we constructed a new include �le,$(PETSC DIR)/include/pinclude/plapack.h, that uses de�nes to make a uniform naming scheme for BLAS(all routines begin with BL) and LAPACK (all routines begin with LA). This �le incorporates function pro-totypes for the BLAS and LAPACK routines used. In addition, the include �le deals with di�erent Fortran77 compilers' treatment of function names (for instance, Sun compilers put an underscore at the end of allfunctions created in Fortran 77). The include �le also deals with the fact that on Crays, C double precisionis the same as Fortran 77 single precision. Lastly, it also calls the appropriate complex LAPACK and BLASroutines when needed.

139

Appendix APETSc Function Reference ListRoutine Pre�xesVec Vector Mat Matrix routinesSLES Linear equation solvers KSP Krylov subspace methodsPC Preconditioners IS Index setsSNES Nonlinear equation solvers DA Distributed arraysTS timesteppers Options Options databasePetsc Miscellaneous system Draw Drawing graphics routinesAO Application PLog Pro�ling functionsA.1 Vector RoutinesData Structures:� Vec - a vector of any type� VecScatter - an object used in scatter routines, which allows reuse of communication informationbetween di�erent (but identical) scatters� AO - application orderings, which provide mappings between user orderings and PETSc orderingsNorms:� NORM 1� NORM 2� NORM INFINITY or NORM MAXInsertMode:� INSERT VALUES� ADD VALUERuntime Options:� -vec mpi� -vec view� -vec view draw� -vec view draw lg� -vec view matlab 140

#include \vec.h"int DrawTensorContour(Draw win,int m,int n,double *x,double *y,Vec V)Draws a contour plot for a two-dimensional array that is stored as a PETSc vector.int VecAXPBY(Scalar *alpha,Scalar *beta,Vec x,Vec y)Computes y = alpha x + beta y.int VecAXPY(Scalar *alpha,Vec x,Vec y)Computes y = alpha x + y.int VecAYPX(Scalar *alpha,Vec x,Vec y)Computes y = x + alpha y.int VecAbs(Vec v)Replaces every element in a vector with its absolute value.int VecAssemblyBegin(Vec vec)Begins assembling the vector. This routine should be called after completing all calls to VecSetValues().int VecAssemblyEnd(Vec vec)Completes assembling the vector. This routine should be called after VecAssemblyBegin().int VecCopy(Vec x,Vec y)Copies a vector.int VecCreateMPI(MPI Comm comm,int n,int N,Vec *vv)Creates a parallel vector.int VecCreateSeq(MPI Comm comm,int n,Vec *V)Creates a standard, sequential array-style vector.int VecCreate(MPI Comm comm,int n,Vec *V)Creates a vector, where the vector type is determined from the options database. Generates a parallel MPIvector if the communicator has more than one processor.int VecDestroyVecs(Vec *vv,int m)Frees a block of vectors obtained with VecDuplicateVecs().int VecDestroy(Vec v)Destroys a vector.int VecDot(Vec x, Vec y, Scalar *val)Computes the vector dot product.int VecDuplicateVecs(Vec v,int m,Vec **V)Creates several vectors of the same type as an existing vector.int VecDuplicate(Vec v,Vec *newv)Creates a new vector of the same type as an existing vector.int VecEqual(Vec vec1,Vec vec2,PetscTruth *
g)Compares two vectors.int VecGetArrays(Vec *x,int n,Scalar ***a)Returns a pointer to the arrays in a set of vectors that were created by a call to VecDuplicateVecs(). YouMUST call VecRestoreArrays() when you no longer need access to the array.int VecGetArray(Vec x,Scalar **a)Returns a pointer to vector data. For default PETSc vectors, VecGetArray() returns a pointer to the localdata array. Otherwise, this routine is implementation dependent. You MUST call VecRestoreArray() whenyou no longer need access to the array.int VecGetLocalSize(Vec x,int *size)Returns the number of elements of the vector stored in local memory. This routine may be implementationdependent, so use with care.int VecGetOwnershipRange(Vec x,int *low,int *high)Returns the range of indices owned by this processor, assuming that the vectors are laid out with the �rstn1 elements on the �rst processor, next n2 elements on the second, etc. For certain parallel layouts thisrange may not be well de�ned.int VecGetSize(Vec x,int *size)Returns the global number of elements of the vector.int VecGetType(Vec vec,VecType *type,char **name)Gets the vector type and name (as a string) from the vector.141

int VecLoad(Viewer viewer,Vec *newvec)Loads a vector that has been stored in binary format with VecView().int VecMAXPY(int nv,Scalar *alpha,Vec x,Vec *y)Computes y[j] = alpha[j] x + y[j].int VecMDot(int nv,Vec x,Vec *y,Scalar *val)Computes vector multiple dot products.int VecMTDot(int nv,Vec x,Vec *y,Scalar *val)Computes inde�nite vector multiple dot products. That is, it does NOT use the complex conjugate.int VecMax(Vec x,int *p,double *val)Determines the maximum vector component and its location.int VecMin(Vec x,int *p,double *val)Determines the minimum vector component and its location.int VecNorm(Vec x,NormType type,double *val)Computes the vector norm.int VecPlaceArray(Vec vec,Scalar *array)Allows one to replace the array in a vector with a user provided one. This is useful to avoid copying anarray into a vector. EXPERTS ONLY.int VecPointwiseDivide(Vec x,Vec y,Vec w)Computes the componentwise division w = x/y.int VecPointwiseMult(Vec x,Vec y,Vec w)Computes the componentwise multiplication w = x*y.int VecReciprocal(Vec v)Replaces each component of a vector by its reciprocal.int VecRestoreArrays(Vec *x,int n,Scalar ***a)Restores a group of vectors after VecGetArrays() has been called.int VecRestoreArray(Vec x,Scalar **a)Restores a vector after VecGetArray() has been called.int VecScale(Scalar *alpha,Vec x)Scales a vector.int VecScatterBegin(Vec x,Vec y,InsertMode addv,ScatterMode mode,VecScatter inctx)Begins a generalized scatter from one vector to another. Complete the scattering phase withVecScatterEnd().int VecScatterCopy(VecScatter sctx,VecScatter *ctx)Makes a copy of a scatter context.int VecScatterCreate(Vec xin,IS ix,Vec yin,IS iy,VecScatter *newctx)Creates a vector scatter context.int VecScatterDestroy(VecScatter ctx)Destroys a scatter context created by VecScatterCreate().int VecScatterEnd(Vec x,Vec y,InsertMode addv,ScatterMode mode, VecScatter ctx)Ends a generalized scatter from one vector to another. Call after �rst calling VecScatterBegin().int VecScatterPostRecvs(Vec x,Vec y,InsertMode addv,ScatterMode mode,VecScatter inctx)Posts the receives required for the ready-receiver version of the VecScatter routines.int VecScatterRemap(VecScatter scat,int *rto,int *rfrom)Remaps the "from" and "to" indices in a vector scatter context. FOR EXPERTS ONLY!int VecScatterView(VecScatter ctx, Viewer viewer)Views a vector scatter context.int VecSetLocalToGlobalMapping(Vec x, int n,int *indices)Sets a local numbering to global numbering used by the routine VecSetValuesLocal() to allow users toinsert vector entries using a local (per-processor) numbering.int VecSetOption(Vec x,VecOption op)Allows one to set options for a vectors behavior.int VecSetRandom(PetscRandom rctx,Vec x)Sets all components of a vector to random numbers.142

int VecSetValuesLocal(Vec x,int ni,int *ix,Scalar *y,InsertMode iora)Inserts or adds values into certain locations of a vector, using a local ordering of the nodes.int VecSetValues(Vec x,int ni,int *ix,Scalar *y,InsertMode iora)Inserts or adds values into certain locations of a vector.void VecSetValue(Vec v,int row,Scalar value, InsertMode mode);Set a single entry into a vector.int VecSet(Scalar *alpha,Vec x)Sets all components of a vector to a scalar.int VecShift(Scalar *shift,Vec v)Shifts all of the components of a vector by computing x[i] = x[i] + shift.int VecSum(Vec v,Scalar *sum)Computes the sum of all the components of a vector.int VecSwap(Vec x,Vec y)Swaps the vectors x and y.int VecTDot(Vec x,Vec y,Scalar *val)Computes an inde�nite vector dot product. That is, this routine does NOT use the complex conjugate.int VecValid(Vec v,PetscTruth *
g)Checks whether a vector object is valid.int VecView(Vec v,Viewer viewer)Views a vector object.int VecWAXPY(Scalar *alpha,Vec x,Vec y,Vec w)Computes w = alpha x + y.A.2 Matrix RoutinesData Structures:� Mat - a matrix of any type (including matrix-free)Matrix options:� MAT ROW ORIENTED - inserts are done with row-oriented blocks� MAT COLUMN ORIENTED - inserts are done with column-oriented blocks� MAT ROWS SORTED - row indices in the inserted block are sorted� MAT COLUMNS SORTED - column indices in the inserted block are sorted� MAT NO NEW NONZERO LOCATIONS - additional inserts will not be allowed if they generate anew non-zero.� MAT YES NEW NONZERO LOCATIONS - additional inserts will be allowed� MAT SYMMETRIC MATRIX - matrix is symmetric� MAT STRUCTURALLY SYMMETRIC MATRIX - matrix is symmetric in nonzero structureOrderings:� ORDER NATURAL - Natural� ORDER ND - Nested Dissection� ORDER 1WD - One-Way Dissection� ORDER RCM - Reverse Cuthill-McKee� ORDER QMD - Quotient Minimum Degree 143

Norms:� NORM 1� NORM 2� NORM FROBENIUS� NORM INFINITY or NORM MAXOptions to MatAssemblyXXX():� MAT FLUSH ASSEMBLY - intermediate matrix assembly� MAT FINAL ASSEMBLY - �nal matrix assemblyOptions to MatGetInfo():� MAT LOCAL� MAT GLOBAL MAX� MAT GLOBAL SUMMatType:� MATSAME - same format as current (e.g., used for MatConvert())� MATSEQAIJ - sequential sparse row (AIJ) format� MATMPIAIJ - parallel sparse row (AIJ) format� MATSEQDENSE - sequential dense format� MATMPIDENSE - parallel dense format� MATMPIROWBS - parallel row-based format compatible with BlockSolve95� MATSEQBAIJ - sequential sparse block row (BAIJ) format� MATMPIBAIJ - parallel sparse block row (BAIJ) format� MATSEQBDIAG - sequential block diagonal format� MATMPIBDIAG - parallel block diagonal formatMatGetSubMatrixCall:� MAT INITIAL MATRIX� MAT REUSE MATRIXRuntime Options:� -mat aij� -mat aij dxml� -mat aij essl� -mat aij inode limit [limit]� -mat aij no inode� -mat aij oneindex� -mat aij superlu 144

� -mat baij� -mat bdiag� -mat bdiag diags [diag number 1,diag number 2,...]� -mat bdiag ndiag [number of diagonals]� -mat block size [size]� -mat coloring� -mat dense� -mat ilu �ll [�ll]� -mat lu �ll [�ll]� -mat lu pivotthreshold [threshold]� -mat mpiaij� -mat mpibaij� -mat mpibdiag� -mat mpidense� -mat mpirowbs� -mat no unroll� -mat order [order]� -mat rowbs no inode� -mat seqaij� -mat seqbaij� -mat seqbdiag� -mat seqdense� -mat view� -mat view draw� -mat view info� -mat view info detailed� -mat view matlab� -matload bdiag diags� -matload block size [size]� -matload ignore info 145

#include \mat.h"int MatAXPY(Scalar *a,Mat X,Mat Y)Computes Y = a*X + Y.int MatAssemblyBegin(Mat mat,MatAssemblyType type)Begins assembling the matrix. This routine should be called after completing all calls to MatSetValues().int MatAssemblyEnd(Mat mat,MatAssemblyType type)Completes assembling the matrix. This routine should be called after MatAssemblyBegin().int MatBDiagGetData(Mat mat,int *nd,int *bs,int **diag,int **bdlen,Scalar ***diagv)Gets the data for the block diagonal matrix format. For the parallel case, this returns information for thelocal submatrix.int MatCholeskyFactorNumeric(Mat mat,Mat *fact)Performs numeric Cholesky factorization of a symmetric matrix. Call this routine after �rst callingMatCholeskyFactorSymbolic().int MatCholeskyFactorSymbolic(Mat mat,IS perm,double f,Mat *fact)Performs symbolic Cholesky factorization of a symmetric matrix.int MatCholeskyFactor(Mat mat,IS perm,double f)Performs in-place Cholesky factorization of a symmetric matrix.int MatColoringGetName(MatColoring meth,char **name)Gets the name associated with a coloring.int MatColoringPatch(Mat mat,int n,int *colorarray,ISColoring *iscoloring)EXPERTS ONLY, used inside matrix coloring routines that use matGetRowIJ() and/orMatGetColumnIJ().int MatColoringRegisterAll()Registers all of the matrix coloring routines in PETSc.int MatColoringRegisterDestroy()Frees the list of coloringing routines.int MatColoringRegister(MatColoring *name,char *sname,int(*color)(Mat,MatColoring,ISColoring*))Adds a new sparse matrix coloring to the matrix package.int MatCompress(Mat mat)Tries to store the matrix in as little space as possible. May fail if memory is already fully used, since ittries to allocate new space.int MatConvert(Mat mat,MatType newtype,Mat *M)Converts a matrix to another matrix, either of the same or di�erent type.int MatCopy(Mat A,Mat B)Copys a matrix to another matrix.int MatCreateMPIAIJ(MPI Comm comm,int m,int n,int M,int N, int d nz,int *d nnz,int o nz,int*o nnz,Mat *A)Creates a sparse parallel matrix in AIJ format (the default parallel PETSc format). For good matrixassembly performance the user should preallocate the matrix storage by setting the parameters d nz (ord nnz) and o nz (or o nnz). By setting these parameters accurately, performance can be increased by morethan a factor of 50.int MatCreateMPIBAIJ(MPI Comm comm,int bs,int m,int n,int M,int N, int d nz,int *d nnz,into nz,int *o nnz,Mat *A)Creates a sparse parallel matrix in block AIJ format (block compressed row). For good matrix assemblyperformance the user should preallocate the matrix storage by setting the parameters d nz (or d nnz) ando nz (or o nnz). By setting these parameters accurately, performance can be increased by more than afactor of 50.int MatCreateMPIBDiag(MPI Comm comm,int m,int M,int N,int nd,int bs, int *diag,Scalar**diagv,Mat *A)Creates a sparse parallel matrix in MPIBDiag format.int MatCreateMPIDense(MPI Comm comm,int m,int n,int M,int N,Scalar *data,Mat *A)Creates a sparse parallel matrix in dense format.int MatCreateMPIRowbs(MPI Comm comm,int m,int M,int nz,int *nnz,void *procinfo,Mat*newA)Creates a sparse parallel matrix in the MATMPIROWBS format. This format is intended primarily as aninterface for BlockSolve95. 146

int MatCreateSeqAIJ(MPI Comm comm,int m,int n,int nz,int *nnz, Mat *A)Creates a sparse matrix in AIJ (compressed row) format (the default parallel PETSc format). For goodmatrix assembly performance the user should preallocate the matrix storage by setting the parameter nz(or the array nzz). By setting these parameters accurately, performance during matrix assembly can beincreased by more than a factor of 50.int MatCreateSeqBAIJ(MPI Comm comm,int bs,int m,int n,int nz,int *nnz, Mat *A)Creates a sparse matrix in block AIJ (block compressed row) format. For good matrix assemblyperformance the user should preallocate the matrix storage by setting the parameter nz (or the array nzz).By setting these parameters accurately, performance during matrix assembly can be increased by morethan a factor of 50.int MatCreateSeqBDiag(MPI Comm comm,int m,int n,int nd,int bs,int *diag, Scalar **diagv,Mat*A)Creates a sequential block diagonal matrix.int MatCreateSeqDense(MPI Comm comm,int m,int n,Scalar *data,Mat *A)Creates a sequential dense matrix that is stored in column major order (the usual Fortran 77 manner).Many of the matrix operations use the BLAS and LAPACK routines.int MatCreateShell(MPI Comm comm,int m,int n,int M,int N,void *ctx,Mat *A)Creates a new matrix class for use with a user-de�ned private data storage format.int MatCreate(MPI Comm comm,int m,int n,Mat *A)Creates a matrix where the type is determined from the options database. Generates a parallel MPImatrix if the communicator has more than one processor. The default matrix type is AIJ, using theroutines MatCreateSeqAIJ() and MatCreateMPIAIJ().int MatDestroyMatrices(int n,Mat **mat)Destroys a set of matrices obtained with MatGetSubMatrices().int MatDestroy(Mat mat)Frees space taken by a matrix.int MatDiagonalScale(Mat mat,Vec l,Vec r)Scales a matrix on the left and right by diagonal matrices that are stored as vectors. Either of the twoscaling matrices can be PETSC NULL.int MatDiagonalShift(Mat Y,Vec D)Computes Y = Y + D, where D is a diagonal matrix that is represented as a vector.int MatEqual(Mat A,Mat B,PetscTruth *
g)Compares two matrices.int MatFDColoringApply(Mat J,MatFDColoring coloring,Vec x1,Vec w1,Vec w2,Vec w3, int(*f)(void *,Vec,Vec,void*),void *sctx,void *fctx)Given a matrix for which a MatFDColoring has been created, computes the Jacobian for a function via�nite di�erences.int MatFDColoringCreate(Mat mat,ISColoring iscoloring,MatFDColoring *color)Creates a matrix coloring context for �nite di�erence computation of Jacobians.int MatFDColoringDestroy(MatFDColoring c)Destroys a matrix coloring context that was created via MatFDColoringCreate().int MatFDColoringPrintHelp(MatFDColoring fd)Prints help message for matrix �nite di�erence calculations using coloring.int MatFDColoringSetFromOptions(MatFDColoring matfd)Set coloring �nite di�erence parameters from the options database.int MatFDColoringSetParameters(MatFDColoring matfd,double error,double umin)Sets the parameters for the approximation of Jacobian using �nite di�erences.int MatFDColoringView(MatFDColoring color,Viewer viewer)Views a �nite di�erence coloring context.int MatGetArray(Mat mat,Scalar **v)Returns a pointer to the element values in the matrix. This routine is implementation dependent, and maynot even work for certain matrix types. You MUST call MatRestoreArray() when you no longer need toaccess the array.int MatGetBlockSize(Mat mat,int *bs)Returns the matrix block size; useful especially for the block row and block diagonal formats.147

int MatGetColoringTypeFromOptions(char *pre�x,MatColoring *type)Gets matrix coloring method from the options database.int MatGetColoring(Mat mat,MatColoring type,ISColoring *iscoloring)Gets a coloring for a matrix to reduce �ll or to improve numerical stability of LU factorization.int MatGetColumnIJ(Mat mat,int shift,PetscTruth symmetric,int *n,int **ia,int** ja,PetscTruth*done)Returns the compress Column storage i and j indices for sequential matrices. EXPERTS ONLY.int MatGetDiagonal(Mat mat,Vec v)Gets the diagonal of a matrix.int MatGetInfo(Mat mat,MatInfoType
ag,MatInfo *info)Returns information about matrix storage (number of nonzeros, memory, etc.).int MatGetLocalSize(Mat mat,int *m,int* n)Returns the number of rows and columns in a matrix stored locally. This information may beimplementation dependent, so use with care.int MatGetOwnershipRange(Mat mat,int *m,int* n)Returns the range of matrix rows owned by this processor, assuming that the matrix is laid out with the�rst n1 rows on the �rst processor, the next n2 rows on the second, etc. For certain parallel layouts thisrange may not be well de�ned.int MatGetReorderingTypeFromOptions(char *pre�x,MatReordering *type)Gets matrix reordering method from the options database.int MatGetReordering(Mat mat,MatReordering type,IS *rperm,IS *cperm)Gets a reordering for a matrix to reduce �ll or to improve numerical stability of LU factorization.int MatGetRowIJ(Mat mat,int shift,PetscTruth symmetric,int *n,int **ia,int** ja,PetscTruth*done)Returns the compress row storage i and j indices for sequential matrices. EXPERTS ONLY.int MatGetRow(Mat mat,int row,int *ncols,int **cols,Scalar **vals)Gets a row of a matrix. You MUST call MatRestoreRow() for each row that you get to ensure that yourapplication does not bleed memory.int MatGetSize(Mat mat,int *m,int* n)Returns the numbers of rows and columns in a matrix.int MatGetSubMatrices(Mat mat,int n,IS *irow,IS *icol,MatGetSubMatrixCall scall, Mat**submat)Extracts several submatrices from a matrix. If submat points to an array of valid matrices, it may bereused.int MatGetTypeFromOptions(MPI Comm comm,char *pre,MatType *type,int *set)Determines from the options database what matrix format the user has speci�ed.int MatGetType(Mat mat,MatType *type,char **name)Gets the matrix type and name (as a string) from the matrix.int MatGetValues(Mat mat,int m,int *idxm,int n,int *idxn,Scalar *v)Gets a block of values from a matrix.int MatHasOperation(Mat mat,MatOperation op,PetscTruth *has)Determines if the given matrix supports the particular operation.int MatILUDTFactor(Mat mat,double dt,int maxnz,IS row,IS col,Mat *fact)Performs a drop tolerance ILU factorization.int MatILUFactorSymbolic(Mat mat,IS row,IS col,double f,int �ll,Mat *fact)Performs symbolic ILU factorization of a matrix. Uses levels of �ll only, not drop tolerance. UseMatLUFactorNumeric() to complete the factorization.int MatILUFactor(Mat mat,IS row,IS col,double f,int level)Performs in-place ILU factorization of matrix.int MatIncompleteCholeskyFactorSymbolic(Mat mat,IS perm,double f,int �ll, Mat *fact)Performs symbolic incomplete Cholesky factorization for a symmetric matrix. UseMatCholeskyFactorNumeric() to complete the factorization.int MatIncreaseOverlap(Mat mat,int n, IS *is,int ov)Given a set of submatrices indicated by index sets, replaces the index by larger ones that representsubmatrices with more overlap. 148

int MatLUFactorNumeric(Mat mat,Mat *fact)Performs numeric LU factorization of a matrix. Call this routine after �rst callingMatLUFactorSymbolic().int MatLUFactorSymbolic(Mat mat,IS row,IS col,double f,Mat *fact)Performs symbolic LU factorization of matrix. Call this routine before calling MatLUFactorNumeric().int MatLUFactor(Mat mat,IS row,IS col,double f)Performs in-place LU factorization of matrix.int MatLoad(Viewer viewer,MatType outtype,Mat *newmat)Loads a matrix that has been stored in binary format with MatView(). The matrix format is determinedfrom the options database. Generates a parallel MPI matrix if the communicator has more than oneprocessor. The default matrix type is AIJ.int MatMultAdd(Mat mat,Vec v1,Vec v2,Vec v3)Computes v3 = v2 + A * v1.int MatMultTransAdd(Mat mat,Vec v1,Vec v2,Vec v3)Computes v3 = v2 + A' * v1.int MatMultTrans(Mat mat,Vec x,Vec y)Computes matrix transpose times a vector.int MatMult(Mat mat,Vec x,Vec y)Computes the matrix-vector product, y = Ax.int MatNorm(Mat mat,NormType type,double *norm)Calculates various norms of a matrix.int MatPermute(Mat mat,IS row,IS col,Mat *B)Creates a new matrix with rows and columns permuted from the original.int MatPrintHelp(Mat mat)Prints all the options for the matrix.int MatRelax(Mat mat,Vec b,double omega,MatSORType
ag,double shift, int its,Vec x)Computes one relaxation sweep.int MatReorderForNonzeroDiagonal(Mat mat,double atol,IS ris,IS cis)Changes matrix ordering to remove zeros from diagonal. This may help in the LU factorization to preventa zero pivot.int MatReorderingGetName(MatReordering meth,char **name)Gets the name associated with a reordering.int MatReorderingRegisterAll()Registers all of the matrix reordering routines in PETSc.int MatReorderingRegisterDestroy()Frees the list of ordering routines.int MatReorderingRegister(MatReordering *name,char *sname,int(*order)(Mat,MatReordering,IS*,IS*))Adds a new sparse matrix reordering to the matrix package.int MatRestoreArray(Mat mat,Scalar **v)Restores the matrix after MatGetArray has been called.int MatRestoreColumnIJ(Mat mat,int shift,PetscTruth symmetric,int *n,int **ia,int**ja,PetscTruth *done)Call after you are completed with the ia,ja indices obtained with MatGetColumnIJ(). EXPERTS ONLY.int MatRestoreRowIJ(Mat mat,int shift,PetscTruth symmetric,int *n,int **ia,int** ja,PetscTruth*done)Call after you are completed with the ia,ja indices obtained with MatGetRowIJ(). EXPERTS ONLY.int MatRestoreRow(Mat mat,int row,int *ncols,int **cols,Scalar **vals)Frees any temporary space allocated by MatGetRow().int MatScale(Scalar *a,Mat mat)Scales all elements of a matrix by a given number.int MatSetLocalToGlobalMapping(Mat x, int n,int *indices)Sets a local numbering to global numbering used by the routine MatSetValuesLocal() to allow users toinsert matrices entries using a local (per-processor) numbering.149

int MatSetOption(Mat mat,MatOption op)Sets a parameter option for a matrix. Some options may be speci�c to certain storage formats. Someoptions determine how values will be inserted (or added). Sorted, row-oriented input will generallyassemble the fastest. The default is row-oriented, nonsorted input.int MatSetUnfactored(Mat mat)Resets a factored matrix to be treated as unfactored.int MatSetValuesLocal(Mat x,int nrow,int *irow,int ncol, int *icol,Scalar *y,InsertMode iora)Inserts or adds values into certain locations of a matrix, using a local ordering of the nodes.int MatSetValues(Mat mat,int m,int *idxm,int n,int *idxn,Scalar *v,InsertMode addv)Inserts or adds a block of values into a matrix. These values may be cached, so MatAssemblyBegin() andMatAssemblyEnd() MUST be called after all calls to MatSetValues() have been completed.void MatSetValue(Mat m,int row,int col,Scalar value,InsertMode mode);Set a single entry into a matrix.int MatShellGetContext(Mat mat,void **ctx)Returns the user-provided context associated with a shell matrix.int MatShellSetOperation(Mat mat,MatOperation op, void *f)Allows user to set a matrix operation for a shell matrix.int MatShift(Scalar *a,Mat Y)Computes Y = Y + a I, where a is a scalar and I is the identity matrix.int MatSolveAdd(Mat mat,Vec b,Vec y,Vec x)Computes x = y + inv(A)*b, given a factored matrix.int MatSolveTransAdd(Mat mat,Vec b,Vec y,Vec x)Computes x = y + inv(trans(A)) b, given a factored matrix.int MatSolveTrans(Mat mat,Vec b,Vec x)Solves A' x = b, given a factored matrix.int MatSolve(Mat mat,Vec b,Vec x)Solves A x = b, given a factored matrix.int MatTranspose(Mat mat,Mat *B)Computes an in-place or out-of-place transpose of a matrix.int MatValid(Mat m,PetscTruth *
g)Checks whether a matrix object is valid.int MatView(Mat mat,Viewer viewer)Visualizes a matrix object.int MatZeroEntries(Mat mat)Zeros all entries of a matrix. For sparse matrices this routine retains the old nonzero structure.int MatZeroRowsLocal(Mat mat,IS is, Scalar *diag)Zeros all entries (except possibly the main diagonal) of a set of rows of a matrix; using local numbering ofrows.int MatZeroRows(Mat mat,IS is, Scalar *diag)Zeros all entries (except possibly the main diagonal) of a set of rows of a matrix.A.3 Simpli�ed Linear SolversData Structures:� SLES - linear equation solver contextRuntime Options:� -sles view#include \sles.h" 150

int SLESAppendOptionsPre�x(SLES sles,char *pre�x)Appends to the pre�x used for searching for all SLES options in the database. You must include the - atthe beginning of the pre�x name.int SLESCreate(MPI Comm comm,SLES *outsles)Creates a linear equation solver context.int SLESDestroy(SLES sles)Destroys the SLES context.int SLESGetKSP(SLES sles,KSP *ksp)Returns the KSP context for a SLES solver.int SLESGetOptionsPre�x(SLES sles,char **pre�x)Gets the pre�x used for searching for all SLES options in the database.int SLESGetPC(SLES sles,PC *pc)Returns the preconditioner (PC) context for a SLES solver.int SLESPrintHelp(SLES sles)Prints SLES options.int SLESSetFromOptions(SLES sles)Sets various SLES parameters from user options. Also takes all KSP and PC options.int SLESSetOperators(SLES sles,Mat Amat,Mat Pmat,MatStructure
ag)Sets the matrix associated with the linear system and a (possibly) di�erent one associated with thepreconditioner.int SLESSetOptionsPre�x(SLES sles,char *pre�x)Sets the pre�x used for searching for all SLES options in the database. You must include the - at thebeginning of the pre�x name.int SLESSetUpOnBlocks(SLES sles)Sets up the preconditioner for each block in the block Jacobi, block Gauss-Seidel, and overlapping Schwarzmethods.int SLESSetUp(SLES sles,Vec b,Vec x)Performs set up required for solving a linear system.int SLESSolve(SLES sles,Vec b,Vec x,int *its)Solves a linear system.int SLESView(SLES sles,Viewer viewer)Prints the SLES data structure.A.4 PreconditionersData Structures:� PC - preconditioner contextAvailable Methods:� PCNONE - null preconditioner� PCJACOBI - Jacobi� PCSOR - SOR/SSOR and other variants� PCEISENSTAT - SOR using the Eisenstat trick� PCBJACOBI - block Jacobi� PCASM - additive overlapping Schwarz� PCILU - incomplete LU� PCICC - incomplete Cholesky� PCBGS - block Gauss-Seidel 151

� PCMG - multigrid� PCSHELL - user-de�ned shell preconditioner� PCLU - LU (direct solver)MGType:� MGMULTIPLICATIVE� MGADDITIVE� MGFULL� MGKASKADERuntime Options:� -pc type [jacobi,bjacobi,sor,eisenstat,ilu,icc,asm,bgs,mg,lu,shell,none]� -pc asm blocks [blocks]� -pc asm overlap [overlap]� -pc bgs blocks [blocks]� -pc bgs symmetric� -pc bgs truelocal� -pc bjacobi blocks [blocks]� -pc bjacobi truelocal� -pc eisenstat diagonal scaling� -pc eisenstat omega [omega]� -pc icc factorpointwise� -pc ilu factorpointwise� -pc ilu in place� -pc ilu levels [levels]� -pc ilu preserve row sums� -pc ilu reuse �ll� -pc ilu reuse reordering� -pc ilu use drop tolerance� -pc lu in place� -pc mg cycles [cycles]� -pc mg levels [levels]� -pc mg method [method]� -pc mg smoothdown� -pc mg smoothup� -pc sor backward 152

� -pc sor its [iterations]� -pc sor local backward� -pc sor local forward� -pc sor local symmetric� -pc sor omega [omega]� -pc sor symmetric#include \pc.h"int MGCheck(PC pc)Checks that all components of the MG structure have been set.int MGDefaultResidual(Mat mat,Vec b,Vec x,Vec r)Default routine to calculate the residual.int MGGetCoarseSolve(PC pc,SLES *sles)Gets the solver context to be used on the coarse grid.int MGGetLevels(PC pc,int *levels)Gets the number of levels to use with MG.int MGGetSmootherDown(PC pc,int l,SLES *sles)Gets the SLES context to be used as smoother before coarse grid correction (pre-smoother).int MGGetSmootherUp(PC pc,int l,SLES *sles)Gets the SLES context to be used as smoother after coarse grid correction (post-smoother).int MGGetSmoother(PC pc,int l,SLES *sles)Gets the SLES context to be used as smoother for both pre- and post-smoothing. Call bothMGGetSmootherUp() and MGGetSmootherDown() to use di�erent functions for pre- and post-smoothing.int MGSetCyclesOnLevel(PC pc,int l,int c)Sets the number of cycles to run on this level.int MGSetCycles(PC pc,int n)Sets the number of cycles to use. 1 denotes a V-cycle; 2 denotes a W-cycle. Use MGSetCyclesOnLevel()for more complicated cycling.int MGSetInterpolate(PC pc,int l,Mat mat)Sets the function to be used to calculate the interpolation on the lth level.int MGSetLevels(PC pc,int levels)Sets the number of levels to use with MG. Must be called before any other MG routine.int MGSetNumberSmoothDown(PC pc,int n)Sets the number of pre-smoothing steps to use on all levels. Use MGGetSmootherDown() to set di�erentpre-smoothing steps on di�erent levels.int MGSetNumberSmoothUp(PC pc,int n)Sets the number of post-smoothing steps to use on all levels. Use MGGetSmootherUp() to set di�erentnumbers of post-smoothing steps on di�erent levels.int MGSetResidual(PC pc,int l,int (*residual)(Mat,Vec,Vec,Vec),Mat mat)Sets the function to be used to calculate the residual on the lth level.int MGSetRestriction(PC pc,int l,Mat mat)Sets the function to be used to restrict vector from level l to l-1.int MGSetRhs(PC pc,int l,Vec c)Sets the vector space to be used to store the right-hand side on a particular level. The user should free thisspace at the conclusion of multigrid use.int MGSetR(PC pc,int l,Vec c)Sets the vector space to be used to store the residual on a particular level. The user should free this spaceat the conclusion of multigrid use.int MGSetType(PC pc,MGType form)Determines the form of multigrid to use: multiplicative, additive, full, or the Kaskade algorithm.int MGSetX(PC pc,int l,Vec c)Sets the vector space to be used to store the solution on a particular level. The user should free this spaceat the conclusion of multigrid use. 153

int PCASMCreateSubdomains2D(int m,int n,int M,int N,int dof,int overlap,int *Nsub,IS **is)Creates the index sets for the overlapping Schwarz preconditioner for a two-dimensional problem on aregular grid.int PCASMGetSubSLES(PC pc,int *n local,int *�rst local,SLES **sles)Gets the local SLES contexts for all blocks on this processor.int PCASMSetLocalSubdomains(PC pc, int n, IS *is)Sets the local subdomains (for this processor only) for the additive Schwarz preconditioner. Either all orno processors in the PC communicator must call this routine.int PCASMSetOverlap(PC pc, int ovl)Sets the overlap between a pair of subdomains for the additive Schwarz preconditioner. Either all or noprocessors in the PC communicator must call this routine.int PCASMSetTotalSubdomains(PC pc, int N, IS *is)Sets the subdomains for all processor for the additive Schwarz preconditioner. Either all or no processorsin the PC communicator must call this routine, with the same index sets.int PCAppendOptionsPre�x(PC pc,char *pre�x)Appends to the pre�x used for searching for all PC options in the database. You must NOT include the -at the beginning of the pre�x name.int PCApplyBAorABTrans(PC pc,PCSide side,Vec x,Vec y,Vec work)Applies the transpose of the preconditioner and operator to a vector.int PCApplyBAorAB(PC pc, PCSide side,Vec x,Vec y,Vec work)Applies the preconditioner and operator to a vector.int PCApplyRichardsonExists(PC pc, PetscTruth *exists)Determines whether a particular preconditioner has a built-in fast application of Richardson's method.int PCApplyRichardson(PC pc,Vec x,Vec y,Vec w,int its)Applies several steps of Richardson iteration with the particular preconditioner. This routine is usuallyused by the Krylov solvers and not the application code directly.int PCApplySymmetricLeft(PC pc,Vec x,Vec y)Applies the left part of a symmetric preconditioner to a vector.int PCApplySymmetricRight(PC pc,Vec x,Vec y)Applies the right part of a symmetric preconditioner to a vector.int PCApplyTrans(PC pc,Vec x,Vec y)Applies the transpose of preconditioner to a vector.int PCApply(PC pc,Vec x,Vec y)Applies the preconditioner to a vector.int PCBGSGetSubSLES(PC pc,int *n local,int *�rst local,SLES **sles)Gets the local SLES contexts for all blocks on this processor.int PCBGSSetLocalBlocks(PC pc, int blocks,int *lens)Sets the local number of blocks for the block Gauss-Seidel (BGS) preconditioner.int PCBGSSetSymmetric(PC pc, PCBGSType
ag)Sets the BGS preconditioner to use symmetric, backward, or forward relaxation. By default, forwardrelaxation is used.int PCBGSSetTotalBlocks(PC pc, int blocks,int *lens)Sets the global number of blocks for the block Gauss-Seidel (BGS) preconditioner.int PCBGSSetUseTrueLocal(PC pc)Sets a
ag to indicate that the block problem is associated with the linear system matrix instead of thedefault (where it is associated with the preconditioning matrix). That is, if the local system is solvediteratively then it iterates on the block from the matrix using the block from the preconditioner as thepreconditioner for the local block.int PCBJacobiGetSubSLES(PC pc,int *n local,int *�rst local,SLES **sles)Gets the local SLES contexts for all blocks on this processor.int PCBJacobiSetLocalBlocks(PC pc, int blocks,int *lens)Sets the local number of blocks for the block Jacobi preconditioner.int PCBJacobiSetTotalBlocks(PC pc, int blocks,int *lens)Sets the global number of blocks for the block Jacobi preconditioner.154

int PCBJacobiSetUseTrueLocal(PC pc)Sets a
ag to indicate that the block problem is associated with the linear system matrix instead of thedefault (where it is associated with the preconditioning matrix). That is, if the local system is solvediteratively then it iterates on the block from the matrix using the block from the preconditioner as thepreconditioner for the local block.int PCCreate(MPI Comm comm,PC *newpc)Creates a preconditioner context.int PCDestroy(PC pc)Destroys PC context that was created with PCCreate().int PCEisenstatSetOmega(PC pc,double omega)Sets the SSOR relaxation coe�cient, omega, to use with Eisenstat's trick (where omega = 1.0 by default).int PCEisenstatUseDiagonalScaling(PC pc)Causes the Eisenstat preconditioner to do an additional diagonal preconditioning. For matrices with verydi�erent values along the diagonal, this may improve convergence.int PCGetFactoredMatrix(PC pc,Mat *mat)Gets the factored matrix from the preconditioner context. This routine is valid only for the LU, incompleteLU, Cholesky, and incomplete Cholesky methods.int PCGetOperators(PC pc,Mat *mat,Mat *pmat,MatStructure *
ag)Gets the matrix associated with the linear system and possibly a di�erent one associated with thepreconditioner.int PCGetOptionsPre�x(PC pc,char **pre�x)Gets the pre�x used for searching for all PC options in the database.int PCGetType(PC pc,PCType *meth,char **name)Gets the PC method type and name (as a string) from the PC context.int PCILUSetLevels(PC pc,int levels)Sets the number of levels of �ll to use.int PCILUSetReuseFill(PC pc,PetscTruth
ag)When matrices with same nonzero structure are ILUDT factored, this causes later ones to use the �llcomputed in the initial factorization.int PCILUSetReuseReordering(PC pc,PetscTruth
ag)When similar matrices are factored, this causes the ordering computed in the �rst factor to be used for allfollowing factors; applies to both �ll and drop tolerance ILUs.int PCILUSetUseDropTolerance(PC pc,double dt,int dtcount)The preconditioner will use an ILU based on a drop tolerance.int PCILUSetUseInPlace(PC pc)Tells the system to do an in-place incomplete factorization.int PCLUSetUseInPlace(PC pc)Tells the system to do an in-place factorization. For some implementations, for instance, dense matrices,this enables the solution of much larger problems.int PCModifySubMatrices(PC pc,int nsub,IS *row,IS *col,Mat *submat,void *ctx)Calls an optional user-de�ned routine within certain preconditioners if one has been set withPCSetModifySubMarices().int PCNullSpaceCreate(MPI Comm comm, int has cnst, int n, Vec *vecs,PCNullSpace *SP)Creates a data-structure used to project vectors out of null spaces.int PCNullSpaceDestroy(PCNullSpace sp)Destroys a data-structure used to project vectors out of null spaces.int PCNullSpaceRemove(PCNullSpace sp,Vec vec)Removes all the components of a null space from a vector.int PCPostSolve(PC pc,KSP ksp)Optional post-solve phase, intended for any preconditioner-speci�c actions that must be performed afterthe iterative solve itself.int PCPreSolve(PC pc,KSP ksp)Optional pre-solve phase, intended for any preconditioner-speci�c actions that must be performed beforethe iterative solve itself.int PCPrintHelp(PC pc)Prints all the options for the PC component. 155

int PCRegisterAll()Registers all of the preconditioners in the PC package.int PCRegisterDestroy()Frees the list of preconditioners that were registered by PCRegister().int PCRegister(PCType name,char *sname,int (*create)(PC))Adds the preconditioner to the preconditioner package, given a preconditioner name (PCType) and afunction pointer.int PCSORSetIterations(PC pc, int its)Sets the number of inner iterations to be used by the SOR preconditioner. The default is 1.int PCSORSetOmega(PC pc, double omega)Sets the SOR relaxation coe�cient, omega (where omega = 1.0 by default).int PCSORSetSymmetric(PC pc, MatSORType
ag)Sets the SOR preconditioner to use symmetric (SSOR), backward, or forward relaxation. The localvariants perform SOR on each processor. By default forward relaxation is used.int PCSetFromOptions(PC pc)Sets PC options from the options database. This routine must be called before PCSetUp() if the user is tobe allowed to set the preconditioner method.int PCSetModifySubMatrices(PC pc,int(*func)(PC,int,IS*,IS*,Mat*,void*),void *ctx)Sets a user-de�ned routine for modifying the submatrices that arise within certain subdomain-basedpreconditioners. The basic submatrices are extracted from the preconditioner matrix as usual; the user canthen alter these (for example, to set di�erent boundary conditions for each submatrix) before they are usedfor the local solves.int PCSetOperators(PC pc,Mat Amat,Mat Pmat,MatStructure
ag)Sets the matrix associated with the linear system and a (possibly) di�erent one associated with thepreconditioner.int PCSetOptionsPre�x(PC pc,char *pre�x)Sets the pre�x used for searching for all PC options in the database. You must NOT include the - at thebeginning of the pre�x name.int PCSetType(PC ctx,PCType type)Builds PC for a particular preconditioner.int PCSetUpOnBlocks(PC pc)Sets up the preconditioner for each block in the block Jacobi, block Gauss-Seidel, and overlapping Schwarzmethods.int PCSetUp(PC pc)Prepares for the use of a preconditioner.int PCSetVector(PC pc,Vec vec)Sets a vector associated with the preconditioner.int PCShellGetName(PC pc,char **name)Gets an optional name that the user has set for a shell preconditioner.int PCShellSetApplyRichardson(PC pc, int (*apply)(void*,Vec,Vec,Vec,int), void *ptr)Sets routine to use as preconditioner in Richardson iteration.int PCShellSetApply(PC pc, int (*apply)(void*,Vec,Vec),void *ptr)Sets routine to use as preconditioner.int PCShellSetName(PC pc,char *name)Sets an optional name to associate with a shell preconditioner.int PCView(PC pc,Viewer viewer)Prints the PC data structure.A.5 Krylov Subspace MethodsData Structures:� KSP - Krylov space solver contextAvailable Methods: 156

� KSPCG - Conjugate Gradient� KSPGMRES - Generalized Minimal Residual (GMRES)� KSPBCGS - BiCGSTAB� KSPCGS - Conjugate Gradient Squared� KSPTFQMR - Transpose-Free Quasi-Minimal Residual (var. 1)� KSPTCQMR - Transpose-Free Quasi-Minimal Residual (var. 2)� KSPCR - Conjugate Residual� KSPLSQR - Least Squares Method� KSPRICHARDSON - Richardson's method� KSPCHEBYCHEV - Chebyshev method� KSPPREONLY - shell for no KSP methodRuntime Options:� -ksp type [cg,cgs,bcgs,gmres,tcqmr,tfqmr,cr,richardson,chebyshev,lsqr,qcg,preonly]� -ksp atol [absolute tolerance]� -ksp bsmonitor� -ksp cg Hermitian� -ksp cg symmetric� -ksp compute eigenvalues� -ksp compute eigenvalues explicitly� -ksp divtol [divergence tolerance]� -ksp eigen� -ksp gmres irorthog� -ksp gmres preallocate� -ksp gmres restart [restart number]� -ksp gmres unmodi�edgramschmidt� -ksp left pc� -ksp max it [maximum iterations]� -ksp monitor� -ksp plot eigenvalues� -ksp plot eigenvalues explicitly� -ksp preres� -ksp richardson scale� -ksp right pc� -ksp rtol [relative tolerance] 157

� -ksp singmonitor� -ksp smonitor� -ksp symmetric pc� -ksp truemonitor� -ksp type� -ksp xmonitor� -ksp xtruemonitor#include \ksp.h"int KSPAddOptionsChecker(int (*kspcheck)(KSP))Adds an additional function to check for KSP options.int KSPAppendOptionsPre�x(KSP ksp,char *pre�x)Appends to the pre�x used for searching for all KSP options in the database. You must NOT include the -at the beginning of the pre�x name.int KSPBuildResidual(KSP ctx, Vec t, Vec v, Vec *V)Builds the residual in a vector provided.int KSPBuildSolution(KSP ctx, Vec v, Vec *V)Builds the approximate solution in a vector provided. This routine is NOT commonly needed (seeSLESSolve()).int KSPCGSetType(KSP ksp,KSPCGType type)Sets the variant of the conjugate gradient method to use for solving a linear system with a complexcoe�cient matrix. This option is irrelevant when solving a real system.int KSPChebychevSetEigenvalues(KSP ksp,double emax,double emin)Sets estimates for the extreme eigenvalues of the preconditioned problem.int KSPComputeEigenvaluesExplicitly(KSP ksp,int nmax,double *r,double *c)Computes all of the eigenvalues of the preconditioned operator using LAPACK. This is very slow but willgenerally provide accurate eigenvalue estimates. It will only run for small problems, say n < 500. Itexplicitly forms a dense matrix representing the preconditioned operator.int KSPComputeEigenvalues(KSP ksp,int n,double *r,double *c)Computes the extreme eigenvalue for the preconditioned operator. Called after or during KSPSolve()(SLESSolve()). This does not usually provide accurate estimates; it is only for helping people understandthe convergence of iterative methods, not for eigenanalysis.int KSPComputeExplicitOperator(KSP ksp, Mat *mat)Computes as a dense matrix the explicit preconditioned operator. This is done by applying the operatorsto columns of the identity matrix.int KSPComputeExtremeSingularValues(KSP ksp,double *emax,double *emin)Computes the extreme singular values for the preconditioned operator. Called after or during KSPSolve()(SLESSolve()).int KSPCreate(MPI Comm comm,KSP *ksp)Creates the default KSP context.int KSPDefaultConverged(KSP ksp,int n,double rnorm,void *dummy)Determines convergence of the iterative solvers (default code).int KSPDefaultMonitor(KSP ksp,int n,double rnorm,void *dummy)Print the residual norm at each iteration of an iterative solver.int KSPDestroy(KSP ksp)Destroys KSP context.int KSPGMRESSetOrthogonalization(KSP ksp,int (*fcn)(KSP,int))Sets the orthogonalization routine used by GMRES.int KSPGMRESSetPreAllocateVectors(KSP ksp)Causes GMRES to preallocate all its needed work vectors at initial setup rather than the default, which isto allocate them in chunks when needed.int KSPGMRESSetRestart(KSP ksp,int max k)Sets the number of search directions for GMRES before restart.158

int KSPGetConvergenceContext(KSP ksp, void **ctx)Gets the convergence context set with KSPSetConvergenceTest().int KSPGetMonitorContext(KSP ksp, void **ctx)Gets the monitoring context, as set by KSPSetMonitor().int KSPGetOptionsPre�x(KSP ksp,char **pre�x)Gets the pre�x used for searching for all KSP options in the database.int KSPGetPC(KSP ksp, PC *B)Returns a pointer to the preconditioner context set with KSPSetPC().int KSPGetPreconditionerSide(KSP ksp, PCSide *side)Gets the preconditioning side.int KSPGetRhs(KSP ksp,Vec *r)Gets the right-hand-side vector for the linear system to be solved.int KSPGetSolution(KSP ksp, Vec *v)Gets the location of the solution for the linear system to be solved. Note that this may not be where thesolution is stored during the iterative process; see KSPBuildSolution().int KSPGetTolerances(KSP ksp,double *rtol,double *atol,double *dtol, int *maxits)Gets the relative, absolute, divergence, and maximum iteration tolerances used by the default KSPconvergence tests.int KSPGetType(KSP ksp,KSPType *type,char **name)Gets the KSP type and method name (as a string) from the method type.int KSPLGMonitorCreate(char *host,char *label,int x,int y,int m, int n, DrawLG *draw)Creates a line graph context for use with KSP to monitor convergence of preconditioned residual norms.int KSPLGMonitorDestroy(DrawLG drawlg)Destroys a line graph context that was created with KSPLGMonitorCreate().int KSPLGTrueMonitorCreate(MPI Comm comm,char *host,char *label,int x,int y,int m, int n,DrawLG *draw)Creates a line graph context for use with KSP to monitor convergence of true residual norms (as opposedto preconditioned residual norms).int KSPLGTrueMonitorDestroy(DrawLG drawlg)Destroys a line graph context that was created with KSPLGTrueMonitorCreate().int KSPPrintHelp(KSP ksp)Prints all options for the KSP component.int KSPRegisterAll()Registers all of the Krylov subspace methods in the KSP package.int KSPRegisterDestroy()Frees the list of KSP methods that were registered by KSPRegister().int KSPRegister(KSPType name, char *sname, int (*create)(KSP))Adds the iterative method to the KSP package, given an iterative name (KSPType) and a functionpointer.int KSPResidual(KSP ksp,Vec vsoln,Vec vt1,Vec vt2,Vec vres, Vec vbinvf,Vec vb)Computes the residual.int KSPRichardsonSetScale(KSP ksp,double scale)Call after KSPCreate(KSPRICHARDSON) to set the damping factor; if this routine is not called, thefactor defaults to 1.0.int KSPSetComputeEigenvalues(KSP ksp)Sets a
ag so that the extreme eigenvalues values will be calculated via a Lanczos or Arnoldi process as thelinear system is solved.int KSPSetComputeResidual(KSP ksp,PetscTruth
ag)Sets a
ag to indicate whether the two norm of the residual is calculated at each iteration.int KSPSetComputeSingularValues(KSP ksp)Sets a
ag so that the extreme singular values will be calculated via a Lanczos or Arnoldi process as thelinear system is solved.int KSPSetConvergenceTest(KSP ksp,int (*converge)(KSP,int,double,void*),void *cctx)Sets the function to be used to determine convergence.159

int KSPSetFromOptions(KSP ksp)Sets KSP options from the options database. This routine must be called before KSPSetUp() if the user isto be allowed to set the Krylov type.int KSPSetInitialGuessNonzero(KSP ksp)Tells the iterative solver that the initial guess is nonzero; otherwise KSP assumes the initial guess is to bezero (and thus zeros it out before solving).int KSPSetMonitor(KSP ksp, int (*monitor)(KSP,int,double,void*), void *mctx)Sets the function to be called at every iteration to monitor the residual/error etc.int KSPSetOptionsPre�x(KSP ksp,char *pre�x)Sets the pre�x used for searching for all KSP options in the database. You must not include the - at thebeginning of the pre�x name.int KSPSetPC(KSP ksp,PC B)Sets the preconditioner to be used to calculate the application of the preconditioner on a vector.int KSPSetPreconditionerSide(KSP ksp,PCSide side)Sets the preconditioning side.int KSPSetResidualHistory(KSP ksp, double *a, int na)Sets the array used to hold the residual history. If set, this array will contain the residual norms computedat each iteration of the solver.int KSPSetRhs(KSP ksp,Vec b)Sets the right-hand-side vector for the linear system to be solved.int KSPSetSolution(KSP ksp, Vec x)Sets the location of the solution for the linear system to be solved.int KSPSetTolerances(KSP ksp,double rtol,double atol,double dtol,int maxits)Sets the relative, absolute, divergence, and maximum iteration tolerances used by the default KSPconvergence testers.int KSPSetType(KSP ksp,KSPType itmethod)Builds KSP for a particular solver.int KSPSetUp(KSP ksp)Sets up the internal data structures for the later use of an iterative solver.int KSPSetUsePreconditionedResidual(KSP ksp)Sets a
ag so that the two norm of the preconditioned residual is used rather than the true residual, in thedefault convergence tests.int KSPSingularValueMonitor(KSP ksp,int n,double rnorm,void *dummy)Prints the two norm of the true residual and estimation of the extreme eigenvalues of the preconditionedproblem at each iteration.int KSPSolve(KSP ksp, int *its)Solves linear system; call it after calling KSPCreate(), KSPSetup(), and KSPSet*().int KSPTrueMonitor(KSP ksp,int n,double rnorm,void *dummy)Prints the true residual norm as well as the preconditioned residual norm at each iteration of an iterativesolver.int KSPUnwindPreconditioner(KSP ksp,Vec vsoln,Vec vt1)Unwinds the preconditioning in the solution.int KSPView(KSP ksp,Viewer viewer)Prints the KSP data structure.A.6 Nonlinear SolversData Structures:� SNES - nonlinear solver contextAvailable Methods:� SNES EQ LS - line search for systems of nonlinear equations� SNES EQ TR - trust region for systems of nonlinear equations160

� SNES UM LS - line search for unconstrained minimization� SNES UM TR - trust region for unconstrained minimizationRuntime Options:� -snes type [ls,tr,umtr,umls,test]� -snes atol [absolute tolerance]� -snes eq ls� -snes eq ls alpha [alpha]� -snes eq ls maxstep [maxstep]� -snes eq ls steptol [steptol]� -snes eq tr delta0 [delta0]� -snes eq tr delta1 [delta1]� -snes eq tr delta2 [delta2]� -snes eq tr delta3 [delta3]� -snes eq tr eta [eta]� -snes eq tr mu [mu]� -snes eq tr sigma [sigma]� -snes fd� -snes fmin� -snes ksp ew alpha [alpha]� -snes ksp ew alpha2 [alpha2]� -snes ksp ew conv [conv]� -snes ksp ew gamma [gamma]� -snes ksp ew rtol0 [rtol0]� -snes ksp ew rtolmax [rtolmax]� -snes ksp ew threshold [threshold]� -snes ksp ew version [version]� -snes max funcs [maximum function evaluations]� -snes max it [maximum iterations]� -snes mf� -snes mf err [err]� -snes mf operator� -snes mf umin [minimum value]� -snes monitor� -snes rtol [relative tolerance] 161

� -snes smonitor� -snes stol [step tolerance]� -snes test display� -snes trtol [trust region tolerance]� -snes um delta0� -snes um eta1� -snes um eta2� -snes um eta3� -snes um eta4� -snes um factor1� -snes um ls ftol� -snes um ls gamma factor� -snes um ls gtol� -snes um ls maxfev� -snes um ls rtol� -snes um ls stepmax� -snes um ls stepmin� -snes view� -snes xmonitor#include \snes.h"int SNESAddOptionsChecker(int (*snescheck)(SNES))Adds an additional function to check for SNES options.int SNESAppendOptionsPre�x(SNES snes,char *pre�x)Appends to the pre�x used for searching for all SNES options in the database. You must NOT include the- at the beginning of the pre�x name.int SNESComputeFunction(SNES snes,Vec x, Vec y)Computes the function that has been set with SNESSetFunction().int SNESComputeGradient(SNES snes,Vec x, Vec y)Computes the gradient that has been set with SNESSetGradient().int SNESComputeHessian(SNES snes,Vec x,Mat *A,Mat *B,MatStructure *
ag)Computes the Hessian matrix that has been set with SNESSetHessian().int SNESComputeJacobian(SNES snes,Vec X,Mat *A,Mat *B,MatStructure *
g)Computes the Jacobian matrix that has been set with SNESSetJacobian().int SNESComputeMinimizationFunction(SNES snes,Vec x,double *y)Computes the function that has been set with SNESSetMinimizationFunction().int SNESConverged EQ LS(SNES snes,double xnorm,double pnorm,double fnorm,void *dummy)Monitors the convergence of the solvers for systems of nonlinear equations (default).int SNESConverged EQ TR(SNES snes,double xnorm,double pnorm,double fnorm,void *dummy)Monitors the convergence of the trust region method SNES EQ TR for solving systems of nonlinearequations (default).int SNESConverged UM LS(SNES snes,double xnorm,double gnorm,double f, void *dummy)Monitors the convergence of the SNESSolve UM LS() routine (default).162

int SNESConverged UM TR(SNES snes,double xnorm,double gnorm,double f, void *dummy)Monitors the convergence of the SNESSolve UM TR() routine (default).int SNESCreate(MPI Comm comm,SNESProblemType type,SNES *outsnes)Creates a nonlinear solver context.int SNESCubicLineSearch(SNES snes,Vec x,Vec f,Vec g,Vec y,Vec w, double fnorm,double*ynorm,double *gnorm,int *
ag)Performs a cubic line search (default line search method).int SNESDefaultComputeHessian(SNES snes,Vec x1,Mat *J,Mat *B,MatStructure *
ag,void *ctx)Computes the Hessian using �nite di�erences.int SNESDefaultComputeJacobianWithColoring(SNES snes,Vec x1,Mat *JJ,Mat *B,MatStructure*
ag,void *ctx)nput Parameters: . snes - nonlinear solver object . x1 - location at which to evaluate Jacobian . ctx -MatFDColoring contexint SNESDefaultComputeJacobian(SNES snes,Vec x1,Mat *J,Mat *B,MatStructure *
ag,void*ctx)Computes the Jacobian using �nite di�erences.int SNESDefaultMatrixFreeMatAddNullSpace(Mat J,int has cnst,int n,Vec *vecs)Provides a null space that an operator is supposed to have. Since roundo� will create a small component inthe null space, if you know the null space you may have it automatically removed.int SNESDefaultMatrixFreeMatCreate(SNES snes,Vec x, Mat *J)Creates a matrix-free matrix context for use with a SNES solver. This matrix can be used as the Jacobianargument for the routine SNESSetJacobian().int SNESDefaultMonitor(SNES snes,int its,double fgnorm,void *dummy)Monitoring progress of the SNES solvers (default).int SNESDestroy(SNES snes)Destroys the nonlinear solver context that was created with SNESCreate().int SNESGetApplicationContext(SNES snes, void **usrP)Gets the user-de�ned context for the nonlinear solvers.int SNESGetFunctionNorm(SNES snes,Scalar *fnorm)Gets the norm of the current function that was set with SNESSSetFunction().int SNESGetFunction(SNES snes,Vec *r)Returns the vector where the function is stored.int SNESGetGradientNorm(SNES snes,Scalar *gnorm)Gets the norm of the current gradient that was set with SNESSSetGradient().int SNESGetGradient(SNES snes,Vec *r)Returns the vector where the gradient is stored.int SNESGetHessian(SNES snes,Mat *A,Mat *B, void **ctx)Returns the Hessian matrix and optionally the user provided context for evaluating the Hessian.int SNESGetIterationNumber(SNES snes,int* iter)Gets the current iteration number of the nonlinear solver.int SNESGetJacobian(SNES snes,Mat *A,Mat *B, void **ctx)Returns the Jacobian matrix and optionally the user provided context for evaluating the Jacobian.int SNESGetMinimizationFunction(SNES snes,double *r)Returns the scalar function value for unconstrained minimization problems.int SNESGetNumberLinearIterations(SNES snes,int* lits)Gets the total number of linear iterations used by the nonlinear solver.int SNESGetNumberUnsuccessfulSteps(SNES snes,int* nfails)Gets the number of unsuccessful steps attempted by the nonlinear solver.int SNESGetOptionsPre�x(SNES snes,char **pre�x)Sets the pre�x used for searching for all SNES options in the database.int SNESGetSLES(SNES snes,SLES *sles)Returns the SLES context for a SNES solver.int SNESGetSolutionUpdate(SNES snes,Vec *x)Returns the vector where the solution update is stored.163

int SNESGetSolution(SNES snes,Vec *x)Returns the vector where the approximate solution is stored.int SNESGetTolerances(SNES snes,double *atol,double *rtol,double *stol,int *maxit,int *maxf)Gets various parameters used in convergence tests.int SNESGetType(SNES snes, SNESType *method,char **name)Gets the SNES method type and name (as a string).int SNESNoLineSearch(SNES snes, Vec x, Vec f, Vec g, Vec y, Vec w, double fnorm, double*ynorm, double *gnorm,int *
ag)This routine is not a line search at all; it simply uses the full Newton step. Thus, this routine is intendedto serve as a template and is not recommended for general use.int SNESPrintHelp(SNES snes)Prints all options for the SNES component.int SNESQuadraticLineSearch(SNES snes, Vec x, Vec f, Vec g, Vec y, Vec w, double fnorm, double*ynorm, double *gnorm,int *
ag)Performs a quadratic line search.int SNESRegisterAll()Registers all of the nonlinear solvers in the SNES package.int SNESRegisterDestroy()Frees the list of nonlinear solvers that were registered by SNESRegister().int SNESRegister(int name, char *sname, int (*create)(SNES))Adds the method to the nonlinear solver package, given a function pointer and a nonlinear solver name ofthe type SNESType.int SNESSetApplicationContext(SNES snes,void *usrP)Sets the optional user-de�ned context for the nonlinear solvers.int SNESSetConvergenceHistory(SNES snes, double *a, int na)Sets the array used to hold the convergence history.int SNESSetConvergenceTest(SNES snes,int (*func)(SNES,double,double,double,void*),void *cctx)Sets the function that is to be used to test for convergence of the nonlinear iterative solution.int SNESSetFromOptions(SNES snes)Sets various SNES and SLES parameters from user options.int SNESSetFunction(SNES snes, Vec r, int (*func)(SNES,Vec,Vec,void*),void *ctx)Sets the function evaluation routine and function vector for use by the SNES routines in solving systems ofnonlinear equations.int SNESSetGradient(SNES snes,Vec r,int (*func)(SNES,Vec,Vec,void*),void *ctx)Sets the gradient evaluation routine and gradient vector for use by the SNES routines.int SNESSetHessian(SNES snes,Mat A,Mat B,int (*func)(SNES,Vec,Mat*,Mat*,MatStructure*,void*),void *ctx)Sets the function to compute Hessian as well as the location to store the matrix.int SNESSetJacobian(SNES snes,Mat A,Mat B,int (*func)(SNES,Vec,Mat*,Mat*,MatStructure*,void*),void *ctx)Sets the function to compute Jacobian as well as the location to store the matrix.int SNESSetLineSearch(SNES snes,int (*func)(SNES,Vec,Vec,Vec,Vec,Vec,double,double*,double*,int*))Sets the line search routine to be used by the method SNES EQ LS.int SNESSetMatrixFreeParameters(SNES snes,double error,double umin)Sets the parameters for the approximation of matrix-vector products using �nite di�erences.int SNESSetMinimizationFunctionTolerance(SNES snes,double ftol)Sets the minimum allowable function tolerance for unconstrained minimization solvers.int SNESSetMinimizationFunction(SNES snes,int (*func)(SNES,Vec,double*,void*), void *ctx)Sets the function evaluation routine for unconstrained minimization.int SNESSetMonitor(SNES snes, int (*func)(SNES,int,double,void*),void *mctx)Sets the function that is to be used at every iteration of the nonlinear solver to display the iteration'sprogress.int SNESSetOptionsPre�x(SNES snes,char *pre�x)Sets the pre�x used for searching for all SNES options in the database. You must NOT include the - at thebeginning of the pre�x name. 164

int SNESSetTolerances(SNES snes,double atol,double rtol,double stol,int maxit,int maxf)Sets various parameters used in convergence tests.int SNESSetTrustRegionTolerance(SNES snes,double tol)Sets the trust region parameter tolerance.int SNESSetType(SNES snes,SNESType method)Sets the method for the nonlinear solver.int SNESSetUp(SNES snes,Vec x)Sets up the internal data structures for the later use of a nonlinear solver.int SNESSolve(SNES snes,Vec x,int *its)Solves a nonlinear system. Call SNESSolve after calling SNESCreate() and optional routines of the formSNESSetXXX().int SNESView(SNES snes,Viewer viewer)Prints the SNES data structure.int SNES KSP SetConvergenceTestEW(SNES snes)Sets alternative convergence test for the linear solvers within an inexact Newton method.int SNES KSP SetParametersEW(SNES snes,int version,double rtol 0, double rtol max,doublegamma2,double alpha, double alpha2,double threshold)Sets parameters for Eisenstat-Walker convergence criteria for the linear solvers within an inexact Newtonmethod.A.7 Timestepping, ODE SolversAvailable Methods:� TS EULER - Euler method� TS BEULER - backward Euler method� TS PSEUDO POSITION INDEPENDENT TIMESTEP - pseudo-transient timestep variant 1� TS PSEUDO POSITION DEPENDENT TIMESTEP - pseudo-transient timestep variant 2 TSType:Data Structures:� TS - timestepping contextTSProblemType:� TS LINEAR� TS NONLINEARRuntime Options:� -ts max steps [steps]� -ts monitor� -ts pseudo increment [increment]� -ts type� -ts view#include \ts.h"int TSCreate(MPI Comm comm,TSProblemType problemtype,TS *outts)Creates a timestepper context.int TSDestroy(TS ts)Destroys the timestepper context that was created with TSCreate().165

int TSGetApplicationContext(TS ts, void **usrP)Gets the user-de�ned context for the timestepper.int TSGetSLES(TS ts,SLES *sles)Returns the SLES (linear solver) associated with a TS (timestepper) context.int TSGetSNES(TS ts,SNES *snes)Returns the SNES (nonlinear solver) associated with a TS (timestepper) context. Valid only for nonlinearproblems.int TSGetSolution(TS ts,Vec *v)Returns the solution at the present timestep. It is valid to call this routine inside the function that you areevaluating in order to move to the new timestep. This vector not changed until the solution at the nexttimestep has been calculated.int TSGetTimeStepNumber(TS ts,int* iter)Gets the current number of timesteps.int TSGetTimeStep(TS ts,double* dt)Gets the current timestep size.int TSGetType(TS ts, TSType *method,char **name)Gets the TS method type and name (as a string).int TSPrintHelp(TS ts)Prints all options for the TS (timestepping) component.int TSPseudoComputeTimeStep(TS ts,double *dt)Computes the next timestep for a currently running pseudo-timestepping process.int TSPseudoDefaultTimeStep(TS ts,double* newdt,void* dtctx)Default code to compute pseudo-timestepping. Use with TSPseudoSetTimeStep().int TSPseudoDefaultVerifyTimeStep(TS ts,Vec update,void *dtctx,double *newdt,int *
ag)Default code to verify the quality of the last timestep.int TSPseudoIncrementDtFromInitialDt(TS ts)Indicates that a new timestep is computed via initial dt*initial fnorm/current fnorm rather then thedefault current dt*previous fnorm/current fnorm.int TSPseudoSetTimeStepIncrement(TS ts,double inc)Sets the scaling increment applied to dt when using the TSPseudoDefaultTimeStep() routine.int TSPseudoSetTimeStep(TS ts,int (*dt)(TS,double*,void*),void* ctx)Sets the user-de�ned routine to be called at each pseudo-timestep to update the timestep.int TSPseudoSetVerifyTimeStep(TS ts,int (*dt)(TS,Vec,void*,double*,int*),void* ctx)Sets a user-de�ned routine to verify the quality of the last timestep.int TSPseudoVerifyTimeStep(TS ts,Vec update,double *dt,int *
ag)Veri�es whether the last timestep was acceptable.int TSRegisterAll()Registers all of the timesteppers in the TS package.int TSRegisterDestroy()Frees the list of nonlinear solvers that were registered by TSRegister().int TSRegister(int name, char *sname, int (*create)(TS))Adds the method to the nonlinear solver package, given a function pointer and a nonlinear solver name ofthe type TSType.int TSSetApplicationContext(TS ts,void *usrP)Sets an optional user-de�ned context for the timesteppers.int TSSetDuration(TS ts,int maxsteps,double maxtime)Sets the maximum number of timesteps to use and maximum time for iteration.int TSSetFromOptions(TS ts)Sets various TS parameters from user options.int TSSetInitialTimeStep(TS ts,double initial time,double time step)Sets the initial timestep to be used, as well as the initial time.int TSSetMonitor(TS ts, int (*monitor)(TS,int,double,Vec,void*), void *mctx)Sets the function that is to be used at every timestep to display the iteration's progress.int TSSetRHSFunction(TS ts,int (*f)(TS,double,Vec,Vec,void*),void *ctx)Sets the routine for evaluating the function, F(t,u), where U t = F(t,u).166

int TSSetRHSJacobian(TS ts,Mat A, Mat B,int (*f)(TS,double,Vec,Mat*,Mat*,MatStructure*,void*),void *ctx)Sets the function to compute the Jacobian of F, where U t = F(U,t), as well as the location to store thematrix.int TSSetRHSMatrix(TS ts,Mat A, Mat B,int (*f)(TS,double,Mat*,Mat*,MatStructure*,void*),void *ctx)Sets the function to compute the matrix A, where U t = A(t)u. Also sets the location to store A.int TSSetSolution(TS ts,Vec x)Sets the initial solution vector for use by the TS routines.int TSSetTimeStep(TS ts,double time step)Allows one to reset the timestep at any time, useful for simple pseudo-timestepping codes.int TSSetType(TS ts,TSType method)Sets the method for the timestepping solver.int TSSetUp(TS ts)Sets up the internal data structures for the later use of a timestepper. Call TSSetUp() after callingTSCreate() and optional routines of the form TSSetXXX(), but before calling TSStep().int TSStep(TS ts,int *steps,double *time)Steps the requested number of timesteps.int TSView(TS ts,Viewer viewer)Prints the TS data structure.A.8 Index Sets, Distributed Arrays, and Application OrderingsData Structures:� IS - an index set� DA - a distributed array� AO - an application orderingDAPeriodicType:� DA NONPERIODIC� DA XPERIODIC� DA YPERIODIC� DA XYPERIODIC� DA XYZPERIODIC� DA XZPERIODIC� DA YZPERIODIC� DA ZPERIODICDAStencilType:� DA STENCIL STAR� DA STENCIL BOXRuntime Options:� -ao view� -da partition blockcomm 167

� -da partition nodes at end� -da view#include \is.h"#include \da.h"int AOApplicationToPetscIS(AO ao,IS is)Maps an index set in the application-de�ned ordering to the PETSc ordering.int AOApplicationToPetsc(AO ao,int n,int *ia)Maps a set of integers in the application-de�ned ordering to the PETSc ordering.int AODestroy(AO ao)Destroys an application ordering set.int AOPetscToApplicationIS(AO ao,IS is)Maps an index set in the PETSc ordering to the application-de�ned ordering.int AOPetscToApplication(AO ao,int n,int *ia)Maps a set of integers in the PETSc ordering to the application-de�ned ordering.int AOView(AO ao, Viewer viewer)Displays an application ordering.int DACreate1d(MPI Comm comm,DAPeriodicType wrap,int M,int w,int s,DA *inra)Creates a one-dimensional regular array that is distributed across some processors.int DACreate2d(MPI Comm comm,DAPeriodicType wrap,DAStencilType stencil type, int M,intN,int m,int n,int w,int s,DA *inra)Creates a two-dimensional regular array that is distributed across some processors.int DACreate3d(MPI Comm comm,DAPeriodicType wrap,DAStencilType stencil type, int M,intN,int P,int m,int n,int p,int w,int s,DA *inra)Creates a three-dimensional regular array that is distributed across some processors.int DADestroy(DA da)Destroys a distributed array.int DAGetAO(DA da, AO *ao)Gets the application ordering context for a distributed array.int DAGetBilinearInterpolation2dBox(DA dac,DA daf,Mat *A)Gets the matrix representing bilinear interpolation from a DA grid to the next re�nement.int DAGetColoring2dBox(DA da,ISColoring *coloring,Mat *J)Gets the coloring required for computing the Jacobian via �nite di�erences on a function de�ned using thenine point stencil on a two dimensional grid.int DAGetCorners(DA da,int *x,int *y,int *z,int *m, int *n, int *p)Returns the global (x,y,z) indices of the lower left corner of the local region, excluding ghost points.int DAGetDistributedVector(DA da,Vec* g)Gets a distributed vector for a distributed array. Additional vectors of the same type can be created withVecDuplicate().int DAGetGhostCorners(DA da,int *x,int *y,int *z,int *m, int *n, int *p)Returns the global (x,y,z) indices of the lower left corner of the local region, including ghost points.int DAGetGlobalIndices(DA da, int *n,int **idx)Returns the global node number of all local nodes, including ghost nodes.int DAGetInfo(DA da,int *dim,int *M,int *N,int *P,int *m,int *n,int *p,int *w,int *s)Gets information about a given distributed array.int DAGetLocalVector(DA da,Vec* l)Gets a local vector (including ghost points) for a distributed array. Additional vectors of the same typecan be created with VecDuplicate().int DAGetProcessorSubset(DA da,DADirection dir,int gp,MPI Comm *comm)Returns a communicator consisting only of the processors in a DA that own a particular global x, y, or zgrid point (corresponding to a logical plane in a 3D grid or a line in a 2D grid).int DAGetScatter(DA da, VecScatter *ltog,VecScatter *gtol,VecScatter *ltol)Gets the local-to-global, local-to-global, and local-to-local vector scatter contexts for a distributed array.168

int DAGlobalToLocalBegin(DA da,Vec g, InsertMode mode,Vec l)Maps values from the global vector to the local patch; the ghost points are included. Must be followed byDAGlobalToLocalEnd() to complete the exchange.int DAGlobalToLocalEnd(DA da,Vec g, InsertMode mode,Vec l)Maps values from the global vector to the local patch; the ghost points are included. Must be preceeded byDAGlobalToLocalBegin().int DALocalToGlobal(DA da,Vec l, InsertMode mode,Vec g)Maps values from the local patch back to the global vector. The ghost points are discarded.int DALocalToLocalBegin(DA da,Vec g, InsertMode mode,Vec l)Maps from a local vector (including ghost points that contain irrelevant values) to another local vectorwhere the ghost points in the second are set correctly. Must be followed by DALocalToLocalEnd().int DALocalToLocalEnd(DA da,Vec g, InsertMode mode,Vec l)Maps from a local vector (including ghost points that contain irrelevant values) to another local vectorwhere the ghost points in the second are set correctly. Must be preceeded by DALocalToLocalBegin().int DAPrintHelp(DA da)Prints command line options for DA.int DARe�ne(DA da, DA *daref)Creates a new distributed array that is a re�nement of a given distributed array.int DAView(DA da, Viewer v)Visualizes a distributed array object.int ISBlockGetBlockSize(IS is,int *size)Returns the number of elements in a block.int ISBlockGetIndices(IS in,int **idx)Gets the indices associated with each block.int ISBlockGetSize(IS is,int *size)Returns the number of blocks in the index set.int ISBlockRestoreIndices(IS is,int **idx)Restores the indices associated with each block.int ISBlock(IS is,PetscTruth *
ag)Checks if an index set is blocked.int ISColoringCreate(MPI Comm comm,int n,int *colors,ISColoring *iscoloring)From lists (provided by each processor) of colors for each node, generate a ISColoringint ISColoringDestroy(ISColoring iscoloring)Destroy's a coloring context.int ISColoringView(ISColoring iscoloring,Viewer viewer)View's a coloring context.int ISCreateBlock(MPI Comm comm,int bs,int n,int *idx,IS *is)Creates a data structure for an index set containing a list of integers. The indices are relative to entries,not blocks.int ISCreateGeneral(MPI Comm comm,int n,int *idx,IS *is)Creates a data structure for an index set containing a list of integers.int ISCreateStride(MPI Comm comm,int n,int �rst,int step,IS *is)Creates a data structure for an index set containing a list of evenly spaced integers.int ISDestroy(IS is)Destroys an index set.int ISEqual(IS is1, IS is2, PetscTruth *
g)Compares if two index sets have the same set of indices.int ISGetIndices(IS is,int **ptr)Returns a pointer to the indices. The user should call ISRestoreIndices() after having looked at the indices.The user should NOT change the indices.int ISGetSize(IS is,int *size)Returns the global length of an index set.int ISIdentity(IS is,PetscTruth *ident)Determines whether index set is the identity mapping.169

int ISInvertPermutation(IS is,IS *isout)Creates a new permutation that is the inverse of a given permutation.int ISLocalToGlobalMappingApplyIS(ISLocalToGlobalMapping mapping, IS is, IS *newis)Creates a new IS using the global numbering de�ned in an ISLocalToGlobalMapping from an IS in thelocal numbering.void ISLocalToGlobalMappingApply(ISLocalToGlobalMapping mapping,int N,int *in,int *out);Takes a list of integers in local numbering and converts them to global numbering.int ISLocalToGlobalMappingCreate(int n, int *indices,ISLocalToGlobalMapping *mapping)Creates a mapping between a local (0 to n) ordering and a global parallel ordering.int ISLocalToGlobalMappingDestroy(ISLocalToGlobalMapping mapping)Destroys a mapping between a local (0 to n) ordering and a global parallel ordering.int ISPermutation(IS is,PetscTruth *perm)PETSC TRUE or PETSC FALSE depending on whether the index set has been declared to be apermutation.int ISRestoreIndices(IS is,int **ptr)Restores an index set to a usable state after a call to ISGetIndices().int ISSetIdentity(IS is)Informs the index set that it is an identity.int ISSetPermutation(IS is)Informs the index set that it is a permutation.int ISSorted(IS is, PetscTruth *
g)Checks the indices to determine whether they have been sorted.int ISSort(IS is)Sorts the indices of an index set.int ISStrideGetInfo(IS is,int *�rst,int *step)Returns the �rst index in a stride index set and the stride width.int ISStride(IS is,PetscTruth *
ag)Determines if an IS is based on a stride.int ISView(IS is, Viewer viewer)Displays an index set.A.9 Utility and System RoutinesRuntime Options:� -debugger nodes [nodes]� -debugger pause [seconds]� -fp trap� -help (or -h)� -log history� -mpidump� -no signal handler� -on error abort� -on error attach debugger� -on error stop� -optionsleft� -optionstable 170

� -trdebug� -trdump� -trinfo� -trmalloc� -trmalloc o�� -version (or -v)#include \sys.h"#include \options.h"int OptionsAllUsed()Returns a count of the number of options in the database that have never been selected.int OptionsGetDoubleArray(char* pre,char *name,double *dvalue, int *nmax,int *
g)Gets an array of double precision values for a particular option in the database. The values must beseparated with commas with no intervening spaces.int OptionsGetDouble(char* pre,char *name,double *dvalue,int *
g)Gets the double precision value for a particular option in the database.int OptionsGetIntArray(char* pre,char *name,int *dvalue,int *nmax,int *
g)Gets an array of integer values for a particular option in the database. The values must be separated withcommas with no intervening spaces.int OptionsGetInt(char*pre,char *name,int *ivalue,int *
g)Gets the integer value for a particular option in the database.int OptionsGetScalar(char* pre,char *name,Scalar *dvalue,int *
g)Gets the scalar value for a particular option in the database. At the moment can get only a Scalar with 0imaginary part.int OptionsGetString(char *pre,char *name,char *string,int len, int *
g)Gets the string value for a particular option in the database.int OptionsHasName(char* pre,char *name,int *
g)Determines whether a certain option is given in the database.int OptionsPrint(FILE *fd)Prints the options that have been loaded. This is useful for debugging purposes.int OptionsSetValue(char *name,char *value)Sets an option name-value pair in the options database, overriding whatever is already present.int PetscAbortErrorHandler(int line,char *function,char *�le,char* dir,int number,int p, char*message,void *ctx)Error handler that calls abort on error. This routine is very useful when running in the debugger, becausethe user can look directly at the stack frames and the variables.int PetscAttachDebuggerErrorHandler(int line,char* fun,char *�le,char* dir,int num,int p, char*mess,void *ctx)Error handler that attaches a debugger to a running process when an error is detected. This routine isuseful for examining variables, etc.int PetscAttachDebugger()Attaches the debugger to the running process.int PetscBinaryRead(int fd,void *p,int n,PetscBinaryType type)Reads from a binary �le.int PetscBinaryWrite(int fd,void *p,int n,PetscBinaryType type,int istemp)Writes to a binary �le.int PetscCObjectToFortranObject(void *cobj,int *fobj)Converts a PETSc object represented in C to one appropriate to pass to a Fortran routine.int PetscCompareDouble(double d)Compares doubles while running with PETSc's incremental debugger; triggered with the -compare <tol>
ag. 171

int PetscCompareInt(int d)Compares intss while running with PETSc's incremental debugger; triggered with the -compare option.int PetscCompareScalar(Scalar d)Compares scalars while running with PETSc's incremental debugger; triggered with the -compare <tol>
ag.int PetscDefaultSignalHandler(int sig, void *ptr)Default signal handler.int PetscDoubleView(int N,double* idx,Viewer viewer)Prints an array of double, useful for debugging.int PetscError(int line,char *function,char* �le,char *dir,int number,int p,char *message)Routine that is called when an error has been detected, usually called through the macro SETERRQ().int PetscFClose(MPI Comm comm,FILE *fd)Has the �rst processor in the communicator close a �le; all others do nothing.FILE *PetscFOpen(MPI Comm comm,char *name,char *mode)Has the �rst process in the communicator open a �le; all others do nothing.int PetscFPrintf(MPI Comm comm,FILE* fd,char *format,...)Prints to a �le, only from the �rst processor in the communicator.int PetscFinalize()Checks for options to be called at the conclusion of the program and calls MPI Finalize().int PetscFortranObjectToCObject(int fobj,void *cobj)Converts a PETSc object represented in Fortran to one appropriate for C.int PetscGetArchType(char *str,int slen)Returns a standardized architecture type for the machine that is executing this routine.int PetscGetFileFromPath(char *path,char *defname,char *name,char *fname, char mode)Finds a �le from a name and a path string. A default can be provided.int PetscGetFullPath(char *path, char *fullpath, int
en)Given a �lename, returns the fully quali�ed �le name.int PetscGetHomeDirectory(int maxlen,char *dir)Returns user's home directory name.int PetscGetHostName(char *name, int nlen)Returns the name of the host. This attempts to return the entire Internet name. It may not return thesame name as MPI Get processor name().int PetscGetRealPath(char * path, char *rpath)Get the path without symbolic links etc. and in absolute form.int PetscGetRelativePath(char *fullpath, char *path, int
en)Given a �lename, returns the relative path (removes all directory speci�ers).int PetscGetUserName(char *name, int nlen)Returns the name of the user.int PetscGetWorkingDirectory(char *path,int len)Gets the current working directory.void PetscInitializeFortran()Routine that should be called from C after the call to PetscInitialize() if one is using a C main programthat calls Fortran routines that call PETSc routines.int PetscInitializeLargeInts(int *p,int n)Intializes an array of integers with very large values.int PetscInitializeNans(Scalar *p,int n)Intialize certain memory locations with NANs. This routine is used to mark an array as unitialized so thatif values are used for computation without �rst having been set, a
oating point exception is generated.int PetscInitialize(int *argc,char ***args,char *�le,char *help)Initializes the PETSc database and MPI. PetscInitialize calls MPI Init() if that has yet to be called, so thisroutine should always be called near the beginning of your program { usually the very �rst line!int PetscIntView(int N,int* idx,Viewer viewer)Prints an array of integers, useful for debugging.int PetscMPIDump(FILE *fd)Dumps a listing of incomplete MPI operations, such as sends that have never been received, etc.172

int PetscMemcmp(void * str1, void *str2, int len)Compares two byte streams in memory.void PetscMemcpy(void *a,void *b,int n)Copies n bytes, beginning at location b, to the space beginning at location a.void PetscMemzero(void *a,int n)Zeros the speci�ed memory.int PetscObjectDestroy(PetscObject obj)Destroys any PetscObject, regardless of the type. This routine should seldom be needed.int PetscObjectExists(PetscObject obj,int *exists)Determines whether a PETSc object has been destroyed.int PetscObjectGetChild(PetscObject obj,void **child)Gets the child of any PetscObject.int PetscObjectGetComm(PetscObject obj,MPI Comm *comm)Gets the MPI communicator for any PetscObject, regardless of the type.int PetscObjectGetCookie(PetscObject obj,int *cookie)Gets the cookie for any PetscObject,int PetscObjectGetName(PetscObject obj,char **name)Gets a string name associated with a PETSc object.int PetscObjectGetNewTag(PetscObject obj,int *tag)Gets a unique new tag from a PETSc object. All processors that share the object MUST call this routineEXACTLY the same number of times. This tag should only be used with the current object'scommunicator; do NOT use it with any other MPI communicator.int PetscObjectGetType(PetscObject obj,int *type)Gets the object type of any PetscObject.int PetscObjectInherit(PetscObject obj,void *ptr, int (*copy)(void *,void **), int(*destroy)(void*))Associate another object with a given PETSc object. This is to provide a limited support for inheritence.int PetscObjectReference(PetscObject obj)Indicate to any PetscObject that it is being referenced in another PetscObject. This increases the referencecount for that object by one.int PetscObjectRestoreNewTag(PetscObject obj,int *tag)Restores a new tag from a PETSc object. All processors that share the object MUST call this routineEXACTLY the same number of times.int PetscObjectSetName(PetscObject obj,char *name)Sets a string name associated with a PETSc object.int PetscPopErrorHandler()Removes the latest error handler that was pushed with PetscPushErrorHandler().int PetscPrintf(MPI Comm comm,char *format,...)Prints to standard out, only from the �rst processor in the communicator.int PetscPushErrorHandler(int (*handler)(int,char *,char*,char*,int,int,char*,void*),void *ctx)Sets a routine to be called on detection of errors.int PetscPushSignalHandler(int (*routine)(int, void*),void* ctx)Catches the usual fatal errors and calls a user-provided routine.int PetscRandomCreate(MPI Comm comm,PetscRandomType type,PetscRandom *r)Creates a context for generating random numbers, and initializes the random-number generator.int PetscRandomDestroy(PetscRandom r)Destroys a context that has been formed by PetscRandomCreate().int PetscRandomGetValue(PetscRandom r,Scalar *val)Generates a random number. Call this after �rst calling PetscRandomCreate().int PetscRandomSetInterval(PetscRandom r,Scalar low,Scalar high)Sets the interval over which the random numbers will be randomly distributed. By default, this interval is[0,1). 173

int PetscRegisterCookie(int *cookie)Registers a new cookie for use with a newly created PETSc object class. The user should pass in a variableinitialized to zero; then it will be assigned a cookie. Repeated calls to this routine with the same variablewill not change the cookie.int PetscRemoveHomeDirectory(char *path)Given a complete true path, removes the user's home directory.int PetscSequentialPhaseBegin(MPI Comm comm,int ng)Begins a sequential section of code.int PetscSequentialPhaseEnd(MPI Comm comm,int ng)Ends a sequential section of code.int PetscSetCommWorld(MPI Comm comm)Sets a communicator to be PETSc's world communicator (default is MPI COMM WORLD). Must callBEFORE PetscInitialize().int PetscSetDebugger(char *debugger, int xterm,char *display)Sets options associated with the debugger.int PetscSetFPTrap(int
ag)Enables traps/exceptions on common
oating point errors. This option may not work on certain machines.int PetscSetMalloc(void *(*imalloc)(unsigned int,int,char*,char*,char*), int(*ifree)(void*,int,char*,char*,char*))Sets the routines used to do mallocs and frees. This routine MUST be called before PetscInitialize() andmay be called only once.void PetscSleep(int s)Sleeps some number of seconds.int PetscSortDoubleWithPermutation(int n, double *i, int *idx)Computes the permutation of values that gives a sorted sequence.int PetscSortDouble(int n,double *v)Sorts an array of doubles in place in increasing order.int PetscSortIntWithPermutation(int n, int *i, int *idx)Computes the permutation of values that gives a sorted sequence.int PetscSortInt(int n, int *i)Sorts an array of integers in place in increasing order.int PetscStopErrorHandler(int line,char *fun,char *�le,char *dir,int number,int p, char*message,void *ctx)Calls MPI abort() and exists.int PetscSynchronizedFlush(MPI Comm comm)Flushes to the screen output from all processors involved in previous PetscSynchronizedPrintf() calls.int PetscSynchronizedPrintf(MPI Comm comm,char *format,...)Prints output from several processors that is synchronized so that printed by �rst processor is followed bysecond etc.int PetscTrDump(FILE *fp)Dumps the allocated memory blocks to a �le. The information printed is: size of space (in bytes), addressof space, id of space, �le in which space was allocated, and line number at which it was allocated.int PetscTrLogDump(FILE *fp)Dumps the log of all calls to malloc.int PetscTrLog()Indicates that you wish all calls to malloc to be logged.int PetscTrSpace(double *space, double *fr, double *maxs)Returns space statistics.int PetscTraceBackErrorHandler(int line,char *fun,char* �le,char *dir,int number,int p, char*message,void *ctx)Default error handler routine that generates a traceback on error detection.174

A.10 ViewersDefault Viewers:� VIEWER STDOUT WORLD� VIEWER STDOUT SELF� VIEWER DRAWX WORLD� VIEWER DRAWX SELF� VIEWER MATLAB WORLDFormat options:� ASCII FORMAT DEFAULT - default� ASCII FORMAT MATLAB - Matlab format� ASCII FORMAT IMPL - implementation-speci�c format (which is, in many cases, the same as thedefault)� ASCII FORMAT INFO - basic information about object� ASCII FORMAT INFO DETAILED - more detailed info about object� ASCII FORMAT COMMON - identical output format for all objects of a particular type� BINARY FORMAT NATIVE - store the object to disk in the format it is in. This currently worksonly for dense matrices.int ViewerASCIIGetPointer(Viewer viewer, FILE **fd)Extracts the �le pointer from an ASCII viewer.int ViewerBinaryGetDescriptor(Viewer viewer,int *fdes)Extracts the �le descriptor from a viewer.int ViewerBinaryGetInfoPointer(Viewer viewer,FILE **�le)Extracts the �le pointer for the ASCII info �le associated with a binary �le.int ViewerDestroy(Viewer v)Destroys a viewer.int ViewerFileOpenASCII(MPI Comm comm,char *name,Viewer *lab)Opens an ASCII �le as a viewer.int ViewerFileOpenBinary(MPI Comm comm,char *name,ViewerBinaryType type,Viewer *binv)Opens a �le for binary input/output.int ViewerFlush(Viewer v)Flushes a viewer (i.e. tries to dump all the data that has been printed through a viewer).int ViewerGetType(Viewer v,ViewerType *type)Returns the type of a viewer.int ViewerMatlabOpen(MPI Comm comm,char *machine,int port,Viewer *lab)Opens a connection to a Matlab server.int ViewerPopFormat(Viewer v)Resets the format for �le viewers.int ViewerPushFormat(Viewer v,int format,char *name)Sets the format for �le viewers.int ViewerSetFormat(Viewer v,int format,char *name)Sets the format for �le viewers.int ViewerStringOpen(MPI Comm comm,char *string,int len, Viewer *lab)Opens a string as a viewer. This is a very simple viewer; information on the object is simply stored intothe string in a fairly nice way.int ViewerStringSPrintf(Viewer v,char *format,...)Prints information to a viewer string. 175

A.11 Pro�lingRuntime Options:� -log [�lename]� -log summary� -log all [�lename]� -log mpe [�lename]int PLogAllBegin()Turns on extensive logging of objects and events. Logs all events. This creates large log �les and slows theprogram down.int PLogBegin()Turns on logging of objects and events. This logs
op rates and object creation and should not slowprograms down too much. This routine may be called more than once.int PLogDestroy()Destroys the object and event logging data and resets the global counters.int PLogDump(char* sname)Dumps logs of objects to a �le. This �le is intended to be read by petsc/bin/petscview.int PLogEventActivateClass(int cookie)Activates event logging for a PETSc object class.int PLogEventActivate(int event)Indicates that a particular event should be logged. Note: the event may be either a pre-de�ned PETScevent (found in include/petsclog.h) or an event number obtained with PLogEventRegister().void PLogEventBegin(int e,PetscObject o1,PetscObject o2,PetscObject o3, PetscObject o4)Logs the beginning of a user event.int PLogEventDeactivateClass(int cookie)Deactivates event logging for a PETSc object class.int PLogEventDeactivate(int event)Indicates that a particular event should not be logged. Note: the event may be either a pre-de�ned PETScevent (found in include/petsclog.h) or an event number obtained with PLogEventRegister().void PLogEventEnd(int e,PetscObject o1,PetscObject o2,PetscObject o3, PetscObject o4)Log the end of a user event.int PLogEventMPEActivate(int event)Indicates that a particular event should be logged using MPE. Note: the event may be either a pre-de�nedPETSc event (found in include/petsclog.h) or an event number obtained with PLogEventRegister().int PLogEventMPEDeactivate(int event)Indicates that a particular event should not be logged using MPE. Note: the event may be either apre-de�ned PETSc event (found in include/petsclog.h) or an event number obtained withPLogEventRegister().int PLogEventRegister(int *e,char *string,char *color)Registers an event name for logging operations in an application code.void PLogFlops(int f)Adds
oating point operations to the global counter.int PLogInfoActivateClass(int objclass)Activates PlogInfo() messages for a PETSc object class.int PLogInfoAllow(PetscTruth
ag)Causes PLogInfo() messages to be printed to standard output.int PLogInfoDeactivateClass(int objclass)Deactivates PlogInfo() messages for a PETSc object class.int PLogInfo(void *vobj,char *message,...)Logs informative data, which is printed to standard output when the option -log info is speci�ed.int PLogMPEBegin()Turns on MPE logging of events. This creates large log �les and slows the program down.176

int PLogMPEDump(char* sname)Dumps the MPE logging info to �le for later use with Upshot.int PLogPrintSummary(MPI Comm comm,FILE *fd)Prints a summary of the logging.int PLogSet(int (*b)(int,int,PetscObject,PetscObject,PetscObject,PetscObject), int(*e)(int,int,PetscObject,PetscObject,PetscObject,PetscObject))Sets the logging functions called at the beginning and ending of every event.int PLogStagePop()Users can log up to 10 stages within a code by using -log summary in conjunction with PLogStagePush()and PLogStagePop().int PLogStagePush(int stage)Users can log up to 10 stages within a code by using -log summary in conjunction with PLogStagePush()and PLogStagePop().int PLogStageRegister(int stage, char *sname)Attaches a charactor string name to a logging stage.int PLogTraceBegin(FILE *�le)Activates trace logging. Every time a PETSc event begins or ends, the event name is printed.void PetscBarrier(PetscObject obj)Blocks Until this routine is executed by all processors owning the object A.double PetscGetFlops()Returns the number of
ops used on this processor since the program began.double PetscGetTime()Returns the current time of day in seconds. This returns wall-clock time.A.12 Graphics RoutinesData Structures:� Draw - a drawing surface, probably a window.� DrawAxis - a two-dimensional line graph axis.� DrawLG - a two-dimensional line graph.#include \draw.h"int DrawAppendTitle(Draw draw,char *title)Appends to the title of a Draw context.int DrawAxisCreate(Draw win,DrawAxis *ctx)Generate the axis data structure.int DrawAxisDestroy(DrawAxis ad)Frees the space used by an axis structure.int DrawAxisDraw(DrawAxis ad)Draws an axis.int DrawAxisSetColors(DrawAxis ad,int ac,int tc,int cc)Sets the colors to be used for the axis, tickmarks, and text.int DrawAxisSetLabels(DrawAxis ad,char* top,char *xlabel,char *ylabel)Sets the x and y axis labels.int DrawAxisSetLimits(DrawAxis ad,double xmin,double xmax,double ymin,double ymax)Sets the limits (in user coords) of the axisint DrawBOP(Draw draw)Begins a new page or frame on the selected graphical device.int DrawCheckResizedWindow(Draw draw)Checks if the user has resized the window.int DrawClear(Draw draw)Clears graphical output. 177

int DrawCreatePopUp(Draw draw,Draw *popup)Creates a popup window associated with a Draw window.int DrawDestroy(Draw draw)Deletes a draw context.int DrawEOP(Draw draw)Ends a page or frame on the selected graphical device.int DrawFlush(Draw draw)Flushs graphical output.int DrawGetCoordinates(Draw draw,double *xl,double *yl,double *xr,double *yr)Gets the application coordinates of the corners of the window (or page).int DrawGetMouseButton(Draw draw,DrawButton *button,double* x user,double *y user, double*x phys,double *y phys)Returns location of mouse and which button was pressed. Waits for button to be pressed.int DrawGetPause(Draw draw,int *pause)Gets the amount of time that program pauses after a DrawPause() is called.int DrawGetTitle(Draw draw,char **title)Gets pointer to title of a Draw context.int DrawIsNull(Draw draw,PetscTruth *yes)Returns PETSC TRUE if draw is a null draw object.int DrawLGAddPoints(DrawLG lg,int n,double **xx,double **yy)Adds several points to each of the line graphs. The new points must have an X coordinate larger than theold points.int DrawLGAddPoint(DrawLG lg,double *x,double *y)Adds another point to each of the line graphs. The new point must have an X coordinate larger than theold points.int DrawLGCreate(Draw win,int dim,DrawLG *outctx)Creates a line graph data structure.int DrawLGDestroy(DrawLG lg)Frees all space taken up by line graph data structure.int DrawLGDraw(DrawLG lg)Redraws a line graph.int DrawLGGetAxis(DrawLG lg,DrawAxis *axis)Gets the axis context associated with a line graph. This is useful if one wants to change some axisproperty, such as labels, color, etc. The axis context should not be destroyed by the application code.int DrawLGGetDraw(DrawLG lg,Draw *win)Gets the draw context associated with a line graph.int DrawLGIndicateDataPoints(DrawLG lg)Causes LG to draw a big dot for each data-point.int DrawLGReset(DrawLG lg)Clears line graph to allow for reuse with new data.int DrawLGSetDimension(DrawLG lg,int dim)Change the number of lines that are to be drawn.int DrawLGSetLimits(DrawLG lg,double x min,double x max,double y min, double y max)Sets the axis limits for a line graph. If more points are added after this call, the limits will be adjusted toinclude those additional points.int DrawLineGetWidth(Draw draw,double *width)Gets the line width for future draws. The width is relative to the user coordinates of the window; 0.0denotes the natural width; 1.0 denotes the interior viewport.int DrawLineSetWidth(Draw draw,double width)Sets the line width for future draws. The width is relative to the user coordinates of the window; 0.0denotes the natural width; 1.0 denotes the entire viewport.int DrawLine(Draw draw,double xl,double yl,double xr,double yr,int cl)Draws a line onto a drawable.int DrawOpenVRML(MPI Comm comm,char* fname,char *title, Draw* inctx)Opens an VRML viewer for use with the Draw routines.178

int DrawOpenX(MPI Comm comm,char* display,char *title,int x,int y,int w,int h, Draw* inctx)Opens an X-window for use with the Draw routines.int DrawPause(Draw draw)Waits n seconds or until user input, depending on input to DrawSetPause().int DrawPointSetSize(Draw draw,double width)Sets the point size for future draws. The size is relative to the user coordinates of the window; 0.0 denotesthe natural width, 1.0 denotes the entire viewport.int DrawPoint(Draw draw,double xl,double yl,int cl)Draws a point onto a drawable.int DrawRectangle(Draw draw,double xl,double yl,double xr,double yr, int c1, int c2,int c3,int c4)Draws a rectangle onto a drawable.int DrawSPAddPoints(DrawSP sp,int n,double **xx,double **yy)Adds several points to each of the scatter plots.int DrawSPAddPoint(DrawSP sp,double *x,double *y)Adds another point to each of the scatter plots.int DrawSPCreate(Draw win,int dim,DrawSP *outctx)Creates a scatter plot data structure.int DrawSPDestroy(DrawSP sp)Frees all space taken up by scatter plot data structure.int DrawSPDraw(DrawSP sp)Redraws a scatter plot.int DrawSPGetAxis(DrawSP sp,DrawAxis *axis)Gets the axis context associated with a line graph. This is useful if one wants to change some axisproperty, such as labels, color, etc. The axis context should not be destroyed by the application code.int DrawSPGetDraw(DrawSP sp,Draw *win)Gets the draw context associated with a line graph.int DrawSPReset(DrawSP sp)Clears line graph to allow for reuse with new data.int DrawSPSetDimension(DrawSP sp,int dim)Change the number of sets of points that are to be drawn.int DrawSPSetLimits(DrawSP sp,double x min,double x max,double y min, double y max)Sets the axis limits for a line graph. If more points are added after this call, the limits will be adjusted toinclude those additional points.int DrawSetCoordinates(Draw draw,double xl,double yl,double xr, double yr)Sets the application coordinates of the corners of the window (or page).int DrawSetDoubleBu�er(Draw draw)Sets a window to be double bu�ered.int DrawSetPause(Draw draw,int pause)Sets the amount of time that program pauses after a DrawPause() is called.int DrawSetTitle(Draw draw,char *title)Sets the title of a Draw context.int DrawSetViewPort(Draw draw,double xl,double yl,double xr,double yr)Sets the portion of the window (page) to which draw routines will write.int DrawSyncClear(Draw draw)Clears graphical output. All processors must call this routine. Does not return until the drawable is clear.int DrawSyncFlush(Draw draw)Flushes graphical output. This waits until all processors have arrived and
ushed, then does a global
ush.This is usually done to change the frame for double bu�ered graphics.int DrawTextGetSize(Draw draw,double *width,double *height)Gets the size for charactor text. The width is relative to the user coordinates of the window; 0.0 denotesthe natural width; 1.0 denotes the entire viewport.int DrawTextSetSize(Draw draw,double width,double height)Sets the size for charactor text. The width is relative to the user coordinates of the window; 0.0 denotesthe natural width; 1.0 denotes the entire viewport.179

int DrawTextVertical(Draw draw,double xl,double yl,int cl,char *text)Draws text onto a drawable.int DrawText(Draw draw,double xl,double yl,int cl,char *text)Draws text onto a drawable.int DrawTriangle(Draw draw,double x1,double y1,double x2,double y2, double x3,double y3,int c1,int c2,int c3)Draws a triangle onto a drawable.Viewer VIEWER DRAWX (MPI Comm comm)Creates a window viewer shared by all processors in a communicator.int ViewerDrawGetDrawLG(Viewer v, DrawLG *drawlg)Returns DrawLG object from Viewer object. This DrawLG object may then be used to perform graphicsusing DrawLGXXX() commands.int ViewerDrawGetDraw(Viewer v, Draw *draw)Returns Draw object from Viewer object. This Draw object may then be used to perform graphics usingDrawXXX() commands.int ViewerDrawOpenVRML(MPI Comm comm,char* fname,char *title,Viewer *viewer)Opens an VRML �le for use as a viewer. If you want to do graphics in this window, you must callViewerDrawGetDraw() and perform the graphics on the Draw object.int ViewerDrawOpenX(MPI Comm comm,char* display,char *title,int x,int y, int w,int h,Viewer*viewer)Opens an X window for use as a viewer. If you want to do graphics in this window, you must callViewerDrawGetDraw() and perform the graphics on the Draw object.

180

AcknowledgmentsWe thank Victor Eijkhout for his valuable comments on this manual as well as on the source code for PETSc2.0. We also thank David Keyes for his insightful suggestions about increased functionality. In addition, wethank all our users of PETSc for their suggestions, bug reports, support, and encouragement.Some of the source code and utility routines in PETSc were written by Cameron Cooper, Matt Hille,Peter Mell, and Wing-Lok Wan while visiting Argonne National Laboratory as summer research students.PETSc uses routines from BLAS, LAPACK, MINPACK, SPARSPAK, and BlockSolve95 to provide asmall subset of its low-level functionality.

181

Bibliography[1] Tcl/Tk World Wide Web page. http://www.sunlabs.com/research/tcl/, August 1996.[2] Peter N. Brown and Youcef Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAMJ. Sci. Stat. Comput., 11:450{481, 1990.[3] J. E. Dennis Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization andNonlinear Equations. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1983.[4] S. Eisenstat. E�cient implementation of a class of CG methods. SIAM J. Sci. Stat. Comput., 2:1{4,1981.[5] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method. PreprintUtah State University Math. Stat. Dept. Res. Report 6/94/75, Logan, UT, 1994. (to appear in SIAMJ. Sci. Comput.).[6] R. Freund, G. H. Golub, and N. Nachtigal. Iterative Solution of Linear Systems, pages 57{100. ActaNumerica. Cambridge University Press, 1992.[7] Roland W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems.SIAM J. Sci. Stat. Comput., 14:470{482, 1993.[8] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. MPICH home page.http://www.mcs.anl.gov/mpi/mpich/index.html, December 1996.[9] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with Upshot. Technical ReportANL-91/15, Argonne National Laboratory, August 1991.[10] Magnus R. Hestenes and Eduard Steifel. Methods of conjugate gradients for solving linear systems. J.Research of the National Bureau of Standards, 49:409{436, 1952.[11] Mark T. Jones and Paul E. Plassmann. BlockSolve v1.1: Scalable library software for the parallelsolution of sparse linear systems. Technical Report ANL-92/46, Argonne National Laboratory, 1992.[12] Jorge J. Mor�e, Danny C. Sorenson, Burton S. Garbow, and Kenneth E. Hillstrom. The MINPACKproject. In Wayne R. Cowell, editor, Sources and Development of Mathematical Software, pages 88{111,1984.[13] Jorge J. Mor�e and David Thuente. Line search algorithms with guaranteed su�cient decrease. TechnicalReport MCS-P330-1092, Mathematics and Computer Science Division, Argonne National Laboratory,1992.[14] MPI: A message-passing interface standard. International J. Supercomputing Applications, 8(3/4), 1994.[15] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algorithm for solvingnonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856{869, 1986.[16] Barry F. Smith, Petter Bj�rstad, and William Gropp. Domain Decomposition: Parallel MultilevelMethods for Elliptic Partial Di�erential Equations. Cambridge University Press, 1996.182

[17] Peter Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat.Comput., 10:36{52, 1989.[18] Trond Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAMJ. Numer. Anal., 20:626{637, 1983.[19] H. A. van der Vorst. BiCGSTAB: A fast and smoothly converging variant of BiCG for the solution ofnonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13:631{644, 1992.

183

Indexaggregation, 114AIJ matrix format, 41alias, 118Arnoldi, 52array, distributed, 27ASM, 56assembly, 21axis, drawing, 85backward Euler, 77block diagonal matrix storage, 140block Gauss-Seidel, 56block Jacobi, 56, 119BlockSolve95, 54boundary conditions, 46C++, 124Cai, Xiao-Chuan, 56CG, 49Cholesky, 80coarse grid solve, 57collective operations, 11command line arguments, 6command line options, 118communicator, 6, 52, 137compiler options, 114complex numbers, 10, 122, 124convergence tests, 51, 66coordinates, 84CSR, compressed sparse row format, 41ctags, in VI, 123debugging, 6, 120direct solver, 55distributed array, 27double bu�er, 85eigenvalues, 52Eisenstat trick, 55Emacs, 122errors, 120etags, in Emacs, 122Euler, 77factorization, 80
oating-point exceptions, 121
ushing, graphics, 85

gather, 24ghost points, 26, 27global representation, 26GMRES, 49gradient, 60Gram-Schmidt, 50graphics, 84GUI utilities, 129Hessian, 60Hessian, debugging, 68IEEE
oating point, 121incremental debugging, 122index sets, 23inexact Newton methods, 68installing PETSc, 5Jacobi, 56Jacobian, 60Jacobian, debugging, 68Jacobian, testing, 68Krylov subspace methods, 48, 49Lanczo, 52line graphs, 85line search, 59, 66linear system solvers, 48lines, drawing, 85local linear solves, 56local representation, 26local to global mapping, 26logging, 105, 114LU, 80man pages, 5matrices, 10, 40matrix reordering, 81matrix-free Jacobians, 69matrix-free methods, 46, 48MPI, 123multigrid, 57nested dissection, 55, 80Newton-like methods, 59nonlinear equation solvers, 59Nupshot, 107184

ODE solvers, 76one-way dissection, 55, 80options, 6, 118orderings, 25, 26, 54, 55overlapping Schwarz, 56performance tuning, 114petsc-maint, 141preconditioners, 53preconditioning, 48, 50pro�ling, 105, 114quotient minimum degree, 55, 80relaxation, 55, 57reorder, 80reordering, 81restart, 50reverse Cuthill-McKee, 55, 80Richardson's method, 83running PETSc programs, 5scatter, 24signals, 121smoothing, 57SOR, 55SPARSKIT, 42SPARSPAK, 141spectrum, 52SSOR, 55stride, 23symbolic factorization, 81text, drawing, 85time, 110timing, 105, 114trust region, 59, 66Upshot, 107V-cycle, 57vector values, getting, 25vector values, setting, 22vectors, 10, 21VI, 123visualizing program activity, 129W-cycle, 57wall clock time, 110X windows, 84 185

Index-compare, 122-draw pause, 85-draw x private colormap, 84-fp trap, 6, 121-h, 6-help, 6-ksp atol, 51-ksp bsmonitor, 54-ksp cancelmonitors, 52-ksp compute eigenvalues, 52-ksp compute eigenvalues explicitly, 52-ksp divtol, 51-ksp gmres irorthog, 50-ksp gmres restart, 50-ksp max it, 51-ksp monitor, 51, 52-ksp plot eigenvalues, 52-ksp plot eigenvalues explicitly, 52-ksp richardson scale, 50-ksp right pc, 50-ksp rtol, 51-ksp singmonitor, 52-ksp truemonitor, 52-ksp type, 49-ksp xmonitor, 51, 52, 87-log, 105, 107, 114, 129-log all, 105, 107, 114, 129-log history, 110-log info, 42, 44, 105, 110-log mpe, 107, 114-log summary, 105{107, 114-log trace, 105, 121-mat aij oneindex, 42-mat coloring, 75-mat fd coloring err, 75-mat fd coloring umin, 75-mat order, 80-no signal handler, 121-nox, 86-optionsleft, 119-optionstable, 119-pc asm type, 56-pc bgs blocks, 56-pc bjacobi blocks, 56-pc eisenstat diagonal scaling, 55-pc eisenstat omega, 55

-pc ilu in place, 54-pc ilu levels, 54-pc ilu nonzeros along diagonal, 54, 81-pc ilu reuse �ll, 54-pc ilu reuse reordering, 54-pc ilu use drop tolerance, 54-pc lu in place, 55-pc lu nonzeros along diagonal, 56, 81-pc mg cycles, 57-pc mg method, 57-pc mg smoothdown, 57-pc mg smoothup, 57-pc sor backward, 55-pc sor its, 55-pc sor local backward, 55-pc sor local forward, 55-pc sor local symmetric, 55-pc sor omega, 55-pc sor symmetric, 55-pc type, 53-snes atol, 67-snes cancelmonitors, 67-snes fmin, 67-snes ksp ew conv, 68-snes line search, 66-snes line search alpha, 66-snes line search maxstep, 66-snes line search steptol, 66-snes max funcs, 67-snes max it, 67-snes mf, 69-snes mf err, 69-snes mf operator, 69-snes mf umin, 69-snes monitor, 67-snes rtol, 67-snes stol, 67-snes test display, 68-snes trtol, 67-snes type, 64-snes xmonitor, 67, 87-sub ksp type, 56-sub pc type, 56-trdump, 6-ts pseudo increment dt from initial dt, 79-ts type, 77186

-v, 6-version, 6.petschistory, 110.petscrc, 118.petscviewrc, 131ADD VALUES, 22, 24Additive, 57alias, 118AO, 25, 26AOApplicationToPetsc(), 26AOApplicationToPetscIS(), 26AOCreateDebug, 25AOCreateDebugIS, 26AODestroy(), 26AOPetscToApplication(), 26AOPetscToApplicationIS(), 26AOView, 26CHKERRA(), 121CHKERRQ(), 121CHKPTRA(), 121CHKPTRQ(), 121COLORING ID, 75COLORING LF, 75COLORING SL, 75DA NONPERIODIC, 27DA STENCIL BOX, 27DA STENCIL STAR, 27DA XPERIODIC, 27DA XYPERIODIC, 27DA XYZPERIODIC, 28DA XZPERIODIC, 28DA YPERIODIC, 27DA YZPERIODIC, 28DA ZPERIODIC, 28DACreate1d(), 27DACreate2d, 27DACreate3d(), 27DAGetAO, 29DAGetCorners(), 28DAGetDistributedVector, 28DAGetDistributedVector(), 28DAGetGhostCorners(), 28DAGetGlobalIndices(), 28, 89DAGetLocalVector(), 28DAGetScatter(), 28DAGlobalToLocalBegin(), 28DAGlobalToLocalEnd(), 28DALocalToGlobal(), 28DALocalToLocalBegin(), 28DALocalToLocalEnd(), 28DFVecDrawTensorContoursX, 39DFVecDrawTensorSurfaceContoursVRML, 39DFVecView, 39DrawAxis*(), 52DrawAxisSetColors(), 85

DrawAxisSetLabels(), 85DrawFlush(), 85DrawLG*(), 52DrawLGAddPoint(), 85DrawLGAddPoints(), 85DrawLGCreate(), 85DrawLGDestroy(), 85DrawLGDraw(), 85DrawLGGetAxis(), 85DrawLGReset(), 85DrawLGSetLimits(), 85DrawLine(), 85DrawOpenX(), 84DrawSetCoordinates(), 84DrawSetDoubleBu�er(), 85DrawSetViewPort(), 84DrawSP*(), 52DrawSyncFlush(), 85DrawText(), 85DrawTextGetSize(), 85DrawTextSetSize(), 85DrawTextVertical(), 85Full Multigrid, 57HAVE FORTRAN CAPS, 91HAVE FORTRAN UNDERSCORE, 91Hermitian matrix, 50inplace solvers, 55INSERT VALUES, 21, 24ISBlock(), 24ISBlockGetBlockSize(), 24ISBlockGetIndices(), 24ISBlockGetSize(), 24ISColoringDestroy(), 75ISCreateBlock, 24ISCreateGeneral(), 23ISDestroy(), 24ISGetIndices(), 24, 89ISGetSize(), 24ISLocalToGlobalMapping, 26ISLocalToGlobalMappingApply(), 26ISLocalToGlobalMappingApplyIS(), 26ISLocalToGlobalMappingCreate(), 26ISLocalToGlobalMappingDestroy(), 26ISRestoreIndices(), 24ISStrideGetInfo(), 24Kaskade, 57KSP CG SYMMETRIC, 50KSPBCGS, 49KSPBuildResidual(), 53KSPBuildSolution(), 53KSPCG, 49KSPCGSetType(), 50KSPCGType, 50KSPCHEBYCHEV, 49KSPChebychevSetEigenvalues(), 49187

KSPComputeEigenvalues(), 52KSPCR, 49KSPCreate(), 82KSPDefaultMonitor(), 52KSPDestroy(), 82KSPGetRhs(), 52KSPGetSolution(), 52KSPGMRES, 49KSPGMRESIROrthog, 50KSPGMRESSetOrthogonalization(), 50KSPGMRESSetRestart(), 49KSPGMRESUnmodi�edGramSchmidtOrthogonalization,50KSPLGMonitor(), 87KSPLGMonitorCreate(), 52, 87KSPLGMonitorDestroy(), 52KSPPREONLY, 49KSPRICHARDSON, 49KSPRichardsonSetScale(), 49KSPSetComputeEigenvalues(), 52KSPSetConvergenceTest(), 51KSPSetInitialGuessNonzero(), 50KSPSetMonitor(), 51KSPSetPC(), 82KSPSetRhs(), 53KSPSetSolution(), 53KSPSetTolerances(), 51KSPSetType(), 49KSPSetUp(), 82KSPSingularValueMonitor(), 52KSPSolve(), 82KSPTCQMR, 49KSPTFQMR, 49KSPTrueMonitor(), 52MAT COLUMNS SORTED, 40MAT FINAL ASSEMBLY, 41MAT FLUSH ASSEMBLY, 41MAT ROWS SORTED, 40MatAssemblyBegin(), 10, 41MatAssemblyEnd(), 10, 41MatCholeskyFactor(), 81MatCholeskyFactorNumeric(), 81MatCholeskyFactorSymbolic(), 81MatConvert(), 46MatCreate(), 10, 40MatCreateMPIAIJ(), 43MatCreateMPIBAIJ(), 140MatCreateMPIRowbs(), 54MatCreateSeqAIJ(), 41MatCreateSeqBAIJ, 139MatCreateSeqBDiag, 141MatCreateSeqDense(), 44MatCreateShell(), 46, 48MatFDColoringCreate(), 75MatFDColoringSetFromOptions(), 75

MatFDColoringSetParameters(), 75MatGetArray(), 89MatGetColoring(), 75MatGetOwnershipRange(), 41MatGetReordering(), 80MatGetRow(), 47MatLoad(), 120MatLUFactor(), 81MatLUFactorNumeric(), 81MatLUFactorSymbolic(), 81MatMult(), 45MatMultAdd(), 45MatMultTrans(), 45MatMultTransAdd(), 45MatReorderForNonzeroDiagonal, 81MatReorderingRegister(), 81MatRestoreRow(), 47MatSetOption(), 40MatSetValues(), 10, 40MATSHELL, 69MatShellGetContext(), 46MatShellSetOperation(), 46MatSolve(), 81MatSolveAdd(), 82MatSolveTrans(), 82MatSolveTransAdd(), 82MatView(), 45MatZeroEntries(), 46MatZeroRows(), 46MG W CYCLE, 57MGADDITIVE, 57MGDefaultResidual(), 58MGFULL, 57MGGetCoarseSolve(), 57MGGetSmoother(), 57MGKASKADE, 57MGMULTIPLICATIVE, 57MGSetCycles(), 57MGSetLevels(), 57MGSetNumberSmoothDown(), 57MGSetNumberSmoothUp(), 57MGSetR(), 58MGSetResidual(), 57MGSetRhs(), 58MGSetSmoother(), 57MGSetType(), 57MGSetX(), 58MPI Finalize(), 7MPI Init(), 6mpirun, 5Multiplicative, 57OptionsGetDouble(), 119OptionsGetDoubleArray(), 119OptionsGetInt(), 119OptionsGetIntArray(), 119188

OptionsGetString(), 119OptionsHasName(), 119OptionsSetValue(), 118ORDER 1WD, 55, 80ORDER NATURAL, 55, 80ORDER ND, 55, 80ORDER NEW, 81ORDER QMD, 55, 80ORDER RCM, 55, 80PC ASM BASIC, 56PC ASM INTERPOLATE, 56PC ASM NONE, 56PC ASM RESTRICT, 56PCApply(), 83PCApplyBAorAB(), 83PCApplyBAorABTrans(), 83PCApplyRichardson(), 83PCApplyTrans(), 83PCASM, 53PCASMSetOverlap, 57PCASMSetTotalSubdomains(), 56PCASMSetType(), 56PCBGS, 53PCBGSSetTotalBlocks(), 56PCBJACOBI, 53PCBJacobiGetSubSLES(), 56PCBJacobiSetTotalBlocks(), 56PCCreate(), 82PCDestroy(), 83PCEISENSTAT, 55PCEisenstatSetOmega(), 55PCEisenstatUseDiagonalScaling(), 55PCGetOperators(), 82PCICC, 53PCILU, 53PCILUSetLevels(), 54PCILUSetReuseFill(), 54PCILUSetReuseReordering, 54PCILUSetUseDropTolerance(), 54PCILUSetUseInPlace(), 54PCJACOBI, 53PCLU, 53PCLUSetUseInPlace(), 49, 55PCNONE, 53PCSetOperators(), 82PCSetType(), 53, 82PCSetVector(), 82PCSHELL, 53, 69PCShellSetApply(), 57PCSide, 50PCSOR, 53PCSORSetIterations(), 55PCSORSetOmega(), 55PCSORSetSymmetric(), 55PETSC COMM WORLD, 6

PETSC COMPLEX, 125PETSC DEBUG, 125PETSC DECIDE, 21, 43, 44, 140PETSC DEFAULT, 51PETSC DIR, 5, 127PETSC FORTRAN LIB, 92, 127PETSC FP TRAP OFF, 121PETSC FP TRAP ON, 121PETSC INCLUDE, 127PETSC LIB, 92, 127PETSC LOG, 105, 125PETSC NULL, 91PETSC NULL CHARACTER, 91PETSC OPTIONS, 6, 118PetscAbortErrorHandler(), 120PetscAttachErrorHandler(), 120PetscCObjectToFortranObject(), 90PetscCompareDouble(), 122PetscCompareInt(), 122PetscCompareScalar(), 122PetscDefaultSignalHandler(), 121PetscError(), 120PetscFinalize(), 7PetscFortranObjectToCObject(), 90PetscFPrintf(), 110PetscGetTime(), 110PetscInitialize(), 6petscman, 5PetscObjectGetComm(), 52, 137PetscObts, 119PetscPopErrorHandler(), 120PetscPrintf(), 110PetscPushErrorHandler(), 120PetscPushSignalHandler(), 121PetscSetCommWorld, 6PetscSetFPTrap(), 121PetscTraceBackErrorHandler(), 120petscview, 107, 129PLogAllBegin(), 139PLogBegin(), 139PLogDump(), 139PLogEventBegin(), 108, 139PLogEventEnd(), 108PLogEventRegister(), 108PLogFlops(), 108PLogInfo(), 110PLogInfoActivateClass(), 110PLogInfoAllow(), 110PLogInfoDeactivateClass(), 110PLogObjectCreate(), 138PLogObjectDestroy(), 138PLogObjectParent(), 138PLogObjectState(), 139PLogPrintSummary(), 139PLogStagePop(), 109189

PLogStagePush(), 109PLogStageRegister(), 109PLogTraceBegin(), 121SAME NONZERO PATTERN, 48, 65SAME PRECONDITIONER, 48Scalar, 10SCATTER FORWARD, 24SCATTER REVERSE, 25SETERRA(), 121SETERRQ(), 121SLESCreate(), 10, 48SLESDestroy(), 10, 49SLESGetKSP(), 49SLESGetPC(), 49SLESSetFromOptions(), 10, 49SLESSetOperators(), 10, 48SLESSetUp(), 49, 56SLESSolve(), 10, 49SNESDefaultMatrixFreeMatCreate(), 69SNESDefaultMonitor(), 67SNESetFromOptions(), 64SNESGetFunction, 67SNESGetSolution(), 67SNESGetTolerances(), 67SNESNoLineSearch(), 66SNESSetConvergenceTest(), 67SNESSetFunction(), 64SNESSetGradient(), 65SNESSetHessian(), 65SNESSetJacobian(), 64, 77, 78SNESSetLineSearch(), 66SNESSetMatrixFreeParameters(), 69SNESSetMinimizationFunction(), 65SNESSetMonitor(), 67SNESSetTolerances(), 67SNESSetType(), 64SNESSolve, 64SOR BACKWARD SWEEP, 55SOR FORWARD SWEEP, 55SOR LOCAL BACKWARD SWEEP, 55SOR LOCAL FORWARD SWEEP, 55SOR LOCAL SYMMETRIC SWEEP, 55SOR SYMMETRIC SWEEP, 55TS, 76TS BEULER, 77TS EULER, 77TS PSEUDO, 77TSCreate(), 77TSDestroy(), 77TSGetTimeStep(), 77TSProblemType, 77TSPseudoIncrementDtFromInitialDt(), 79TSPseudoSetTimeStepIncrement(), 79TSSetDuration(), 77TSSetInitialTimeStep, 77

TSSetRHSFunction, 78TSSetRHSJacobian, 78TSSetRHSMatrix(), 77TSSetSolution(), 77TSSetTimeStep(), 77TSSetType(), 77TSSetUp(), 77TSView(), 77Vec, 21VecAssemblyBegin(), 21VecAssemblyEnd(), 21VecCreate(), 10, 21VecCreateMPI(), 21, 26VecCreateSeq(), 21VecDestroy(), 22VecDestroyVecs(), 22VecDestroyVectors(), 91VecDuplicate(), 10, 22VecDuplicateVecs(), 22, 91VecGetArray(), 23, 89, 115VecGetLocalSize(), 23VecGetOwnershipRange(), 22VecGetSize(), 23VecLoad(), 120VecScatterBegin(), 24VecScatterCreate(), 24VecScatterDestroy(), 24VecScatterEnd(), 24VecSet(), 10, 21VecSetValues(), 10, 21, 22, 25VecView(), 22Viewer, 119VIEWER DRAWX SELF, 84, 119VIEWER DRAWX WORLD, 22, 45, 84, 119VIEWER FORMAT ASCII DEFAULT, 120VIEWER FORMAT ASCII IMPL, 120VIEWER FORMAT ASCII MATLAB, 120VIEWER STDOUT SELF, 22, 119VIEWER STDOUT WORLD, 22, 119ViewerDestroy(), 120ViewerDrawGetDraw(), 84ViewerDrawOpenX, 45ViewerDrawOpenX(), 84ViewerFileOpenASCII(), 119ViewerFileOpenBinary, 119ViewerMatlabOpen(), 120ViewerPopFormat, 120ViewerPushFormat(), 120ViewerSetFormat(), 120190

