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Abstract

This manual describes the use of PETSc 2.0 for the numerical solution of partial differential equations and re-
lated problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation
(PETSc) is a suite of data structures and routines that provide the building blocks for the implementation
of large-scale application codes on parallel (and serial) computers. PETSc 2.0 uses the MPI standard for all
message-passing communication.

PETSc includes an expanding suite of parallel linear and nonlinear equation solvers that may be used
in application codes written in Fortran, C, and C+4. PETSc provides many of the mechanisms needed
within parallel application codes, such as simple parallel matrix and vector assembly routines that allow the
overlap of communication and computation. In addition, PETSc includes growing support for distributed
arrays. The library is organized hierarchically, enabling users to employ the level of abstraction that is most
appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides
enormous flexibility for users.

PETSc 1s a sophisticated set of software tools; as such, for some users it initially has a much steeper
learning curve than a simple subroutine library. In particular, for individuals without some computer science
background or experience programming in C, Pascal, or C++, it may require a large amount of time to take
full advantage of the features that enable efficient software use. However, the power of the PETSc design and
the algorithms it incorporates make the efficient implementation of many application codes much simpler
than “rolling them” yourself. For many simple (or even relatively complicated) tasks a package such as
Matlab 1s often the best tool; PETSc is not intended for the classes of problems for which effective Matlab
code can be written.

Since PETSc is still under development, small changes in usage and calling sequences of PETSc routines
will continue to occur. Although keeping one’s code up to date can be somewhat annoying, all PETSc users
will be rewarded in the long run with a cleaner, better designed, and easier-to-use interface.
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Chapter 1

Getting Started

The Portable, Extensible Toolkit for Scientific Computation (PETSc) has successfully demonstrated that the
use of modern programming paradigms can ease the development of large-scale scientific application codes
in Fortran, C, and C++. Begun several years ago, the software has evolved into a powerful set of tools for
the numerical solution of partial differential equations and related problems on high-performance computers.

PETSc consists of a variety of components (similar to classes in C++4), which are discussed in detail
in Parts IT and IIT of the users manual. Each component manipulates a particular family of objects (for
instance, vectors) and the operations one would like to perform on the objects. The objects and operations
in PETSc are derived from our long experiences with scientific computation. Some of the PETSc modules
deal with

e index sets, including permutations;

e vectors;

e matrices (both sparse and dense);

o distributed arrays (useful for parallelizing regular grid-based problems);
e Krylov subspace methods;

e preconditioners;

e nonlinear solvers;

o timesteppers for solving time dependent (nonlinear) PDEs; and

e graphics devices.

Fach of these components consists of an abstract interface (simply a set of calling sequences) and one or
more implementations using particular data structures. Thus, PETSc provides clean and effective codes for
the various phases of solving PDEs, with a uniform approach for each class of problems. This design enables
easy comparison and use of different algorithms (for example, to experiment with different Krylov subspace
methods, preconditioners, or truncated Newton methods). Hence, PETSc provides a rich environment for
modeling scientific applications as well as for rapid algorithm design and prototyping.

The components enable easy customization and extension of both algorithms and implementations. This
approach promotes code reuse and flexibility, and separates the issues of parallelism from the choice of
algorithms. In addition, the PETSc infrastructure creates a foundation for building large-scale applications
and extended suites of numerical routines.

It is useful to consider the interrelationships among different pieces of PETSc 2.0. Figure 1 is a diagram
of some of the components of PETSc; Figure 2 presents several of the individual components in more detail.
These figures illustrate the library’s hierarchical organization, which enables users to employ the level of
abstraction that is most appropriate for a particular problem.
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Figure 1: Organization of the PETSc Library

1.1 Suggested Reading

The PETSc 2.0 Users Manual replaces all of the previous PETSc users guides, including the SLES, KSP,
and SNES manuals. The manual is divided into three parts:

e Part I - Introduction to PETSc
e Part II - Programming with PETSc
e Part III - Additional Information

Part I describes the basic procedure for using the PETSc library and presents two simple examples of
solving linear systems with PETSc. This section conveys the typical style used throughout the library and
enables the application programmer to begin using the software immediately. Part I is also distributed
separately for individuals interested in an overview of the PETSc software, excluding the details of library
usage. Readers of this separate distribution of Part I should note that all references within the text to
particular chapters and sections indicate locations in the complete users manual.

Part I explains in detail the use of the various PETSc components, such as vectors, matrices, index
sets, linear and nonlinear solvers, and graphics. Part III describes a variety of useful information, including
profiling, the options database, viewers, error handling, makefiles, and some details of PETSc design.

The PETSc 2.0 Users Manual documents all of PETSc 2.0; thus, it can be rather intimidating for new
users. We recommend that one initially read the entire document before proceeding with serious use of
PETSc, but bear in mind that PETSc can be used efficiently before one understands all of the material
presented here.

Note to Fortran Programmers: In most of the manual, the examples and calling sequences are given
for the C/C++ family of programming languages. We follow this convention because we highly recommend
that PETSc applications be coded in C or C++. However, pure Fortran 77 programmers can use most of the
functionality of PETSc from Fortran, with only minor differences in the user interface. Chapter 9 provides a
discussion of the differences between using PETSc from Fortran and C, as well as several complete Fortran
77 examples.

Man pages for all PETSc functions can be accessed in HTML format with the command $(PETSC DIR)-
/bin/petscman [-xmosaic]. The option -xmosaic indicates viewing man pages via Mosaic. The HTML
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Figure 2: Numerical Components of PETSc

man pages provide hyperlinked indices (organized by both concepts and routine names) to the tutorial
examples and enables easy movement among related topics. Within the PETSc distribution, the directory
$(PETSCDIR)/docs contains all documentation, including this manual and the man pages in PostScript
and HTML formats. Note that one can also view the man pages in HTML format by loading the file
$(PETSCDIR)/docs/wuw/www.html into an HTML browser session that has been independently initiated.
Emacs users may find the etags option to be extremely useful for exploring the PETSc source code. Details
of this feature are provided in Section 12.6. Similarly, VI users may find the ctags option to be extremely
useful. Details of this feature are provided in Section 12.7.

The PETSc source code is available by anonymous ftp from ftp://info.mcs.anl.gov/pub/petsc in
the compressed tar files petsc.tar.Z and petsc.tar.gz. The file manual.ps contains the PostScript form
of the PETSc 2.0 Users Manual in its entirety, while intro.ps includes only the introductory segment,
Part I. The file Installation contains detailed instructions for installing PETSc. The complete PETSc
distribution, users manual, man pages, and additional information are also available via the PETSc home
page on the World Wide Web at http://www.mcs.anl.gov/petsc/petsc.html. The PETSc home page
also contains details regarding installation, new features and changes in recent versions of PETSc, machines
that we currently support, a troubleshooting guide, and a FAQ list for frequently asked questions.

1.2 Running PETSc Programs

Before using PETSc, the user must first set the environmental variable PETSC_DIR, indicating the full path of
the PETSc home directory. For example, under the UNIX C shell a command of the form setenv PETSC DIR
$HOME/petsc can be placed in the user’s . cshre file. In addition, the user must set the environmental variable
PETSC_ARCH to specify the architecture (e.g., rs6000, sun4, solaris) on which PETSc is being used. The utility
$(PETSCDIR)/bin/petscarch can be used for this purpose. For example,

setenv PETSC_ARCH ‘$PETSC_DIR/bin/petscarch®
can be placed in a .cshrc file. Thus, even if several machines of different types share the same filesystem,
PETSC_ARCH will be set correctly when logging into any of them.

All PETSc programs use the MPI (Message Passing Interface) standard for message-passing communi-
cation [14]. Thus, to execute PETSc programs, users must know the procedure for beginning MPT jobs on
their selected computer system(s). For instance, when using the MPICH implementation of MPI [8], the
following command initiates a program that uses eight processors:



mpirun -np 8 petsc_program_name petsc_options

All PETSc 2.0-compliant programs support the use of the -h or -help option as well as the -v or
-version option. For C and C++4 programs these options can be placed on the command line. For most
machines, options for Fortran programs can also be specified on the command line; otherwise, they can
be set in the environmental variable PETSC_OPTIONS or placed in a file called .petscrc in the user’s home
directory. Under the UNIX C shell the environmental variable can be set with a command such as setenv
PETSC_OPTIONS "-help -version'". See Section 12.1 for details.

Certain options are supported by all PETSc programs. We list a few particularly useful ones below; a
complete list can be obtained by running any PETSc program with the option -help.

e —log _summary - summarize the program’s performance

e —fp_trap - stop on floating-point exceptions

e —trdump - enable memory tracing; dump list of unfreed memory at conclusion of the run

e -trmalloc - enable memory tracing (by default this is activated for the debugging versions of PETSc¢)
e —start_in debugger [noxterm,dbx,xxgdb] [-display name] - start all processes in debugger

e —on_error_attach debugger [noxterm,dbx,xxgdb]l [-display name] - start debugger only on en-
countering an error

By default the GNU debugger gdb is used when -start_in_debugger or -on_error_attach_debugger is
specified. To employ either zzgdb or the common UNIX debugger dbz, one uses command line options as
indicated above. On HP-UX machines the debugger zdb should be used instead of dbz; on RS/6000 machines
the zldb debugger is supported as well. By default, the debugger will be started in a new xterm (to enable
running separate debuggers on each process), unless the option noxterm is used. In order to handle the
MPI startup phase, the debugger command “cont” should be used to continue execution of the program
within the debugger. Rerunning the program through the debugger requires terminating the first job and
restarting the processor(s); the usual “run” option in the debugger will not correctly handle the MPT startup
and should not be used. Not all debuggers work on all machines, so the user may have to experiment to find
one that works correctly.

Most PETSc programs begin with a call to

ierr = PetscInitialize(int *argc,char ***argv,char *file_name,char *help_message);
which initializes PETSc and MPI. The arguments argc and argv are the command line arguments delivered
in all C and C+4 programs. The argument file name optionally indicates an alternative name for the
PETSc options file, .petscrc, which resides by default in the user’s home directory. Section 12.1 provides
details regarding this file and the PETSc options database, which can be used for runtime customization.
The final argument, help message, is an optional character string that will be printed if the program is run
with the ~help option. In Fortran the initialization command has the form

call PetscInitialize(character file_name,integer ierr)

PetscInitialize() automatically calls MPI_Init () if MPI has not been not previously initialized. In certain
circumstances in which MPI needs to be initialized directly (or is initialized by some other library), the user
should first call MPI_Init () (or have the other library do it), and then call PetscInitialize().

By default, PetscInitialize() sets the PETSc “world” communicator, given by PETSC_COMM_WORLD,
to MPI_COMM_WORLD. This comunicator specifies the processor group involved in certain operations (such as
the default parallel viewers and performance summaries). Users who wish to employ PETSc routines on
only a subset of processors within a larger parallel job, or who wish to use a “master” process to coordinate
the work of “slave” PETSc processes, should specify an alternative communicator for PETSC_COMM_WORLD by
calling

ierr = PetscSetCommWorld(MPI_Comm comm)
before calling PetscInitialize(), but, obviously, after calling MPI_Init (). PetscSetCommWorld() can only
be called at most once per process. Most users will never need to use PetscSetCommWorld().

As illustrated by the PetscInitialize() statements above, PETSc 2.0 routines return an integer indi-
cating whether an error has occurred during the call. The error code is set to be nonzero if an error has been
detected; otherwise, it is zero. For the C/C++ interface, the error variable is the routine’s return value,



while for the Fortran version, each PETSc routine has as its final argument an integer error variable. Error
tracebacks are discussed in the following section.

All PETSc programs should call PetscFinalize() as their final (or nearly final) statement, as given
below in the C/C++ and Fortran formats, respectively:

ierr = PetscFinalize();
call PetscFinalize(ierr)

This routine handles options to be called at the conclusion of the program and calls MPI Finalize() if
PetscInitialize() began MPI. If MPI was initiated externally from PETSc (by either the user or another
software package), the user is responsible for calling MPI Finalize().

1.3 Simple PETSc Examples

To help the user start using PETSc immediately, we begin with a simple uniprocessor example in Figure 3
that solves the one-dimensional Laplacian problem with finite differences. This sequential code, which can be
found in $(PETSCDIR)/src/sles/examples/tutorials/ex1.c, illustrates the solution of a linear system
with SLES, the simplified interface to the preconditioners, Krylov subspace methods, and direct linear solvers
of PETSc. Following the code we highlight a few of the most important parts of this example.

#ifndef lint
static char vcid[] = "$Id: exl.c,v 1.59 1997/02/06 15:19:31 curfman Exp $";
#endif

static char help[] = "Solves a tridiagonal linear system with SLES.\n\n";

/*T
Concepts: SLES"Solving a system of linear equations (basic uniprocessor example);
Routines: SLESCreate(); SLESSetOperators(); SLESSetFromOptions();
Routines: SLESSolve(); SLESView(); SLESGetKSP(); SLESGetPC();
Routines: KSPSetTolerances(); PCSetType();
Processors: 1
T*/

/*
Include "sles.h'" so that we can use SLES solvers. DNote that this file
automatically includes:

petsc.h - base PETSc routines vec.h - vectors

sys.h - system routines mat.h - matrices

is.h - index sets ksp.h - Krylov subspace methods
viewer.h - viewers pc.h - preconditioners

*/
#include "sles.h"
#include <stdio.h>

int main(int argc,char **args)

{
Vec x, b, u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
SLES sles; /* linear solver context */
PC pc; /* preconditioner context */
KSP ksp; /* Krylov subspace method context */
double norm; /* norm of solution error */
int ierr, i, n = 10, col[3], its, flg, size;
Scalar none = -1.0, one = 1.0, value[3];

PetscInitialize(&argc,&%args,(char *)0,help);

MPI_Comm_size (MPI_COMM_WORLD,&size);

if (size !'= 1) SETERRA(1,0,"This is a uniprocessor example only!");
ierr = OptionsGetInt(PETSC_NULL,"-n",&n,&flg); CHKERRA(ierr);

Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.



/*
Create matrix. When using MatCreate(), the matrix format can
be specified at runtime.

*/

ierr = MatCreate(MPI_COMM_WORLD,n,n,&A); CHKERRA(ierr);

/*
Assemble matrix
*/
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
for (i=1; i<n-1; i++ ) {
col[0] = i-1; coll[1] = i; col[2] = i+1;
ierr = MatSetValues(A,1,%i,3,col,value,INSERT_VALUES); CHKERRA(ierr);
¥
i=n-1; col[0] =n - 2; col[1] =n - 1;
ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES); CHKERRA(ierr);
i = 0; col[0] = 0; col[1] = 1; value[0] = 2.0; value[1] = -1.0;
ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES); CHKERRA(ierr);
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY); CHKERRA(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY); CHKERRA(ierr);

/*
Create vectors. Note that we form 1 vector from scratch and
then duplicate as needed.

*/

ierr = VecCreate(MPI_COMM_WORLD,n,&x); CHKERRA(ierr);

ierr = VecDuplicate(x,&b); CHKERRA(ierr);

ierr = VecDuplicate(x,&u); CHKERRA(ierr);

Set exact solution; then compute right-hand-side vector.

ierr = VecSet(&one,u); CHKERRA(ierr);
ierr = MatMult(A,u,b); CHKERRA(ierr);

/¥ — — = — = — = = — - - - - - - - - - - - - - - - - - - - - - - - - -
Create the linear solver and set various options
—————————————————————————————————— */
/%
Create linear solver context
*/

ierr = SLESCreate(MPI_COMM_WORLD,&sles); CHKERRA(jerr);

/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.
*/
ierr = SLESSetOperators(sles,A,A ,DIFFERENT_NONZERO_PATTERN); CHKERRA(ierr);

/*

Set linear solver defaults for this problem (optional).

- By extracting the KSP and PC contexts from the SLES context,
we can then directly call any KSP and PC routines to set
various options.

- The following four statements are optional; all of these
parameters could alternatively be specified at runtime via
SLESSetFromOptions();

*/

ierr = SLESGetKSP(sles,&ksp); CHKERRA(ierr);

ierr = SLESGetPC(sles,&pc); CHKERRA(ierr);

ierr = PCSetType(pc,PCJACOBI); CHKERRA(ierr);

ierr = KSPSetTolerances(ksp,1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,
PETSC_DEFAULT) ; CHKERRA(ierr);

/*
Set runtime options, e.g.,
-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
These options will override those specified above as long as
SLESSetFromOptions() is called _after_ any other customization



routines.
*/
ierr = SLESSetFromOptions(sles); CHKERRA(ierr);

/¥ — — = — = — = = — - - - - - - - - - - - - - - - - - - - - - - - - -
Solve the linear system
—————————————————————————————————— */
/*
Solve linear system
*/
ierr = SLESSolve(sles,b,x,&its); CHKERRA(ierr);
/*
View solver info; we could instead use the option -sles_view
*/
ierr = SLESView(sles,VIEWER_STDOUT_WORLD); CHKERRA(ierr);
/¥ — — = — = — = = — - - - - - - - - - - - - - - - - - - - - - - - - -
Check solution and clean up
—————————————————————————————————— */
/*
Check the error
*/

ierr = VecAXPY(&none,u,x); CHKERRA (ierr);
ierr = VecHorm(x,NORM_2,&norm); CHKERRA(ierr);
if (norm > 1.e-12)
PetscPrintf (MPI_COMM_WORLD,"Norm of error %g, Iterations %d\n'",norm,its);
else
PetscPrintf (MPI_COMM_WORLD,"HNorm of error < 1.e-12, Iterations %d\n",its);

/*
Free work space. All PETSc objects should be destroyed when they
are no longer needed.
*/
ierr = VecDestroy(x); CHKERRA(ierr); ierr = VecDestroy(u); CHKERRA(ierr);
ierr = VecDestroy(b); CHKERRA(ierr); ierr = MatDestroy(A); CHKERRA(ierr);
ierr = SLESDestroy(sles); CHKERRA(ierr);
PetscFinalize();
return O;

Figure 3: Example of Uniprocessor PETSc Code

Include Files

The C/C++ include files for PETSc should be used via statements such as
#include "sles.h"

where sles.h is the include file for the SLES component. Each PETSc program must specify an include file
that corresponds to the highest-level PETSc objects needed within the program; all of the required lower-
level include files are automatically included within the higher-level files. For example, sles.h includes
mat.h (matrices), vector.h (vectors), and petsc.h (base PETSc file). The PETSc include files are located
in the directory $(PETSCDIR)/include. See Section 9.1.1 for a discussion of PETSc include files in Fortran
programs.

The Options Database

As shown in Figure 3, the user can input control data at run time using the options database. In this
example the command OptionsGetInt (PETSC NULL,"-n",&n,&flg); checks whether the user has provided
a command line option to set the value of n, the problem dimension. If so, the variable n is set accordingly;
otherwise, n remains unchanged. A complete description of the options database may be found in Section
12.1.



Vectors

One creates a new parallel or sequential vector, x; of global dimension ¥ with the command
ierr = VecCreate(MPI_Comm comm,int M,Vec *x);

where comm denotes the MPI communicator. Additional vectors of the same type can be formed with
ierr = VecDuplicate(Vec old,Vec *new);

The commands

ierr = VecSet(Scalar *value,Vec x);
ierr = VecSetValues(Vec x,int n,int *indices,Scalar *values,INSERT_VALUES);

respectively set all the components of a vector to a particular scalar value and assign a different value
to each component. More detailed information about PETSc vectors, including their basic operations,
scattering/gathering, index sets, and distributed arrays, is discussed in Chapter 2.

Note the use of the PETSc variable type Scalar in this example. The Scalar is simply defined to be
double in C/C++ (or correspondingly double precision in Fortran) for versions of PETSc that have not
been compiled for use with complex numbers. The Scalar data type enables identical code to be used when
the PETSc libraries have been compiled for use with complex numbers. Section 12.5 discusses the use of
complex numbers in PETSc programs.

Matrices

Usage of PETSc matrices and vectors is similar. The user can create a new parallel or sequential matrix, A,
that has M global rows and N global columns, with the routine

ierr = MatCreate(MPI_Comm comm,int M,int N,Mat *A4);
where the matrix format can be specified at runtime. Values can then be set with the command
ierr = MatSetValues(Mat A,int m,int *im,int n,int *in,Scalar *values,INSERT_VALUES);

After all elements have been inserted into the matrix, it must be processed with the pair of commands

ierr
ierr

MatAssemblyBegin(Mat A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(Mat A,MAT_FINAL_ASSEMBLY);

Chapter 3 discusses various matrix formats as well as the details of some basic matrix manipulation routines.

Linear Solvers

After creating the matrix and vectors that define a linear system, Ax = b, the user can then use SLES to
solve the system with the following sequence of commands:

ierr = SLESCreate(MPI_Comm comm,SLES *sles);

ierr = SLESSetOperators(SLES sles,Mat A,Mat PrecA,MatStructure flag);
ierr = SLESSetFromOptions(SLES sles);

ierr = SLESSolve(SLES sles,Vec b,Vec x,int *its);

ierr = SLESDestroy(SLES sles);

The user first creates the SLES context and sets the operators associated with the system (linear system
matrix and optionally different preconditioning matrix). The user then sets various options for customized
solution, solves the linear system, and finally destroys the SLES context. We emphasize the command
SLESSetFromOptions (), which enables the user to customize the linear solution method at runtime by using
the options database, which is discussed in Section 12.1. Through this database, the user not only can
select an iterative method and preconditioner, but also can prescribe the convergence tolerance, set various
monitoring routines, and so forth (see, e.g., Figure 7).

Chapter 4 describes in detail the SLES package, including the PC and KSP components for precondi-
tioners and Krylov subspace methods.
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Error Checking

All PETSc 2.0 routines return an integer indicating whether an error has occurred during the call. The
PETSc macro CHKERRQ(ierr) checks the value of ierr and calls the PETSc 2.0 error handler upon error de-
tection. CHKERRQ(ierr) should be used in all subroutines to enable a complete error traceback. A variant of
this macro, CHKERRA (ierr),should be used in the main program to enable correct termination of all processes
when an error is encountered. In Figure 4 we indicate a traceback generated by error detection within a sam-
ple PETSc program. The error occurred on line 858 of the file $(PETSCDIR)/src/mat/impls/aij/seq/aij.c
and was caused by trying to allocate too large an array in memory. The routine was called in the program
ex3.c on line 49. See Section 9.1.2 for details regarding error checking when using the PETSc Fortran
interface.

eagle>mpirun ex3 -m 100000000000
mat/impls/aij/seq/aij.c line # 858 No memory
mat/interface/matrix.c line # 123

ex3.c line # 49

Aborting program!

Figure 4: Example of Error Traceback

Parallel Programming

Since PETSc uses the message-passing model for parallel programming and employs MPI for all interprocessor
communication, the user is free to employ MPI routines as needed throughout an application code. However,
by default the user is shielded from many of the details of message passing within PETSc, since these are
hidden within parallel objects, such as vectors, matrices; and solvers. In addition, PETSc provides tools
such as generalized vector scatters/gathers and distributed arrays to assist in the management of parallel
data.

Recall that the user must specify a communicator upon creation of any PETSc object (such as a vector,
matrix, or solver) to indicate the processors over which the object is to be distributed. For example, as
mentioned above, some commands for matrix, vector, and linear solver creation are

MatCreate(MPI_Comm comm,int M,int N,Mat *A);
ierr = VecCreate(MPI_Comm comm,int M,Vec *x);
ierr = SLESCreate(MPI_Comm comm,SLES *sles);

The creation routines are collective over all processors in the communicator; thus, all processors in the

ierr

communicator must call the creation routine. In addition, if a sequence of collective routines is being used,
they must be called in the same order on each processor.

The next example, given in Figure 5, illustrates the solution of a linear system in parallel. This code, corre-
sponding to $(PETSCDIR)/src/sles/examples/tutorials/ex2.c, handles the two-dimensional Laplacian
discretized with finite differences, where the linear system is again solved with SLES. The code performs the
same tasks as the sequential version within Figure 3. Note that the user interface for initiating the program,
creating vectors and matrices, and solving the linear system is ezactly the same for the uniprocessor and
multiprocessor examples. The primary difference between the examples in Figures 3 and 5 is that each
processor forms only its local part of the matrix and vectors in the parallel case.
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#ifndef lint
static char vcid[] = "$Id: ex2.c,v 1.61 1997/02/06 15:19:35 curfman Exp $";
#endif

/* Usage: mpirun ex2 [-help] [all PETSc options] */
static char help[] = "Solves a linear system in parallel with SLES.\n\

Input parameters include:\n\
-random_exact_sol : use a random exact solution vector\n\

-view_exact_sol : write exact solution vector to stdout\n\

-m <mesh_x> : number of mesh points in x-direction\n\

-n <mesh_n> : number of mesh points in y-direction\n\n";
/*T

Concepts: SLES"Solving a system of linear equations (basic parallel example);

Concepts: SLES"Laplacian, 2d
Concepts: Laplacian, 2d
Routines: SLESCreate(); SLESSetOperators(); SLESSetFromOptions();
Routines: SLESSolve(); SLESGetKSP(); SLESGetPC();
Routines: KSPSetTolerances(); PCSetType();
Processors: n
T*/

/*
Include "sles.h'" so that we can use SLES solvers. DNote that this file
automatically includes:

petsc.h - base PETSc routines vec.h - vectors

sys.h - system routines mat.h - matrices

is.h - index sets ksp.h - Krylov subspace methods
viewer.h - viewers pc.h - preconditioners

*/
#include "sles.h"
#include <stdio.h>

int main(int argc,char **args)

{
Vec x, b, u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
SLES sles; /* linear solver context */
PetscRandom rctx; /* random number generator context */
double norm; /* norm of solution error */
int i, j, I, J, Istart, Iend, ierr, m =8, n =7, its, flg;
Scalar v, one = 1.0, neg_one = -1.0;

/* These variables are currently unused */
/* PC pc; */ /* preconditioner context */
/* KSP ksp; */ /* Krylov subspace method context */

PetscInitialize(&argc,&%args,(char *)0,help);
ierr = OptionsGetInt(PETSC_NULL,"-m",&m,&flg); CHKERRA(ierr);
ierr = OptionsGetInt(PETSC_NULL,"-n",&n,&flg); CHKERRA(ierr);

Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.

Create parallel matrix, specifying only its global dimensions.
When using MatCreate(), the matrix format can be specified at
runtime. Also, the parallel partitioning of the matrix is
determined by PETSc at runtime.

*/

ierr = MatCreate(MPI_COMM_WORLD,m*n ,m*n,&A); CHKERRA(ierr);

/*
Currently, all PETSc parallel matrix formats are partitioned by
contiguous chunks of rows across the processors. Determine which
rows of the matrix are locally owned.

*/
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ierr = MatGetOwnershipRange(A,&Istart,&Iend); CHKERRA(ierr);

/*
Set matrix elements for the 2-D, five-point stencil in parallel.
- Each processor needs to insert only elements that it owns
locally (but any non-local elements will be sent to the
appropriate processor during matrix assembly).
- Always specify global rows and columns of matrix entries.
*/
for ( I=Istart; I<Iend; I++ ) {
v=-1.0;1i=1I/n; j=1- i*n;
if ( i>0 ) {J =1 - n; MatSetValues(A,1,&I,1,8J,%v,INSERT_VALUES); CHKERRA(ierr);}
if ( i<m-1 ) {J = I + n; MatSetValues(A,1,%&I,1,&J,&v,INSERT_VALUES); CHKERRA(ierr);}
if ¢ j>0 ) {J=1-1; MatSetValues(A,1,&I,1,8J,%v,INSERT_VALUES); CHKERRA(ierr);}
if ( j<n-1 ) {J =1 + 1; MatSetValues(A,1,%&I,1,&J,&v,INSERT_VALUES); CHKERRA(ierr);}
v = 4.0; MatSetValues(A,1,&I,1,&I,&v,INSERT_VALUES);

}

/*
Assemble matrix, using the 2-step process:
MatAssemblyBegin(), MatAssemblyEnd()
Computations can be done while messages are in transition
by placing code between these two statements.
*/
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY); CHKERRA(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY); CHKERRA(ierr);

/*
Create parallel vectors.
- When using VecCreate(), we specify only the vector’s global
dimension; the parallel partitioning is determined at runtime.
- When solving a linear system, the vectors and matrices MUST
be partitioned accordingly. PETSc automatically generates
appropriately partitioned matrices and vectors when MatCreate()
and VecCreate() are used with the same communicator.
- Note: We form 1 vector from scratch and then duplicate as needed.
*/
ierr = VecCreate(MPI_COMM_WORLD,m*n,&u); CHKERRA(ierr);
ierr = VecDuplicate(u,&b); CHKERRA(ierr);
ierr = VecDuplicate(b,&x); CHKERRA(ierr);

/*
Set exact solution; then compute right-hand-side vector.
By default we use an exact solution of a vector with all
elements of 1.0; Alternatively, using the runtime option
-random_sol forms a solution vector with random components.

*/
ierr = OptionsHasName (PETSC_NULL,'"-random_exact_sol" ,&flg); CHKERRA(ierr);
if (flg) {

ierr = PetscRandomCreate (MPI_COMM_WORLD ,RANDOM_DEFAULT,&rctx); CHKERRA(ierr);

ierr = VecSetRandom(rctx,u); CHKERRA(ierr);
ierr = PetscRandomDestroy(rctx); CHKERRA(ierr);
} else {
ierr = VecSet(&one,u); CHKERRA(ierr);
¥
ierr = MatMult(A,u,b); CHKERRA(ierr);
/*
View the exact solution vector if desired
*/

ierr = OptionsHasName (PETSC_NULL,"-view_exact_sol",&flg); CHKERRA(ierr);
if (flg) {ierr = VecView(u,VIEWER_STDOUT_WORLD); CHKERRA(ierr);}

/*

Create linear solver context
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*/
ierr = SLESCreate(MPI_COMM_WORLD,&sles); CHKERRA(jerr);

/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.
*/
ierr = SLESSetOperators(sles,A,A ,DIFFERENT_NONZERO_PATTERN); CHKERRA(ierr);

/*

Set linear solver defaults for this problem (optional).

- By extracting the KSP and PC contexts from the SLES context,
we can then directly call any KSP and PC routines to set
various options.

- The following four statements are optional; all of these
parameters could alternatively be specified at runtime via
SLESSetFromOptions(). All of these defaults can be
overridden at runtime, as indicated below.

*/
/*

We comment out this section of code since the Jacobi

preconditioner is not a good general default.

ierr = SLESGetKSP(sles,&ksp); CHKERRA(jerr);
ierr = SLESGetPC(sles,&pc); CHKERRA(ierr);
ierr = PCSetType(pc,PCJACOBI); CHKERRA(ierr);
ierr = KSPSetTolerances(ksp,1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,
PETSC_DEFAULT) ; CHKERRA (ierr);
*/

/*
Set runtime options, e.g.,
-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
These options will override those specified above as long as
SLESSetFromOptions() is called _after_ any other customization
routines.

*/
ierr = SLESSetFromOptions(sles); CHKERRA(ierr);
/¥ — — = — = — = = — - - - - - - - - - - - - - - - - - - - - - - - - -
Solve the linear system
—————————————————————————————————— */
ierr = SLESSolve(sles,b,x,&its); CHKERRA(ierr);
/¥ — — = — = — = = — - - - - - - - - - - - - - - - - - - - - - - - - -
Check solution and clean up
—————————————————————————————————— */
/*
Check the error
*/

ierr = VecAXPY(&neg_one,u,x); CHKERRA(ierr);
ierr = VecNorm(x ,NORM_2,&norm); CHKERRA(ierr);

/%
Print convergence information. PetscPrintf() produces a single
print statement from all processes that share a communicator.
*/
if (norm > 1.e-12)
PetscPrintf (MPI_COMM_WORLD,"Norm of error %g iterations %d\n",norm,its);
else
PetscPrintf (MPI_COMM_WORLD,"HNorm of error < 1.e-12 Iterations %d\n",its);

/*
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

*/

ierr = SLESDestroy(sles); CHKERRA(ierr);
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ierr = VecDestroy(u); CHKERRA(ierr); ierr = VecDestroy(x); CHKERRA(ierr);
ierr = VecDestroy(b); CHKERRA(ierr); ierr = MatDestroy(A); CHKERRA(ierr);

/*
Always call PetscFinalize() before exiting a program. This routine
- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime

options are chosen (e.g., -log_summary). See PetscFinalize()
manpage for more information.
*/
PetscFinalize();
return O;

Figure 5: Example of Multiprocessor PETSc Code

Compiling and Running Programs

Figure 6 illustrates compiling and running a PETSc program using MPICH. Note that different sites may
have slightly different library and compiler names. See Chapter 13 for a discussion about compiling PETSc
programs. Users who are experiencing difficulties linking PETSc programs should refer to the troubleshooting
guide via the PETSc WWW home page or given in the file $(PETSC DIR)/Troubleshooting.

eagle> make BOPT=g ex2

gcc -DPETSC_ARCH_sun4 -pipe -¢ -I../../../ -I../../..//include
-I/usr/local/mpi/include -I../../..//src -g
-DPETSC_DEBUG -DPETSC_MALLOC -DPETSC_LOG exl.c

gcc —g -DPETSC_DEBUG -DPETSC_MALLOC -DPETSC_LOG -o exl exl.o
/home/bsmith/petsc/1ib/libg/sun4/libpetscsles.a
-L/home/bsmith/petsc/1ib/1ibg/sun4 -lpetscstencil -lpetscgrid -lpetscsles
-lpetscksp -lpetscmat -lpetscvec -lpetscsys —lpetscdraw
/usr/local/lapack/lib/lapack.a /usr/local/lapack/lib/blas.a
/usr/lang/SC1.0.1/1ibF77.a -1m /usr/lang/SC1.0.1/libm.a -1X11
/usr/local/mpi/lib/sund/ch_p4/libmpi.a
/usr/lib/debug/malloc.o /usr/lib/debug/mallocmap.o
/usr/lang/SC1.0.1/1ibF77.a -1m /usr/lang/SC1.0.1/libm.a -1lm

rm -f exl.o

eagle> mpirun ex2

Norm of error 3.6618e-05 iterations 7

eagle>

eagle> mpirun -np 2 ex2

Norm of error 5.34462e¢-05 iterations 9

Figure 6: Running a PETSc Program

As shown in Figure 7, the option -log_summary activates printing of a performance summary, including
times, floating-point operation (flop) rates, and message-passing activity for the various PETSc events.
Chapter 10 provides details about profiling, including interpretation of the output data within Figure 7 and
more information about monitoring parallel programs. This particular example involves the solution of a
linear system on one processor using GMRES and ILU. The low floating-point operation (flop) rates in this
example are due to the fact that the code was run on a tiny matrix. We include this example merely to
demonstrate the ease of extracting performance information from PETSc.
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eagle> mpirun exl -n 1000 -pc_type ilu -ksp_type gmres -ksp_rtol 1.e-7 -log_summary
———————————————————————————————— PETSc Performance Summary: —————————=————————————————————————————

exl on a sun4 named merlin.mcs.anl.gov with 1 processor, by curfman Wed Aug 7 17:24:27 1996

Max Min Avg Total
Time (sec): 1.150e-01 1.0 1.150e-01
Objects: 1.900e+01 1.0 1.900e+01
Flops: 3.998e+04 1.0 3.998e+04 3.998e+04
Flops/sec: 3.475e+05 1.0 3.475e+05
MPI Messages: 0.000e+00 0.0 0.000e+00 0.000e+00
MPI Messages: 0.000e+00 0.0 0.000e+00 0.000e+00 (lengths)
MPI Reductions: 0.000e+00 0.0
Phase Count Time (sec) Flops/sec -- Global --

Max Ratio Max Ratio Mess Avg len Reduct YT %F %M %L %R

MatMult 2 2.553e-03 1.0 3.9e+06 1.0 0.0e+00 0.0e+00 0.0e+00 2 25 0 O O
MatAssemblyBegin 1 2.193e-05 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O O O O O
MatAssemblyEnd 1 5.004e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 4 O O O O
MatGetReordering 1 3.004e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3 O O O O
MatILUFctrSymbol 1 5.719e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 5 0 O O O
MatLUFactorlNumer 1 1.092e-02 1.0 2.7e+05 1.0 0.0e+00 0.0e+00 0.0e+00 9 7 O O O
MatSolve 2 4.193e-03 1.0 2.4e+06 1.0 0.0e+00 0.0e+00 0.0e+00 4 25 0 O O
MatSetValues 1000 2.461e-02 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 21 O O O O
VecDot 1 2.060e-04 1.0 9.7e+06 1.0 0.0e+00 0.0e+00 0.0e+00 O 5 O O O
Veclorm 3 5.870e-04 1.0 1.0e+07 1.0 0.0e+00 0.0e+00 0.0e+00 1 156 O O O
VecScale 1 1.640e-04 1.0 6.1e+06 1.0 0.0e+00 0.0e+00 0.0e+00 O 3 O O O
VecCopy 1 3.101e-04 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O O O O O
VecSet 3 5.029e-04 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O O O O O
VecAXPY 3 8.690e-04 1.0 6.9e+06 1.0 0.0e+00 0.0e+00 0.0e+00 1 15 O O O
VecMAXPY 1 2.550e-04 1.0 7.8e+06 1.0 0.0e+00 0.0e+00 0.0e+00 O 5 O O O
SLESSolve 1 1.288e-02 1.0 2.2e+06 1.0 0.0e+00 0.0e+00 0.0e+00 11 70 O O O
SLESSetUp 1 2.669e-02 1.0 1.1e+05 1.0 0.0e+00 0.0e+00 0.0e+00 23 7 O O O
KSPGMRESOrthog 1 1.151e-03 1.0 3.5e+06 1.0 0.0e+00 0.0e+00 0.0e+00 1 10 O O O
PCSetUp 1 2.024e-02 1.0 1.5e+05 1.0 0.0e+00 0.0e+00 0.0e+00 18 7 O O O
PCApply 2 4.474e-03 1.0 2.2e+06 1.0 0.0e+00 0.0e+00 0.0e+00 4 25 0 O O
Memory usage is given in bytes:
Object Type Creations Destructions Memory Descendants’ Mem.
Viewer 3 3 0 0
Index set 3 3 12420 0
Vector 8 8 65728 0
Matrix 2 2 184924 4140
Krylov Solver 1 1 16892 41080
Preconditioner 1 1 0 64872
SLES 1 1 0 122844

Figure 7: Running a PETSc Program with Profiling

Writing Application Codes with PETSc

The examples throughout the PETSc library demonstrate the details of using the software and can serve
as templates for developing custom application programs. We suggest that new PETSc users examine some
programs in the directories $(PETSCDIR)/src/<component>/examples/tutorials, where <component>
denotes any of the PETSc component directories (listed in the following section), such as snes or sles.
Note that we are in the process of organizing the examples in tutorial and test categories. Currently some
PETSc components have examples only in the directory $ (PETSC_DIR)/src/<component>/examples/tests;
more tutorial examples will be forthcoming. The HTML version of the man pages provides indices (organized
by both routine names and concepts) to the tutorial examples.
To write a new application program using PETSc, we suggest the following procedure:

1. Install and test PETSc according to the instructions in the file $(PETSCDIR)/Installation.
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2. Copy one of the many PETSc examples in the component directory that corresponds to the class of
problem of interest (e.g., for linear solvers, see $(PETSC_DIR)/src/sles/examples/tutorials).

3. Copy the corresponding makefile within the example directory; compile and run the example program.

4. Use the example program as a starting point for developing a custom code.

1.4 Directory Structure

We conclude this introduction with an overview of the organization of the PETSc software. As shown in
Figure 8, the root directory of PETSc contains the following directories:

e docs - All documentation for PETSc. The files manual.ps and manual.html contain the users manual
in PostScript and HTML formats, respectively. Includes the subdirectories

- www (HTML man pages).

e bin - Utilities and short scripts for use with PETSc, including
- petscman (man page viewer),
- petsarch (utility for setting PETSC_ARCH environmental variable),
- petscview (GUT utility for high-level visualization of program activity), and

- petscopts (GUT utility for setting runtime options).
e bmake - Base PETSc makefile directory. Includes subdirectories for various architectures.
e include - All include files for PETSc that are visible to the user.
e include/FINCLUDE - PETSc include files for Fortran programmers using the .F suffix (recommended).
e include/finclude - PETSc include files for Fortran programmers using the .f suffix.
e include/pinclude- Private PETSc include files that should not be used by application programmers.

e src - The source code for all PETSc components, which currently includes
is - index sets,
vec - vectors,
da - distributed arrays,
mat - matrices,
ksp - Krylov space accelerators,
pc - preconditioners,
sles - complete linear equations solvers,
snes - nonlinear solvers,
ts - ODE solvers and timestepping,
sys - general system-related routines,
plog - PETSc logging and profiling routines,
draw - simple graphics,
ao - application orderings,
fortran - Fortran interface stubs,
mpiuni - experimental, stripped-down uniprocessor MPI version, and

contrib - contributed modules that use PETSc but are not part of the official PETSc package.
We encourage users who have developed such code that they wish to share with others to let us know
by writing to petsc-maint@mcs.anl.gov.
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Figure 8: Schematic of the PETSc Directory Structure

Each PETSc source code component directory has the following subdirectories:
e examples - Example programs for the component, including

— tutorials - Programs designed to teach users about PETSc. These codes can serve as templates
for the design of custom applicatinos.

— tests - Programs designed for thorough testing of PETSc. As such, these codes are not intended
for examination by users.

e interface - The calling sequences for the abstract interface to the component. Code here does not
know about particular implementations.

e impls - Source code for one or more implementations.

e utils - Utility routines. Source here may know about the implementations, but ideally will not know
about implementations for other components.

18



Part 11

Programming with PETSc

19






Chapter 2

Vectors

The vector (denoted by Vec) is one of the simplest PETSc objects. We discuss the basic usage of vectors
in Sections 2.1 through 2.3. Sections 2.4 and 2.5 focus on index sets and their use in scatters and gathers.
Section 2.6 describes the use of application-defined orderings with vectors, Section 2.7 discusses routines to
map indices from a local to the PETSc global numbering scheme, and Section 2.8 discusses the use of PETSc
distributed arrays for the manipulation of vectors associated with regular grids. Section 2.9 concludes with
a brief discussion of the discrete function component of PETSc.

2.1 Creating and Assembling Vectors

PETSc currently provides two basic vector types: sequential and parallel (MPI based). te a sequential vector
with m components, one can use the command

ierr = VecCreateSeq(MPI_COMM_SELF,int m,Vec *x);

To create a parallel vector, one can either specify the number of components that will be stored on each
processor or let PETSc decide. The command

ierr = VecCreateMPI(MPI_Comm comm,int m,int M,Vec *x);
creates a vector that is distributed over all processors in the communicator, comm, where m indicates the
number of components to store on the local processor, and M is the total number of vector components.
Either the local or global dimension, but not both, can be set to PETSC_DECIDE to indicate that PETSc
should determine it. More generally, one can use the routine

ierr = VecCreate(MPI_Comm comm,int M,Vec *v);
which automatically generates the appropriate vector type (sequential or parallel) over all processors in comm.
The option -vecmpi can be used in conjunction with VecCreate() to specify the use of MPI vectors for
the uniprocessor case.

We emphasize that all processors in comm must call the vector creation routines, since these routines are
collective over all processors in the communicator. In addition, if a sequence of VecCreateXXX() routines is
used, they must be called in the same order on each processor in the communicator.

One can assign a single value to all components of a vector with the command

ierr = VecSet(Scalar *value,Vec x);
Assigning values to individual components of the vector is more complicated, in order to make it possible to
write efficient parallel code. Assigning a set of components is a two-step process: one first calls

ierr = VecSetValues(Vec x,int n,int *indices,Scalar *values,INSERT_VALUES);
any number of times on any or all of the processors. The argument n gives the number of components
being set in this insertion. The integer array indices contains the global component indices, and values
is the array of values to be inserted. Any processor can set any components of the vector; PETSc insures
that they are automatically stored in the correct location. Once all of the values have been inserted with
VecSetValues(), one must call

ierr = VecAssemblyBegin(Vec x);

followed by
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ierr = VecAssemblyEnd(Vec x);
to perform any needed message passing of nonlocal components. In order to allow the overlap of communi-
cation and calculation, the user’s code can perform any series of other actions between these two calls while
the messages are in transition.

Often, rather than inserting elements in a vector, one may wish to add values. This process is also done
with the command

ierr = VecSetValues(Vec x,int n,int *indices, Scalar *values,ADD_VALUES);
Again one must call the assembly routines VecAssemblyBegin() and VecAssemblyEnd () after all of the val-
ues have been added. Note that addition and insertion calls to VecSetValues() cannot be mixed. Instead,
one must add and insert vector elements in phases, with intervening calls to the assembly routines. This
phased assembly procedure overcomes the nondeterministic behavior that would occur if two different proces-
sors generated values for the same location, with one processor adding while the other is inserting its value.
(In this case the addition and insertion actions could be performed in either order, thus resulting in different
values at the particular location. Since PETSc does not allow the simultaneous use of INSERT _VALUES and
ADD _VALUES this nondeterministic behavior will not occur in PETSc.)

There is no routine called VecGetValues(), since we provide an alternative method for extracting some
components of a vector using the vector scatter routines. See Section 2.5 for details.

One can examine a vector with the command

ierr = VecView(Vec x,Viewer v);
To print the vector to the screen, one can use the viewer VIEWER_STDOUT _WORLD, which ensures that parallel
vectors are printed correctly to stdout. The viewer VIEWER_STDOUT _SELF can be employed if the user does
not care in what order the individual processors print their segments of the vector. To display the vector in
an X-window, one can use the default X-windows viewer VIEWER_DRAWX WORLD, or one can create a viewer
with the routine ViewerDrawOpenX(). A variety of viewers are discussed further in Section 12.2.

To create a new vector of the same format as an existing vector, one uses the command

ierr = VecDuplicate(Vec old,Vec *new);
To create several new vectors of the same format as an existing vector, one uses the command

ierr = VecDuplicateVecs(Vec old,int n,Vec **new);
This routine creates an array of pointers to vectors. The two routines are very useful because they allow
one to write library code that does not depend on the particular format of the vectors being used. Instead,
the subroutines can automatically correctly create work vectors based on the specified existing vector. As
discussed in Section 9.1.6, the Fortran interface for VecDuplicateVecs() differs slightly.

When a vector is no longer needed, it should be destroyed with the command

ierr = VecDestroy(Vec x);
To destroy an array of vectors, one should use the command
ierr = VecDestroyVecs(Vec *vecs,int n);
Note that the Fortran interface for VecDestroyVecs () differs slightly, as described in Section 9.1.6.

2.2 Basic Vector Operations

As listed in Table 1, we have chosen certain basic vector operations to support within the PETSc vector
library. These operations were selected because they often arise in application codes, not because they have
some inherent special properties.

Several of these operations could easily be constructed by a combination of the other operations. We
implement them directly to avoid a potentially large loss of efficiency, mainly because in such cases the
vectors would have to move from main memory to the CPU multiple times, rather than just once. Also, the
arithmetic pipeline operations can be used more effectively in the hybrid vector operations.

For parallel vectors that are distributed across the processors by ranges, it is possible to determine a
processor’s local range with the routine

ierr = VecGetOwnershipRange(Vec vec,int *low,int *high);

The argument low indicates the first component owned by the local processor, while high specifies one more
than the last owned by the local processor. This command is useful, for instance, in assembling parallel
vectors.
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Table 1: PETSc Vector Operations

Function Name Operation
VecAXPY (Scalar *a,Vec x, Vec y); y=y+taxz
VecAYPX(Scalar *a,Vec x, Vec y); y=xr+axy

VecWAXPY (Scalar *a,Vec x,Vec y, Vec w);
VecAXPBY (Scalar *a,Scalar * Vec x,Vec y);
VecScale(Scalar *a, Vec x);

VecDot(Vece x, Vec y, Scalar *r);
VecTDot(Vec x, Vec y, Scalar *r);
VecNorm(Vec x,NormType type, double *r);
VecSum(Vec x, Scalar *r);

VecCopy(Vec x, Vec y);

VecSwap(Vec x, Vec y);
VecPointwiseMult(Vec x,Vec y, Vec w);
VecPointwiseDivide(Vec x,Vec y, Vec w);
VecMDot(int n,Vec x, Vec *y,Scalar *r);
VecMTDot(int n,Vec x, Vec *y,Scalar *r);
VecMAXPY (int n, Scalar *a,Vec x, Vec *y);
VecMax(Vec x, int *idx, double *r);
VecMin(Vec x, int *idx, double *r);

w=a*xr+y
y=axx+bxy

r=ax*zw
r==z %y
r=a'xy
r=|[z|leype
r=> %
y==2

y=x whilexz =y
W; = T3 * Y

w; = ;/Y;

rli] = 2"+ yli]

rli] =« * yli]

yli] = a; * x 4 yli]
r = maxz;

r = minx;

VecAbs(Vec x); x; = |ay]
VecReciprocal(Vec x); ;= 1/,
VecShift(Scalar *s, Vec x); r, =5+ x;

2.3 Vector Internals

On occasion, the user needs to access the actual elements of the vector. The routine VecGetArray() returns
a pointer to the elements local to the processor:

ierr = VecGetArray(Vec v,Scalar **array);
When access to the array is no longer needed, the user should call

ierr = VecRestoreArray(Vec v, Scalar #*array);
Minor differences exist in the Fortran interface for VecGetArray() and VecRestoreArray(), as discussed in
Section 9.1.3. It is important to note that VecGetArray() and VecRestoreArray() do not copy the vector
elements; they merely give users direct access to the vector elements. Thus, these routines require essentially
no time to call and can be used efficiently.

The number of elements stored locally can be accessed with

ierr = VecGetLocalSize(Vec v,int *size);
The global vector length can be determined by

ierr = VecGetSize(Vec v,int *size);

2.4 Index Sets

To facilitate general vector scatters and gathers, PETSc employs the concept of an index set. An index set,
which is a generalization of a set of integer indices, 1s used to define scatters, gathers, and similar operations
on vectors and matrices.

The following command creates a sequential index set based on a list of integers:

ierr = ISCreateGeneral(MPI_Comm comm,int n,int *indices, IS *is);
This routine essentially copies the n indices passed to it by the integer array indices. Thus, the user
should be sure to free the integer array indices when it is no longer needed, perhaps directly after
the call to ISCreateGeneral(). The communicator, comm, should consist of only one processor (often
comm=MPI_COMM_SELF).

Another standard index set is defined by a starting point (first) and a stride (step) and can be created
with the command
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ierr = ISCreateStride(MPI_Comm comm,int n,int first,int step,IS *is);

Again, the comm argument should always consist of a communicator with one processor, often MPI_COMM_SELF.

There is no parallel general index set. Instead, one should create a sequential index set on each processor
that needs one. Index sets can be destroyed with the command

ierr = ISDestroy(IS is);

On rare occasions the user may have to access information directly from an index set. Several commands

assist in this process:
ISGetSize(IS is,int *size);
ISStrideGetInfo(IS is,int *first,int *stride);

ierr = ISGetIndices(IS is,int **indices);

The function ISGetIndices() returns a pointer to a list of the indices in the index set. For certain index
sets, this may be a temporary array of indices created specifically for a given routine. Thus, once the user
finishes using the array of indices, the routine

ierr = ISRestoreIndices(IS is, int **indices);
should be called to ensure that the system can free the space it may have used to generate the list of indices.

A blocked version of the index sets can be created with the command

ierr = ISCreateBlock(MPI_Comm comm,int bs,int n,int *indices, IS *is);

This version is used for defining operations in which each element of the index set refers to a block of bs vector
entries. Related routines analogous to those described above exist as well, including ISBlockGetIndices(),
ISBlockGetSize(), ISBlockGetBlockSize(), and ISBlock(). See the man pages for details.

One may reasonably ask why the scatter routines are based on using index sets while the vector assembly
routines simply use arrays of integers. The reason for using index sets is to allow certain implementations
to deal with strides and dense blocks of elements efficiently. In vector assembly, we are assuming that in the
majority of cases the gain from using index sets is more than lost by requiring the users to build index sets
for each insertion.

ierr

ierr

2.5 Scatters and Gathers

PETSc vectors have full support for general scatters and gathers. One can select any subset of the components
of a vector to insert or add to any subset of the components of another vector. We refer to these operations
as generalized scatters, though they are actually a combination of scatters and gathers.

To copy selected components from one vector to another; one uses the following set of commands:

ierr = VecScatterCreate(Vec x,IS ix,Vec y,IS iy,VecScatter *ctx);

ierr VecScatterBegin(Vec x,Vec y,INSERT_VALUES,SCATTER_FORWARD,VecScatter ctx);

ierr = VecScatterEnd(Vec x,Vec y,INSERT_VALUES,SCATTER_FORWARD,VecScatter ctx);

ierr = VecScatterDestroy(VecScatter ctx);

Here ix denotes the index set of the first vector, while iy indicates the index set of the destination vector.
The vectors can be parallel or sequential. The only requirements are that the number of entries in the
index set of the first vector, ix, equal the number in the destination index set, iy, and that the vectors be
long enough to contain all the indices referred to in the index sets. The argument INSERT _VALUES specifies
that the vector elements will be inserted into the specified locations of the destination vector, overwriting
any existing values. To add the components, rather than insert them, the user should select the option
ADD _VALUES instead of INSERT_VALUES.

To perform a conventional gather operation, the user simply makes the destination index set, iy, be a
stride index set with a stride of one. Similarly, a conventional scatter can be done with an initial (sending)
index set consisting of a stride. For parallel vectors, all processors that own the vector must call the scatter
routines. When scattering from a parallel vector to sequential vectors, each processor has its own sequential
vector that receives values from locations as indicated in its own index set. Similarly, in scattering from
sequential vectors to a parallel vector, each processor has its own sequential vector that makes contributions
to the parallel vector.

Caution: When INSERT _VALUES is used, if two different processors contribute different values to the same
component in a parallel vector, either value may end up being inserted. When ADD_VALUES is used, the
correct sum is added to the correct location.

In some cases one may wish to “undo” a scatter, that is, perform the scatter backwards switching the
roles of the sender and receiver. This is done by using
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Vec P, %; /* initial vector, destination vector */

VecScatter scatter; /* scatter context */

IS from, to; /* index sets that define the scatter */
Scalar *values;

int idx_from[] = {100,200}, idx_to[] = {0,1};

VecCreateSeq(MPI_COMM_SELF,2,&x);

ISCreateGeneral (MPI_COMM_SELF,2,idx_from,&from);
ISCreateGeneral (MPI_COMM_SELF,2,idx_to,&to0);
VecScatterCreate(p,from,x,to,&scatter);
VecScatterBegin(p,x,INSERT_VALUES,SCATTER_FORWARD,scatter);
VecScatterEnd(p,x,INSERT_VALUES,SCATTER_FORWARD,scatter) ;
VecGetArray(x,&values);

ISDestroy(from) ;

ISDestroy(to);

VecScatterDestroy(scatter);

Figure 9: Example Code for Vector Scatters

ierr = VecScatterBegin(Vec y,Vec x,INSERT_VALUES,SCATTER_REVERSE,VecScatter ctx);
ierr = VecScatterEnd(Vec y,Vec x,INSERT_VALUES,SCATTER_REVERSE,VecScatter ctx);

Note that one must swap the roles of the first two arguments to these routines, whenever one uses the
SCATTER _REVERSE option.

There is no PETSc routine that is the opposite of VecSetValues() , that is, VecGetValues(). Instead,
the user should create a new vector where the components are to be stored and perform the appropriate
vector scatter. For example, if one desires to obtain the values of the 100th and 200th entries of a parallel
vector, p, one could use a code such as that within Figure 9. In this example, the values of the 100th and
200th components are placed in the array values. In this example each processor now has the 100th and
200th component, but obviously each processor could gather any elements it needed, or none by creating an
index set with no entries.

The scatter comprises two stages, in order to allow overlap of communication and computation. The
introduction of the VecScatter context allows the communication patterns for the scatter to be computed
once and then reused repeatedly. Generally, even setting up the communication for a scatter requires
communication; hence, it is best to reuse such information when possible.

2.6 Application Orderings

In many applications it is desirable to work with one or more “orderings” of degrees of freedom, cells, nodes,
and so on. Doing so in a parallel environment is complicated by the fact that each processor cannot keep
complete lists of the mappings between different orderings. In addition, the orderings used in the PETSc
linear algebra routines may not correspond to the “natural” orderings for the application.

PETSc provides certain utility routines that allow one to deal cleanly and efficiently with the various
orderings. To define a new application ordering (A0), one can call the routine

ierr = AOCreateDebug(MPI_Comm comm,int n,int *apordering,int *petscordering,AO0 *ao);

The arrays apordering and petscordering, respectively, contain a list of integers in the application ordering
and their corresponding mapped values in the PETSc ordering. Each processor can provide whatever subset
of the ordering it chooses, but multiple processors should never contribute duplicate values. The argument
n indicates the number of local contributed values.

For example, consider a vector of length five, where node 0 in the application ordering corresponds to
node 3 in the PETSc ordering. In addition, nodes 1, 2, 3, and 4 of the application ordering correspond,
respectively, to nodes 2, 1, 4, and 0 of the PETSc ordering. We can write this correspondence as { 0, 1, 2
3,4} —{3,2 1,4, 0}. The user can create the PETSc-AO mappings in a number of ways. For example,
if using two processors, one could call
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ierr = AOCreateDebug(MPI_COMM_WORLD,2,{0,3},{3,4},&a0);
on the first processor and

ierr = AOCreateDebug(MPI_COMM_WORLD,3,{1,2,4},{2,1,0},&a0);
on the other processor.

Once the application ordering has been created, 1t can be used with either of the commands

ierr = AOPetscToApplication(AD ao,int n,int *indices);

ierr = AOApplicationToPetsc(AD ao,int n,int *indices);
Upon input, the n-dimensional array indices specifies the indices to be mapped, while upon output, indices
contains the mapped values. Since we, in general, employ a parallel database for the AD mappings, it is
crucial that all processors that called AOCreateDebug() also call these routines; these routines cannot be
called by just a subset of processors.

An alternative routine to create the application ordering, A0, is

ierr = AOCreateDebugIS(MPI_Comm comm,IS apordering,IS petscordering,AO *20) ;
where index sets are used instead of integer arrays. The corresponding mapping routines are

ierr = AOPetscToApplicationIS(AQ ao,IS indices);
ierr = AOApplicationToPetscIS(AQ ao,IS indices);

The A0 context should be destroyed with AODestroy(AO ao) and viewed with AOView(AO ao,Viewer
viewer).

Although we refer to the two orderings as “PETSc” and “application” orderings, the user is free to use
them both for application orderings and to maintain relationships among a variety of orderings by employing
several AD contexts.

2.7 Local to Global Mappings

In many applications one works with a global representation of a vector (usually on a vector obtained with
VecCreateMPI()) and a local representation of the same vector that includes ghost points required for local
computation. PETSc provides routines to help map indices from a local numbering scheme to the PETSc
global numbering scheme. This is done via the following routines

ierr = ISLocalToGlobalMappingCreate(int N,int* globalnumbers,ISLocalToGlobalMapping* ctx);
ISLocalToGlobalMappingApply(ISLocalToGlobalMapping ctx,int n,int *in,int *out);

ierr = ISLocalToGlobalMappingApplyIS(ISLocalToGlobalMapping ctx,IS isin,IS* isout);

ierr = ISLocalToGlobalMappingDestroy(ISLocalToGlobalMapping ctx);

Here N denotes the number of local indices, globalnumbers represents the global number of each local number
and ISLocalToGlobalMapping is the resulting PETSc object that contains the information needed to apply
the mapping with either the routine ISLocalToGlobalMappingApply () or ISLocalToGlobalMappingApplyIS().

Note that the ISLocalToGlobalMapping routines serve a different purpose from the 40 routines. In the
former case they provide a mapping from a local numbering scheme (including ghost points) to a global
numbering scheme; in the latter they provide a mapping between two global numbering schemes. In fact
many applications may use both A0 and ISLocalToGlobalMapping routines. The AD routines are first used to
map from an application global ordering (that has no relationship to parallel processing etc.) to the PETSc
ordering scheme (where each processor has a contiguous set of indices in the numbering). Then in order
to perform function or Jacobian evaluations locally on each processor, one works with a local numbering
scheme that includes ghost points; the mapping from this local numbering scheme back to the global PETSc
numbering can be handled with the ISLocalToGlobalMapping routines.

2.8 Distributed Arrays

In this section we consider a distributed array (DA) to be, not a matrix, but a one-, two-, or three-dimensional
array of numbers distributed across the processors, so that each processor contains a rectangular subarray.
Distributed arrays, which are used in conjunction with PETSc vectors, are intended for use with regular
rectangular grids when communication of nonlocal data is needed before certain local computations can
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Figure 10: Ghost Points for Two Stencil Types on the Seventh Processor

occur. PETSc distributed arrays are designed only for the case in which data can be thought of as being
stored in a standard multidimensional array; thus, DAs are not intended for parallelizing unstructured grid
problems, and the like.

For example, a typical situation one encounters in solving parallel PDEs is that, to evaluate a local
function, £(x), each processor requires its local portion of the vector x as well as its ghost points (the
bordering portions of the vector that are owned by neighboring processors). Figure 10 illustrates the ghost
points for the seventh processor of a two-dimensional, regular parallel grid. Each box represents a processor;
the ghost points for the seventh processor’s local part of a parallel array are shown in gray.

2.8.1 Creating Distributed Arrays

One creates a distributed array in two dimensions with the command

ierr = DACreate2d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType st,int M,

int N,int m,int n,int dof,int s,int #lx,int *1y,DA *da);
The arguments M and N indicate the global numbers of grid points in each direction, while m and n denote
the processor partition in each direction; m*n must equal the number of processors in the MPI communi-
cator, comm. Instead of specifying the processor layout, one may use PETSC DECIDE for m and n so that
PETSc will determine the partition. The type of periodicity of the array is specified by wrap, which can be
DA _NONPERIODIC (no periodicity), DA_XYPERIODIC (periodic in both x- and y-directions), DA_XPERIODIC , or
DA _YPERIODIC. The argument dof indicates the number of degrees of freedom at each array point, and s is
the stencil width (i.e., the width of the ghost point region). The optional arrays 1x and 1y may contain the
number of nodes along the x and y axis for each cell; that is, the dimension of 1x is m and the dimension of
1y is n; or PETSC_NULL may be passed in.

Two types of distributed arrays can be created, as specified by st. Star-type stencils that radiate outward
only in the coordinate directions are indicated by DA_STENCIL STAR , while box-type stencils are specified
by DA_STENCIL BOX. For example, for the two-dimensional case, DA_STENCIL_STAR with width 1 corresponds
to the standard 5-point stencil, while DA_STENCIL BOX with width 1 denotes the standard 9-point stencil. In
both instances the ghost points are identical, the only difference being that with star-type stencils certain
ghost points are ignored, potentially decreasing substantially the number of messages sent. Note that the
DA_STENCIL_STAR stencils can save interprocessor communication in two and three dimensions.

These DA stencils have nothing directly to do with any finite-difference stencils one might chose to use
for a discretization; they ensure only that the correct values are in place for application of a user-defined
finite-difference stencil (or any other discretization technique).

The commands for creating distributed arrays in one and three dimensions are analogous:

ierr = DACreateld(MPI_Comm comm,DAPeriodicType wrap,int M,int w,int s,int *1c,DA *inra);

ierr = DACreate3d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType stencil_type,

int M,int N,int P,int m,int n,int p,int w,int s,int *lx,
int *1ly,int *1z,DA *inra);
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DA_ZPERIODIC, DA XZPERIODIC, DA_YZPERIODIC, and DA_XYZPERIODIC are additional options in three dimen-
sions for DAPeriodicType. The routines to create distributed arrays are collective, so that all processors in
the communicator comm must call DACreateXXX().

2.8.2 Local/Global Vectors and Scatters

Each DA object contains two vectors: a distributed global vector and a local vector that includes the appro-
priate ghost points. These vectors can be accessed with the routines

ierr = DAGetDistributedVector(DA da,Vec *g);

ierr = DAGetLocalVector(DA da,Vec *1);

These two vectors will generally serve as the building blocks for local and global PDE solutions, and so
on. Note that calling DAGetDistributedVector() or DAGetLocalVector() does not create a new vector
object, but rather extracts the one existing vector of its type from the distributed array. Thus, if addi-
tional vectors are needed in a code, they can be obtained by duplicating 1 or g via VecDuplicate() or
VecDuplicateVecs().

At certain stages of many applications, there is a need to work on a local portion of the vector, including
the ghost points. This may be done by scattering a global vector into its local parts by using the two-stage
commands

ierr = DAGlobalToLocalBegin(DA da,Vec g,InsertMode iora,Vec 1);

ierr = DAGlobalToLocalEnd(DA da,Vec g,InsertMode iora,Vec 1);
which allow the overlap of communication and computation.  Since the global and local vectors, given
by g and 1, respectively, must be compatible with the distributed array, da, they should be generated
by DAGetDistributedVector() and DAGetLocalVector() (or be duplicates of such a vector obtained via
VecDuplicate()). The InsertMode can be either ADD_VALUES or INSERT _VALUES.

One can scatter the local patches into the distributed vector with the command

ierr = DALocalToGlobal(DA da,Vec 1,InsertMode mode,Vec g);

Note that this function is not subdivided into beginning and ending phases, since it is purely local.

A third type of distributed array scatter is from a local vector (including ghost points that contain
irrelevant values) to a local vector with correct ghost point values. This scatter may be done by commands

ierr = DALocalTolocalBegin(DA da,Vec 11,InsertMode iora,Vec 12);

ierr = DALocalToLocalEnd(DA da,Vec 11,InsertMode iora,Vec 12);

Since both local vectors, 11 and 12, must be compatible with the distributed array, da, they should be
generated by DAGetLocalVector() (or be duplicates of such vectors obtained via VecDuplicate()). The
InsertMode can be either ADD_VALUES or INSERT VALUES.

It is possible to directly access the vector scatter contexts used in the local-to-global (1tog), global-to-
local (gtol), and local-to-local (1tol) scatters with the command

ierr = DAGetScatter (DA da,VecScatter *1tog,VecScatter *gtol,VecScatter *1tol);

Most users should not need to use these contexts.

2.8.3 Grid Information

The global indices of the lower left corner of the local portion of the array as well as the local array size can
be obtained with the commands

ierr = DAGetCorners(DA da,int *x,int *y,int *z,int *m,int *n,int *p);

ierr = DAGetGhostCorners(DA da,int *x,int *y,int *z,int *m,int *n,int *p);

The first version excludes any ghost points, while the second version includes them. Note that for interior
subarrays the ghost corners can easily be calculated from the true corners. However, since the calculation
of ghost corners for boundary subarrays is not so straightforward, both routines are provided. The routine
DAGetGhostCorners() deals with the fact that subarrays along boundaries of the problem domain have
ghost points only on their interior edges, but not on their boundary edges.

When either type of stencil is used, DA_STENCIL_STAR or DA_STENCIL BOX, the local vectors (with the ghost
points) represent rectangular arrays, including the extra corner elements in the DA_STENCIL_STAR case. This
configuration provides simple access to the elements by employing two- (or three-)dimensional indexing. The
only difference between the two cases is that when DA_STENCIL_STAR is used, the extra corner components
are not scattered between the processors and thus contain undefined values that should not be used.

To assemble global stiffness matrices, one needs to be able to determine the global node number of each
local node including the ghost nodes. The number may be determined by using the command
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Figure 11: Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processors)

ierr = DAGetGlobalIndices(DA da,int *n,int **idx);

The output argument n contains the number of local nodes, including ghost nodes; while idx contains a list
of the global indices that correspond to the local nodes. Note that the Fortran interface differs slightly; see
Section 9.1.3 for details.

Since the global ordering that PETSc uses to manage its parallel vectors (and matrices) does not usually
correspond to the “natural” ordering of a two- or three-dimensional array, the DA structure provides an
application ordering A0 (see Section 2.6) that maps between the natural ordering on a rectangular grid and
the ordering PETSc uses to parallize. This ordering context can be obtained with the command

ierr = DAGetAO(DA da,A0 *ao);

In Figure 11 we indicate the orderings for a two-dimensional distributed array, divided among four processors.

Figure 12, which corresponds to $(PETSC DIR)/src/snes/examples/tutorials/ex5.c, illustrates the
use of a distributed array in the solution of a nonlinear problem. The analogous Fortran program is
$(PETSCDIR)/src/snes/examples/tutorials/ex5f.F; See Chapter 5 for a discussion of the nonlinear
solvers.

#ifndef lint
static char vcid[] = "$Id: ex5.c,v 1.75 1997/02/05 22:04:41 bsmith Exp $";
#tendif

static char help[] = "Solves a nonlinear system in parallel with SNES.\n\
We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular\n\
domain, using distributed arrays (DAs) to partition the parallel grid.\n\
The command line options include:\n\
-par <parameter>, where <parameter> indicates the problem’s nonlinearity\n\
problem SFI: <parameter> = Bratu parameter (0 <= par <= 6.81)\n\
-mx <xg>, where <xg> = number of grid points in the x-direction\n\
-my <yg>, where <yg> = number of grid points in the y-direction\n\
-Nx <npx>, where <npx> = number of processors in the x-direction\n\
-Ny <npy>, where <npy> = number of processors in the y-direction\n\n";

/*T
Concepts: SNES“Solving a system of nonlinear equations (parallel Bratu example);
Concepts: DA"Using distributed arrays;
Routines: SNESCreate(); SNESSetFunction(); SNESSetJacobian();
Routines: SNESSolve(); SNESSetFromOptions(); DAView();
Routines: DACreate2d(); DADestroy(); DAGetDistributedVector(); DAGetLocalVector();
Routines: DAGetCorners(); DAGetGhostCorners(); DALocalToGlobal();
Routines: DAGlobalToLocalBegin(); DAGlobalToLocalEnd(); DAGetGloballIndices();
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Processors: n

T*/
e
Solid Fuel Ignition (SFI) problem. This problem is modeled by
the partial differential equation
-Laplacian u - lambda*exp(u) = 0, 0 < x,y < 1,
with boundary conditions
u=0 for x=0,x=1, y =0, y = 1.
A finite difference approximation with the usual 5-point stencil
is used to discretize the boundary value problem to obtain a nonlinear
system of equationms.
The uniprocessor version of this code is snes/examples/tutorials/ex4.c
/*

Include "da.h" so that we can use distributed arrays (DAs).
Include "snes.h" so that we can use SNES solvers. Note that this
file automatically includes:

petsc.h - base PETSc routines vec.h - vectors

sys.h - system routines mat.h - matrices

is.h - index sets ksp.h - Krylov subspace methods
viewer.h - viewers pc.h - preconditioners

sles.h - linear solvers

*/

#include "da.h"
#include "snes.h"
#include <math.h>
#include <stdio.h>

/*
User-defined application context - contains data needed by the
application-provided call-back routines, FormJacobian() and

FormFunction().
*/
typedef struct {
double param; /* test problem parameter */
int nx,my; /* discretization in x, y directions */
Vec localX, localF; /# ghosted local vector */
DA da; /* distributed array data structure */
int rank; /* processor rank */
} AppCtx;
/*
User-defined routines
*/

int FormFunction(SNES,Vec,Vec,void#*), FormInitialGuess (AppCtx#*,Vec);
int FormJacobian(SNES,Vec,Mat*,Mat*,MatStructure*,void*);

int main( int argc, char **argv )
{
SNES snes; /* nonlinear solver */
Vec X, T; /* solution, residual vectors */
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Mat J; /* Jacobian matrix */

AppCtx  user; /* user-defined work context */

int its; /* iterations for convergence */

int Nx, Ny; /* number of preocessors in x- and y- directions */
int matrix_free; /* flag - 1 indicates matrix-free version */

int size; /* number of processors */

int m, flg, N, ierr;

double bratu_lambda_max = 6.81, bratu_lambda_min = 0.;

PetscInitialize( &argc, &argv, (char #)0,help );
MPI_Comm_rank(MPI_COMM_WORLD, &user.rank) ;

/*
Initialize problem parameters
*/
user.mx = 4; user.my = 4; user.param = 6.0;
ierr = OptionsGetInt (PETSC_NULL,"-mx",&user.mx,&flg); CHKERRA(ierr);
ierr = OptionsGetInt (PETSC_NULL,"-my",&user.my,&flg); CHKERRA(ierr);
ierr = OptionsGetDouble(PETSC_NULL,"-par",&user.param,%&flg); CHKERRA(ierr);
if (user.param >= bratu_lambda_max || user.param <= bratu_lambda_min) {
SETERRA(1,0,"Lambda is out of range");

N = user.mx*user Ly

ierr = SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,&snes); CHKERRA(ierr);

/*
Create distributed array (DA) to manage parallel grid and vectors

*/

MPI_Comm_size(MPI_COMM_WORLD, &size);

Nx = PETSC_DECIDE; Ny = PETSC_DECIDE;

ierr = OptionsGetInt (PETSC_NULL,"-Nx",&Nx,&flg); CHKERRA(ierr);

ierr = OptionsGetInt (PETSC_NULL,"-Ny",&Ny,&flg); CHKERRA(ierr);

if (Nx*Ny '= size && (Nx !'= PETSC_DECIDE || Ny !'= PETSC_DECIDE))
SETERRA(1,0,"Incompatible number of processors: Nx * Ny != size");

ierr = DACreate2d (MPI_COMM_WORLD,DA_NONPERIODIC,DA_STENCIL_STAR,user.mx,

user.my,Nx,Ny,1,1,PETSC_NULL,PETSC_NULL,&user.da); CHKERRA(ierr);

/*

Visualize the distribution of the array across the processors
*/
/* ierr = DAView(user.da,VIEWER_DRAWX_WORLD); CHKERRA(ierr); */

/*
Extract global and local vectors from DA; then duplicate for remaining
vectors that are the same types
*/
ierr = DAGetDistributedVector (user.da,&x); CHKERRA(ierr);
ierr = DAGetLocalVector(user.da,&user.localX); CHKERRA(ierr);
VecDuplicate(x,&r); CHKERRA(ierr);
VecDuplicate(user.localX,&user.localF); CHKERRA(ierr);

ierr

ierr
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/*
Set function evaluation routine and vector
*/

ierr = SNESSetFunction(snes,r,FormFunction, (void*)&user); CHKERRA (ierr);

/*

Set Jacobian matrix data structure and default Jacobian evaluation

routine. User can override with:

-snes_fd : default finite differencing approximation of Jacobian

-snes_mf : matrix-free Newton-Krylov method with no preconditioning

(unless user explicitly sets preconditioner)

-snes_mf_operator : form preconditioning matrix as set by the user,
but use matrix-free approx for Jacobian-vector
products within Newton-Krylov method

Note: For the parallel case, vectors and matrices MUST be partitioned
accordingly. When using distributed arrays (DAs) to create vectors,
the DAs determine the problem partitioning. We must explicitly
specify the local matrix dimensions upon its creation for compatibility
with the vector distribution. Thus, the generic MatCreate() routine

is NOT sufficient when working with distributed arrays.

Note: Here we only approximately preallocate storage space for the
Jacobian. See the users manual for a discussion of better techniques
for preallocating matrix memory.
*/
ierr = OptionsHasName(PETSC_NULL,"-snes_mf",&matrix_free); CHKERRA(ierr);
if ('matrix_free) {
if (size == 1) {

ierr = MatCreateSeqAIJ(MPI_COMM_WORLD,N,N,5,PETSC_NULL,&J); CHKERRA(ierr);
} else {
ierr = VecGetLocalSize(x,&m); CHKERRA(ierr);

ierr = MatCreateMPIAIJ(MPI_COMM_WORLD,m,m,N,N,5,PETSC_NULL,3,PETSC_NULL,&J); CHKERRA(ierr);
¥
ierr = SNESSetJacobian(snes,J,J,FormJacobian,&user); CHKERRA (ierr);

}
J*¥ — — — = — — — — - — — - — - - - - - - - - - - - - - - - - - - - - -
Customize nonlinear solver; set runtime options
——————————————————————————————————— */
/*
Set runtime options (e.g., -snes_monitor —-snes_rtol <rtol> -ksp_type <type>)
*/
ierr = SNESSetFromOptions(snes); CHKERRA(ierr);
J*¥ — — — = — — — — - — — - — - - - - - - - - - - - - - - - - - - - - -
Evaluate initial guess; then solve nonlinear system
——————————————————————————————————— */

Note: The user should initialize the vector, x, with the initial guess
for the nonlinear solver prior to calling SNESSolve(). In particular,
to employ an initial guess of zero, the user should explicitly set
this vector to zero by calling VecSet().

*/
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ierr = FormInitialGuess(&user,x); CHKERRA(ierr);
ierr = SNESSolve(snes,x,&its); CHKERRA(ierr);
PetscPrintf (MPI_COMM_WORLD, "Number of Newton iterations = %d\n", its );

Free work space. All PETSc objects should be destroyed when they
are no longer needed.

if ('matrix_free) {

ierr = MatDestroy(J); CHKERRA(ierr);
¥
ierr = VecDestroy(user.localX); CHKERRA(ierr); ierr = VecDestroy(x); CHKERRA(ierr);
ierr = VecDestroy(user.localF); CHKERRA(ierr); ierr = VecDestroy(r); CHKERRA(ierr);
ierr = SNESDestroy(snes); CHKERRA(ierr); ierr = DADestroy(user.da); CHKERRA(ierr);
PetscFinalize();

return 0;

FormInitialGuess - Forms initial approximation.

Input Parameters:
user - user-defined application context
X - vector

Output Parameter:
X - vector

*/
int FormInitialGuess(AppCtx *user,Vec X)
{
int i, j, row, mx, my, ierr, xs, ys, Xm, ym, gxm, gym, gXxs, gys;

double one = 1.0, lambda, templ, temp, hx, hy, hxdhy, hydhx,sc;
Scalar *x;

Vec localX = user->localX;

mX = user—>mx; my = user—>my; lambda = user->param;
hx = one/(double) (mx-1); hy = one/(double) (my-1);

gc = hx*hy*lambda; hxdhy = hx/hy; hydhx = hy/hx;

templ = lambda/(lambda + one);

/*
Get a pointer to vector data.
- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation dependent.
You MUST call VecRestoreArray() when you no longer need access to
the array.

*/
ierr = VecGetArray(localX,&x); CHKERRQ(ierr);
/*
Get local grid boundaries (for 2-dimensional DA):
xs, ys - starting grid indices (no ghost points)
xm, ym - widths of local grid (no ghost points)
gxs, gys - starting grid indices (including ghost points)
gxm, gym - widths of local grid (including ghost points)
*/

ierr = DAGetCorners(user->da,&xs,&ys,PETSC_NULL, &xm,&ym,PETSC_NULL); CHKERRQ(ierr);
ierr = DAGetGhostCorners (user->da,&gxs,&%gys ,PETSC_NULL, &gxm, &gym ,PETSC_NULL) ; CHKERRQ(ierr);
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/*
Compute initial guess over the locally owned part of the grid
*/
for (j=ys; j<ys+ym; j++) {
temp = (double) (PetscMin(j,my-j-1))*hy;
for (i=xs; i<xs+xm; i++) {
row = i - gxs + (j - gys)*gxm;
if A==01]l j==01l1i==mx-1 1] j=my-1) {
x[row] = 0.0;
continue;
}
x[row] = templ#sqrt( PetscMin( (double) (PetscMin(i,mx-i-1))*hx,temp) );
}

¥
/*
Restore vector
*/
ierr = VecRestoreArray(localX,&x); CHKERRQ(ierr);
/*
Insert values into global vector
*/

ierr = DALocalToGlobal (user->da,localX,INSERT_VALUES,X); CHKERRQ(ierr);
return 0;

FormFunction - Evaluates nonlinear function, F(x).

Input Parameters:

snes - the SNES context

X - input vector

ptr - optional user-defined context, as set by SNESSetFunction()

Output Parameter:
. F - function vector
*/
int FormFunction(SNES snes,Vec X,Vec F,void *ptr)
{
AppCtx #user = (AppCtx *) ptr;
int ierr, i, j, row, mx, my, Xs, ys, Xm, ym, gxs, gys, gxm, gym;
double two = 2.0, one = 1.0, lambda,hx, hy, hxdhy, hydhx,sc;
Scalar u, uxx, uyy, *x,*f;

Vec localX = usger->localX, localF = user->localF;

mX = user—>mx; my = user—>my; lambda = user->param;
hx = one/(double) (mx-1); hy = one/(double) (my-1);

gc = hx*hy*lambda; hxdhy = hx/hy; hydhx = hy/hx;

/*

Scatter ghost points to local vector, using the 2-step process
DAGlobalToLocalBegin(), DAGlobalToLocalEnd().

By placing code between these two statements, computations can be

done while messages are in transition.

*/
ierr = DAGlobalToLocalBegin(user->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);
ierr = DAGlobalTolLocalEnd(user->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);
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/*
Get pointers to vector data
*/
ierr = VecGetArray(localX,&x); CHKERRQ(ierr);
ierr = VecGetArray(localF,&f); CHKERRQ(ierr);

/*
Get local grid boundaries
*/
ierr = DAGetCorners(user->da,&xs,&ys,PETSC_NULL, &xm,&ym,PETSC_NULL); CHKERRQ(ierr);
ierr = DAGetGhostCorners (user->da,&gxs,&%gys ,PETSC_NULL, &gxm, &gym ,PETSC_NULL) ; CHKERRQ(ierr);

/*
Compute function over the locally owned part of the grid
*/
for (j=ys; j<ys+ym; j++) {
row = (j - gys)*gxm + xs - gxs - 1;
for (i=xs; i<xs+xm; i++) {

row++;

if A==01]l j==01l1i==mx-1 1] j=my-1) {
flrow] = x[row];
continue;

¥

u = x[row];

uxx = (two*u - x[row-1] - x[row+1])*hydhx;
uyy = (two*u - x[row-gxm] - x[row+gxm])*hxdhy;
flrow] = uxx + uyy - sckexp(u);

¥
¥
/*
Restore vectors
*/
ierr = VecRestoreArray(localX,&x); CHKERRQ(ierr);

ierr = VecRestoreArray(localF,&f); CHKERRQ(ierr);

/*
Insert values into global vector
*/
ierr = DALocalToGlobal (user->da,localF,INSERT_VALUES,F); CHKERRQ(ierr);
PLogFlops (11*ym#xm) ;
return 0;

FormJacobian - Evaluates Jacobian matrix.

Input Parameters:

snes - the SNES context

X - input vector

ptr - optional user-defined context, as set by SNESSetJacobian()

Output Parameters:

A - Jacobian matrix

B - optionally different preconditioning matrix
flag - flag indicating matrix structure

Notes:

Due to grid point reordering with DAs, we must always work
with the local grid points, and then transform them to the new
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global numbering with the "ltog'" mapping (via DAGetGloballIndices()).
We cannot work directly with the global numbers for the original
uniprocessor grid!

*/

int FormJacobian(SNES snes,Vec X,Mat #J,Mat *B,MatStructure *flag,void *ptr)

{
AppCtx #user = (AppCtx *) ptr; /* user-defined application context */

Mat jac = *J; /* Jacobian matrix */

Vec localX = user->localX; /* local vector */

int *1tog; /* local-to-global mapping */
int ierr, i, j, row, mx, my, col[5];

int nloc, X8, ys, Xxm, ym, gxs, gys, gXm, gym, grow;

Scalar two = 2.0, one = 1.0, lambda, v[5], hx, hy, hxdhy, hydhx, sc, *x;

mX = user—>mx; my = user—>my; lambda = user->param;
hx = one/(double) (mx-1); hy = one/(double) (my-1);

gc = hx*hy; hxdhy = hx/hy; hydhx = hy/hx;

/*

Scatter ghost points to local vector, using the 2-step process
DAGlobalToLocalBegin(), DAGlobalToLocalEnd().
By placing code between these two statements, computations can be
done while messages are in transition.
*/
ierr = DAGlobalToLocalBegin(user->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);
ierr = DAGlobalTolLocalEnd(user->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);

/*
Get pointer to vector data
*/
ierr = VecGetArray(localX,&x); CHKERRQ(ierr);

/*
Get local grid boundaries
*/
ierr = DAGetCorners(user->da,&xs,&ys,PETSC_NULL, &xm,&ym,PETSC_NULL); CHKERRQ(ierr);

ierr = DAGetGhostCorners (user->da,&gxs,&%gys ,PETSC_NULL, &gxm, &gym ,PETSC_NULL) ; CHKERRQ(ierr);

/*

Get the global node numbers for all local nodes, including ghost points
*/
ierr = DAGetGloballIndices(user->da,&nloc,&ltog); CHKERRQ(ierr);

/*
Compute entries for the locally owned part of the Jacobian.

- Currently, all PETSc parallel matrix formats are partitioned by
contiguous chunks of rows across the processors. The "grow"
parameter computed below specifies the global row number
corresponding to each local grid point.

- Each processor needs to insert only elements that it owns
locally (but any non-local elements will be sent to the
appropriate processor during matrix assembly).

- Always specify global row and columns of matrix entries.

- Here, we set all entries for a particular row at once.

*/

for (j=ys; j<ys+ym; j++) {
row = (j - gys)*gxm + xs - gxs - 1;
for (i=xs; i<xs+xm; i++) {

row++;

grow = ltoglrow];
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/* boundary points */

if A==01]l j==01l1i==mx-1 1] j=my-1) {
ierr = MatSetValues(jac,1,%grow,1,%grow,%one, INSERT_VALUES); CHKERRQ(ierr);
continue;

¥

/* interior grid points */

v[0] = -hxdhy; col[0] = ltoglrow - gxml;

v[1] = -hydhx; col[1] = ltoglrow - 11;

v[2] = twox(hydhx + hxdhy) - sc*lambda*exp(x[row]); col[2] = grow;
v[3] = -hydhx; col[3] = ltoglrow + 1];

v[4] = -hxdhy; col[4] = ltoglrow + gxml;

ierr = MatSetValues(jac,1,&grow,5,col,v,INSERT_VALUES); CHKERRQ(ierr);

}
/*
Assemble matrix, using the 2-step process:
MatAssemblyBegin(), MatAssemblyEnd().
By placing code between these two statements, computations can be
done while messages are in transition.
*/
ierr = MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

ierr = VecRestoreArray(localX,&x); CHKERRQ(ierr);
MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

ierr

/*
Set flag to indicate that the Jacobian matrix retains an identical
nonzero structure throughout all nonlinear iterations (although the
values of the entries change). Thus, we can save some work in setting
up the preconditioner (e.g., no need to redo symbolic factorization for
ILU/ICC preconditioners).

- If the nonzero structure of the matrix is different during
successive linear solves, then the flag DIFFERENT_NONZERO_PATTERN
must be used instead. If you are unsure whether the matrix
structure has changed or not, use the flag DIFFERENT_NONZERO_PATTERN.

- Caution: If you specify SAME_NONZERO_PATTERN, PETSc
believes your assertion and does not check the structure
of the matrix. If you erroneously claim that the structure
is the same when it actually is not, the new preconditioner
will not function correctly. Thus, use this optimization
feature with caution!

*/
*flag = SAME_NONZERO_PATTERN;
return 0;

}

/*
Demonstrates how you can restrict the linking in of solvers, etc

to those that you KNOW you are going to use. This decreases the size

of your executable and decreases the time it takes to link your program.
*/
[* —————— Note currently these are commented out -----——----—----—-
extern int SNESCreate_EQ_LS(SNES);
int SNESRegisterAll()
{

SNESRegisterAllCalled = 1;

SNESRegister (SNES_EQ_LS, 0,"1s", SNESCreate_EQ_LS);

return 0;

}
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extern int KSPCreate_GMRES (KSP);
int KSPRegisterAll()
{

KSPRegisterAllCalled = 1;

KSPRegister (KSPGMRES , 0,"gmres", KSPCreate_GMRES) ;
return 0;

}

extern int PCCreate_BJacobi(PC);
extern int PCCreate_ILU(PC);
int PCRegisterAll()
{
PCRegisterAllCalled = 1;

PCRegister (PCBJACOBI ,0, "bjacobi, PCCreate_BJacobi);
PCRegister (PCILU ,0, "ilu", PCCreate_ILU);
return 0;

}

extern int MatLoad_SeqAIJ(Viewer,MatType,Mat*);
extern int MatLoad_MPIAIJ(Viewer,MatType,Mat*);
int MatLoadRegisterAll()

{

int ierr;

ierr = MatLoadRegister (MATSEQAIJ,MatLoad_SeqAIlJ); CHKERRQ(ierr);
ierr = MatLoadRegister (MATMPIAIJ ,MatLoad_MPIAIJ); CHKERRQ(ierr);
return 0;

int MatConvertRegisterAll()
{
return 0;

}

extern int MatOrder_Natural (Mat,MatReordering,IS*,IS*);
int MatReorderingRegisterAll()

{
int ierr;
MatReorderingRegisterAllCalled = 1;

ierr = MatReorderingRegister (ORDER_NATURAL,O,"natural',MatOrder_Natural); CHKERRQ(ierr);
return 0;

Figure 12: Use of Distributed Arrays

2.9 Discrete Functions

The discrete functions component of PETSc will be replaced in a future PETSc release.
In mathematical terms, vectors are linear algebraic objects that do not incorporate any concept of ge-

ometry, grid, or ordering. But often users want to work with numerical values (stored as a vector or matrix)
in relation to where they lie on a grid or graph. PETSc thus provides an enhanced vector object, known as
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a discrete function vector or DFVec, that is, a vector of values and its associated geometry or grid. Thus,
any vector action that requires the geometric information (e.g., contour plotting) can be performed only on
discrete function vectors and not on basic vectors.

The vectors created by PETSc distributed arrays (as discussed in Section 2.8) automatically are DFVec’s,
as they are associated with a regular grid in one, two, or three dimensions. Thus, any vector obtained from
DAGetDistributedVector() or DAGetLocalVector () (or copied from such vectors via VecDuplicate() or
VecDuplicateVecs()) can immediately be used with the DFVec routines.

In addition to all of the conventional vector operations, the support for discrete function vectors includes
viewing, contour plotting, interpolating, and extracting various components for problems with multiple
degrees of freedom for each node of a grid. One useful routine for viewing discrete function vectors is

ierr = DFVecView(DFVec dfv,Viewer viewer);
which views the components in the same ordering that would be used for the single processor case, inde-
pendent of the number of processors, layout, and so forth. This routine supports all of the standard vector
viewers; the only difference is that in the parallel case, the display always employs the standard uniprocessor
ordering. DFVecView() is particularly useful for checking correctness of parallel vector computations for
different processor configurations and for restarting calculations on different numbers of processors. One
routine for visualization of vector fields is

ierr = DFVecDrawTensorContoursX(DFVec dfv,int width,int height);
which draws in an X-window a contour plot for each component within a multicomponent vector. Another
routine for viewing vector fields is

ierr = DFVecDrawTensorSurfaceContoursVRML(DFVec dfv);

which generates surface contour data view use with a VRML reader. See the man page for details.
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Chapter 3

Matrices

PETSc 2.0 provides a variety of matrix implementations because no single matrix format is appropriate for
all problems. Currently we support dense storage and compressed sparse row storage (both sequential and
parallel versions), as well as several specialized formats. Additional formats can be added easily.

This chapter describes the basics of using PETSc matrices in general (regardless of the particular format
chosen) and discusses tips for efficient use of the several simple uniprocessor and parallel matrix types.
Details regarding the ever-expanding suite of PETSc matrices are given in Section 15.5. The use of PETSc
matrices involves the following actions: create a particular type of matrix, insert values into it, process the
matrix, use the matrix for various computations, and finally destroy the matrix. The application code does
not need to know or care about the particular storage formats of the matrices.

3.1 Creating and Assembling Matrices

The simplest routine for forming a PETSc matrix, A, is
ierr = MatCreate(MPI_Comm comm,int M,int N,Mat *A)

This routine generates a sequential matrix when running on one processor and a parallel matrix for two or
more processors; the particular matrix format is set by the user via options database commands. The user
specifies only the global matrix dimensions, given by M and N, while PETSc determines the appropriate local
dimensions and completely controls memory allocation. This routine facilitates switching among various
matrix types, for example, to determine the format that i1s most efficient for a certain application. By
default, MatCreate() employs the sparse AILJ format, which is discussed in detail Section 3.1.1. See the man
page for further information about available matrix formats.
To insert or add entries to a matrix, one can call a variant of MatSetValues, either

ierr = MatSetValues(Mat A,int m,int *im,int n,int *in,Scalar *values,INSERT_VALUES);
or

ierr = MatSetValues(Mat A,int m,int *im,int n,int *in,Scalar *values,ADD_VALUES);
This routine inserts or adds a logically dense subblock of dimension m*n into the matrix. The integer indices
im and in, respectively, indicate the global row and column numbers to be inserted. MatSetValues() uses
the standard C convention, where the row and column matrix indices begin with zero regardless of the
storage format employed. The array values is logically two dimensional, containing the values that are to
be inserted. By default the values are given in row major order, which is the opposite of the Fortran 77
convention. To allow the insertion of values in column major order, one can call the command

ierr = MatSetOption(Mat A,MAT_COLUMN_ORIENTED);

Warning: Several of the sparse implementations do not currently support the column-oriented option!
This notation should not be a mystery to anyone. For example, to insert one matrix into another when
using Matlab, one uses the command A(im,in) = B; where im and in contain the indices for the rows and
columns. This action is identical to the calls above to MatSetValues().
The function MatSetOption() accepts several other inputs. We discuss two of these, which are related
to the efficiency of the assembly process. To indicate to PETSc that the row (im) or column (in) indices set
with MatSetValues() are sorted, one uses the command
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ierr = MatSetOption(Mat A,MAT_ROWS_SORTED);
or
ierr = MatSetOption(Mat A,MAT_COLUMNS_SORTED);

After the matrix elements have been inserted or added into the matrix, it must be processed before it
can be used. The routines for matrix processing are

ierr = MatAssemblyBegin(Mat A,MAT_FINAL_ASSEMBLY);
ierr = MatAssemblyEnd(Mat A,MAT_FINAL_ASSEMBLY);

By placing other code between these two calls, the user can perform computations while messages are in
transition. Calls to MatSetValues() with the INSERT VALUES and ADD_VALUES options cannot be mixed
without intervening calls to the assembly routines. For such intermediate assembly calls the second routine
argument typically should be MAT FLUSH_ASSEMBLY, which omits some of the work of the full assembly process.
MAT FINAL_ASSEMBLY is required only in the last matrix assembly before a matrix is used.

Even though one may insert values into PETSc matrices without regard to which processor eventually
stores them, for efficiency reasons we usually recommend generating most entries on the processor where
they are destined to be stored. To help the application programmer with this task for matrices that are
distributed across the processors by ranges, the routine

ierr = MatGetOwnershipRange(Mat A,int *first_row,int *last_row);
informs the user that all rows from first_row to last_row—1 will be stored on the local processor.

In the sparse matrix implementations, once the assembly routines have been called, the matrices are
compressed and can be used for matrix-vector multiplication, and so on. Inserting new values into the
matrix at this point will be expensive, since it requires copies and possible memory allocation. Thus,
whenever possible one should completely set the values in the matrices before calling the final assembly
routines.

If one wishes to repeatedly assemble matrices that retain the same nonzero pattern (such as within a
nonlinear or time-dependent problem), the option

ierr = MatSetOption(Mat mat,MAT_NO_NEW_NONZERO_LOCATIONS);

should be specified after the first matrix has been fully assembled. This option ensures that certain data
structures and communication information will be reused (instead of regenerated) during successive steps,
thereby increasing efficiency. See $(PETSCDIR)/src/sles/examples/tutorials/ex5.c for a simple exam-
ple of solving two linear systems that use the same matrix data structure.

3.1.1 Sparse Matrices

The default matrix representation within PETSc is the general sparse AIJ format (also called the Yale sparse
matrix format or compressed sparse row format, CSR). This section discusses tips for efficiently using this
matrix format for large-scale applications. Additional formats (such as block compressed row and block
diagonal storage, which are generally much more efficient for problems with multiple degrees of freedom per
node) are further discussed in Section 15.5. Beginning users need not concern themselves initially with such
details and may wish to proceed directly to Section 3.2. However, when an application code progresses to
the point of tuning for efficiency and/or generating timing results, it is crucial to read this information.

Sequential AIJ Sparse Matrices

In the PETSc AlJ matrix formats, we store the nonzero elements by rows, along with an array of corre-
sponding column numbers and an array of pointers to the beginning of each row. Note that the diagonal
matrix entries are stored with the rest of the nonzeros (not separately).

To create a sequential AlJ sparse matrix, A, with m rows and n columns, one uses the command

ierr = MatCreateSeqAIJ(MPI_COMM_SELF,int m,int n,int nz,int *nzz,Mat #*Ai);
where nz or nnz can be used to preallocate matrix memory, as discussed below. The user can set nz=0 and
nzz=PETSC_NULL for PETSc to control all matrix memory allocation.

The sequential and parallel ATJ matrix storage formats by default employ i-nodes (identical nodes)
when possible. We search for consecutive rows with the same nonzero structure, thereby reusing matrix
information for increased efficiency. Related options database keys are -mat_aij no_inode (do not use
inodes) and -mat_aij_inode limit <limit> (set inode limit (max limit=5)).
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By default the internal data representation for the AlJ formats employs zero-based indexing. For com-
patibility with standard Fortran 77 storage, thus enabling use of external Fortran software packages such as
SPARSKIT, the option -mat_aij_oneindex enables one-based indexing, where the stored row and column
indices begin at one, not zero. All user calls to PETSc routines, regardless of this option, use zero-based
indexing.

Preallocation of Memory for Sequential ALJ Sparse Matrices

The dynamic process of allocating new memory and copying from the old storage to the new is intrinsically
very expensive. Thus, to obtain good performance when assembling an AIJ matrix, it is crucial to preallocate
the memory needed for the sparse matrix. The user has two choices for preallocating matrix memory via
MatCreateSeqAIJ().

One can use the scalar nz to specify the expected number of nonzeros for each row. This is generally fine
if the number of nonzeros per row is roughly the same throughout the matrix (or as a quick and easy first
step for preallocation). If one underestimates the actual number of nonzeros in a given row, then during the
assembly process PETSc will automatically allocate additional needed space. However, this extra memory
allocation can slow the computation,

Thus, if different rows have very different numbers of nonzeros, one should attempt to indicate (nearly)
the exact number of elements intended for the various rows with the optional array, nzz of length m, where
m is the number of rows, for example,

int nnz[m];

nnz[0] = <nonzeros in row 0>

nnz[1] = <nonzeros in row 1>

nnz[m-1] = <nonzeros in row m-1>
In this case, the assembly process will require no additional memory allocations if the nnz estimates are
correct. If, however, the nnz estimates are incorrect, PETSc will automatically obtain the additional needed
space, at a slight loss of efficiency.

Using the array nnz to preallocate memory is especially important for efficient matrix assembly if the
number of nonzeros varies considerably among the rows. One can generally set nnz either by knowing in
advance the problem structure (e.g., the stencil for finite difference problems on a structured grid) or by
precomputing the information by using a segment of code similar to that for the regular matrix assembly.
The overhead of determining the nnz array will be quite small compared with the overhead of the inherently
expensive mallocs and moves of data that are needed for dynamic allocation during matrix assembly.

Thus, when assembling a sparse matrix with very different numbers of nonzeros in various rows, one
could proceed as follows for finite difference methods:

- Allocate integer array nnz.
- Loop over grid, counting the expected number of nonzeros for the row(s)
associated with the various grid points.
- Create the sparse matrix via MatCreateSeqAIJ() or alternative.
- Loop over the grid, generating matrix entries and inserting in matrix via MatSetValues().

For (vertex-based) finite element-type calculations, an analogous procedure is as follows:

- Allocate integer array nnz.

- Loop over vertices, computing the number of neighbor vertices, which determines the
number of nonzeros for the corresponding matrix row(s).

- Create the sparse matrix via MatCreateSeqAIJ() or alternative.

- Loop over elements, generating matrix entries and inserting in matrix via MatSetValues().

The -log_info option causes the routines MatAssemblyBegin() and MatAssemblyEnd() to print infor-
mation about the success of the preallocation. Consider the following example for the MATSEQAIJ matrix
format:

MatAssemblyEnd_SeqAIJ:Matrix size 100 X 100; storage space: 2000 unneeded, 1000 used

MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 0
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The first line indicates that the user preallocated 3000 spaces but only 1000 were used. The second line
indicates that the user preallocated enough space so that PETSc did not have to internally allocate additional
space (an expensive operation). In the next example the user did not preallocate sufficient space, as indicated
by the fact that the number of mallocs is very large (bad for efficiency):

MatAssemblyEnd_SeqAIJ:Matrix size 1000 X 1000; storage space: 47 unneeded, 100000 used
MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 40000

Although at first glance such procedures for determining the matrix structure in advance may seem
unusual, they are actually very efficient because they alleviate the need for dynamic construction of the
matrix data structure, which can be very expensive.

Parallel A1J Sparse Matrices

Parallel sparse matrices with the AIJ format can be created with the command

ierr = MatCreateMPIAIJ(MPI_Comm comm,int m,int n,int M,int N,int d_nz,
int *d_nnz, int o_nz,int *o_nnz,Mat *A4);

A is the newly created matrix, while the arguments m, n, M, and N, indicate the number of local rows and
columns and the number of global rows and columns, respectively. Either the local or global parameters
can be replaced with PETSC DECIDE, so that PETSc will determine them. The matrix is stored with a fixed
number of rows on each processor, given by m, or determined by PETSc if m is PETSC DECIDE.

If one does not use PETSC DECIDE for m and n, then one must ensure that they are chosen to be com-
patible with the vectors. To do this, one first considers the product y = Ax. The m that one uses in
MatCreateMPIAIJ() must match the local size used in the VecCreateMPI() for y. The n used must match
that used as the local size in VecCreateMPI() for x.

The user must set d nz=0, o nz=0, d nnz=PETSC NULL, and o_nnz=PETSCNULL for PETSc to control
dynamic allocation of matrix memory space. Analogous to nz and nnz for the routine MatCreateSeqAIJ(),
these arguments optionally specify nonzero information for the diagonal (d_nz and d_nnz) and off-diagonal
(onz and o.nnz) parts of the matrix. For a square global matrix, we define each processor’s diagonal
portion to be its local rows and the corresponding columns (a square submatrix); each processor’s off-
diagonal portion encompasses the remainder of the local matrix (a rectangular submatrix). The rank in
the MPI communicator determines the absolute ordering of the blocks. That is, the process with rank 0 in
the communicator given to MatCreateMPIAIJ contains the top rows of the matrix; the :*P process in that
communicator contains the i** block of the matrix.

Preallocation of Memory for Parallel AIJ Sparse Matrices

As discussed above, preallocation of memory is critical for achieving good performance during matrix as-
sembly, as this reduces the number of allocations and copies required. We present an example for three
processors to indicate how this may be done for the MATMPTIAIJ matrix format. Consider the 8 by 8 matrix,
which is partitioned by default with three rows on the first processor, three on the second and two on the

third.

1 2 0 | 0 3 0 | 0 4
0 5 | 7 0 o0 | 8 0
9 0 10 | 11 0 0 | 12 0
13 0 14 | 15 16 17 | 0 0
0 18 0 | 19 20 21 | 0 0
0 0 0 | 22 23 0 | 24 0
25 26 27 | 0 0 28 | 29 0
30 0 0 | 31 32 33 | 0 34

The “diagonal” submatrix, d, on the first processor is given by



while the “off-diagonal” submatrix, o, matrix is given by

0 3 0 0 4
7T 0 0 8 0 .
11 0 0 12 0

For the first processor one could set d.nz to 2 (since each row has 2 nonzeros) or, alternatively, set d_nzz to
{2,2,2}. The onz could be set to 2 (since each row of the o matrix has 2 nonzeros), or o_nzz could be set
to {2,2,2}.

For the second processor the d submatrix is given by

15 16 17
19 20 21 .
22 23 0

Thus, one could set d_nz to 3, since the maximum number of nonzeros in each row is 3, or alternatively one
could set d_nzz to {3,3,2}, thereby indicating that the first two rows will have 3 nonzeros while the third
has 2. The corresponding o submatrix for the second processor is

13 0 14 0 O
0 18 0 0 0
0 0 0 24 0

so that one could set onz to 2 or onzz to {2,1,1}.

Note that the user never directly works with the d and o submatrices, except when preallocating storage
space as indicated above. Also, the user need not preallocate exactly the correct amount of space; as long
as a sufficiently close estimate 1s given, the high efficiency for matrix assembly will remain.

As described above, the option ~log_info will print information about the success of preallocation during
matrix assembly. For the MATMPIAIJ format, PETSc will also list the number of elements owned by on each
processor that were generated on a different processor. For example, the statements

[0]MatAssemblyBegin MPIAIJ:Number of off processor values 10

[1]MatAssemblyBegin_MPIAIJ:Number of off processor values 7

[2]MatAssemblyBegin_MPIAIJ:Number of off processor values 5
indicate that very few values have been generated on different processors. On the other hand, the statements

[0]MatAssemblyBegin MPIAIJ:Number of off processor values 100000

[1]MatAssemblyBegin_MPIAIJ:Number of off processor values 77777
indicate that many values have been generated on the “wrong” processors. This situation can be very
inefficient, since the transfer of values to the “correct” processor is generally expensive. By using the
command MatGetOwnershipRange() in application codes, the user should be able to generate most entries
on the owning processor.

Note: It is fine to generate some entries on the “wrong” processor. Often this can lead to cleaner, simpler,
less buggy codes. One should never make code overly complicated in order to generate all values locally.
Rather, one should organize the code in such a way that most values are generated locally.

3.1.2 Dense Matrices

PETSc provides both sequential and parallel dense matrix formats, where each processor stores its entries
in a column-major array in the usual Fortran 77 style. To create a sequential, dense PETSc matrix, 4 of
dimensions m by n, the user should call

ierr = MatCreateSeqDense(MPI_COMM_SELF,int m,int n,Scalar *data,Mat *A);
The variable data enables the user to optionally provide the location of the data for matrix storage (intended
for Fortran users who wish to allocate their own storage space). Most users should merely set data to
PETSC NULL for PETSc to control matrix memory allocation. To create a parallel, dense matrix, A, the user
should call

ierr = MatCreateMPIDense(MPI_Comm comm,int m,int n,int M,int N,Scalar *data,Mat *A4)
The arguments m, n, M, and N, indicate the number of local rows and columns and the number of global rows
and columns, respectively. Fither the local or global parameters can be replaced with PETSC_DECIDE, so that
PETSc will determine them. The matrix is stored with a fixed number of rows on each processor, given by
m, or determined by PETSc if m is PETSC DECIDE.

PETSc does not currently provide parallel dense direct solvers. Qur focus is on sparse iterative solvers.
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3.2 Basic Matrix Operations

Table 2 summarizes basic PETSc matrix operations. We briefly discuss a few of these routines in more detail
below.

The parallel matrix can multiply a vector with n local entries, returning a vector with m local entries.
That is, to form the product

ierr = MatMult(Mat A,Vec x,Vec y);
the vectors x and y should be generated with

ierr = VecCreateMPI(MPI_Comm comm,n,N,&x);
ierr = VecCreateMPI(MPI_Comm comm,m,M,&y);

By default, if the user lets PETSc decide the number of components to be stored locally (by passing in
PETSC_DECIDE as the second argument to VecCreateMPI() or using VecCreate()), vectors and matrices of
the same dimension are automatically compatible for parallel matrix-vector operations.

Along with the matrix-vector multiplication routine, there is a version for the transpose of the matrix,

ierr = MatMultTrans(Mat A,Vec x,Vec y);
There are also versions that add the result to another vector:

ierr = MatMultAdd(Mat A,Vec x,Vec y,Vec w);
ierr = MatMultTransAdd(Mat A,Vec x,Vec y,Vec w);

These routines, respectively, produce w = A% 2 +y and w = AT xx +y . In C it is legal for the vectors y
and w to be identical. In Fortran 77, this situation is forbidden by the language standard, but we allow it
anyway.

One can print a matrix (sequential or parallel) to the screen with the command

ierr = MatView(Mat mat,VIEWER_STDOUT_WORLD);

Other viewers can be used as well. For instance, one can draw the nonzero stucture of the matrix into the
default X-window with the command

ierr = MatView(Mat mat,VIEWER_DRAWX_WORLD);
or
ierr = MatView(Mat mat,Viewer viewer);

where viewer was obtained with ViewerDrawOpenX(). Additional viewers and options are given in the
MatView() man page and Section 12.2.

Table 2: PETSc Matrix Operations

Function Name Operation
MatAXPY(Scalar *a,Vec X, Vec Y); Y=Y +axX
MatMult(Mat A, Vec x, Vec y); y=Axzx
MatMultAdd(Mat A,Vec x, Vec y,Vec z); r=y+Axzx
MatMultTrans(Mat A,Vec x, Vec y); y=AT %z

MatMultTransAdd(Mat A,Vec x, Vec y,Vec z); z=y+ AT x=
MatNorm(Mat A NormType type, double *r);  » = ||A]|sype

MatDiagonalScale(Mat A Vec |, Vec 1); A = diag({) * A * diag(r)
MatScale(Scalar *a,Mat A); A=axA
MatConvert(Mat A, MatType type,Mat *B); B=A

MatCopy(Mat A, Mat B); B=A
MatGetDiagonal(Mat A, Vec x); z = diag(A)
MatTranspose(Mat A, Mat* B); B=AT
MatZeroEntries(Mat A); A=0
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3.3 Matrix-Free Matrices

Some people like to use matrix-free methods, which do not require explicit storage of the matrix, for the
numerical solution of partial differential equations. To support matrix-free methods in PETSc, one can use
the following command to create a Mat structure without ever actually generating the matrix:

ierr = MatCreateShell(MPI_Comm comm,int m,int n,int M,int N,void *ctx,Mat *mat);

Here M and N are the global matrix dimensions (rows and columns), m and n are the local matrix dimensions,
and ctx is a pointer to data needed by any user-defined shell matrix operations; the man page has additional
details about these parameters. Most matrix-free algorithms require only the application of the linear
operator to a vector. To provide this action, the user must write a routine with the calling sequence

ierr = UserMult(Mat mat,Vec x,Vec y);
and then associate it with the matrix, mat, by using the command

ierr = MatShellSetOperation(Mat mat,MatOperation MATOP_MULT,

int (*UserMult)(Mat,Vec,Vec));
Here MATOP MULT is the name of the operation for matrix-vector multiplication. Within each user-defined
routine (such as UserMult () ), the user should call MatShellGetContext () to obtain the user-defined context,
ctx, that was set by MatCreateShell(). This shell matrix can be used with the iterative linear equation
solvers discussed in the following chapters.

The routine MatShellSetOperation() can be used to set any other shell matrix operations as well.
The file $(PETSCDIR)/include/mat.h provides a complete list of matrix operations, which have the form
MATOP _<OPERATION>, where <OPERATION> is the name (in all capital letters) of the user interface routine (for
example, MatMult () — MATOP _MULT). All user-provided functions have the same calling sequence as the usual
matrix interface routines, since the user-defined functions are intended to be accessed through interface (for
example, MatMult (Mat,Vec,Vec) — UserMult(Mat,Vec,Vec)).

Note that MatShellSetOperation() can also be used as a “backdoor” means of introducing user-defined
changes in matrix operations for other storage formats (for example, to override the default LU factorization
routine supplied within PETSc for the MATSEQAIJ format). However, we urge anyone who introduces such
changes to use caution, since it would be very easy to accidentally create a bug in the new routine that could
affect other routines as well.

3.4 Other Matrix Operations

In many iterative calculations (for instance, in a nonlinear equations solver), it is important for efficiency
purposes to reuse the nonzero structure of a matrix, rather than determining it anew every time the matrix
is generated. To retain a given matrix but reinitialize its contents, one can employ

ierr = MatZeroEntries(Mat A4);

For sparse matrices this routine will zero the matrix entries in the data structure but keep all the data that
indicates where the nonzeros are located. In this way a new matrix assembly will be much less expensive,
since no memory allocations or copies will be needed. Of course, one can also explicitly set selected matrix
elements to zero by calling MatSetValues().

In the numerical solution of elliptic partial differential equations, it can be cumbersome to deal with
Dirichlet boundary conditions. In particular, one would like to assemble the matrix without regard to
boundary conditions and then at the end apply the Dirichlet boundary conditions. In numerical analysis
classes this process is usually presented as moving the known boundary conditions to the right-hand side and
then solving a smaller linear system for the interior unknowns. Unfortunately, implementing this requires
extracting a large submatrix from the original matrix and creating its corresponding data structures. This
process can be expensive in terms of both time and memory.

One simple way to deal with this difficulty is to replace those rows in the matrix associated with known
boundary conditions, by rows of the identity matrix (or some scaling of it). This action can be done with
the command

ierr = MatZeroRows(Mat A,IS rows,Scalar *diag_value);

For sparse matrices this removes the data structures for certain rows of the matrix. If the pointer diag value
is PETSC_NULL, it even removes the diagonal entry. If the pointer is not null, it uses that given value at the
pointer location in the diagonal entry of the eliminated rows.

Another matrix routine of interest is
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ierr = MatConvert(Mat mat,MatType newtype,Mat *M)

which converts the matrix mat to new matrix, M, that has either the same or different format. The user should
set newtype to MATSAME to copy the matrix, keeping the same matrix format. See $ (PETSCDIR)/include/mat.h
for other available matrix types.

In certain applications it may be necessary for application codes to directly access elements of a matrix.
This may be done by using the the command

ierr = MatGetRow(Mat A,int row, int *ncols,int **cols,Scalar **vals);
The argument ncols returns the number of nonzeros in that row, while cols and vals returns the column
indices (with indices starting at zero) and values in the row. If only the column indices are needed (and not
the corresponding matrix elements), one can use PETSC_NULL for the vals argument. Similarly, one can use
PETSC_NULL for the cols argument. The user can only examine the values extracted with MatGetRow(); the
values cannot be altered. To change the matrix entries, one must use MatSetValues().

Once the user has finished using a row, he or she must call

ierr = MatRestoreRow(Mat A,int row,int *ncols,int **cols,Scalar **vals);
to free any space that was allocated during the call to MatGetRow(). The reason for the MatRestoreRow()
command is that most of the sparse matrix storage formats require MatGetRow() to allocate some space for
reorganizing matrix data before presenting it to the user.
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Chapter 4

SLES: Linear Equations Solvers

SLES is the heart of PETSc, because it provides uniform and efficient access to all of the package’s linear
system solvers, both parallel and sequential, direct and iterative. SLES is intended for solving nonsingular
systems of the form

Ar =10 (4.1)

bl

where A denotes the matrix representation of a linear operator, b is the right-hand-side vector, and z is
the solution vector. SLES uses the same calling sequence for both direct and iterative solution of a linear
system. In addition, particular solution techniques and their associated options can be selected at runtime.

The combination of a Krylov subspace method and a preconditioner is at the center of most modern
numerical codes for the iterative solution of linear systems. See; for example, [6] for an overview of the
theory of such methods. SLES creates a simplified interface to the lower-level KSP and PC modules within
the PETSc package. The KSP component, discussed in Section 4.3, provides many popular Krylov subspace
iterative methods; the PC module, described in Section 4.4, includes a variety of preconditioners. Although
both KSP and PC can be used directly, users should employ the interface of SLES.

4.1 Using SLES

To solve a linear system with SLES, one must first create a solver context with the command

ierr = SLESCreate(MPI_Comm comm,SLES *sles);
Here comm is the MPI communicator, and sles is the newly formed solver context. Before actually solving
a linear system with SLES, the user must call the following routine to set the matrices associated with the
linear system:

ierr = SLESSetOperators(SLES sles,Mat Amat,Mat Pmat,MatStructure flag);
The argument Amat, representing the matrix that defines the linear system, is a symbolic place holder for
any kind of matrix. In particular, SLES does support matrix-free methods. The routine MatCreateShell()
in Section 3.3 provides further information regarding matrix-free methods. Typically the preconditioning
matrix, Pmat, is the same as the matrix that defines the linear system, Amat; however, occasionally these
matrices differ (for instance, when preconditioning a matrix obtained from a high order method with that
from a low order method). The argument flag can be used to eliminate unnecessary work when repeatedly
solving linear systems of the same size with the same preconditioning method; when solving just one linear
system, this flag is ignored. The user can set £lag as follows:

e SAME NONZERO_PATTERN - the preconditioning matrix has the same nonzero structure during successive
linear solves,

e DIFFERENT NONZERO PATTERN - the preconditioning matrix does not have the same nonzero structure
during successive linear solves,

e SAME PRECONDITIONER - the preconditioner matrix is identical to that of the previous linear solve.
If in doubt about the structure of a matrix, one should use the flag DIFFERENT NONZERO_PATTERN.
Much of the power of SLES can be accessed through the single routine
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ierr = SLESSetFromOptions(SLES sles);

This routine accepts the options -h and -help as well as any of the KSP and PC options discussed below.
To solve a linear system, one merely executes the command

ierr = SLESSolve(SLES sles,Vec b,Vec x,int *its);

where b and x respectively denote the right-hand-side and solution vectors. On return, the parameter
its contains either the iteration number at which convergence was successfully reached, or the negative
of the iteration at which divergence or breakdown was detected. Section 4.3.2 gives for details regarding
convergence testing. Note that multiple linear solves can be performed by the same SLES context. Once the
SLES context is no longer needed, it should be destroyed with the command

ierr = SLESDestroy(SLES sles);

The above procedure is sufficient for general use of the SLES package. One additional step is required for
users who wish to customize certain preconditioners (e.g., see Section 4.4.4) or to log certain performance
data using the PETSc profiling facilities (as discussed in Chapter 10). In this case, the user can optionally
explicitly call

ierr = SLESSetUp(SLES sles,Vec b,Vec x);

before calling SLESSolve() to perform any setup required for the linear solvers. The explicit call of this
routine enables the separate monitoring of any computations performed during the set up phase, such as
incomplete factorization for the ILU preconditioner.

To allow application programmers to set any of the preconditioner or Krylov subspace options directly
within the code, we provide routines that extract the PC and KSP contexts,

ierr = SLESGetPC(SLES sles,PC *pc);
ierr = SLESGetKSP(SLES sles,KSP *ksp);

The application programmer can then directly call any of the PC or KSP routines to modify the corresponding
default options.

To solve a linear system with a direct solver (currently supported only for sequential matrices), one may
use the options -pc_type lu -ksp_type preonly (see below).

By default, if a direct solver is used, the factorization i1s not done in-place. This approach is to pre-

vent the user from the unexpected surprise of having a corrupted matrix after a linear solve. The routine
PCLUSetUseInPlace(), discussed below, causes factorization to be done in-place.

4.2 Solving Successive Linear Systems

When solving multiple linear systems of the same size with the same method, several options are available.
To solve successive linear systems having the same preconditioner matrix (i.e., the same data structure
with exactly the same matrix elements) but different right-hand-side vectors, the user should simply call
SLESSolve() multiple times. The preconditioner setup operations (e.g., factorization for ILU) will be done
during the first call to SLESSolve() only; such operations will not be repeated for successive solves.

To solve successive linear systems that have different preconditioner matrices (i.e., the matrix elements
and/or the matrix data structure change), the user must call SLESSetOperators() and SLESSolve() for
each solve. See Section 4.1 for a description of various flags for SLESSetOperators() that can save work for
such cases.

4.3 KSP Component

The Krylov subspace methods accept a number of options, many of which are discussed below. First, to set
the Krylov subspace method that is to be used, one calls the command

ierr = KSPSetType(KSP ksp,KSPType method);
The type can be one of KSPRICHARDSON, KSPCHEBYCHEV, KSPCG, KSPGMRES, KSPTCQMR, KSPBCGS, KSPCGS,
KSPTFQMR, KSPCR, KSPLSQR, or KSPPREONLY. The KSP method can also be set with the options database
command -ksp_type, followed by one of the options richardson, chebychev, cg, gmres, tcqmr, bcgs,

cgs, tfgmr, cr, lsqr, or preonly. There are method-specific options for the Richardson, Chebychev,
and GMRES methods.
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ierr = KSPRichardsonSetScale(KSP ksp,double damping_factor);
ierr KSPChebychevSetEigenvalues (KSP ksp,double emax,double emin);

ierr = KSPGMRESSetRestart(KSP ksp,int max_steps);

The default parameter values are damping factor=1.0, emax=0.01, emin=100.0, and max_steps=30. The
GMRES restart and Richardson damping factor can also be set with the options ~ksp_gmres restart <n>
and -ksp_richardson_scale <factor>.

The default technique for orthogonalization of the Hessenberg matrix in GMRES is the modified Gram-
Schmidt method, which employs many VecDot () operations and can thus be slow in parallel. A fast approach
is to use the unmodified Gram-Schmidt method, which can be set with

ierr = KSPGMRESSetOrthogonalization(XSP ksp,
KSPGMRESUnmodifiedGramSchmidtOrthogonalization);

or the options database command ~ksp_gmres_unmodifiedgramschmidt. Note that this algorithm is numer-
ically unstable, but may deliver much better speed performance. One can also use unmodifed Gram-Schmidt
with iterative refinement, by setting the orthogonalization routine, KSPGMRESIROrthog(), by using the com-
mand line option ~ksp_gmres_irorthog.

By default, KSP assumes an initial guess of zero by zeroing the initial value for the solution vector that
is given. To use a nonzero initial guess, the user must call

ierr = KSPSetInitialGuessNonzero(KSP ksp);

For the conjugate gradient method with complex numbers, there are two slightly different algorithms
depending on whether the matrix is Hermitian symmetric or truly symmetric (the default is to assume that
it is Hermitian symmetric). To indicate that it is symmetric, one uses the command

ierr = KSPCGSetType(KSP ksp,KSPCGType KSP_CG_SYMMETRIC);

4.3.1 Preconditioning within KSP

Since the rate of convergence of Krylov projection methods for a particular linear system is strongly dependent
on its spectrum, preconditioning is typically used to alter the spectrum and hence accelerate the convergence
rate of iterative techniques. Preconditioning can be applied to the system (4.1) by

(M7YAMRY) (Mpa) = M ', (4.2)

where Mp and Mp indicate preconditioning matrices. If My = I in (4.2), right preconditioning results, and
the residual of (4.1),

r=b—Ar =b— AM;' Mgz,

is preserved. In contrast, the residual is altered for left (Mg = I ) and symmetric preconditioning, as given
by
ry = ML_lb—ML_le = ML_lr.

By default, all KSP implementations use left preconditioning. Right preconditioning can be activated for
some methods by using the options database command -ksp_right_pc or calling the routine

ierr = KSPSetPreconditionerSide(KSP ksp,PCSide PC_RIGHT);
Attempting to use right preconditioning for a method that does not currently support it results in an error
message of the form

KSPSetUp_Richardson:No right preconditioning for KSPRICHARDSON

We summarize the defaults for the residuals used in KSP convergence monitoring within Table 3. Details
regarding specific convergence tests and monitoring routines are presented in the following sections. The
preconditioned residual i1s used by default for convergence testing of all left-preconditioned KSP methods
except for the conjugate gradient, Richardson, and Chebyshev methods. For these three cases the true
residual is used by default, but the preconditioned residual can be employed instead with the options database
command ksp_preres or by calling the routine

ierr = KSPSetUsePreconditionedResidual (KSP ksp);
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Table 3: KSP Defaults. All methods use left preconditioning by default.

Options Default
Database Convergence

Method KSPType Name Monitor
Richardson KSPRICHARDSON richardson true
Chebychev KSPCHEBYCHEV  chebychev  true
Conjugate Gradient [10] KSPCG cg true
Generalized Minimal Residual [15] KSPGMRES gmres precond
BiCGSTAB [19] KSPBCGS begs precond
Conjugate Gradient Squared [17] KSPCGS cgs precond
Transpose-Free Quasi-Minimal Residual (1) [7] KSPTFQMR tfqmr precond
Transpose-Free Quasi-Minimal Residual (2) KSPTCQMR tegmr precond
Conjugate Residual KSPCR cr precond
Least Squares Method KSPLSQR lsqr precond
Shell for no KSP method KSPPREONLY preonly precond

1 true - denotes true residual norm, precond - denotes preconditioned residual norm

4.3.2 Convergence Tests

The default convergence test, KSPDefaultConverged(),is based on the [s-norm of the residual. Convergence
(or divergence) is decided by three quantities: the relative decrease of the residual norm, rtol; the absolute
size of the residual norm, atol; and the relative increase in the residual, dtol. Convergence is detected at
iteration k if

[[7kl|2 < max(rtol  ||rol|2, atol),

where ry, = b — Axy. Divergence is detected if
[|[7kll2 > dtol * ||rol|2-

These parameters, as well as the maximum number of allowable 1terations, can be set with the routine
ierr = KSPSetTolerances(KSP ksp,double rtol,double atol,double dtol,int maxits);

The user can retain the default value of any of these parameters by specifying PETSC_ DEFAULT as the corre-
sponding tolerance; the defaults are rto1=10"%, atol=10"°%% dtol1=10°, and maxits=10°. These parame-
ters can also be set from the options database with the commands ~ksp_rtol <rtol>, -ksp_atol <atol>,
-ksp_divtol <dtol>, and -kspmax_it <its>.

In addition to providing an interface to a simple convergence test, KSP allows the application programmer
the flexibility to provide customized convergence-testing routines. The user can specify a customized routine
with the command

ierr = KSPSetConvergenceTest(KSP ksp,int (*test)(KSP ksp,int it,double rnorm,void *ctx),
void *ctx);

The final routine argument, ctx, is an optional context for private data for the user-defined convergence
routine, test. Other test routine arguments are the iteration number, it, and the residual’s I norm,
rnorm. The routine for detecting convergence, test, should return the integer 1 for convergence, 0 for no
convergence, and —1 on error or failure to converge.

4.3.3 Convergence Monitoring

By default, the Krylov solvers run silently without displaying information about the iterations. The user
can indicate that the norms of the residuals should be displayed by using ~ksp monitor within the options
database. To display the residual norms in a graphical window (running under X Windows), one should
use —kspxmonitor [x,y,w,h], where either all or none of the options must be specified. Application
programmers can also provide their own routines to perform the monitoring by using the command

51



ierr = KSPSetMonitor(KSP ksp,int (*mon) (KSP ksp,int it,double rnorm,void *ctx),
void *ctx);

The final routine argument, ctx, is an optional context for private data for the user-defined monitoring rou-
tine, mon. Other mon routine arguments are the iteration number (it) and the residual’s [z norm (rnorm). A
helpful routine within user-defined monitorsis PetscObjectGetComm( (PetscObject)ksp,MPI Comm *comm),
which returns in comm the MPI communicator for the KSP context. See Chapter 15 for more discussion of
the use of MPI communicators within PETSc.

Several monitoring routines are supplied with PETSc, including

ierr = KSPDefaultMonitor(KSP,int,double, void *);
ierr = KSPSingularValueMonitor(KSP,int,double, void *);
ierr = KSPTrueMonitor(KSP,int,double, void *);

The default monitor simply prints an estimate of the /5-norm of the residual at each iteration. The routine
KSPSingularValueMonitor () is appropriate only for use with the conjugate gradient method or GMRES,
since it prints estimates of the extreme singular values of the preconditioned operator at each iteration. Since
KSPTrueMonitor () prints the true residual at each iteration by actually computing the residual using the
formula » = b — Az, the routine is slow and should be used only for testing or convergence studies, not for
timing. These monitors may be accessed with the command line options ~ksp monitor, -ksp_singmonitor,
and -ksp_truemonitor.
To employ the default graphical monitor, one should use the commands

DrawlG 1g;
ierr = KSPLGMonitorCreate(char *display,char #title,int x,int y,int w,int h,DrawlLG *1g);
ierr = KSPSetMonitor (KSP ksp,KSPLGMonitor, (void *)1g);

When no longer needed, the line graph should be destroyed with the command

ierr = KSPLGMonitorDestroy(DrawlLG 1g);

The user can change aspects of the graphs with the DrawLG*() and DrawAxis*() routines. One can also
access this functionality from the options database with the command -ksp_xmonitor [x,y,w,h], where
X, ¥y, w, hare the optional location and size of the window.

Once can cancel all hardwired monitoring routines for KSP at runtime with ~ksp_cancelmonitors.

4.3.4 Understanding the Operators Spectrum

Since the convergence of Krylov subspace methods depends strongly on the spectrum (eigenvalues) of the pre-
conditioned operator, PETSc has specific routines for their approximation via Arnoldi or Lanczos iteration.
First, before the linear solve one must call

ierr = KSPSetComputeEigenvalues(KSP ksp);
Then after the SLES solve one calls
ierr = KSPComputeEigenvalues(KSP ksp, int n,double *realpart,double *complexpart);

Here, n 1s the size of the two arrays and the eigenvalues are inserted into those two arrays. There is an
additional routine

ierr = KSPComputeEigenvaluesExplicitly(KSP ksp, int n,double *realpart,double *complexpart);

that is useful only for very small problems. It explicitly computes the full representation of the preconditioned
operator and calles LAPACK to compute its eigenvalues. It should be used only for matrices of size up to a
couple of hundred. The DrawSP*() routines are very useful for drawing scatter plots of the eigenvalues.

The eigenvalues may also be computed and displayed graphically with the options data base commands
-ksp_plot_eigenvalues and -ksp_plot_eigenvalues explicitly. Or they can be dumped to the screen
in ASCII text via ~ksp_compute_eigenvalues and ~-ksp_compute_eigenvalues_explicitly.

4.3.5 Other KSP Options

To obtain the solution vector and right-hand side from a KSP context, one uses

ierr = KSPGetSolution(KSP ksp,Vec *x);
ierr = KSPGetRhs(KSP ksp,Vec *rhs);
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Table 4: PETSc Preconditioners

Method PCType Options Database Name
Jacobi PCJACOBI jacobi
Block Jacobi PCBJACOBI bjacobi
Block Gauss-Seidel (sequential only) PCBGS bgs
SOR (and SSOR) PCSOR sor

SOR with Eisenstat trick PCEISENSTAT eisenstat
Incomplete Cholesky PCICC icc
Incomplete LU PCILU ilu
Additive Schwarz PCASM asm

LU PCLU lu

No preconditioning PCNONE none
Shell for user-defined PC PCSHELL shell

These routines return the original vectors that the user set with KSPSetSolution() and KSPSetRhs().
During the iterative process the solution may not yet have been calculated or it may be stored in a different
location. To access the approximate solution during the iterative process, one uses the command

ierr = KSPBuildSolution(KSP ksp,Vec w,Vec *v);

where the solution is returned in v. The user can optionally provide a vector in w as the location to store the
vector; however, if w 1s PETSC_NULL, space allocated by PETSc in the KSP context is used. One should not
destroy this vector. For certain KSP methods, (e.g., GMRES), the construction of the solution is expensive,
while for many others it requires not even a vector copy.

Access to the residual is done in a similar way with the command

ierr = KSPBuildResidual(KSP ksp,Vec t,Vec w,Vec *v);

Again, for GMRES and certain other methods this is an expensive operation.

4.4 Preconditioners

As discussed in Section 4.3.1, the Krylov space methods are typically used in conjunction with a precon-
ditioner. To employ a particular preconditioning method, the user can either select it from the options
database using input of the form -pc_type <methodname> or set the method with the command

ierr = PCSetType(PC pc,PCType method);

In Table 4 we summarize the most basic preconditioning methods supported in PETSc. The PCSHELL
preconditioner uses a specific, application-provided preconditioner. The direct preconditioner, PCLU, is, in
fact, a direct solver for the linear system that uses LU factorization. PCLU is included as a preconditioner so
that PETSc has a consistent interface among direct and iterative linear solvers.

Each preconditioner may have associated with 1t a set of options, which can be set with routines and
options database commands provided for this purpose. Such routine names and commands are all of the
form PC<TYPE>Option and -pc<type> option [value]. A complete list can be found by consulting the
man pages; we discuss just a few in the sections below.

4.4.1 ILU and ICC Preconditioners

Some of the options for ILU preconditioner are

ierr = PCILUSetLevels(PC pc,int levels);

ierr = PCILUSetReuseReordering(PC pc,PetscTruth flag);

ierr = PCILUSetUseDropTolerance(PC pc,double dt,int dtcount);
ierr = PCILUSetReuseFill(PC pc,PetscTruth flag);

ierr = PCILUSetUseInPlace(PC pc);
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When repeatedly solving linear systems with the same SLES context, one can reuse some information
computed during the first linear solve. In particular, PCILUSetReuseReordering() causes the reordering (for
example, set with -mat_order order)computed in the first factorization to be reused for later factorizations.
The PCILUSetReuseFill() causes the fill computed during the first drop tolerance factorization to be reused
in later factorizations. PCILUSetUseInPlace() is often used with PCASM or PCBJACOBI when zero fill is used,
since 1t reuses the matrix space to store the incomplete factorization it saves memory and copying time.
Note that in-place factorization is not appropriate with any ordering besides natural and cannot be used
with the drop tolerance factorization. These options may be set in the database with

-pc_ilu_levels <levels>

-pc_ilu_reuse_reordering

-pc_ilu_use_drop_tolerance <dt>,<dtcount>

-pc_ilu_reuse_fill

-pc_ilu_in_place

-pc_ilu_nonzeros_along_diagonal

See Section 11.4.2 for information on preallocation of memory for anticipated fill during factorization. By
alleviating the considerable overhead for dynamic memory allocation, such tuning can significantly enhance
performance.

We support incomplete factorization preconditioners for several matrix types for the uniprocessor case. In
addition, for the parallel case we provide an interface to the ILU and ICC preconditioners of BlockSolve95 [11].
BlockSolve95 is available by anonymous ftp at info.mcs.anl.gov in the directory pub/BlockSolve95; for
further information see the WWW address: http://www.mcs.anl.gov/blocksolve9s/index.html. PETSc
enables users to employ the preconditioners within BlockSolve95 by using the BlockSolve95 matrix format
MATMPIROWBS and invoking either the PCILU or PCICC method within the linear solvers. Since PETSc
automatically handles matrix assembly, preconditioner setup, profiling, and so on, users who employ Block-
Solve95 through the PETSc interface need not concern themselves with many details provided within the
BlockSolve95 users manual.

One can create a matrix that is compatible with BlockSolve95 by using MatCreate() with the option
-mat mpirowbs, or by directly calling

ierr = MatCreateMPIRowbs(MPI_Comm comm,int m,int M,int nz,int *nnz,void *proci,Mat *A)

A 18 the newly created matrix, while the arguments m and M indicate the number of local and global rows,
respectively. Either the local or global parameter can be replaced with PETSC_DECIDE, so that PETSc will
determine it. The matrix is stored with a fixed number of rows on each processor, given by m, or determined
by PETSc if m 1s PETSC DECIDE. The arguments nz and nnz can be used to preallocate storage space, as
discussed in Section 3.1 for increasing the efficiency of matrix assembly; one sets nz=0 and nzz=PETSC_NULL
for PETSc to control all matrix memory allocation. The argument proci is an optional BlockSolve95
BSprocinfo context; most users should set this parameter to PETSC_NULL, so that PETSc will create and
initialize this context.
If the matrix is symmetric, one may call

ierr = MatSetOption(Mat mat,MAT_SYMMETRIC);

to improve efficiency, but in this case one cannot use the ILU preconditioner, only ICC.

Internally, PETSc inserts zero elements into matrices of the MATMPIROWBS format if necessary, so that
nonsymimetric matrices are considered to be symmetric in terms of their sparsity structure; this format is re-
quired for use of the parallel communication routines within BlockSolve95. In particular, if the matrix element
Ali, j] exists, then PETSc will internally allocate a 0 value for the element A[j, ¢] during MatAssemblyEnd()
if the user has not already set a value for the matrix element A[j,1] .

When manipulating a preconditioning matrix, A, BlockSolve95 internally works with a scaled and per-
muted matrix, A = PD~Y/24D~1/2 where D is the diagonal of A, and P 1s a permutation matrix determined
by a graph coloring for efficient parallel computation. Thus, when solving a linear system, Az = b, using
ILU/ICC preconditioning and the matrix format MATMPIROWBS for both the linear system matrix and the
preconditioning matrix, one actually solves the scaled and permuted system Az = b , where # = PD/ %z
and b = PD~/2p . PETSc handles the internal scaling and permutation of & and b | so the user does not
deal with these conversions, but instead always works with the original linear system. In this case, by default
the scaled residual norm is monitored; one must use the option -ksp_bsmonitor to print both the scaled
and unscaled residual norms. Note: If one is using ILU/ICC via BlockSolve95 and the MATMPIROWBS matrix
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format for the preconditioner matrix, but using a different format for a different linear system matrix, this
scaling and permuting are done only internally during the application of the preconditioner; ksp_bsmonitor
should not be used in this case.

Users who wish to use these preconditioners via the PETSc interface and who have not already installed
BlockSolve95 should see the file $(PETSCDIR)/Installation for details on building PETSc when Block-
Solve95 is being used. In particular, one must edit the file $ (PETSC DIR)/bmake/$(PETSC_ARCH) /base.site
so that BS_LIB and BS_INCLUDE indicate the library location, and the PCONF variable specifies the flag
-DHAVE BLOCKSOLVE. Then the PETSc library must be (re)compiled.

4.4.2 SOR and SSOR Preconditioners

The options for SOR preconditioning are

ierr = PCSORSetOmega(PC pc,double omega);
ierr = PCSORSetIterations(PC pc,int its);
ierr = PCSORSetSymmetric(PC pc,MatSORType type);

The first of these commands sets the relaxation factor for successive over (under) relaxation. The second
command sets the number of inner iterations of SOR, given by its, to use between steps of the Krylov
space method. The third command sets the kind of SOR sweep, where the argument type can be one of
SOR_FORWARD_SWEEP, SOR_BACKWARD SWEEP or SOR_SYMMETRIC _SWEEP, the default being SOR_FORWARD_SWEEP.
Setting the type to be SOR_SYMMETRIC SWEEP produces the SSOR method. In addition, each processor can
locally and independently perform the specified variant of SOR with the types SOR_LOCAL FORWARD _SWEEP,
SOR_LOCAL BACKWARD SWEEP, and SOR_LOCAL_SYMMETRIC SWEEP. These variants can also be set with the op-
tions -pc_sor_omega <omega>, -pc_sor_its <its>,  -pc_sor_backward, -pc_sor_symmetric,
-pc_sor_local forward, -pc_sor_local backward, and -pc_sor_local _symmetric.

The Eisenstat trick [4] for SSOR preconditioning can be employed with the method PCEISENSTAT
(-pc_type eisenstat). By using both left and right preconditioning of the linear system, this variant of
SSOR, requires about half of the floating-point operations for conventional SSOR. The option
-pc_eisenstat diagonal scaling) (or the routine PCEisenstatUseDiagonalScaling()) activates diag-
onal scaling in conjunction with Eisenstat SSOR method, while the option -pc_eisenstat_omega <omega>
(or the routine PCEisenstatSetOmega(PC pc,double omega)) sets the SSOR relaxation coefficient, omega,
as discussed above.

4.4.3 LU Factorization

The LU preconditioner provides several options. The first, given by the command
ierr = PCLUSetUseInPlace(PC pc);

causes the factorization to be performed in-place and hence destroys the original matrix. The options
database variant of this command is ~pc 1lu_in_place. Another direct preconditioner option is selecting the
ordering of equations with the command

-mat_order <ordering>

The possible orderings are
e ORDER_NATURAL - Natural
e ORDER.ND - Nested Dissection
e ORDER_1WD - One-way Dissection

ORDER_RCM - Reverse Cuthill-McKee

e ORDER_QMD - Quotient Minimum Degree

These orderings can also be set through the options database by specifying one of the following: -mat_order
natural, -mat_order nd, -mat_order lwd, -mat_order rcm, -mat_order qmd. In addition, see
MatGetReordering(), discussed in Section 7.1.

The sparse LU factorization provided in PETSc does not perform pivoting for numerical stability (since
they are designed to preserve nonzero structure); thus, occasionally a LU factorization will fail with a zero
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pivot when, in fact, the matrix is nonsingular. The option -pc_lu nonzeros_along.diagonal will often help
eliminate the zero pivot, by preprocessing the the column ordering to remove small values from the diagonal.

In addition, Section 11.4.2 provides information on preallocation of memory for anticipated fill during fac-
torization. Such tuning can significantly enhance performance, since it eliminates the considerable overhead
for dynamic memory allocation.

4.4.4 Block Jacobi, Block Gauss-Seidel, and Overlapping Additive Schwarz Pre-
conditioners

The block Jacobi and overlapping additive Schwarz methods in PETSc are supported in parallel; how-
ever, only the uniprocessor version of the block Gauss-Seidel method is currently in place. By default, the
PETSc implentations of these methods employ ILU(0) factorization on each individual block (PCType=PCILU,
KSPType=KSPPREONLY); the user can set alternative linear solvers via the options -sub ksp_type and
-sub_pc_type. In fact, all of the KSP and PC options can be applied to the subproblems by inserting
the prefix —sub_ at the beginning of the option name. These options database commands set the particular
options for all of the blocks within the global problem. In addition, the routines

ierr = PCBJacobiGetSubSLES(PC pc,int #n_local,int *first_local,SLES **subsles);
ierr = PCBGSGetSubSLES(PC pc,int *n_local,int *first_local,SLES **subsles);
ierr = PCASMGetSubSLES(PC pc,int *n_local,int *first_local,SLES **subsles);

extract the SLES context for each local block. The argument n_local is the number of blocks on the calling
processor, and first_local indicates the global number of the first block on the processor. The blocks are
numbered successively by processors from zero through gb — 1 , where ¢b is the number of global blocks. The
array of SLES contexts for the local blocks is given by subsles. This mechanism enables the user to set com-
pletely different solvers for the various blocks. To set the appropriate data structures, the user must explicitly
call SLESSetUp() before calling PCBJacobiGetSubSLES(), PCBGSGetSubSLES(), or PCASMGetSubSLES(). For
further details, see the example $(PETSCDIR)/src/sles/examples/tutorials/ex7.c.

The block Jacobi, block Gauss-Seidel, and additive Schwarz preconditioners allow the user to set the
number of blocks into which the problem is divided. The options database commands to set this value are
-pc_bjacobi blocks n and -pc_bgs_blocks n, and, within a program, the corresponding routines are

ierr = PCBJacobiSetTotalBlocks(PC pc,int blocks,int *size);
ierr = PCBGSSetTotalBlocks(PC pc,int blocks,int *size);
ierr = PCASMSetTotalSubdomains(PC pc,int n,IS *is);

ierr = PCASMSetType(PC pc,PCASMType type);

The optional argument size is an array indicating the size of each block. Currently, for certain parallel
matrix formats, only a single block per processor is supported. However, the MATMPIAIJ and MATMPIBAIJ
formats support the use of general blocks as long as no blocks are shared among processors. The is argument
contains the index sets that define the subdomains.

PCASMType is one of PC_ASM_BASIC, PC_ASM_INTERPOLATE, PC_ASM_RESTRICT, PC_ASM_NONE and may also
be set with the options database -pc_asm_type [basic,interpolate,restrict,nonel]. The type
PC_ASM_BASIC (or —pc_asm_type basic) corresponds to the standard additive Schwarz method that uses the
full restriction and interpolation operators. The type PC_ASM RESTRICT (or —-pc_asm_type restrict) uses
a full restriction operator, but during the interpolation process ignores the off-processor values. Similarly,
PC_ASM_INTERPOLATE (or -pc_asm_type interpolate)uses a limited restriction process in conjunction with a
full interpolation, while PC_ASM_NONE (or —pc_asm_type none) ignores off-processor valies for both restriction
and interpolation. The ASM types with limited restriction or interpolation were suggested by Xiao-Chuan
Cai. PC_ASM_RESTRICT is the PETSc default, as it saves substantial communication and for many problems
has the added benefit of requiring fewer iterations for convergence than the standard additive Schwarz
method.

The user can also set the number of blocks and sizes on a per-processor basis with the commands

ierr = PCBJacobiSetLocalBlocks(PC pc,int blocks,int *size);
ierr = PCBGSSetLocalBlocks(PC pc,int blocks,int *size);
ierr = PCASMSetTotalSubdomains(PC pc,int N,IS *is);

For the ASM preconditioner one can use the following command to set the overlap to compute in con-
structing the subdomains.
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ierr = PCASMSetOverlap(PC pc,int overlap);

The overlap defaults to 1, so if one desires that no additional overlap be computed, one must set an overlap
of 0. Note that one can define initial index sets is with any overlap; the PCASHSetOverlap() merely allows
PETSc to extend that overlap further, if desired.

4.4.5 Shell Preconditioners

The shell preconditioner simply uses an application-provided routine to implement the preconditioner. To
set this routine, one uses the command

ierr = PCShellSetApply(PC pc,int (*apply)(void *ctx,Vec,Vec),void *ctx);
The final argument ctx is a pointer to the application-provided data structure needed by the preconditioner

routine. The three routine arguments of apply() are this context, the input vector, and the output vector,
respectively.

4.4.6 Multigrid Preconditioners

A large suite of routines is available for using multigrid as a preconditioner. In the PC framework the user
is required to provide the coarse grid solver, smoothers, restriction, and interpolation, as well as the code
to calculate residuals. The PC component allows all of that to be wrapped up into a PETSc compliant
preconditioner. We fully support both matrix-free and matrix-based multigrid solvers.

A multigrid preconditioner is created with the four commands

ierr = SLESCreate(MPI_Comm comm,SLES *sles);

ierr = SLESGetPC(SLES sles,PC *pc);

ierr = PCSetType(PC pc,PCHG);

ierr = MGSetLevels(pc,int levels);

A large number of parameters affect the multigrid behavior. The command
ierr = MGSetType(PC pc,MGType mode);

indicates which form of multigrid to apply [16]. For standard V or W-cycle multigrids, one sets the mode to
be MGMULTIPLICATIVE; for the additive form (which in certain cases reduces to the BPX method, or additive
multilevel Schwarz, or multilevel diagonal scaling), one uses MGADDITIVE as the mode. For a variant of full
multigrid, one can use MGFULL, and for the Kaskade algorithm MGKASKADE. For the multiplicative and full
multigrid options, one can use a W-cycle by calling

ierr = MGSetCycles(PC pc,int cycles);

with a value of MG_W_CYCLE for cycles. The commands above can also be set from the options database.
The option names are -pc_mg method [multiplicative, additive, full, kaskade], and -pcmg cycles
cycles.

The user can control the amount of pre- and postsmoothing by using either the options -pc_mg_smoothup m
and -pc_mg_smoothdown n or the routines

ierr = MGSetNumberSmoothUp(PC pc,int m);
ierr = MGSetNumberSmoothDown(PC pc,int n);

Note that if the command MGSetSmoother() (discussed below) has been employed, the same amounts of
pre- and postsmoothing must be used.

The remainder of the multigrid routines, which determine the solvers and interpolation /restriction oper-
ators that are used, are mandatory. To set the coarse grid solver, one must call

ierr = MGGetCoarseSolve(PC pc,SLES *sles);
and set the appropriate options in sles. Similarly, the smoothers are set by calling

ierr = MGGetSmoother(PC pc,int level,SLES *sles);
and setting the various options in sles. To use a different pre- and postsmoother, one should call the
following routines instead operations to be matrix free (see Section 3.3), he or she should make sure that these
operations are defined. Note that this system is arranged so that if the interpolation is the transpose of the
restriction, the same mat argument can be passed to both MGSetRestriction() and MGSetInterpolation().

On each level except the coarsest, one must also set the routine to compute the residual. The following
command suffices:

57



MGSetResidual(PC pc,int level,int (*residual)(Mat,Vec,Vec,Vec),Mat mat);

The residual() function can be set to be MGDefaultResidual() if one’s operator is stored in a Mat format.
In certain circumstances, where it is much cheaper to calculate the residual directly, rather than through
the usual formula b — Az, the user may wish to provide an alternative.

Finally, the user must provide three work vectors for each level (except on the finest, where only the
residual work vector is required). The work vectors are set with the commands

ierr = MGSetRhs(PC pc,int level,Vec b);
ierr = MGSetX(PC pc,int level,Vec x);
ierr = MGSetR(PC pc,int level,Vec r);

The user is responsible for freeing these vectors once the iteration is complete.
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Chapter 5

SNNES: Nonlinear Solvers

The solution of large-scale nonlinear problems pervades many facets of computational science and demands
robust and flexible solution strategies. The SNES component of PETSc provides a powerful suite of data-
structure-neutral numerical routines for such problems. Built on top of the linear solvers and data structures
discussed in preceding chapters, SNES enables the user to easily customize the nonlinear solvers according
to the application at hand. Also, the SNES interface is identical for the uniprocessor and parallel cases; the
only difference in the parallel version is that each processor typically forms only its local contribution to
various matrices and vectors.
SNES includes methods for solving systems of nonlinear equations of the form

F(x) =0, (5.1)
where F': £ — ™. SNES also contains solvers for unconstrained minimization problems of the form

min{ f(x)}, (5.2)

where f : R" — R. Newton-like methods provide the core of the package, including both line search and
trust region techniques, which are discussed further in Section 5.2. Following the PETSc design philosophy,
the interfaces to the various solvers are all virtually identical. In addition, the SNES software is completely
flexible, so that the user can at runtime change any facet of the solution process.

The general form of the n-dimensional Newton’s method for solving (5.1) is

azk+1:azk—[F/(azk)]_1F(azk), k=0,1,..., (53)

where @ is an initial approximation to the solution and F'(z) is nonsingular. In practice, the Newton
iteration (5.3) is implemented by the following two steps:

1. (Approximately) solve F'(x;)Az), = —F(xy).
2. Update ®p11 = ®p + Axy.

Similarly, the general form of Newton’s method for solving (5.2) is
Tpyl = X} —[sz(wk)]_1Vf(:nk), k=0,1,..., (56)

where @y € R" is an initial approximation to the solution, and V?f(@y) is positive definite. The iteration
(5.6) is usually implemented by

1. (Approximately)solve V2f(xp)Ax, = —V f(zy).
2. Update @py1 = xp + Awyg. (5.8)

5.1 Basic Usage

In the simplest usage of the nonlinear solvers, the user must merely provide a C, C++4, or Fortran routine to
evaluate the nonlinear function of Equation (5.1) or (5.2). The corresponding Jacobian matrix (or gradient
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and Hessian matrix) can be approximated with finite differences. For codes that are typically more efficient
and accurate, the user can provide a routine to compute the Jacobian (or gradient and Hessian); details
regarding these application-provided routines are discussed below. To provide an overview of the use of
the nonlinear solvers, we first introduce a complete and simple example in Figure 13, corresponding to
$(PETSCDIR)/src/snes/examples/tutorials/exl.c. Note that the procedures for solving systems of

nonlinear equations
unique to each class

#ifndef lint
static char vcidl[]
#endif

static char help[]

/*T

and unconstrained minimization problems are quite similar. We present the details
of problems in Sections 5.1.1 and 5.1.2.

= "$Id: exl.c,v 1.5 1997/01/01 03:41:24 bsmith Exp $";

= "Uses Newton’s method to solve a two-variable system.\n\n";

Concepts: SNES"Solving a system of nonlinear equations (basic uniprocessor example);
Routines: SNESCreate(); SNESSetFunction(); SNESSetJacobian(); SNESGetSLES();
Routines: SNESSolve(); SNESSetFromOptions();

Routines: SLESGetPC(); SLESGetKSP(); KSPSetTolerances(); PCSetType();

Processors: 1
T*/

/*

Include "snes.h" so that we can use SNES solvers. Note that this
file automatically includes:

petsc.h - base PETSc routines vec.h - vectors

sys.h - system routines mat.h - matrices

is.h - index sets ksp.h - Krylov subspace methods
viewer.h - viewers pc.h - preconditioners

sles.h - linear solvers

*/
#include "snes.h"
#include <stdio.h>

/*

User-defined routines

*/

int FormJacobian(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
int FormFunction(SNES,Vec,Vec,void*);

int main( int argc, char **argv )

{
SNES snes; /* nonlinear solver context */
SLES sles; /* linear solver context */
PC pc: /* preconditioner context */
KSP ksp; /* Krylov subspace method context */
Vec X, T; /* solution, residual vectors */
Mat J; /* Jacobian matrix */
int ierr, its, size;

Scalar pfive =

PetscInitialize(

.5;

%argc, &argv, (char *)0,help );

MPI_Comm_size(MPI_COMM_WORLD, &size);
if (size !'= 1) SETERRA(1,0,"This is a uniprocessor example only!'");

ierr = SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,&snes); CHKERRA(ierr);
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——————————————————————————————————— */
/*
Create vectors for solution and nonlinear function
*/
ierr = VecCreateSeq(MPI_COMM_SELF,2,&x); CHKERRA(ierr);
ierr = VecDuplicate(x,&r); CHKERRA(ierr);
/*
Create Jacobian matrix data structure
*/
ierr = MatCreate(MPI_COMM_SELF,2,2,&J); CHKERRA(ierr);
/*
Set function evaluation routine and vector.
*/
ierr = SNESSetFunction(snes,r,FormFunction,PETSC_NULL); CHKERRA(ierr);
/*
Set Jacobian matrix data structure and Jacobian evaluation routine
*/
ierr = SNESSetJacobian(snes,J,J,FormJacobian,PETSC_NULL); CHKERRA (ierr);
J*¥ — — — = — — — — - — — - — - - - - - - - - - - - - - - - - - - - - -
Customize nonlinear solver; set runtime options
——————————————————————————————————— */

/*
Set

linear solver defaults for this problem. By extracting the

SLES, KSP, and PC contexts from the SNES context, we can then
directly call any SLES, KSP, and PC routines to set various options.

*/

ierr =
ierr =
ierr =
ierr =
ierr =

/*
Set

SNESGetSLES(snes,&sles); CHKERRA (ierr);

SLESGetKSP(sles,&ksp); CHKERRA(ierr);

SLESGetPC(sles,&pc); CHKERRA(ierr);

PCSetType (pc,PCNONE) ; CHKERRA (ierr);
KSPSetTolerances(ksp,1.e-4,PETSC_DEFAULT,PETSC_DEFAULT,20); CHKERRA(ierr);

SNES/SLES/KSP/PC runtime options, e.g.,
-snes_view —snes_monitor -ksp_type <ksp> -pc_type <pc>

These options will override those specified above as long as
SNESSetFromOptions() is called _after_ any other customization
routines.

*/

ierr =

/*

SNESSetFromOptions (snes); CHKERRA(ierr);

Note: The user should initialize the vector, x, with the initial guess
for the nonlinear solver prior to calling SNESSolve(). In particular,
to employ an initial guess of zero, the user should explicitly set
this vector to zero by calling VecSet().

*/
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ierr = VecSet(&pfive,x); CHKERRA(ierr);
ierr = SNESSolve(snes,x,&its); CHKERRA(ierr);
PetscPrintf (MPI_COMM_SELF,"number of Newton iterations = %d\n\n", its);

Free work space. All PETSc objects should be destroyed when they
are no longer needed.

ierr = VecDestroy(x); CHKERRA(ierr); ierr = VecDestroy(r); CHKERRA(ierr);

ierr = MatDestroy(J); CHKERRA(ierr); ierr = SNESDestroy(snes); CHKERRA(ierr);
PetscFinalize();
return 0;
¥
K e */
/*
FormFunction - Evaluates nonlinear function, F(x).
Input Parameters:
snes - the SNES context
X - input vector
dummy - optional user-defined context (not used here)
Output Parameter:
. f - function vector
*/
int FormFunction(SNES snes,Vec x,Vec f,void *dummy)
{
int ierr;

Scalar *xx, *ff;

/*
Get pointers to vector data.
- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation dependent.
- You MUST call VecRestoreArray() when you no longer need access to
the array.
*/
ierr = VecGetArray(x,&xx); CHKERRQ(ierr);
ierr = VecGetArray(f,&ff); CHKERRQ(ierr);

/*

Compute function
*/
f£f[0] = xx[0]*xx[0] + xx[0]#*xx[1] - 3.0;
ff[1] = xx[0]*xx[1] + xx[1]*xx[1] - 6.0;
/*

Restore vectors
*/

ierr = VecRestoreArray(x,&%xx); CHKERRQ(ierr);
ierr = VecRestoreArray(f,&ff); CHKERRQ(ierr);

return 0;

FormJacobian - Evaluates Jacobian matrix.
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*/

Input Parameters:

snes - the SNES context

X - input vector

dummy - optional user-defined context (not used here)

Output Parameters:

jac - Jacobian matrix

B - optionally different preconditioning matrix
flag - flag indicating matrix structure

int FormJacobian(SNES snes,Vec x,Mat #jac,Mat *B,MatStructure *flag,void *dummy)

{

Scalar *xx, A[4];
int ierr, idx[2] = {0,1};

/*
Get pointer to vector data
*/
ierr = VecGetArray(x,&xx); CHKERRQ(ierr);

/*
Compute Jacobian entries and insert into matrix.
- Since this is such a small problem, we set all entries for
the matrix at once.

*/
A[0] = 2.0*%xx[0] + xx[1]; A[1] = xx[0];
A[2] = xx[1]; A[3] = xx[0] + 2.0%xx[1];

ierr = MatSetValues(*jac,2,idx,2,idx,A,INSERT_VALUES); CHKERRQ(ierr);
*flag = SAME_NONZERO_PATTERN;

/*
Restore vector
*/
ierr = VecRestoreArray(x,&%xx); CHKERRQ(ierr);
/*
Assemble matrix
*/
ierr = MatAssemblyBegin(*jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatAssemblyEnd(*jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
return 0;

Figure 13: Example of Uniprocessor SNES Code

To create a SNES solver, one must first call SNESCreate() and indicate the class of problem being solved,

using one of the following:

ierr SNESCreate(MPI_Comm comm,SNES_NONLINEAR_EQUATIONS,SNES *snes);
ierr = SNESCreate(MPI_Comm comm,SNES_UNCONSTRAINED_MINIMIZATION,SNES *snes);

When solving a system of nonlinear equations, the user must then set routines for evaluating the function
of equation (5.1) and its associated Jacobian matrix. Likewise, when solving an unconstrained minimization
problem, the user must indicate routines for computing the function of Equation (5.2), as well as the
corresponding gradient and Hessian. Such details are discussed in Sections 5.1.1 and 5.1.2.

To choose a nonlinear solution method, the user can either call

ierr = SNESSetType(SHNES snes,SNESType method);
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or use the the option —snes_type <method>, where details regarding the available methods are presented in
Section 5.2. The application code can take complete control of the linear and nonlinear techniques used in

the Newton-like method by calling

ierr = SNESSetFromOptions(snes);
This routine provides an interface to the PETSc options database, so that at runtime the user can select
a particular nonlinear solver, set various parameters and customized routines (e.g., specialized line search
variants), prescribe the convergence tolerance, and set monitoring routines. With this routine the user can
also control all linear solver options in the SLES, KSP, and PC modules, as discussed in Chapter 4.

After having set these routines and options, the user solves the problem by calling

ierr = SNESSolve(SNES snes,Vec x,int *iters);
where iters is the number of nonlinear iterations required for convergence and x indicates the solution

vector. The user should initialize this vector to the initial guess for the nonlinear solver prior to calling
SNESSolve(). In particular, to employ an initial guess of zero, the user should explicitly set this vector to
zero by calling VecSet (). Finally, after solving the nonlinear system (or several systems), the user should

destroy the SNES context with
ierr = SNESDestroy(SNES snes);

5.1.1 Solving Systems of Nonlinear Equations

When solving a system of nonlinear equations, the user must provide a vector, £, for storing the function of
Equation (5.1), as well as a routine that evaluates this function at the vector x. This information should be

set with the command
ierr = SNESSetFunction(SNES snes,Vec f,

int (*FormFunction) (SNES snes,Vec x,Vec f,void *ctx),void *ctx);
The argument ctx is an optional user-defined context, which can store any private, application-specific data

required by the function evaluation routine; PETSC_NULL should be used if such information is not needed.
In C and C++, a user-defined context is merely a structure in which various objects can be stashed; in
Fortran a user context can be an integer array that contains both parameters and pointers to PETSc objects.
$(PETSCDIR)/src/snes/examples/tutorials/ex5.cand $(PETSCDIR)/src/snes/examples/ex5f.F give
examples of user-defined application contexts in C and Fortran, respectively.

The user must also specify a routine to form some approximation of the Jacobian matrix, 4, at the current

iterate, x, as is typically done with
ierr = SNESSetJacobian(SNES snes,Mat A,Mat B,int (*#FormJacobian) (SNES snes,Vec x,

Mat *A,Mat *B,MatStructure *flag,void *ctx),void *ctx);

The arguments of the routine FormJacobian() are the current iterate, x; the Jacobian matrix, A; the precon-
ditioner matrix, B (which is usually the same as 4); a flag indicating information about the preconditioner
matrix structure; and an optional user-defined Jacobian context, ctx, for application-specific data. The
options for flag are identical to those for the flag of SLESSetOperators(), discussed in Section 4.1. Note
that the SNES solvers are all data-structure neutral, so the full range of PETSc matrix formats (including
“matrix-free” methods) can be used. Chapter 3 discusses information regarding available matrix formats
and options, while Section 5.5 focuses on matrix-free methods in SNES. We briefly touch on a few details of
matrix usage that are particularly important for efficient use of the nonlinear solvers.

During successive calls to FormJacobian(), the user can either insert new matrix contexts or reuse
old ones, depending on the application requirements. For many sparse matrix formats, reusing the old
space (and merely changing the matrix elements) is more efficient; however, if the matrix structure com-
pletely changes; then creating an entirely new matrix context may be preferable. Upon subsequent calls
to the FormJacobian() routine, the user may wish to reinitialize the matrix entries to zero by calling
MatZeroEntries(). See Section 3.4 for details on the reuse of the matrix context.

If the preconditioning matrix retains identical nonzero structure during successive nonlinear iterations,
setting the parameter, flag, in the FormJacobian() routine to be SAME NONZERO PATTERN and reusing the
matrix context can save considerable overhead. For example, when one is using a parallel preconditioner such
as incomplete factorization in solving the linearized Newton systems for such problems, matrix colorings and
communication patterns can be determined a single time and then reused repeatedly throughout the solution
process. In addition, if using different matrices for the actual Jacobian and the preconditioner, the user can
hold the preconditioner matrix fixed for multiple iterations by setting £lag to SAME_ PRECONDITIONER. See
the discussion of SLESSetOperators() in Section 4.1 for details.

The directory $(PETSCDIR)/src/snes/examples/tutorials provides a variety of examples.
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Table 5: PETSc Nonlinear Solvers

Method SNES Type Options Name Default Convergence Test
Line search SNES_EQ_LS Is SNESConverged EQ_LS()
Trust region SNES_EQ_TR tr SNESConverged_EQ_TR()
Test Jacobian SNES_EQ_TEST test

Line search SNES_UM_LS umls SNESConverged_UM_LS()
Trust region SNES_.UM_TR umtr SNESConverged UM _TR()

5.1.2 Solving Unconstrained Minimization Problems

As previously discussed, use of SNES for solving systems of nonlinear equations and unconstrained minimiza-
tion problems is quite similar. When solving minimization problems, the user typically provides routines for
evaluating the function, gradient, and Hessian corresponding to Equation (5.2). The routine to evaluate the
scalar minimization function, £ (x), should be set with

ierr = SNESSetMinimizationFunction(SNES snes,
int (*FormMinFunction)(SNES snes,Vec x,double *f,void *ctx),void *ctx);

The gradient vector, g(x), and gradient evaluation routine should be set with

ierr = SNESSetGradient (SNES snes,Vec g,
int (*FormGradient) (SNES snes,Vec x,Vec g,void *ctx),void *ctx);

In these routines, the argument ctx specifies an optional context for application-specific data, as described
in Section 5.1.1.

The user must also set a routine to form some approximation of the Hessian matrix, A, as is typically
done with

ierr = SNESSetHessian(SNES snes,Mat A,Mat B,int (*¥FormHessian)(SNES snes,Vec x,
Mat *A,Mat *B,MatStructure *flag,void *ctx),void *ctx);

The arguments of the routine FormHessian() are the current iterate, x; the Hessian matrix, 4; the precon-
ditioner matrix, B (which is usually the same as 4); a flag indicating information about the preconditioner
structure; and an optional user-defined Hessian context, ctx. Reuse of matrix and preconditioner data dur-
ing successive iterations of the nonlinear solvers is often critical for achieving good performance. This topic
is discussed in detail for the case of solving systems of nonlinear equations in Section 5.1.1; the options are
identical for solving unconstrained minimization problems, and thus are not repeated here.
The directory $(PETSCDIR)/src/snes/examples/tests/umin provides examples of solving unconstrained

minimization problems.

5.2 The Various Nonlinear Solvers

As summarized in Table 5, SNES includes several Newton-like nonlinear solvers based on line search tech-
niques and trust region methods. The methods for solving systems of nonlinear equations and unconstrained
minimization problems employ the prefixes SNES_EQ and SNES_UM, respectively.

Each solver may have associated with i1t a set of options, which can be set with routines and options
database commands provided for this purpose. A complete list can be found by consulting the manual pages
or by running a program with the —help option; we discuss just a few in the sections below.

5.2.1 Line Search Techniques

The method SNES_EQNLS (-snes_type 1s) provides a line search Newton method for solving systems of
nonlinear equations. By default, this technique employs cubic backtracking [3]. An alternative line search
routine can be set with the command
ierr = SNESSetLineSearch(SNES snes,
int (*1s)(SNES,Vec,Vec,Vec,Vec,double,double*,double*));
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Other line search methods provided by PETSc are SNESNoLineSearch() and SNESQuadraticLineSearch(),
which can be set with the option -snes_line search [basic,quadratic,cubic]. The line search routines
involve several parameters, which are set to defaults that are reasonable for many applications. The user can
override the defaults by using the options -snes_line _search_alpha <alpha>, -snes_line_search maxstep
<max>, and -snes_line_search _steptol <tol>.

The method SNES_UM_NLS (-snes_type umls) provides a line search Newton method for solving uncon-
strained minimization problems. The default line search algorithm is taken from Moré and Thuente [13].
Again, the user can set a variety of parameters to control the line search; one should run a SNES program
with the option —help for details. Users may write their own customized line search codes by modeling them
after one of the defaults provided by PETSc.

5.2.2 Trust Region Methods

The most basic trust region method in SNES for solving systems of nonlinear equations, SNES_EQ_NTR
(-snes_type tr), is taken from the MINPACK project [12]. Several parameters can be set to control
the variation of the trust region size during the solution process. In particular, the user can control the
initial trust region radius, computed by

A = Ao||Follz,

by setting Ag via the option —-snes_trust_region. delta0 <delta0>.

The default trust region method for unconstrained minimization, SNES_UM_NTR (-snes_type umtr), is
based on the work of Steihaug [18]. This method uses the preconditioned conjugate gradient method via
the KSP solver KSPQCG to determine the approximate minimizer of the resulting quadratic at each nonlinear
iteration. This formulation requires the use of a symmetric preconditioner, where the currently available
options are Jacobi, incomplete Cholesky, and the null preconditioners, which can be set with the options
-pc_type jacobi, -pc_type icc, and —pc_type none, respectively.

5.3 General Options

This section discusses options and routines that apply to all SNES solvers and problem classes. In particular,
we focus on convergence tests, monitoring routines, and tools for checking derivative computations.

5.3.1 Convergence Tests

Convergence of the nonlinear solvers can be detected in a variety of ways; the user can even specify a
customized test, as discussed below. The default convergence routines for the various nonlinear solvers
within SNES are listed in Table 5; see the corresponding man pages for detailed descriptions. Each of these
convergence tests involves several parameters, which are set by default to values that should be reasonable
for a wide range of problems. The user can customize the parameters to the problem at hand by using some
of the following routines and options.

One method of convergence testing is to declare convergence when the norm of the change in the solution
between successive iterations is less than some tolerance, stol. Convergence can also be determined based
on the norm of the function (or gradient for a minimization problem). Such a test can use either the absolute
size of the norm, atol, or its relative decrease, rtol, from an initial guess. The following routine sets these
parameters, which are used in many of the default SNES convergence tests:

ierr = SNESSetTolerances(SNES snes,double rtol,double atol,double stol,
int its,int fcts);

This routine also sets the maximum numbers of allowable nonlinear iterations, its, and function evaluations,
fcts. The corresponding options database commands for setting these parameters are —~snes_atol <atol>,
-snes_rtol <rtol>, -snes_stol <stol> -snesmax_it <its>, and -snes max funcs <fcts>. A related
routine is SNESGetTolerances(). .

Convergence tests for trust regions methods often use an additional parameter that indicates the minim-
ium allowable trust region radius. The user can set this parameter with the option -snes_trtol <trtol>
or with the routine

ierr = SI\IESSetTrustRegionTolerance(SI\IES snes,double trtol);
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An additional parameter is sometimes used for unconstrained minimization problems, namely, the minimum
function tolerance, ftol, which can be set with the option —snes fmin <ftol> or with the routine

ierr = SNESSetMinimizationFunctionTolerance(SNES snes,double ftol);
Users can set their own customized convergence tests in SNES by using the command

ierr = SNESSetConvergenceTest(SNES snes,int (*test)(SNES snes,double xnorm,
double gnorm,double f,void *cctx),void *cctx);
The final argument of the convergence test routine, cctx, denotes an optional user-defined context for private
data. When solving systems of nonlinear equations, the arguments xnorm, gnorm, and £ are the current
iterate norm, current step norm, and function norm, respectively. Likewise, when solving unconstrained
minimization problems, the arguments xnorm, gnorm, and £ are the current iterate norm, current gradient
norm, and the function value.

5.3.2 Convergence Monitoring

By default the SNES solvers run silently without displaying information about the iterations. The user can
initiate monitoring with the command

ierr = SNESSetMonitor (SNES snes,int (*mon)(SNES,int its,double norm,void#* mctx),
void *mctx);
The routine, mon, indicates a user-defined monitoring routine, where its and mctx respectively denote the
iteration number and an optional user-defined context for private data for the monitor routine. The argument
norm is the function norm (or gradient norm for unconstrained minimization problems).

The routine set by SNESSetMonitor() is called once after every successful step computation within the
nonlinear solver. Hence, the user can employ this routine for any application-specific computations that
should be done after the solution update. The option -snes monitor activates the default SNES monitor
routine, SNESDefaultMonitor (), while ~snes xmonitor draws a simple line graph of the residual norm’s
convergence.

One can cancel all hardwired monitoring routines for SNES at runtime with -snes_cancelmonitors.

The routines

ierr = SNESGetSolution(SNES snes,Vec *x);

ierr = SNESGetFunction(SNES snes,Vec *r);
return the solution vector and function vector from a SNES context. These routines are useful, for instance, if
the convergence test requires some property of the solution or function other than those passed with routine
arguments.

5.3.3 Checking Accuracy of Derivatives

Since hand-coding routines for Jacobian and Hessian matrix evaluation can be error prone, SNES provides
easy-to-use support for checking these matrices against finite difference versions. In the simplest form
of comparison, users can employ the option -snes_type test to compare the matrices at several points.
Although not exhaustive, this test will generally catch obvious problems. One can compare the elements of
the two matrices by using the option —snes_test_display, which causes the two matrices to be printed to
the screen.

Another means for verifying the correctness of a code for Jacobian or Hessian computation is running
the problem with either the finite difference or matrix-free variant, -snes_fd or —-snes.mf (see Section 5.6
or Section 5.5). If a problem converges well with these matrix approximations but not with a user-provided
routine, the problem probably lies with the hand-coded matrix.

5.4 Inexact Newton-like Methods

Since exact solution of the linear Newton systems within (5.3) and (5.6) at each iteration can be costly,
modifications are often introduced that significantly reduce these expenses and yet retain the rapid conver-
gence of Newton’s method. Inexact or truncated Newton techniques approximately solve the linear systems
using an iterative scheme. In comparison with using direct methods for solving the Newton systems, iter-
ative methods have the virtue of requiring little space for matrix storage and potentially saving significant
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computational work. Within the class of inexact Newton methods, of particular interest are Newton-Krylov
methods, where the subsidiary iterative technique for solving the Newton system 1s chosen from the class of
Krylov subspace projection methods. Note that at runtime the user can set any of the linear solver options
discussed in Chapter 4, such as -ksp_type <kspmethod> and -pc_type <pc.method>, to set the Krylov
subspace and preconditioner methods.

Two levels of iterations occur for the inexact techniques, where during each global or outer Newton
iteration a sequence of subsidiary inner iterations of a linear solver is performed. Appropriate control of the
accuracy to which the subsidiary iterative method solves the Newton system at each global iteration is critical,
since these inner iterations determine the asymptotic convergence rate for inexact Newton techniques. While
the Newton systems must be solved well enough to retain fast local convergence of the Newton’s iterates,
use of excessive inner iterations, particularly when ||aj — .|| is large, is neither necessary nor economical.
Thus, the number of required inner iterations typically increases as the Newton process progresses, so that
the truncated iterates approach the true Newton iterates.

A sequence of nonnegative numbers {7} can be used to indicate the variable convergence criterion. In
this case, when solving a system of nonlinear equations, the update step of the Newton process remains
unchanged, and direct solution of the linear system is replaced by iteration on the system until the residuals

rgj) = F'(xp)Azy + F(zp)

satisfy
[
I1F (@)l = ~
Here @q is an initial approximation of the solution, and || - || denotes an arbitrary norm in 27 .

By default a constant relative convergence tolerance is used for solving the subsidiary linear systems
within the Newton-like methods of SNES. When solving a system of nonlinear equations, one can instead
employ the techniques of Eisenstat and Walker [5] to compute 7 at each step of the nonlinear solver by
using the option -snes ksp_ew_conv . In addition, by adding one’s own KSP convergence test (see Section
4.3.2), one can easily create one’s own problem-dependent, inner convergence tests.

5.5 Matrix-Free Methods

SNES fully supports matrix-free methods. The matrices specified in the Jacobian and Hessian evaluation
routine need not be conventional matrices; instead, they can point to the data required to implement a
particular matrix-free method. The matrix-free variant is allowed only when the linear systems are solved
by an iterative method in combination with no preconditioning (PCNONE or ~pc_type none), a user-provided
preconditioner matrix, or a user-provided preconditioner shell (PCSHELL, discussed in Section 4.4); that is,
obviously matrix-free methods cannot be used if a direct solver is to be employed.

The user can create a matrix-free context for use within SNES with the routine

ierr = SNESDefaultMatrixFreeMatCreate(SNES snes,Vec x, Mat *mat);

This routine creates the data structures needed for the matrix-vector products that arise within Krylov
space iterative methods [2] by employing the matrix type MATSHELL, discussed in Section 3.3. The default
SNES matrix-free approximations can also be invoked with the command -snesmf. Or, one can retain
the user-provided Jacobian preconditioner, but replace the user-provided Jacobian matrix with the default
matrix free variant with the option —snes mf _operator.

The user can set two parameters to control the Jacobian-vector product approximation with the command

ierr = SNESSetMatrixFreeParameters(SNES snes,double rerror,double umin);
The parameter rerror should be set to the square root of the relative error in the function evaluations, e,.;;
the default is 1.0e — 8 | which assumes that the functions are evaluated to full double precision accuracy.

The second parameter, umin (Or @m;p ), is a bit more involved; its default is 1.0e — 8 . The Jacobian-vector
product 1s approximated via the formula

u+h*a)— F(u)

F(
/ ~
Fl(u)a ~ A )
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where h is computed via

h=epqxulal|la|? iflua| > tmin * ||al|1

= €pel * Upmin * sign(u’ a) * ||al|1/]|al)? otherwise.

This approach is taken from Brown and Saad [2]. These parameters can also be set from the options database
with

-snes_mf_err <err>

-snes_mf_umin <umin>

Note that setting these parameter appropriately is crucial for achieving fast convergence with matrix-free
Newton-Krylov methods.

We include an example in Figure 14 that explicitly uses a matrix-free approach. Note that by using the
option —snes mf one can easily convert any SNES code to use a matrix-free Newton-Krylov method without a
preconditioner. As shown in this example, SNESSetFromOptions () must be called after SNESSetJacobian()
to enable runtime switching between the user-specified Jacobian and the default SNES matrix-free form.

Table 6 summarizes the various matrix situations that SNES supports. In particular, different linear sys-
tem matrices and preconditioning matrices are allowed, as well as both matrix-free and application-provided
preconditioners. All combinations are possible, as demonstrated by the example, $(PETSCDIR)/src/snes/-
examples/ex5.c, in Figure 14.

Table 6: Jacobian and Hessian Matrix Options

Matrix Use Conventional Matrix Formats Matrix-Free Versions
Jacobian Create matrix with MatCreate(). * | Create matrix with MatCreateShell().
(or Hessian) Assemble matrix with user-defined | Use MatShellSetOperation() to set
Matrix routine. T various matrix actions.

Preconditioning | Create matrix with MatCreate(). ™ | Create PC with PCShellCreate().
Matrix Assemble matrix with user-defined | Use SNESGetSLES() and SLESGetPC()

routine. | to set the preconditioner.

* Use either the generic MatCreate() or a format-specific variant such as MatCreateMPIAIJ().
T Set user-defined matrix formation routine with SNESSetJacobian() or SNESSetHessian().

#ifndef lint
static char vcid[] = "$Id: ex6.c,v 1.45 1997/01/28 20:24:15 balay Exp $";
#tendif

static char help[] = "Uses Newton-like methods to solve u‘‘ + u"{2} = £. Different\n\
matrices are used for the Jacobian and the preconditioner. The code also\n\
demonstrates the use of matrix-free Newton-Krylov methods in conjunction\n\
with a user-provided preconditioner. Input arguments are:\n\
-snes_mf : Use matrix-free Newton methods\n\
-user_precond : Employ a user-defined preconditioner. Used only with\n\
matrix-free methods in this example.\n\n";

/*T

Concepts: SNES"Using different matrices for the Jacobian and preconditioner;
Concepts: SNES"Using matrix-free methods and a user-provided preconditioner;
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T*

/*

*/
#i
#i
/*

*/

Routines: SNESCreate(); SNESSetFunction(); SNESSetJacobian();
Routines: SNESSolve(); SNESSetFromOptions(); SNESGetSLES();
Routines: SLESGetPC(); PCSetType(); PCShellSetApply(); PCSetType();
Processors: 1

/

Include "snes.h" so that we can use SNES solvers. Note that this
file automatically includes:

petsc.h - base PETSc routines vec.h - vectors

sys.h - system routines mat.h - matrices

is.h - index sets ksp.h - Krylov subspace methods
viewer.h - viewers pc.h - preconditioners

sles.h - linear solvers

nclude "snes.h"
nclude <math.h>

User-defined routines

int FormJacobian(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
int FormFunction(SNES,Vec,Vec,void*);
int MatrixFreePreconditioner(void#*,Vec,Vec);

int main( int argc, char **argv )

{

SNES snes; /* SNES context */

SLES sles; /* SLES context */

PC pc: /* PC context */

Vec x, r, F; /* vectors */

Mat J, JPrec; /* Jacobian, preconditioner matrices */
int ierr, its, n =5, i, size, flg;

double h, xp = 0.0;

Scalar v, pfive = .5;

PetscInitialize( &argc, &argv, (char #)0,help );
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size !'= 1) SETERRA(1,0,"This is a uniprocessor example only!'");
ierr = OptionsGetInt (PETSC_NULL,"-n",&n,&flg); CHKERRA(ierr);
h=1.0/(n-1);

ierr = SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,&snes); CHKERRA(ierr);

ierr = VecCreate(MPI_COMM_SELF,n,&x); CHKERRA(ierr);

ierr = VecDuplicate(x,&r); CHKERRA(ierr);

ierr = VecDuplicate(x,&F); CHKERRA(ierr);

ierr = SNESSetFunction(snes,r,FormFunction, (void*)F); CHKERRA(ierr);

J¥ — — — — — — = — = — — - — - - — - - - - - - - - - - - - - - - - - - -

Create matrix data structures; set Jacobian evaluation routine
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ierr = MatCreateSeqAIJ(MPI_COMM_SELF,n,n,3,PETSC_NULL,&J); CHKERRA(ierr);
ierr = MatCreateSeqAIJ(MPI_COMM_SELF,n,n,1,PETSC_NULL,&JPrec); CHKERRA(ierr);
/*

Note that in this case we create separate matrices for the Jacobian
and preconditioner matrix. Both of these are computed in the
routine FormJacobian()

*/

ierr = SNESSetJacobian(snes,J,JPrec,FormJacobian,0); CHKERRA (ierr);

/* Set preconditioner for matrix-free method */
ierr = OptionsHasName(PETSC_NULL,"-snes_mf",&flg); CHKERRA(ierr);
if (flg) {
ierr = SNESGetSLES(snes,&%sles); CHKERRA(ierr);
ierr = SLESGetPC(sles,&%pc); CHKERRA(ierr);
ierr = OptionsHasName(PETSC_NULL,"-user_precond",&flg); CHKERRA(ierr);
if (flg) { /* user-defined precond */
ierr = PCSetType(pc,PCSHELL); CHKERRA(ierr);
ierr = PCShellSetApply(pc,MatrixFreePreconditioner ,PETSC_NULL) ; CHKERRA (ierr);
} else {ierr = PCSetType(pc,PCNONE); CHKERRA(ierr);}

}

ierr = SNESSetFromOptions(snes); CHKERRA(ierr);

Initialize application:
Store right-hand-side of PDE and exact solution

——————————————————————————————————— */
xp = 0.0;
for ( i=0; i<n; i++ ) {
v = 6.0%xp + pow(xp+l.e-12,6.0); /# +1.e-12 is to prevent 076 */
ierr = VecSetValues(F,1,&1,&v,INSERT_VALUES); CHKERRA(ierr);
xp += h;
}
J*¥ — — — = — — — — - — — - — - - - - - - - - - - - - - - - - - - - - -
Evaluate initial guess; then solve nonlinear system
——————————————————————————————————— */
ierr = VecSet(&pfive,x); CHKERRA(ierr);

ierr = SNESSolve(snes,x,&its); CHKERRA(ierr);
PetscPrintf (MPI_COMM_SELF,"number of Newton iterations = %d\n\n", its );

Free work space. All PETSc objects should be destroyed when they
are no longer needed.

——————————————————————————————————— */
ierr = VecDestroy(x); CHKERRA(ierr); ierr = VecDestroy(r); CHKERRA(ierr);
ierr = VecDestroy(F); CHKERRA(ierr); ierr = MatDestroy(J); CHKERRA(ierr);

ierr = MatDestroy(JPrec); CHKERRA(ierr); ierr = SNESDestroy(snes); CHKERRA(ierr);
PetscFinalize();
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return 0;

FormInitialGuess - Forms initial approximation.

Input Parameters:
user - user-defined application context
X - vector

Output Parameter:
X - vector

*/

int FormFunction(SNES snes,Vec x,Vec f,void *dummy)

{

./

Scalar *xx, *ff,*FF,d;
int i, ierr, n;

ierr = VecGetArray(x,&xx); CHKERRQ(ierr);
ierr = VecGetArray(f,&ff); CHKERRQ(ierr);
ierr = VecGetArray((Vec)dumny,&FF); CHKERRQ(ierr);
ierr = VecGetSize(x,&n); CHKERRQ(ierr);
d = (double) (n - 1); d = d*d;
f£f[0] = xx[0];
for ( i=1; i<n-1; i++ ) {
ff[i] = d*(xx[i-1] - 2.0*xx[i] + xx[i+1]) + xx[il*xx[i] - FF[il;
¥
ff[n-1] = xx[n-1] - 1.0;
ierr = VecRestoreArray(x,&%xx); CHKERRQ(ierr);
ierr = VecRestoreArray(f,&ff); CHKERRQ(ierr);
ierr = VecRestoreArray((Vec)dummy,&FF); CHKERRQ(ierr);
return 0;

FormJacobian - This routine demonstrates the use of different
matrices for the Jacobian and preconditioner

Input Parameters:

snes - the SNES context

X - input vector

ptr - optional user-defined context, as set by SNESSetJacobian()

Output Parameters:

A - Jacobian matrix

B - different preconditioning matrix
flag - flag indicating matrix structure

int FormJacobian(SNES snes,Vec x,Mat *jac,Mat *prejac,MatStructure *flag,

void *dummy)

{

Scalar *xx, A[3], d;
int i, n, j[3], ierr;

ierr = VecGetArray(x,&xx); CHKERRQ(ierr);
ierr = VecGetSize(x,&n); CHKERRQ(ierr);
d = (double)(n - 1); 4 = d*d;

/* Form Jacobian. Also form a different preconditioning matrix that
has only the diagonal elements. */
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i=0; A[0] =1.0;
ierr = MatSetValues(*jac,1,%i,1,%i,&A[0] ,INSERT_VALUES); CHKERRQ(ierr);
ierr = MatSetValues(*prejac,1,%i,1,%i,&A[0],INSERT_VALUES); CHKERRQ(ierr);
for ( i=1; i<n-1; i++ ) {
jrol =i - 1; ji1l = 1; j21 = i + 1;
ALO] = d; A[1] = -2.0%d + 2.0#%xx[i]; A[2] = d;
ierr = MatSetValues(*jac,1,%1i,3,j,A,INSERT_VALUES); CHKERRQ(ierr);
ierr = MatSetValues(*prejac,1,%i,1,%i,&A[1],INSERT_VALUES); CHKERRQ(ierr);

¥

i =n-1; A[0] = 1.0;

ierr = MatSetValues(*jac,1,%i,1,%i,&A[0] ,INSERT_VALUES); CHKERRQ(ierr);
ierr = MatSetValues(*prejac,1,%i,1,%i,&A[0],INSERT_VALUES); CHKERRQ(ierr);

ierr = MatAssemblyBegin(*jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatAssemblyBegin(*prejac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatAssemblyEnd(*jac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

ierr = MatAssemblyEnd(*prejac,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

ierr = VecRestoreArray(x,&%xx); CHKERRQ(ierr);
*flag = SAME_NONZERO_PATTERN;

return 0;
}
o */
/*
MatrixFreePreconditioner - This routine demonstrates the use of a
user-provided preconditioner. This code implements just the null
preconditioner, which of course is not recommended for general use.
Input Parameters:
ctx - optional user-defined context, as set by PCShellSetApply()
X - input vector
Output Parameter:
.y - preconditioned vector
*/
int MatrixFreePreconditioner(void #ctx,Vec x,Vec y)
{
int ierr;
ierr = VecCopy(x,y); CHKERRQ(ierr);
return 0;
}

Figure 14: Example of Uniprocessor SNES Code - Both Conventional and Matrix-Free Jacobians

5.6 Finite-Difference Jacobian Approximations

PETSc provides some tools to help approximate the Jacobian matrices efficiently via finite differences. These
tools are intended for use in certain situations where one is unable to compute Jacobian matrices analytically,
and matrix-free methods do not work because of very poor conditioning. The approximation requires several
steps:

o First, one colors the columns of the (not yet built) Jacobian matrix, so that columns of the same color
do not share any common rows.

e Next, one creates a MatFDColoring data structure that will be used later in actually computing the
Jacobian.

o Finally, one tells SNES to use the SNESDefaultComputeJacobianWithColoring() routine to compute
the Jacobians.
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A code fragment that demonstrates this process is given below.
ISColoring iscoloring;
MatFDColoring fdcoloring;
MatStructure str;

/*
This initializes the nonzero structure of the Jacobian. This is artificial
because clearly if we had a routine to compute the Jacobian we wouldn’t
need to use finite differences.

*/

FormJacobian(snes,x,&J,&J,&str,&user);

/*
Color the matrix, i.e. determine groups of columns that share no common
rows. These columns in the Jacobian can all be computed simulataneously.
*/
MatGetColoring(J,COLORING_NATURAL,&iscoloring);

/*
Create the data structure that SNESDefaultComputeJacobianWithColoring() uses
to compute the actual Jacobians via finite differences.

*/

MatFDColoringCreate(J,iscoloring,&fdcoloring);

MatFDColoringSetFromOptions (fdcoloring);

/*

Tell SNES to use the routine SNESDefaultComputelJacobianWithColoring()

to compute Jacobians.
*/
SNESSetJacobian(snes,J,J,SNESDefaultComputeJacobianWithColoring,fdcoloring);
ISColoringDestroy(iscoloring);

Of course, we are cheating a bit. If we do not have an analytic formula for computing the Jacobian,
how do we know what its nonzero structure is so that it may be colored? Determining the structure is
problem dependent, but fortunately, for most grid-based problems (the class of problems for which PETSc
is designed) if one knows the stencil used for the nonlinear problem, one can usually fairly easily obtain an
estimate of the location of nonzeros in the matrix.

One need not necessarily use the routine MatGetColoring() to determine a coloring. For example,
if a grid can be colored directly (without using the associated matrix), that coloring can be provided to
MatFDColoringCreate(). Note that the user must always preset the nonzero structure in the matrix re-
gardless of which coloring routine 1s used.

For sequential matrices PETSc provides three matrix coloring routines from the MINPACK package [12].
These may be accessed with the command line options

-mat_coloring sl, id, or 1f
Alternatively, one can set a coloring type of COLORING_SL, COLORING_ID, or COLORINGLF when calling
MatGetColoring().

As for the matrix-free computation of Jacobians (see Section 5.5), two parameters affect the accuracy of
the finite difference Jacobian approximation. These are set with the command

ierr = MatFDColoringSetParameters(MatFDColoring fdcoloring,double rerror,double umin);
The parameter rerror is the square root of the relative error in the function evaluations, e,.;; the default
is 1.0e — 8 | which assumes that the functions are evaluated to full double-precision accuracy. The second
parameter, umin, is a bit more involved; its default is 1.0e — 8 . Column ¢ of the Jacobian matrix (denoted
by F_: i) is approximated by the formula

F(u+ h*de;) — F(u)

Floa
N3 h )
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where h is computed via

h=c¢erqg*xu; 1 u > Unin

h = €pe * Umgn * sign(u;)  otherwise.

These parameters may be set from the options database with

-mat_fd_coloring_err <err>
-mat_fd_coloring_umin <umin>

Note that these coloring and finite difference Jacobian calculation routines currently work only on se-
quential routines. Extensions may be forthcoming.
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Chapter 6

TS: Scalable ODE Solvers

This chapter introduces an early release of the TS component of PETSc. We encourage users to give us
input on needed functionality and the interface. We expect to refine the component based on such feedback.

The TS component provides a framework for the scalable solution of ODEs arising from the discretization
of time-dependent PDEs and of steady-state problems using pseudo-timestepping.

Time-Dependent Problems: Consider the ODE
up = F(u,t),

where u is a finite-dimensional vector, usually obtained from discretizing a PDE with finite differences, finite
elements, and so forth. For example, discretizing the heat equation

Ut = Ugy
with centered finite differences results in
Uip1 — 2u; + U
(Ui)t = h2 .

The TS component provides code to solve these equations (currently using the forward or backward Euler
method), in a clean and easy manner, where the user need only provide code for the evaluation of F'(u,t)
and (optionally) its associated Jacobian matrix.

Steady-State Problems: In addition, TS provides a general code for performing pseudo timestepping with
a variable timestep at each physical node point. For example, instead of directly attacking the steady-state
problem

F(u)=0,
we can use pseudo-transient continuation by solving
up = F(u).
By using time differencing with the backward Euler method, we obtain

un+1 —un

= F(u?th).
din (™)

More generally we can consider a diagonal matrix Dt"™ that has a pseudo-timestep for each node point to
obtain the series of nonlinear equations

DV (W — ) = F(uth.

For this problem the user must provide F'(u) and the diagonal matrix Dt" (or optionally, if the timestep is
position independent, a scalar timestep); in addition, the Jacobian of F'(u) may be provided.
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6.1 Basic Usage

The user first creates a TS object with the command
ierr = int TSCreate(MPI_Comm comm,TSProblemType problemtype,TS *ts);

The TSProblemType is one of TS_LINEAR or TS_NONLINEAR, to indicate whether F'(u,?) is given by a matrix
A, or A(t) , or a function F'(u,t).

One can set the solution method with the routine

ierr = TSSetType(TS ts,TSType type);
Currently supported types are TS_EULER, TS_BEULER, and TS_PSEUDO or the command line option -ts_type
euler, beuler.

Set the initial time and timestep with the command

ierr = TSSetInitialTimeStep(TS ts,double time,double dt);
One can change the timestep with the command

ierr = TSSetTimeStep(TS ts,double dt);
One can determine the current timestep with the routine

ierr = TSGetTimeStep(TS ts,double* dt);

Here, “current” refers to the timestep being used to attempt to promote the solution form u” to u?*1!.
One sets the total number of timesteps to run or the total time to run (whatever is first) with the
command

ierr = TSSetDuration(TS ts,int maxsteps,double maxtime);
One sets up the timestep context with

ierr = TSSetUp(TS ts);
destroys it with

ierr = TSDestroy(TS ts);
and views it with

ierr = TSView(TS ts,Viewer viewer);

6.1.1 Solving Time-dependent Problems
To set up TS for solving an ODE, one must set the following:

e Solution:

ierr = TSSetSolution(TS ts, Vec initialsolution);

The vector initialsolution should contain the “initial conditions” for the PDE.

e Function:

e For linear functions (solved with implicit timestepping), the user must call

ierr = TSSetRHSMatrix(TS ts,Mat A, Mat B,int (*f)(TS,double,Mat*,Mat*,
MatStructure#*,void*),void *fP);

The matrix B (although usually the same as 4) allows one to provide a different matrix to be used in
the construction of the preconditioner. The function f is used to form the matrices & and B at each
timestep if the matrices are time dependent. If the matrix does not depend on time, the user should
pass in PETSC NULL for £. The variable £P allows users to pass in an application context that is passed
to the £() function whenever it is called, as the final argument. The user must provide the matrices
A and B; if they have the right-hand side only as a linear function, they must construct a MatShell
matrix. Note that this is the same interface as that for SNESSetJacobian().

e For nonlinear problems (or linear problems solved using explicit timestepping methods) the user
passes the function with the routine

ierr = TSSetRHSFunction(TS ts,int (*f)(TS,double,Vec,Vec,void*),void *fP);
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The arguments to the function £() are the timestep context, the current time, the input for the
function, the output for the function, and the (optional) user-provided context variable £P.

e Jacobian: For nonlinear problems the user must also provide the (approximate) Jacobian matrix of
F(u,t) and a function to compute it at each Newton iteration. This is done with the command
ierr = TSSetRHSJacobian(TS ts,Mat A, Mat B,int (*f)(TS,double,Vec,Mat*,Mat*,
MatStructure#*,void*),void *fP);

The arguments for the function £ () are the timestep context, the current time, the location where the
Jacobian is to be computed, the Jacobian matrix, an alternative approximate Jacobian matrix used as
a preconditioner, and the optional user-provided context, passed in as £P. The user must provide the
Jacobian as a matrix; thus, if using a matrix-free approach is used, the user must create a MatShell
matrix. Again, note the similarity to SNESSetJacobian().

6.1.2 Solving Steady-State Problems with Pseudo-Timestepping
For solving steady-state problems with pseudo-timestepping, one proceeds as follows.

e Provide the function F(u) with the routine
ierr = TSSetRHSFunction(TS ts,int (*f)(TS,double,Vec,Vec,void*),void *fP);

The arguments to the function £() are the timestep context, the current time, the input for the
function, the output for the function and the (optional) user-provided context variable £P.

e Provide the (approximate) Jacobian matrix of F(u,t) and a function to compute it at each Newton
iteration. This is done with the command
ierr = TSSetRHSJacobian(TS ts,Mat A, Mat B,int (*f)(TS,double,Vec,Mat*,Mat*,
MatStructure#*,void*),void *fP);

The arguments for the function £ () are the timestep context, the current time, the location where the
Jacobian is to be computed, the Jacobian matrix, an alternative approximate Jacobian matrix used as
a preconditioner, and the optional user-provided context, passed in as £P. The user must provide the
Jacobian as a matrix; thus, if one is using a matrix-free approach, one must create a MatShell matrix.

In addition, the user must provide a routine that computes the pseudo-timestep. This is slightly different
depending on whether one is using a constant timestep over the entire grid or one that varies with location.

e For location-independent pseudo-timestepping, one uses the routine
ierr = TSPseudoSetTimeStep(TS ts,int(*dt) (TS,double*,void*),void* dtctx);

The function dt is a user-provided function that computes the next pseudo-timestep. As a default one
can use TSPseudoDefaultTimeStep(TS,double*,void*) for dt. This routine updates the pseudo-
timestep with one of two strategies: the default

F n—1
dt"™ = di_increment * dt" 1 * M
[ (u™)]|
or the alternative o
r
dt™ = dt_increment * dt° % M,
[ (u™)]|

which can be set with the call
ierr = TSPseudoIncrementDtFromInitialDt(TS ts);

or the option -ts_pseudo_increment dt from_initial dt. The value dt_increment i1s by default 1.1,
but can be reset with the call

ierr = TSPseudoSetTimeStepIncrement (TS ts,double inc);

or the option —ts_pseudo_increment <inc>.

e For location-dependent pseudo-timestepping, the interface function has not yet been created.
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Chapter 7

Advanced Features of Matrices and
Solvers

This chapter introduces additional features of the PETSc matrices and solvers. Since most PETSc users
should not need to use these features, we recommend skipping this chapter during an initial reading.

7.1 Matrix Factorization

Normally, PETSc users will access the matrix solvers through the SLES interface, as discussed in Chapter
4, but the underlying factorization and triangular solve routines are also directly accessible to the user.

The LU and Cholesky matrix factorizations are split into two or three stages depending on the user’s
needs. The first stage is to calculate an ordering for the matrix. The ordering generally i1s done to reduce
fill in a sparse factorization; it does not make much sense for a dense matrix.

ierr = MatGetReordering(Mat matrix,MatReordering type,IS* rowperm,IS* colperm);

The currently available alternatives for the ordering type are
e ORDER_NATURAL - Natural
e ORDER.ND - Nested Dissection
e ORDER_1WD - One-Way Dissection
e ORDER_RCHM - Reverse Cuthill-McKee

e ORDER_QMD - Quotient Minimum Degree

These orderings can also be set through the options database by specifying one of the following: -mat_order
natural, -mat_order nd, -mat_order 1lwd, -mat_order rcm, -mat_order gmd. Certain matrix formats
may support only a subset of these; more options may be added. Check the man pages for up-to-date
information. All of these orderings are symmetric at the moment; ordering routines that are not symmetric
may be added. Currently we support reorderings only for sequential matrices.

Users can add their own reordering routines by providing a function with the calling sequence

int reorder(Mat A,MatReordering type,IS* rowperm,IS* colperm);

Here A is the matrix for which we wish to generate a new ordering, type may be ignored, and rowperm and
colperm are the row and column permutations generated by the reordering routine. The user registers the
reordering routine with the command

ierr = MatReorderingRegister(MatReordering inname,MatReordering *name,char #*sname,
int (*reorder)(Mat,MatReordering,IS*,IS*)));
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The input argument *sname is a string of the user’s choice; iname is either an ordering defined in mat.h
or ORDER_NEW | to indicate one is introducing a new ordering; and the output argument *name is the
registration number returned to the user. See the code in src/mat/impls/order/sorder.c and other files
in that directory for examples on how the reordering routines may be written.

Once the reordering routine has been registered, it can be selected for use at runtime with the command
line option -mat_order sname. If reordering directly, the user should provide the name as the second input
argument of MatGetReordering().

The following routines perform complete, in-place, symbolic, and numerical factorizations for symmetric
and nonsymmetric matrices, respectively:

ierr = MatCholeskyFactor(Mat matrix,IS permutation,double pf);

ierr = MatLUFactor(Mat matrix,IS rowpermutation,IS columnpermutation,double pf);

The argument pf > 1 is the predicted fill expected in the factored matrix, as a ratio of the original fill. For
example, pf=2.0 would indicate that one expects the factored matrix to have twice as many nonzeros as the
original.

For sparse matrices it is very unlikely that the factorization is actually done in-place. More likely, new
space 1s allocated for the factored matrix and the old space deallocated, but to the user it appears in-place
because the factored matrix replaces the unfactored matrix.

The two factorization stages can also be performed separately, by using the out-of-place mode:

ierr = MatCholeskyFactorSymbolic(Mat matrix,IS perm, double pf,Mat *result);

ierr = MatLUFactorSymbolic(Mat matrix,IS rowperm,IS colperm,double pf,Mat *result);

ierr = MatCholeskyFactorNumeric(Mat matrix,Mat *result);

ierr = MatLUFactorNumeric(Mat matrix, Mat *result);

In this case, the contents of the matrix result i1s undefined between the symbolic and numeric factorization
stages. It is possible to reuse the symbolic factorization. For the second and succeeding factorizations, one
simply calls the numerical factorization with a new input matrix and the same factored result matrix. It is
essential that the new input matrix have exactly the same nonzero structure as the original factored matrix.
(The numerical factorization merely overwrites the numerical values in the factored matrix and does not dis-
turb the symbolic portion, thus enabling reuse of the symbolic phase.) In general, calling XXXFactorSymbolic
with a dense matrix will do nothing except allocate the new matrix; the XXXFactorNumeric routines will do
all of the work.

Why provide the plain XXXfactor routines when one could simply call the two-stage routines? The
answer is that if one desires in-place factorization of a sparse matrix, the intermediate stage between the
symbolic and numeric phases cannot be stored in a result matrix, and it does not make sense to store the
intermediate values inside the original matrix that is being transformed. We originally made the combined
factor routines do either in-place or out-of-place factorization, but then decided that this approach was not
needed and could easily lead to confusion.

We do not currently support sparse matrix factorization with pivoting for numerical stability. This is
because trying to both reduce fill and do pivoting can become quite complicated. Instead, we provide a
poor stepchild substitute. After one has obtained a reordering, with MatGetRordering(Mat A,MatOrdering
type,IS *row,IS *col) one may call

ierr = MatReorderForl\IonzeroDiagonal(Mat 4A,double to0l,IS row, IS col);
which will try to reorder the columns to ensure that no values along the diagonal are smaller than tol in
a absolute value. If small values are detected and corrected for, a nonsymmetric permutation of the rows
and columns will result. This is not guaranteed to work, but may help if one was simply unlucky in the
original ordering. When using the SLES solver interface the options -pc_ilu nonzeros_along diagonal
and -pc_ilu nonzeros_along diagonal may be used.

Once a matrix has been factored, it is natural to solve linear systems. The following four routines enable
this process:

ierr = MatSolve(Mat A,Vec x, Vec y);

ierr = MatSolveTrans(Mat A, Vec x, Vec y);

ierr = MatSolveAdd(Mat A,Vec x, Vec y, Vec w);

ierr = MatSolveTransAdd(Mat A, Vec x, Vec y, Vec w);

The matrix A of these routines must have been obtained from a factorization routine; otherwise, an error
will be generated. In general, the user should use the SLES solvers introduced in the next chapter rather
than using these factorization and solve routines directly.
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7.2 Unimportant Details of KSP

Again, virtually all users should use KSP through the SLES interface and, thus, will not need to know the
details that follow.

It is possible to generate a Krylov subspace context with the command

ierr = KSPCreate(MPI_Comm comm,KSP *kps);

Before using the Krylov context, one must set the matrix-vector multiplication routine and the preconditioner
with the commands

ierr = PCSetOperators(PC pc,Mat mat,Mat pmat,MatStructure flag);

ierr = KSPSetPC(KSP ksp,PC pc);

In addition, the KSP solver must be initialized with
ierr = KSPSetUp(KSP ksp);

Solving a linear system is done with the command
ierr = KSPSolve(KSP ksp,int *its);

Finally, the KSP context should be destroyed with

ierr = KSPDestroy(KSP ksp);

It may seem strange to put the matrix in the preconditioner rather than directly in the KSP; this decision
was the result of much agonizing. The reason is that for SSOR with Eisenstat’s trick, and certain other
preconditioners, the preconditioner has to change the matrix-vector multiply. This procedure could not be
done cleanly if the matrix were stashed in the KSP context that PC cannot access.

Any preconditioner can supply not only the preconditioner, but also a routine that essentially performs
a complete Richardson step. The reason for this 1s mainly SOR. To use SOR in the Richardson framework,
that is,

Tt =y —|—B(f _Aun)’
1s much more expensive than just updating the values. With this addition it is reasonable to state that all
our iterative methods are obtained by combining a preconditioner from the PC component with a Krylov
method from the KSP component. This strategy makes things much simpler conceptually, so (we hope) clean
code will result. Note: We had this idea already implicitly in older versions of SLES, but, for instance, just
doing Gauss-Seidel with Richardson in old SLES was much more expensive than it had to be. With PETSc
2.0 this should not be a problem.

7.3 Unimportant Details of PC

Most users will obtain their preconditioner contexts from the SLES context with the command SLESGetPC().
It is possible to create, manipulate, and destroy PC contexts directly, although this capability should rarely
be needed. To create a PC context, one uses the command

ierr = PCCreate(MPI_Comm comm,PC *pc);
The routine
ierr = PCSetType(PC pc,PCType method);
sets the preconditioner method to be used. The two routines
ierr = PCSetOperators(PC pc,Mat mat,Mat pmat,MatStructure flag);
ierr = PCSetVector(PC pc,Vec vec);
set the matrices and type of vector that are to be used with the preconditioner. The vec argument is needed
by the PC routines to determine the format of the vectors. The routine
ierr = PCGetOperators(PC pc,Mat *mat,Mat *pmat,MatStructure *flag);

returns the values set with PCSetOperators().

The preconditioners in PETSc can be used in several ways. The two most basic routines simply apply
the preconditioner or its transpose and are given, respectively, by

ierr = PCApply(PC pc,Vec x,Vec y);

ierr = PCApplyTrans(PC pc,Vec x,Vec y);
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In particular, for a preconditioner matrix, B, that has been set via PCSetOperators(pc,A,B,flag), the
routine PCApply(pc,x,y) computes y = B~ 'z by solving the linear system By = z with the specified
preconditioner method.

Additional preconditioner routines are

ierr = PCApplyBAorAB(PC pc,int right,Vec x,Vec y,Vec work,int its);
ierr PCApplyBAorABTrans (PC pc,int right,Vec x,Vec y,Vec work,int its);
PCApplyRichardson(PC pc,Vec x,Vec y,Vec work,int its);

ierr
The first two routines apply the action of the matrix followed by the preconditioner or the preconditioner
followed by the matrix depending on whether the integer right is zero or one. The final routine applies
its iterations of Richardson’s method. The last three routines are provided to improve efficiency for certain
Krylov subspace methods.

A PC context that is no longer needed can be destroyed with the command

ierr = PCDestroy(PC pc);
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Chapter 8
Graphics

PETSc graphics components are not intended to compete with high-quality graphics packages. Instead,
they are intended to be easy to use interactively with PETSc programs. We urge users to generate their
publication-quality graphics using a professional graphics package. If a user wants to hook certain packages in
PETSc, he or she should send a message to petsc-maint@mecs.anl.gov, and we will see whether it is reasonable
to try to provide direct interfaces.

8.1 Windows as Viewers

For drawing predefined PETSc objects such as matrices and vectors, one must first create a viewer using the
command
ierr = ViewerDrawOpenX(MPI_Comm comm,char *display,char *title,int x,int y,int w,
int h,Viewer *viewer);
This viewer may be passed to any of the XXXView() routines. To draw into the viewer, one must obtain the
Draw object with the command
ierr = ViewerDrawGetDraw(Viewer viewer,Draw *draw);

Then one can call any of the DrawXXX commands on the draw object. If one obtains the draw object in this
manner, one does not call the DrawOpenX () command discussed below.

Predefined viewers, VIEWER DRAWX _WORLD and VIEWER DRAWX _SELF, may be used at any time. Their initial
use will cause the appropriate window to be created.

If the colormap on one’s machine is incorrect, so colors in contour plots and so on are incorrect, one
can use the option -draw x_private_colormap to have PETSc use a seperate colormap for its windows.
This will correct the color problem, but one will get flashing of colors as one moves the mouse between the
PETSc windows and other windows. The user can also try stopping programs (like Netscape) that change
the default colormap.

8.2 Simple Drawing

One can open a window under the X11 Window System with the command

ierr = DrawOpenX(MPI_Comm comm,char *display,char *title,int x,int y,int w,
int h,Draw *win);

All drawing routines are done relative to the windows coordinate system and viewport. By default the
drawing coordinates are from (0,0) to (1,1), where (0,0) indicates the lower left corner of the window.
The application program can change the window coordinates with the command

ierr = DrawSetCoordinates(Draw win,double x1,double yl,double xr,double yr);

By default, graphics will be drawn in the entire window. To restrict the drawing to a portion of the window,
one may use the command

ierr = DrawSetViewPort(Draw win,double x1,double yl,double xr,double yr);
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These arguments, which indicate the fraction of the window in which the drawing should be done, must
satisfy 0 <xl <xr<land 0 <yl <yr<lI1.

To draw a line, one uses the command

ierr = DrawLine(Draw win,double x1,double yl,double xr,double yr,int cl);

The argument ¢l indicates the color of the line.
To ensure that all graphics actually have been displayed, one should use the command

ierr = DrawFlush(Draw win);

When displaying by using double buffering, which 1s set with the command
ierr = DrawSetDoubleBuffer(Draw win);

all processors must call
ierr = DrawSyncFlush(Draw win);

in order to swap the buffers. From the options database one may use -draw_pause n, which causes the
PETSc application to pause n seconds at each DrawPause(). A time of -1 indicates that the application
should pause until receiving mouse input from the user.

Text can be drawn with either of the two commands

ierr = DrawText(Draw win,double x,double y,int color,char *text);
ierr = DrawTextVertical(Draw win,double x,double y,int color,char *text);

The user can set the text font size or determine it with the commands

ierr = DrawTextSetSize(Draw win,double width,double height);
ierr = DrawTextGetSize(Draw win,double *width,double *height);

8.3 Line Graphs

PETSc includes a set of routines for manipulating simple two-dimensional graphs. These routines, which
begin with DrawAxisDraw(), are usually not used directly by the application programmer. Instead, the
programmer employs the line graph routines to draw simple line graphs. As shown in the program in
Figure 15, line graphs are created with the command

ierr = DrawLGCreate(Draw win,int ncurves,DrawLG *ctx);

The argument ncurves indicates how many curves are to be drawn. Points can be added to each of the
curves with the command

ierr = DrawLGAddPoint(DrawLG ctx,double *x,double *y);

The arguments x and y are arrays containing the next point value for each curve. Several points for each
curve may be added with

ierr = DrawLGAddPoints(DrawLG ctx,int n,double **x,double **y);
The line graph is drawn (or redrawn) with the command
ierr = DrawLGDraw(DrawLG ctx);

A line graph that is no longer needed can be destroyed with the command
ierr = DrawLGDestroy(DrawlLG ctx);

To plot new curves, one can reset a linegraph with the command
ierr = DrawLGReset(DrawlLG ctx);

The line graph automatically determines the range of values to display on the two axes. The user can change
these defaults with the command

ierr = DrawLGSetLimits(DrawLG ctx,double xmin,double xmax,double ymin,double ymax);

It is also possible to change the display of the axes and to label on them. This procedure i1s done by first
obtaining the axes context with the command

ierr = DrawLGGetAxis(DrawLG ctx,DrawlAxis *axis);
One can set the axes’ colors and labels, respectively, by using the commands

ierr = DrawAxisSetColors(DrawAxis axis,int axis_lines,int ticks,int text);
ierr = DrawAxisSetLabels(DrawAxis axis,char *top,char *x,char *y);
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#ifndef lint
static char vcid[] = "$Id: ex3.c,v 1.24 1996/03/19 21:28:29 bsmith Exp $";
#tendif

static char help[] "Plots a simple line graph\n";

#include "draw.h"
#include <math.h>

int main(int argc,char **argv)

{
Draw draw;
DrawlG 1g;
DrawAxis axis;
int n =20, i, ierr, x = 0, y = 0, width = 300, height = 300,flg;
char *xlabel, *ylabel, *toplabel;

double xd, yd;
xlabel = "X-axis Label';toplabel = "Top Label";ylabel = "Y-axis Label";

PetscInitialize(&argc,&%argv, (char*)0,help);
UptionSGetInt(PETSC_NULL,”—width”,&width,&flg);
OptionsGetInt(0,"-height",&height,&flg);
UptionSGetInt(PETSC_NULL,”—n”,&n,&flg);
OptionsHasName (PETSC_NULL,"-nolabels",&flg) ;
if (flg) {

xlabel = (char *)0; toplabel = (char *)0;

¥

ierr = DrawOpenX(MPI_COMM_SELF,0,"Title",x,y,width,height,&draw) ; CHKERRA(ierr);
ierr = DrawLGCreate(draw,1,&lg); CHKERRA(ierr);

ierr = DrawLGGetAxis(lg,%axis); CHKERRA (ierr);

ierr = DrawAxisSetColors(axis,DRAW_BLACK,DRAW_RED,DRAW_BLUE); CHKERRA(ierr);
ierr = DrawAxisSetLabels(axis,toplabel,xlabel,ylabel); CHKERRA(ierr);

for ( i=0; i<n ; i++ ) {

xd = (double)( i - 5 ); yd = xd*xd;

ierr = DrawLGAddPoint(1lg,&xd,&yd); CHKERRA(ierr);
¥
ierr = DrawLGIndicateDataPoints(lg); CHKERRA(ierr);
DrawLGDraw(lg); CHKERRA(ierr);
DrawFlush(draw) ; CHKERRA(ierr); PetscSleep(2);

ierr

ierr
ierr = DrawLGDestroy(lg); CHKERRA(ierr);
ierr = DrawDestroy(draw); CHKERRA(ierr);

PetscFinalize();
return 0;

Figure 15: Example of Drawing Plots
It is possible to turn off all graphics with the option —nox. This will prevent any windows from being

open or any drawing actions to be done. This is useful for timing or for running large jobs when the graphics
overhead is too large.

8.4 Graphical Convergence Monitor

For both the linear and nonlinear solvers default routines allow one to graphically monitor convergence of
the iterative method. These are accessed via the command line with ~ksp xmonitor and -snes xmonitor.
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See also Sections 4.3.3 and 5.3.2.
The two functions used are KSPLGMonitor () and KSPLGMonitorCreate() . These can easily be modified
to serve specialized needs.

8.5 Other Graphical Output Types

PETSc contains some code to generate output in Postscript and VRML (Virtual Reality Modeling Language).
This code 1s currently undergoing revision but is available for the adventurous.
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Chapter 9

PETSc Fortran Users

Most of the functionality of PETSc can be obtained by people who program purely in Fortran. Note, however,
that we recommend the use of C and/or C++ because these languages contain several extremely powerful
concepts that the Fortran 77/90 family does not.

Since Fortran 77 does not provide type checking of routine input/output parameters, we find that many
errors encountered within PETSc Fortran 77 programs result from accidentally using incorrect calling se-
quences. Such mistakes are immediately detected during compilation when using C/C++. Thus, using a
mixture of C/C++ and Fortran often works well for programmers who wish to employ Fortran for the core
numerical routines within their applications. In particular, one can effectively write PETSc driver routines in
C/C++, thereby preserving flexibility within the program, and still use Fortran when desired for underlying
numerical computations.

9.1 Differences between PETSc Interfaces for C and Fortran

Only a few differences exist between the C and Fortran PETSc interfaces, all of which are due to limitations
in Fortran syntax. All Fortran routines have the same names as the corresponding C versions, and PETSc
command line options are fully supported on most machines. The routine arguments follow the usual Fortran
conventions; the user need not worry about passing pointers or values. The calling sequences for the Fortran
version are in most cases identical to the C version, except for the error checking variable discussed in Section
9.1.2 and a few routines listed in Section 9.1.10. Note that use of the PETSc Fortran interface requires first
compiling the interface library, which is discussed in Section 9.1.9.

9.1.1 Include Files
PETSc Fortran users have two choices for including the PETSc header files.

Recommended Approach: In the first approach, the Fortran include files for PETSc are located in the
directory $(PETSCDIR)/include/FINCLUDE and should be used via statements such as the following:

#include "include/FINCLUDE/includefile.h"

Since one must be very careful to include each file no more than once in a Fortran routine, application pro-
grammers must manually include each file needed for the various PETSc components within their program.
This approach differs from the PETSc C/C++ interface, where the user need only include the highest level
file, for example, snes.h, which then automatically includes all of the required lower level files. As shown
in the examples of Section 9.2, in Fortran one must explicitly list each of the include files. If using this
approach, one must employ the Fortran file suffix .F rather than .f. This convention enables use of the
CPP preprocessor, which allows the use of the #include statements that define PETSc objects and variables.
(Familarity with the CPP preprocessor is not needed for writing PETSc Fortran code; one can simply begin
by copying a PETSc Fortran example and its corresponding makefile.)

Alternative Approach: If working with . f files is absolutely essential (perhaps as part of a heritage code),
the conventional Fortran style include statement can be employed. The weakness of this approach is that
either the complete path of the include file must be hardwired with a statement such as
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include ’/home/username/petsc/include/finclude/includefile.h’
or a link must be estabilished in the directory containing the Fortran source file to the file

1n -s /home/username/petsc/include/finclude/includefile.h includefile.h
Some Fortran compilers will accept a —I<directory>, but depending on the Fortran compiler, they may use
the -T list only for the #include style of include. In addition, the user must declare all PETSc objects as
integer rather than by their name. For example, declarations within Fortran .F files have the form

SLES solver

Mat A, B

Vec X, ¥

integer i
while the analogous statements within .f files are

integer solver

integer A, B

integer x, y

integer i

9.1.2 Error Checking

In the Fortran version, each PETSc routine has as its final argument an integer error variable, in contrast
to the C convention of providing the error variable as the routine’s return value. The error code is set to
be nonzero if an error has been detected; otherwise, it is zero. For example, the Fortran and C variants of
SLESSolve() are given, respectively, below, where ierr denotes the error variable:

call SLESSolve(SLES sles,Vec b,Vec x,int its,int ierr)

ierr = SLESSolve(SLES sles,Vec b,Vec x,int *its);

Fortran programmers using the .F file suffix, as discussed in Section 9.1.1, can check these error codes
with CHKERRA (ierr), which terminates all process when an error is encountered. Likewise, one can set error
codes within Fortran programs by using SETERRA (ierr,p,’ ’), which again terminates all processes upon
detection of an error. Note that complete error tracebacks with CHKERRQ() and SETERRQ(), as described in
Section 1.3 for C routines, are not directly supported for Fortran routines; however, Fortran programmers
can easily use the error codes in writing their own tracebacks. For example, one could use code such as the
following:

call SLESSolve(sles,x,y,ierr)

if ( ierr .ne. 0 ) then

print*, ’Error in routine ...’
return

endif
Note that users of the Fortran .f suffix cannot employ the macros SETERRA() and CHKERRA().

9.1.3 Array Arguments

Since Fortran does not allow arrays to be returned in routine arguments, all PETSc routines that return
arrays, such as VecGetArray(), MatGetArray(), ISGetIndices(), and DAGetGlobalIndices() are defined
slightly differently in Fortran than in C. Instead of returning the array itself, these routines accept as input
a user-specified array of dimension one and return an integer index to the actual array used for data storage
within PETSc. The Fortran interface for several routines is as follows:

double precision xx_v(1), aa_v(1)

integer ss_v(1), dd_v(1), dd_i, ss_i, xx_i, aa_i, ierr, nloc

Vec x

Mat

IS

DA

o n =

call VecGetArray(x,xx_v,xx_i,ierr)
call MatGetArray(A,aa_v,aa_i,ierr)
call ISGetIndices(s,ss_v,ss_i,ierr)
call DAGetGlobalIndices(d,nloc,dd_v,dd_i,ierr)
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To access array elements directly, both the user-specified array and the integer index must then be
used together. For example, the following Fortran program fragment illustrates directly setting the values
of a vector array instead of using VecSetValues(). Note the (optional) use of the preprocessor #define
statement to enable array manipulations in the conventional Fortran manner.

#tdefine xx_a(ib) =xx_v(xx_i + (ib))

double precision xx_v(1)
integer xx_i, 1, ierr, n
Vec X
call VecGetArray(x,xx_v,xx_i,ierr)
call VecGetLocalSize(x,n,ierr)
do 10, i=1,n
xx_a(i) = 3*%i + 1
10 continue
call VecRestoreArray(x,xx_v,xx_i,ierr)

Figure 17 contains an example of using VecGetArray() within a Fortran routine.

Note: If using VecGetArray (), MatGetArray(), ISGetIndices(), or DAGetGlobalIndices() from For-
tran, the user must not compile the Fortran code with options to check for “array entries out of bounds”
(e.g., on the IBM RS/6000 this is done with the -C compiler option, so never use the -C option with this).

9.1.4 Calling Fortran Routines from C (and C Routines from Fortran)

Since the use of both Fortran and C routines is sometimes needed in application codes, we provide two
PETSc commands to facilitate passing PETSc objects (such as Mat and SLES) between the two languages.
These routines must be called within any C/C++ routines that pass/receive PETSc objects to/from Fortran
routines to ensure that the objects are properly handled, since Fortran treats PETSc objects simply as
integers.

To pass a PETSc object from a C routine to a Fortran routine, one must first convert the C pointer to
a Fortran integer with PetscCObjectToFortranObject (PetscObject,int *), for example

int fmat;
Mat mat;

ierr = PetscCObjectToFortranObject(mat,&fmat);
fortranroutine(&fmat,...other arguments);

The Fortran routine can then directly use the received object. When calling C from Fortran, the user should
perform the pointer conversion within the C routine using PetscFortranObjectToCObject (int,PetscObject
*) for example,

int cfunction(int *fmat,....)
Mat mat;
ierr = PetscFortranObjectToCObject(*fmat,&mat);

See $ (PETSCDIR)/src/vec/examples/tests/ex24.c for a complete example demonstrating this interface.
Note that the pointer conversion is always done in the C/C++ routines, but not in the Fortran routines.

Different machines have different methods of naming Fortran routines called from C (or C routines called
from Fortran). Most Fortran compilers change all the capital letters in Fortran routines to small. On some
machines, the Fortran compiler appends an underscore to the end of each Fortran routine name; for example,
the Fortran routine Dabsc() would be called from C with dabsc_(). Other machines change all the letters
in Fortran routine names to capitals.

PETSc provides two macros (defined in C/C+4) to help write portable code that mixes C/C++
and Fortran. They are HAVE FORTRAN _UNDERSCORE and HAVE FORTRAN_CAPS , which are defined in the file
$(PETSCDIR)/bmake/$(PETSC_ARCH) /base.site. The macros are used, for example, as follows:

#if defined(HAVE_FORTRAN_CAPS)

#define dabsc_ DABSC

#elif !defined (HAVE_FORTRAN_UNDERSCORE)
#define dabsc_ dabsc
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dabsc_(&n,x,y); /* call the Fortran function */

9.1.5 Passing Null Pointers

In several PETSc C functions, one has the option of passing a 0 (null) argument (for example, the fifth
argument of MatCreateSeqAIJ()). From Fortran, users must pass PETSCNULL to indicate a null argument;
passing 0 from Fortran will crash the code. When passing character strings as routine arguments, Fortran
programmers should be sure to pass PETSC_ NULL_CHARACTER whenever a null character is desired. Note that
the C convention of passing PETSC_NULL (or 0) cannot be used. For example, when no options prefix is
desired in the routine OptionsGetInt (), one must use the following command in Fortran:

call OptionsGetInt(PETSC_NULL_CHARACTER,’—name’,N,flg,ierr)

This Fortran requirement is inconsistent with C, where the user can employ PETSC NULL for all null
arguments. The reason for this difference is that some machines (e.g., the Cray T3D) handle strings in
Fortran in an unusual manner, so that the only way we can provide support for portable code is to require
the use of PETSC_NULL_CHARACTER.

9.1.6 Duplicating Multiple Vectors

The Fortran interface to VecDuplicateVecs() differs slightly from the C/C++ variant because Fortran
does not allow arrays to be returned in routine arguments. To create n vectors of the same format as an
existing vector, the user must declare a vector array, v_new of size n. Then, after VecDuplicateVecs() has
been called, v_new will contain (pointers to) the new PETSc vector objects. When finished with the vectors,
the use should destroy them by calling VecDestroyVectors(). For example, the following code fragment
duplicates v_old to form two new vectors, v.new(1) and v_new(2).

Vec v_old, v_new(2)

integer ierr

Scalar alpha

call VecDuplicateVecs(v_old,2,v_new,ierr)

alpha = 4.3
call VecSet(alpha,v(1),ierr)
alpha = 6.0

call VecSet(alpha,v(2),ierr)
call VecDestroyVecs(v_new,2,ierr)

9.1.7 Matrix and Vector Indices

All matrices and vectors in PETSc use zero-based indexing, regardless of whether C or Fortran is being
used. The interface routines, such as MatSetValues() and VecSetValues(), always use zero indexing. See
Section 3.2 for further details.

9.1.8 Setting Routines

When a routine is set from within a Fortran program by a routine such as KSPSetConvergenceTest (), that
routine 1s assumed to be a Fortran routine. Likewise, when a routine is set from within a C program, that
routine is assumed to be written in C.

9.1.9 Compiling and Linking Fortran Programs

Before any PETSc Fortran programs are compiled, the Fortran interface library must be built from the
PETSc home directory, $(PETSCDIR), with the command

make BOPT=[g,0,0pg]l fortran
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The Fortran interface library for a particular architecture and BOPT value resides in the same directory as the
other PETSc libraries, as given by $(PETSCDIR)/1ib/1ib$(BOPT)/$(PETSC_ARCH)/libpetscfortran.a.

Figure 22 shows a sample makefile that can be used for PETSc programs. In this makefile, one can
compile and run a debugging version of the Fortran program ex3.F with the actions make BOPT=g ex3 and
make runex3, respectively. The compilation command is restated below:

ex3: ex3.0
-$(FLINKER) -0 ex3 ex3.o0 $(PETSC_FORTRAN_LIB) $(PETSC_LIB)
$(RM) ex3.0

Note that the PETSc Fortran interface library, given by $(PETSC_FORTRAN_LIB), must precede the base
PETSc libraries, given by $(PETSC_LIB), on the link line.

9.1.10 Routines with Different Fortran Interfaces

The following Fortran routines differ slightly from their C counterparts; see the man pages and previous
discussion in this chapter for details:

o PetscInitialize(char *filename,int ierr)
e PetscError(int errno,char *message,int ierr)
o VecGetArray(), MatGetArray()
o ISGetIndices(), DAGetGlobalIndices()
e VecDuplicateVecs(), VecDestroyVecs()
The following functions are not supported in Fortran:
e PetscBinaryRead(), PetscBinary Write()
o PetscFClose(), PetscFOpen(), PetscFPrintf(), PetscPrintf()
e PetscPopErrorHandler(), PetscPushErrorHandler()
e PLoglInfo()
o PetscSetDebugger()
o VecGetArrays(), VecRestoreArrays()
o Viewer ASCIIGetPointer(), ViewerBinaryGetDescriptor()

o ViewerStringOpen(), ViewerStringSPrintf()

9.2 Sample Fortran 77 Programs

Sample programs that illustrate the PETSc interface for Fortran are given in Figures 16 - 19, corresponding to
$(PETSCDIR)/src/vec/examples/tests/ex19.F, $ (PETSCDIR)/src/vec/examples/tutorials/ex4f.F,
$(PETSCDIR)/src/draw/examples/tests/ex5.F and $(PETSCDIR)/src/snes/examples/ex1f.F respec-
tively. We also refer Fortran programmers to the C examples listed throughout the manual, since PETSc
usage within the two languages differs only slightly.

C "$Id: ex19.F,v 1.25 1996/08/27 20:24:13 curfman Exp $";

#include "include/FINCLUDE/petsc.h"

#include "include/FINCLUDE/vec.h"

¢

C This example demonstrates basic use of the PETSc Fortran interface
C to vectors.
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integer
Scalar
Double
Vec

n =
one =
two =
three

call Pe
call Op

n, ierr,flg
one, two, three, dot
norm,rdot
X,¥,W

20

1.0

2.0

3.0

tscInitialize (PETSC_NULL_CHARACTER,ierr)

tionsGetInt (PETSC_NULL_CHARACTER,’-n’,n,flg,ierr)

C Create a vector, then duplicate it

Q

100

110

120

130

call Ve
call Ve
call Ve

call Ve
call Ve

call Ve
rdot =

write(6
format (

call Ve
call Ve
write(6
format (

call Ve
call Ve
write(6
format (

call Ve
call Ve
write(6
format (

call Ve
call Ve
call Ve
call Pe
stop
end

"$Id: e

cCreate(MPI_COMM_WORLD,n,x,ierr)
cDuplicate(x,y,ierr)
cDuplicate(x,w,ierr)

cSet(one,x,ierr)
cSet (two,y,ierr)

cDot (x,y,dot,ierr)

PetscReal(dot)

,100) rdot

’Result of inner product ’,f10.4)

cScale(two,x,ierr)
cNorm(x,NORM_2,norm, ierr)
,110) norm

’Result of scaling ’,£10.4)

cCopy (x,w,ierr)
cNorm(w,NORM_2,norm, ierr)
,120) norm

’Result of copy ’,£10.4)

cAXPY(three,x,y,ierr)
cNorm(y,NORM_2,norm,ierr)
,130) norm

’Result of axpy ’,£10.4)

cDestroy(x,ierr)
cDestroy(y,ierr)

cDestroy(w,ierr)
tscFinalize(ierr)

Figure 16: Sample Fortran Program: Using PETSc Vectors

x4f.F,v 1.16 1996/11/27 22:51:13 bsmith Exp $";

Description: Illustrates the use of VecSetValues() to set
multiple values at once; demonstrates VecGetArray().
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C/*T

C  Concepts: Vectors~Assembling vectors; Using vector arrays;

C Routines: VecCreateSeq(); VecDuplicate(); VecSetValues(); VecView();
C  Routines: VecCopy(); VecView(); VecGetArray(); VecRestoreArray();

C Routines: VecAssemblyBegin(); VecAssemblyEnd(); VecDestroy();

C  Processors: 1

CT*/
C _______________________________________________________________________
program ex4f
implicit none
C ____________________________________
¢ Include files
C ____________________________________
C
C The following include statements are required for Fortran programs
C that use PETSc vectors:
C petsc.h - base PETSc routines
C vec.h - vectors

#include "include/FINCLUDE/petsc.h"
#include "include/FINCLUDE/vec.h"

C ________________________________

¢ Macro definitions

C ________________________________

C

C Macros to make clearer the process of setting values in vectors and
C getting values from vectors.

C

C - The element xx_a(ib) is element ib+1 in the vector x

C - Here we add 1 to the base array index to facilitate the use of
¢ conventional Fortran 1-based array indexing.

C

#tdefine xx_a(ib) =xx_v(xx_i + (ib))
#define yy_a(ib) yy_v(yy_i + (ib))

Scalar xwork(6)

Scalar xx_v(1), yy_v(1)

integer i, n, ierr, loc(6), xx_i, yy_i
Vec X, ¥

common XX_vV, yy_V

call PetscInitialize(PETSC_NULL_CHARACTER, ierr)
n==a6

C Create initial vector and duplicate it

call VecCreateSeq(MPI_COMM_SELF,n,x,ierr)
call VecDuplicate(x,y,ierr)

C Fill work arrays with vector entries and locations. Note that
the vector indices are O-based in PETSc (for both Fortran and
C C vectors)

Q
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Q.

Qoo aaaa

C
C

do 10 i=1,n
loc(i) =
xwork (i)

10 continue

i-1
= 10.0%i

Set vector values. Note that we set multiple entries at once.
0f course, usually one would create a work array that is the
natural size for a particular problem (not one that is as long
as the full vector).

call VecSetValues(x,6,loc,xwork, INSERT_VALUES,ierr)
Assemble vector

call VecAssemblyBegin(x,ierr)
call VecAssemblyEnd(x,ierr)

View vector

write(6,20)

20 format(’initial vector:’)
call VecView(x,VIEWER_STDOUT_SELF,ierr)
call VecCopy(x,y,ierr)

Get a pointer to vector data.
- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation dependent.
- You MUST call VecRestoreArray() when you no longer need access to
the array.
- Note that the Fortran interface to VecGetArray() differs from the
C version. See the users manual for details.

call VecGetArray(x,xx_v,xx_i,ierr)
call VecGetArray(y,yy_v,yy_i,ierr)

Modify vector data
do 30 i=1,n
xx_a(i) = 100.0%*i
yy_a(i) = 1000.0%i
30 continue

Restore vectors

call VecRestoreArray(x,xx_v,xx_i,ierr)
call VecRestoreArray(y,yy_v,yy_i,ierr)

View vectors
write(6,40)

40 format(’new vector 1:7)
call VecView(x,VIEWER_STDOUT_SELF,ierr)
write(6,50)

50 format(’new vector 2:’)

call VecView(y,VIEWER_STDOUT_SELF,ierr)

Free work space. All PETSc objects should be destroyed when they
are no longer needed.
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call VecDestroy(x,ierr)
call VecDestroy(y,ierr)
call PetscFinalize(ierr)
end

Figure 17: Sample Fortran Program: Using VecSetValues() and VecGetArray()

C "$Id: ex5.F,v 1.15 1996/09/12 16:27:09 bsmith Exp $";

#include "include/FINCLUDE/petsc.h"

#include "include/FINCLUDE/draw.h"

¢

C This example demonstrates basic use of the Fortran interface for
C Draw routines.
¢

Draw draw

DrawLG 1g

DrawAxis axis

integer n,i, ierr, x, y, width, height,flg
Scalar xd,yd

n = 20

X =0

y =0

width = 300

height = 300

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)

call OptionsGetInt (PETSC_NULL_CHARACTER,’-width’,width,flg,ierr)
call OptionsGetInt (PETSC_NULL_CHARACTER,’-height’ ,height,flg,ierr)
call OptionsGetInt (PETSC_NULL_CHARACTER,’-n’,n,flg,ierr)

call DrawOpenX(MPI_COMM_SELF,PETSC_NULL_CHARACTER,
& PETSC_NULL_CHARACTER,x,y,width,height ,draw,ierr)

call DrawLGCreate(draw,1,lg,ierr)
call DrawLGGetAxis(lg,axis,ierr)
call DrawAxisSetColors(axis,DRAW_BLACK,DRAW_RED,DRAW_BLUE,ierr)
call DrawAxisSetLabels(axis, ’toplabel’, ’xlabel’,’ylabel’,ierr)

do 10, i=0,n-1
xd =1 -5.0
yd = xd*xd
call DrawLGAddPoint (1g,xd,yd,ierr)
10 continue

call DrawLGIndicateDataPoints(lg,ierr)
call DrawLGDraw(lg,ierr)
call DrawFlush(draw,ierr)

call PetscSleep(10)
call DrawLGDestroy(lg,ierr)
call DrawDestroy(draw,ierr)

call PetscFinalize(ierr)
stop
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end

C "$I1d: exl1f.F,v
C

Figure 18: Sample Fortran Program: Using PETSc Draw Routines

1.10 1997/01/01 03:41:24 bsmith Exp $";

C/*T

C Concepts: SNES"Solving a system of nonlinear equations (basic uniprocessor example)

C Routines: SNESCreate(); SNESSetFunction(); SNESSetJacobian();

C Routines: SNESSolve(); SNESSetFromOptions(); SNESGetSLES();

C Routines: SLESGetPC(); SLESGetKSP(); KSPSetTolerances(); PCSetType();

C Processors: 1

CT*/

¢

C Description: Uses the Newton method to solve a two-variable system.

¢

C _______________________________________________________________________
program main
implicit none

C ____________________________________

¢ Include files

C ____________________________________

¢

C The following include statements are generally used in SNES Fortran

C programs:

C petsc.h - base PETSc routines

C vec.h - vectors

¢ mat.h - matrices

C ksp.h - Krylov subspace methods

C pc.h - preconditioners

¢ sles.h - SLES interface

¢ snes.h - SNES interface

C Other include statements may be needed if using additional PETSc

C routines in a Fortran program, e.g.,

¢ viewer.h - viewers

¢ is.h - index sets

¢

#include "include/FINCLUDE/petsc.h"
#include "include/FINCLUDE/vec.h"
#include "include/FINCLUDE/mat.h"
#include "include/FINCLUDE/ksp.h"
#include "include/FINCLUDE/pc.h"
#include "include/FINCLUDE/sles.h"
#include "include/FINCLUDE/snes.h"

C

C ________
C

C ________
C

C Variables:

C snes

C sles

C pc

C ksp

C X, T

- nonlinear solver

- linear solver

- preconditioner context

- Krylov subspace method context
- golution, residual vectors
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C J - Jacobian matrix

¢ its - iterations for convergence
¢

SNES snes

SLES sles

PC pc

KSP ksp

Vec X, T

Mat J

integer ierr, its, size, rank

Scalar pfive

Double  tol
C DNote: Any user-defined Fortran routines (such as FormJacobian)
C MUST be declared as external.

external FormFunction, FormJacobian
C ______________________________________
¢ Macro definitions
C ______________________________________
¢
C Macros to make clearer the process of setting values in vectors and
C getting values from vectors. These vectors are used in the routines
C FormFunction() and FormJacobian().
C - The element 1lx_a(ib) is element ib in the wvector x
¢

f#tdefine 1x_a(ib) 1lx_v(1x_i + (ib))
#define 1f_a(ib) 1f_v(1f_i + (ib))

C
C ____________________________________
¢ Beginning of program
C ____________________________________
call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
call MPI_Comm_size(MPI_COMM_WORLD,size,ierr)
if (size .ne. 1) then
call MPI_Comm_rank (MPI_COMM_WORLD,rank,ierr)
if (rank .eq. 0)
& write(6,*) ’This is a uniprocessor example only!’
SETERRA(1,0,’ )
endif
C ____________________________________
C Create nonlinear solver context
C ____________________________________
call SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,snes,ierr)
C ____________________________________

C Create vectors for solution and nonlinear function

call VecCreateSeq(MPI_COMM_SELF,2,x,ierr)
call VecDuplicate(x,r,ierr)

C Create Jacobian matrix data structure
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Q.

Q.

C
C

call MatCreate(MPI_COMM_SELF,2,2,J,ierr)

Set function evaluation routine and vector
call SNESSetFunction(snes,r,FormFunction,PETSC_NULL,ierr)
Set Jacobian matrix data structure and Jacobian evaluation routine
call SNESSetJacobian(snes,J,J,FormJacobian,PETSC_NULL,ierr)
Customize nonlinear solver; set runtime options
Set linear solver defaults for this problem. By extracting the
SLES, KSP, and PC contexts from the SNES context, we can then
directly call any SLES, KSP, and PC routines to set various options.
call SNESGetSLES(snes,sles,ierr)
call SLESGetKSP(sles,ksp,ierr)
call SLESGetPC(sles,pc,ierr)
call PCSetType(pc,PCNONE,ierr)
tol = 1.e-4
call KSPSetTolerances (ksp,tol,PETSC_DEFAULT_DOUBLE_PRECISION,
& PETSC_DEFAULT_DOUBLE_PRECISION,20,ierr)
Set SNES/SLES/KSP/PC runtime options, e.g.,
-snes_view —snes_monitor -ksp_type <ksp> -pc_type <pc>
These options will override those specified above as long as
SNESSetFromOptions() is called _after_ any other customization
routines.
call SNESSetFromOptions(snes,ierr)
Evaluate initial guess; then solve nonlinear system
Note: The user should initialize the vector, x, with the initial guess
for the nonlinear solver prior to calling SNESSolve(). In particular,
to employ an initial guess of zero, the user should explicitly set
this vector to zero by calling VecSet().
pfive = 0.5
call VecSet(pfive,x,ierr)
call SNESSolve(snes,x,its,ierr)
if (rank .eq. 0) then
write(6,100) its
endif
100 format (’Number of Newton iterations = ’,1i5)
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

call VecDestroy(x,ierr)
call VecDestroy(r,ierr)
call MatDestroy(J,ierr)
call SNESDestroy(snes,ierr)
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Q

Qoo aaaaa

call PetscFinalize(ierr)

stop
end

FormFunction - Evaluates nonlinear function, F(x).

Input Parameters:

snes - the SNES context

X - input vector

dummy - optional user-defined context (not used here)

Output Parameter:
f - function vector

subroutine FormFunction(snes,x,f,dummy)
implicit none

#include "include/FINCLUDE/petsc.h"
#include "include/FINCLUDE/vec.h"
#include "include/FINCLUDE/snes.h"

Qoo aaaa

SNES snes
Vec x, T
integer ierr, dummy (*)

Declarations for use with local arrays

Scalar 1x_v(1), 1f_v(1)
common 1x_v, 1f_v
integer 1x_i, 1f_i

Get pointers to vector data.
- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation dependent.
- You MUST call VecRestoreArray() when you no longer need access to
the array.
- Note that the Fortran interface to VecGetArray() differs from the
C version. See the Fortran chapter of the users manual for details.

call VecGetArray(x,lx_v,lx_i,ierr)
call VecGetArray(f,1f_v,1f_i,ierr)

Compute function

1f_a(1) = 1x_a(1)*1x_a(1)

& + 1x_a(1)*1x_a(2) - 3.0
1f_a(2) = 1x_a(1)*1x_a(2)
& + 1x_a(2)*1x_a(2) - 6.0

Restore vectors

call VecRestoreArray(x,lx_v,1x_i,ierr)
call VecRestoreArray(f,1f_v,1f_i,ierr)

return
end
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FormJacobian - Evaluates Jacobian matrix.

Input Parameters:

snes - the SNES context

X - input vector

dummy - optional user-defined context (not used here)

Output Parameters:

A - Jacobian matrix

B - optionally different preconditioning matrix
flag - flag indicating matrix structure

Qoo aaaaaaa

subroutine FormJacobian(snes,X, jac,B,flag,dummy)
implicit none

#include "include/FINCLUDE/petsc.h"
#include "include/FINCLUDE/vec.h"
#include "include/FINCLUDE/mat.h"
#include "include/FINCLUDE/pc.h"
#include "include/FINCLUDE/snes.h"

SNES snes

Vec X

Mat jac, B

MatStructure flag

Scalar A(d)

integer ierr, idx(2), dummy(#*)

C Declarations for use with local arrays

Scalar 1x_v(1)
integer 1x_i

C Get pointer to vector data

call VecGetArray(x,lx_v,lx_i,ierr)

C Compute Jacobian entries and insert into matrix.
C - Since this is such a small problem, we set all entries for
C the matrix at once.
C - Note that MatSetValues() uses O-based row and column numbers
C in Fortran as well as in C (as set here in the array idx).
idx(1) = 0
idx(2) = 1

A(1) = 2.0%1x_a(l) + 1x_a(2)
A(2) = 1x_a(1)
A(3) = 1x_a(2)
A(4) = 1x_a(1) + 2.0%1x_a(2)
call MatSetValues(jac,2,idx,2,idx,A, INSERT_VALUES,ierr)
flag = SAME_NONZERO_PATTERN
C Restore vector
call VecRestoreArray(x,lx_v,1x_i,ierr)

C Assemble matrix

call MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr)
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call MatAssemblyEnd(jac ,MAT_FINAL_ASSEMBLY,ierr)

return
end

Figure 19: Sample Fortran Program: Using PETSc Nonlinear Solvers
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Part 111

Additional Information
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Chapter 10

Profiling

PETSc includes a consistent, lightweight scheme to allow the profiling of application programs. The PETSc
routines automatically log performance data if certain options are specified at runtime. The user can also log
information about application codes for a complete picture of performance. In addition, as described in Sec-
tion 10.5, PETSc provides a mechanism for printing informative messages about computations. Section 10.1
introduces the various profiling options in PETSc, while the remainder of the chapter focuses on details such
as monitoring application codes and tips for accurate profiling. See Section 15.4 for implementation details.

10.1 Basic Profiling Information

If an application code and the PETSc libraries have been compiled with the -DPETSC_LOG flag (which is
the default for all versions), then various kinds of profiling of code between calls to PetscInitialize()
and PetscFinalize() can be activated at runtime. Note that the flag -DPETSC_LOG can be specified for
an installation of PETSc in the file $(PETSC DIR)/bmake/$(PETSC_ARCH)/base.$(BOPT), as discussed in
Section 13.2. The profiling options include the following:

e —log _summary - Prints an ASCII version of performance data at program’s conclusion. These statistics
are comprehensive and concise and require little overhead; thus, -log_summary is intended as the
primary means of monitoring the performance of PETSc codes.

o -log [logfilel - Generates a log file of basic data for examination with PETScView, a GUI utility
described in Chapter 14 that provides a high-level view of the interrelationships among various code
modules. Since the overhead for this monitoring is minor, it can be used for production runs.

e -log all [logfile] - Generates a log file with extensive data for examination with PETScView.
This option is thus intended to provide an overview of the computations within a program. Since
the detailed event logging can significantly slow program execution, -log_all is not recommended for
production runs.

e —log_info - Prints verbose information about code to stdout. This option provides details about
algorithms, data structures, and so on. Since the overhead of printing such output slows a code, this
option should not be used when evaluating a program’s performance.

o -log trace [logfile] - Traces the beginning and ending of all PETSc events. This option, which can
be used in conjunction with -log_info, is useful to see where a program is hanging, without running
in the debugger.

For the options -log and -log file, the file logfile stores profiling information for later interpretation

with PETScView; if logfile is not given, the file Log.processor rank is used, where processor_rank is 0
for the first processor, etc. As discussed in Section 10.1.4, additional profilng can be done with of MPE.
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10.1.1 Interpreting -log_ summary Output: The Basics

As shown in Figure 7 (in Part I), the option -log_summary activates printing of profile data to standard
output at the conclusion of a program. Profiling data can also be printed at any time within a program by
calling PLogPrintSummary ().

We print performance data for each routine, organized by PETSc components, followed by any user-
defined events (discussed in Section 10.2). For each routine, the output data include the maximum time and
flop rate over all processors. Information about parallel performance is also included, as discussed in the
following section.

For simplicity, the remainder of this discussion focuses on interpreting profile data for the SLES component,
which provides the linear solvers at the heart of the PETSc package. Recall the hierarchical organization of
the PETSc library, as shown in Figure 1. Each SLES solver is composed of a PC (preconditioner) and KSP
(Krylov subspace) component, which are in turn built on top of the Mat (matrix) and Vec (vector) modules.
Thus, operations in the SLES module are composed of lower-level operations in these components. Note
also that the nonlinear solvers component, SNES, is build on top of the SLES module, and the timestepping
component, TS, is in turn built on top of SNES.

We briefly discuss interpretation of the sample output in Figure 7, which was generated by solving a
linear system on one processor using restarted GMRES and ILU preconditioning. The linear solvers in SLES
consist of two basic phases, SLESSetUp() and SLESSolve(), each of which consists of a variety of actions,
depending on the particular solution technique. For the case of using the PCILU preconditioner and KSPGMRES
Krylov subspace method, the breakdown of PETSc routines is listed below. As indicated by the levels of
indentation, the operations in SLESSetUp() include all of the operations within PCSetUp(), which in turn
include MatILUFactor(), and so on.

o SLESSetUp - Set up linear solver
e PCSetUp - Set up preconditioner
e MatILUFactor - Factor preconditioning matrix
e MatILUFactorSymbolic - Symbolic factorization phase
e MatLUFactorNumeric - Numeric factorization phase
e SLESSolve - Solve linear system
e PCApply - Apply preconditioner
e MatSolve - Forward/backward triangular solves
¢ KSPGMRESOrthog - Orthogonalization in GMRES
e VecDot or VecMDot - Inner products
e MatMult - Matrix-vector product
e MatMultAdd - Matrix-vector product + vector addition
e VecScale, Vecllorm, VecAXPY, VecCopy, ...

The summaries printed via -log_summary reflect this routine hierarchy. For example, the performance
summaries for a particular high-level routine such as SLESSolve include all of the operations accumulated
in the lower-level components that make up the routine. Using the GUI utility PETScView (described in
Chapter 14) for a small example problem can help to provide the user with an understanding of the operations
within an application code, thus making this hierarchy more apparent for a particular application.

Admittedly, we do not currently present the output with ~-log_summary so that the hierarchy of PETSc
operations 1s completely clear, primarily because we have not determined a clean and uniform way to do
so throughout the library. Improvements may follow. However, for a particular problem, the user should
generally have an idea of the basic operations that are required for its implementation (e.g., which operations
are performed when using GMRES and ILU, as described above), so that interpreting the -log summary
data should be relatively straightforward.

10.1.2 Interpreting -log_ summary Output: Parallel Performance

We next discuss performance summaries for parallel programs, as shown within Figures 20 and 21, which
present the combined output generated by the -log_summary option. The program that generated this data
is $(PETSCDIR)/src/sles/examples/ex21.c. The code loads a matrix and right-hand-side vector from a
binary file and then solves the resulting linear system; the program then repeats this process for a second
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linear system. This particular case was run on four processors of an IBM SP, using restarted GMRES and
the block Jacobi preconditioner, where each block was solved with ILU.

Figure 20 presents an overall performance summary, including times, floating-point operations, compu-
tational rates, and message-passing activity (such as the number and size of messages sent and collective
operations). Summaries for various user-defined stages of monitoring (as discussed in Section 10.3) are
also given. Information about the various phases of computation then follow (as shown separately here in
Figure 21). Finally, a summary of memory usage and object creation and destruction is presented.

We next focus on the summaries for the various phases of the computation, as given in the table within
Figure 21. The summary for each phase presents the maximum times and flop rates over all processors, as
well as the ratio of maximum to minimum times and flop rates for all processors. A ratio of approximately
1 indicates that computations within a given phase are well balanced among the processors; as the ratio
increases, the balance becomes increasingly poor. Also, the total computational rate (in units of MFlops/sec)
is given for each phase in the final column of the phase summary table.

Total Mflop/sec = 107 % (sum of flops over all processors)/(max time over all processors)

Note: Total computational rates < 1 MFlop are listed as 0 in this column of the phase summary table.
Additional statistics for each phase include the total number of messages sent, the average message length,
and the number of global reductions.

As discussed in the preceding section, the performance summaries for higher-level PETSc routines include
the statistics for the lower levels of which they are made up. For example, the communication within matrix-
vector products MatMult () consists of vector scatter operations, as given by the routines VecScatterBegin()
and VecScatterEnd().

The final data presented are the percentages of the various statistics (time (%T), flops/sec (%F), mes-
sages(%M), average message length (%L), and reductions (%R)) for each event relative to the total computation
and to any user-defined stages (discussed in Section 10.3). These statistics can aid in optimizing perfor-
mance, since they indicate the sections of code that could benefit from various kinds of tuning. Chapter 11
gives suggestions about achieving good performance with PETSc codes.

10.1.3 Using -log and -log_all with PETScView

The PETSc utility $(PETSCDIR)/bin/petscview [logfile] can be used to examine the profile data gen-
erated by -log and -log-all. Chapter 14 provides details regarding this Tk/Tcl tool, which provides a
high-level view of the interrelationships among various code modules. Also, Section 10.4 gives information
on restricting event logging.

10.1.4 Using -log_mpe with Upshot/Nupshot

It is also possible to use the Upshot (or Nupshot) package [9] to visualize PETSc events. This package comes
with the MPE software, which is part of the MPICH [8] implementation of MPI. The option

-log_mpe [logfile]
creates a logfile of events appropriate for viewing with Upshot. The user can either use the default logging
file, mpe.log, or specify an optional name via logfile.

To use this logging option, the user must employ the MPICH implementation of MPI and must compile the
PETSc library with the -DHAVE MPE flag, which is not activated by default. The user can turn on MPE logging

by specifying ~-DHAVE MPE in the PCONF variable within $ (PETSC_DIR) /bmake/$(PETSC_ARCH) /base.siteand
(re)compiling all of PETSc.

By default, not all PETSc events are logged with MPE. For example, since MatSetValues() may be
called thousands of times in a program, by default its calls are not logged with MPE. To activate MPE
logging of a particular event, one should use the command

PLogEventMPEActivate(int event);
To deactivate logging of an event for MPE, one should use

PLogEventMPEDeactivate(int event);
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The event may be either a predefined PETSc event (as listed in the file $§(PETSC_DIR)/include/petsclog.h)
or one obtained with PetscEventRegister() (as described in Section 10.2). These routines may be called
as many times as desired in an application program, so that one could restrict MPE event logging only to
certain code segments.

To see what events are logged by default, you can use the source; see files src/plot/src¢/plogmpe.c and
include/petsclog.h . A simple program and GUI interface to see the events that are predefined and their
definition is being developed.

You can also log the MPI events. To do this, just view the PETSc application as any MPI application,
and follow the instructions on logging MPI calls that are appropriate for your MPI implementation. For the
MPICH implementation, this simply involves adding -11mpi to the library list akead of ~1mpi.

10.2 Profiling Application Codes

PETSc automatically logs object creation, times, and floating-point counts for the library routines. Users can
easily supplement this information by monitoring their application codes as well. The basic steps involved
in logging a user-defined portion of code, called an event, are shown in the code fragment below:

#include '"petsclog.h"
int USER_EVENT;
PLogEventRegister(&USER_EVENT,”User event name'","Color:");
PLogEventBegin(USER_EVENT,0,0,0,0);
/* application code segment to monitor */
PLogFlops(number of flops for this code segment);
PLogEventEnd (USER_EVENT,0,0,0,0);

One must register the event by calling PLogEventRegister(), which assigns a unique integer to identify
the event for profiling purposes:

ierr = PLogEventRegister(int *e,char *string,char *color);
Here string is a user-defined event name, and color is an optional user-defined event color (for use with
Upshot/Nupshot logging); one should see the man page for details. The argument returned in e should then
be passed to the PLogEventBegin() and PLogEventEnd() routines.

Events are logged by using the pair

PLogEventBegin(int event,PetscObject ol,PetscObject 02,PetscObject 03,PetscObject o04);

PLogEventEnd(int event,PetscObject ol,PetscObject 02,PetscObject 03,PetscObject o4);
The four objects are the PETSc objects that are most closely associated with the event. For instance, in
a matrix-vector product they would be the matrix and the two vectors. These objects can be omitted by
specifying 0 for o1 - o4. The code between these two routine calls will be automatically timed and logged
as part of the specified event.

The user can log the number of floating-point operations for this segment of code by calling

PLogFlops(number of flops for this code segment);

between the calls to PLogEventBegin() and PLogEventEnd(). This value will automatically be added to
the global flop counter for the entire program.

10.3 Profiling Multiple Sections of Code

By default, the profiling produces a single set of statistics for all code between the PetscInitialize()
and PetscFinalize() calls within a program. One can independently monitor up to ten stages of code by
switching among the various stages with the comands

PLogStagePush(int stage);
PLogStagePop();

where stage is an integer (0-9); see the man pages for details. The command

PLogStageRegister(int stage,char *name)
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allows one to associate a name with a stage; these names are printed whenever summaries are generated
with ~log_summary or PLogPrintSummary(). The following code fragment uses three profiling stages within
a prograimn.

PetscInitialize(int *argc,char ***args,0,0);

/* [stage O of code here] */

PLogStageRegister(0,"Stage O of Code");

for (i=0; i<ntimes; i++) {
PLogStagePush(1);
PLogStageRegister(1,"Stage 1 of Code");
/* [stage 1 of code here] */
PLogStagePop()
PLogStagePush(2);
PLogStageRegister(1,"Stage 2 of Code");
/* [stage 2 of code here] */
PLogStagePop()

}

PetscFinalize();

Figures 20 and 21 show output generated by -log_summary for a program that employs several profiling
stages. In particular, this program is subdivided into six stages: loading a matrix and right-hand-side
vector from a binary file, setting up the preconditioner, and solving the linear system; this sequence is
then repeated for a second linear system. For simplicity, Figure 21 contains output only for stages 4 and
5 (linear solve of the second system), which represent the part of this computation of most interest to us
in terms of performance monitoring. This code organization (solving a small linear system followed by a
larger system) enables generation of more accurate profiling statistics for the second system by overcoming
the often considerable overhead of paging, as discussed in Section 10.8.

10.4 Restricting Event Logging

By default, all PETSc operations are logged. To enable or disable the PETSc logging of individual events,
one uses the commands

PLogEventActivate(int event);
PLogEventDeactivate(int event);

The event may be either a predefined PETSc event (as listed in the file $§(PETSC_DIR)/include/petsclog.h)
or one obtained with PetscEventRegister() (as described in Section 10.2).

PETSc also provides routines that deactivate (or activate) logging for entire components of the library.
Currently, the components that support such logging (de)activation are Mat (matrices), Vec (vectors), SLES
(linear solvers, including KSP and PC components), and SNES (nonlinear solvers):

PLogEventDeactivateClass(MAT_COOKIE);
PLogEventDeactivateClass(SLES_COOKIE); /* includes PC and KSP */
PLogEventDeactivateClass(VEC_COOKIE);
PLogEventDeactivateClass(SNES_COOKIE);

and

PLogEventActivateClass (MAT_COOKIE);
PLogEventActivateClass(SLES_COOKIE); /* includes PC and KSP */
PLogEventActivateClass (VEC_COOKIE);
PLogEventActivateClass (SNES_COOKIE) ;

Recall that the option ~log_all produces extensive profile data, which can be a challenge for PETScView
to handle because of the memory limitations of Tcl/Tk. Thus, one should generally use -log-all when
running programs with a relatively small number of events or when disabling some of the events that occur
many times in a code (e.g., VecSetValues(), MatSetValues()).

Section 10.1.4 gives information on the restriction of events in MPE logging.
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10.5 Interpreting -log_info Output: Informative Messages

Users can activate the printing of verbose information about algorithms, data structures, and so on to
stdout by using the option -log_info or by calling PLogInfoAllow(PETSC_TRUE). Such logging, which is
used throughout the PETSc libraries, can aid the user in understanding algorithms and tuning program
performance. For example, as discussed in Section 3.1.1, ~log_info activates the printing of information
about memory allocation during matrix assembly.

Application programmers can employ this logging as well, by using the routine

PLogInfo(void#* obj,char *message,...)
where obj is the PETSc object associated most closely with the logging statement, message. For example,
in the line search Newton methods, we use a statement such as

PLogInfo(snes,"Cubically determined step, lambda %g\n",lambda);

One can selectively turn off informative messages about any of the basic PETSc objects (e.g., Mat, SNES)
with the command

PLogInfoDeactivateClass(int object_cookie)
where object_cookie is one of MAT_COOKIE, SNES_COOKIE, and so on. Messages can be reactivated with the
command

PLogInfoActivateClass(int object_cookie)
Such deactivation can be useful when one wishes to view information about higher level PETSc components
(e.g., TS and SNES) without seeing all lower level data as well (e.g., Mat).

10.6 Time

PETSc application programmers can access the wall clock time directly with the command
double time = PetscGetTime();
In addition, as discussed in Section 10.2, PETSc can automatically profile user-defined segments of code.

10.7 Saving Output to a File

All output from PETSc programs (including informative messages, profiling information, and convergence
data) can be saved to a file by using the command line option -log history [filename]. If no file name
is specified, the output is stored in the file $HOME/.petschistory. Note that this option only saves out-
put printed with the PetscPrintf() and PetscFPrintf() commands, not the standard printf() and
fprintf () statements.

10.8 Accurate Profiling: Overcoming the Overhead of Paging

One factor that often plays a significant role in profiling a code is paging by the operating system. Generally,
when running a program, only a few pages required to start it are loaded into memory, rather than the
entire executable. When the execution procedes to code segments that are not in memory, a pagefault
occurs, prompting the required pages to be loaded from the disk (a very slow process). This activity distorts
the results significantly. (The paging effects are noticeable in the log files generated by -log mpe, which is
described in Section 10.1.4.)

To eliminate the effects of paging when profiling the performance of a program, we have found an effective
procedure is to run the exact same code on a small dummy problem before running it on the actual problem
of interest. We thus ensure that all code required by a solver is loaded into memory during solution of the
small problem. When the code procedes to the actual (larger) problem of interest, all required pages have
already been loaded into main memory, so that the performance numbers are not distorted.

When this procedure is used in conjunction with the user-defined stages of profiling described in Sec-
tion 10.3, we can focus easily on the problem of interest. For example, we used this technique in the program
$(PETSCDIR)/src/sles/examples/tutorials/ex10.c to generate the timings within Figures 20 and 21.
In this case, the profiled code of interest (solving the linear system for the larger problem) occurs within
event stages 4 and 5. Section 10.1.2 provides details about interpreting such profiling data.
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mpirun ex21 -fO medium -f1 arco6 -ksp_gmres_unmodifiedgramschmidt -log_summary -mat_mpibaij \
-matload_block_size 3 -pc_type bjacobi -optionsleft

Humber of iterations = 19
Residual norm = 7.7643e-05
Number of iterations = 55
Residual norm = 6.3633e-01

---= PETSc Performance Summary: -- -

ex21 on a rs6000 named p039 with 4 processors, by mcinnes Wed Jul 24 16:30:22 1996

Max Min Avg Total

Time (sec): 3.289e+01 1.0 3.288et+01
Objects: 1.130e+02 1.0 1.130e+02
Flops: 2.195e+08 1.0 2.187e¢+08 8.749e+08
Flops/sec: 6.673e+06 1.0 2.660e+07
MPI Messages: 2.205e+02 1.4 1.928e+02 7.710e+02
MPI Message Lengths: 7.862e+06 2.5 5.098e+06  2.039e+07
MPI Reductions: 1.850e+02 1.0
Summary of Stages: ---- Time ------ = ----- Flops ————--- -— Messages -- —-— Message-lengths -- Reductions --

Avg %Total Avg %Total counts Y%Total avg %Total counts Y%Total
0: Load System 0: 1.191e+00 3.6% 3.980e+06 0.5% 3.800e+01 4.9% 6.102¢+04 0.3% 1.800e+01 9.7%
1 SLESSetup 0: 6.328e-01 2.5% 1.479e+04 0.0% 0.000e+00 0.0% 0.000e+00 0.0% 0.000e+00 0.0%
2 SLESSolve 0: 2.269e-01 0.9% 1.340e+06 0.0% 1.520e+02 19.7% 9.405e+03 0.0% 3.900e+01 21.1Y%
3: Load System 1: 2.680e+01 ¥%87.3% 0.000e+00 0.0% 2.100e+01 2.7% 1.799e+07 88.2% 1.600e+01 8.6%
4 SLESSetup 1: 1.867e¢-01 0.7% 1.088e+08 2.3% 0.000e+00 0.0% 0.000e+00 0.0% 0.000e+00 0.0%
5 SLESSolve 1: 3.831e+00 15.3% 2.217e+08 97.1% 5.600e+02 72.6% 2.333e+06 11.4% 1.120e+02 60.5Y

[Summary of various phases, see part II below]

Memory usage is given in bytes:

Object Type Creations Destructions Memory Descendants’ Mem.
Viewer 5 5 0 0

Index set 10 10 127076 0

Vector 76 76 9152040 o]

Vector Scatter 2 2 106220 0

Matrix 8 8 9611488 5.59773e+06
Krylov Solver 4 4 33960 7.5966e+06
Preconditioner 4 4 16 9.49114e+06
SLES 4 4 0 1.71217e+07

Figure 20: Profiling a PETSc Program: Part I - Overall Summary
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mpirun ex21 -fO medium -f1 arco6 -ksp_gmres_unmodifiedgramschmidt -log_summary -mat_mpibaij \
-matload_block_size 3 -pc_type bjacobi -optionsleft

bt - ---- PETSc Performance Summary: -- - -—=- -
[Overall summary, see part I]

Phase summary info:
Count: number of times phase was executed
Time and Flops/sec: Max - maximum over all processors
Ratio — ratio of maximum to minimum over all processors

Mess: number of messages sent

Avg. len: average message length

Reduct: number of global reductions

Global: entire computation

Stage: optional user-defined stages of a computation. Set stages with PLogStagePush() and PLogStagePop().
%T - percent time in this phase %F - percent flops in this phase
%M - percent messages in this phase %L - percent message lengths in this phase
%R - percent reductions in this phase

Total Mflop/s: 10°6 * (sum of flops over all processors)/(max time over all processors)

Phase Count Time (sec) Flops/sec --- Global --- --- Stage --- Total
Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R YT %F %M %L %R Mflop/s

--— Event Stage 4: SLESSetUp 1

MatGetReordering 1 3.491e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O O O O O 2 0 0 0 O 0
MatILUFctrSymbol 1 6.970e-03 1.2 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O O O O O 3 0 0 0 O 0
MatLUFactorlumer 1 1.829e-01 1.1 3.2et07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 O O O 9099 0 O O 110
SLESSetUp 2 1.989e-01 1.1 2.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 O 0 9999 0 O O 102
PCSetUp 2 1.952e-01 1.1 2.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 O O O 9799 0 O O 104
PCSetUpOnBlocks 1 1.930e-01 1.1 3.0e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 O O O 9699 0 O O 105
--- Event Stage 5: SLESSolve 1

Matlult 56 1.199e+00 1.1 5.3e+07 1.0 1.1e+03 4.2e+03 0.0e+00 5 28 99 23 0 30 28 99 99 O 201
MatSolve 57 1.263e+00 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 5 27 O O O 3328 0 O O 187
Vecllorm 57 1.528e-01 1.3 2.7et07 1.3 0.0e+00 0.0e+00 2.3e+02 1 1 O O 31 3 1 0 051 81
VecScale 57 3.347e-02 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 O 1 O O O 1 1 0 0 O 184
VecCopy 2 1.703e-03 1.1 0.0et00 0.0 0.0e+00 0.0e+00 0.0e+00 O O O O O 0O 0 0 0 O 0
VecSet 3 2.098e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O O O O O 0O 0 0 0 O 0
VecAXPY 3 3.247e¢-03 1.1 5.4e+07 1.1 0.0e+00 0.0e+00 0.0e+00 O O O O O 0O 0 0 0 O 200
VecliDot 55 5.216e-01 1.2 9.8e+07 1.2 0.0e+00 0.0e+00 2.2e+02 2 20 0 0 30 12 20 O O 49 327
VecHAXPY 57 6.997e-01 1.1 6.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 3 21 0 O O 1821 0 O O 261
VecScatterBegin 56 4.534e-02 1.8 0.0et00 0.0 1.1e+03 4.2e+03 0.0e+00 O 0 99 23 O 1 09999 O 0
VecScatterEnd 56 2.095e-01 1.2 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 1 O O O O 5 0 0 0 O 0
SLESSolve 1 3.832e+00 1.0 5.6e+07 1.0 1.1e+03 4.2e+03 4.5e+02 15 97 99 23 61 99 99 99 99 99 222
KSPGHMRESOrthog 55 1.177e+00 1.1 7.9e+07 1.1 0.0e+00 0.0e+00 2.2e+02 4 39 0 0 30 29 40 0O O 49 290
PCSetUpOnBlocks 1 1.180e-05 1.1 0.0et00 0.0 0.0e+00 0.0e+00 0.0e+t00 O O O O O 0O 0 0 0 O 0
PCApply 57 1.267e+00 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 5 27 O O O 3328 0 O O 186

[Conclusion of overall summary, see part I]

Figure 21: Profiling a PETSc Program: Part II - Phase Summaries

112



Chapter 11

Hints for Performance Tuning

This chapter presents some tips on achieving good performance within PETSc 2.0 codes. We urge users to
read these hints before evaluating the performance of PETSc application codes.

11.1 Compiler Options

Code compiled with the BOPT=0 option generally runs two to three times faster than that compiled with
BOPT=g, so we recommend using one of the optimized versions of code (BOPT=0, BOPT=0_c++, or BOPT=0_complex)
when evaluating performance.

The user can specify alternative compiler options instead of the defaults set in the PETSc distribution.
One can set the compiler options for a particular architecture (PETSC_ARCH) and BOPT by editing the file
$(PETSCDIR)/bmake/$ (PETSC_ARCH) /base.$(BOPT). Section 13.1.2 gives details.

11.2 Profiling

Users should not spend time optimizing a code until after having determined where it spends the bulk of its
time on realistically sized problems. As discussed in detail in Chapter 10, the PETSc routines automatically
log performance data if certain runtime options are specified. We briefly highlight usage of these features
below.

e Run the code with the option -log_summary to print a performance summary for various phases of the
code.

e Run the code with the option -log (or -log.all), and use the utility $(PETSCDIR)/bin/petscview
to see where the code is fast and slow and what PETSc objects are being created.

e Compile the code with BOPT=0pg and then run gprof for a good-sized problem. This will provide an
idea of where most of the run time is being spent. Generally, gprof cannot be used when running with
more than one processor because all processors attempt to generate the same profiling log file.

e Run the code with the option -log mpe [logfilename], which creates a logfile of events suitable for
viewing with Upshot or Nupshot (part of MPICH).

11.3 Aggregation

Performing operations on chunks of data rather than a single element at a time can significantly enhance
performance.

o Insert several (many) elements of a matrix or vector at once, rather than looping and inserting a single
value at a time. In order to access vector elements repeatedly, employ VecGetArray() to allow direct
manipulation of the vector elements.

113



e When using MatSetValues(), if the column indices of the values being inserted have been sorted
in monotonically increasing order, call the routine MatSetOption(mat,MAT COLUMNS _SORTED) before
setting the values to reduce the insertion time significantly.

e When possible, use VecMDot () rather than a series of calls to VecDot ().

11.4 Efficient Memory Allocation

11.4.1 Sparse Matrix Assembly

Since dynamic memory allocation for sparse matrices is inherently very expensive, accurate preallocation
of memory is crucial for efficient sparse matrix assembly. One should use the matrix creation routines for
particular data structures, such as MatCreateSeqAIJ() and MatCreateMPIAIJ() for compressed, sparse row
formats, instead of the generic MatCreate() routine. For problems with multiple degrees of freedom per node,
the block, compressed, sparse row formats, created by MatCreateSeqBAIJ() and MatCreateMPIBAIJ(), can
significantly enhance performance. Also, Section 3.1.1 includes extensive details and examples regarding
preallocation.

11.4.2 Sparse Matrix Factorization

When symbolically factoring an AIJ matrix, PETSc has to guess how much fill there will be. Careful use
of the parameter £’ (fill estimate) when calling MatLUFactorSymbolic() or MatILUFactorSymbolic() can
reduce greatly the number of mallocs and copies required, and thus greatly improve the performance of the
factorization. One way to determine a good value for £ is to run a program with the option -log_info. The
symbolic factorization phase will then print information such as

Info:MatILUFactorSymbolic_AIJ:Realloc 12 Fill ratio:given 1 needed 2.16423

This indicates that the user should have used a fill estimate factor of about 2.17 (instead of 1) to prevent
the 12 required mallocs and copies. The command line option

-mat_ilu_£ill 2.17

will cause PETSc to preallocate the correct amount of space for incomplete (ILU) factorization. The corre-
sponding option for direct (LU) factorization is -mat 1u fill <fill_amount>.

11.4.3 PetscMalloc() Calls

Users should employ a reasonable number of PetscMalloc() calls in their codes. Hundreds or thousands
of memory allocations may be appropriate; however, if tens of thousands are being used, then reducing the
number of PetscMalloc() calls may be warranted. For example, reusing space or allocating large chunks
and dividing it into pieces can produce a significant savings in allocation overhead. Section 11.5 gives details.

11.5 Data Structure Reuse

Data structures should be reused whenever possible. For example, if a code often creates new matrices or
vectors, there often may be a way to reuse some of them. Very significant performance improvements can be
achieved by reusing matrix data structures with the same nonzero pattern. If a code creates thousands of
matrix or vector objects, performance will be degraded. For example, when solving a nonlinear problem or
timestepping, reusing the matrices and their nonzero structure for many steps when appropriate can make
the code run significantly faster.

A simple technique for saving work vectors, matrices, and so on is employing a user-defined context.
In C and C++ such a context is merely a structure in which various objects can be stashed; in Fortran a
user context can be an integer array that contains both parameters and pointers to PETSc objects. See
$(PETSCDIR)/snes/examples/tutorials/ex5.c and $(PETSCDIR)/snes/examples/tutorials/ex5f.F
for examples of user-defined application contexts in C and Fortran, respectively.
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11.6 Numerical Experiments

PETSc users should run a variety of tests. For example, there are a large number of options for the linear and
nonlinear equation solvers in PETSc, and different choices can make a very big difference in convergence rates
and execution times. PETSc employs defaults that are generally reasonable for a wide range of problems,
but clearly these defaults cannot be best for all cases. Users should experiment with many combinations to
determine what is best for a given problem and customize the solvers accordingly.

e Use the options -snes_view, -sles_view, and so on (or the routines SLESView(), SNESView(), etc.)
to view the options that have been used for a particular solver.

e Run the code with the option -help for a list of the available runtime commands.
o Use the option -log_info to print details about the solvers’ operation.

e Use the PETSc monitoring discussed in Chapter 10 to evaluate the performance of various numerical
methods.

11.7 Tips for Efficient Use of Linear Solvers

As discussed in Chapter 4, the default linear solvers are

e uniprocessor: GMRES(30) with ILU(0) preconditioning

e multiprocessor: GMRES(30) with block Jacobi preconditioning, where there is 1 block per processor,
and each block is solved with ILU(0)

One should experiment to determine alternatives that may be better for various applications. Recall that
one can specify the KSP methods and preconditioners at runtime via the options

-ksp_type <ksp_name> -pc_type <pc_name>

One can also specify a variety of runtime customizations for the solvers, as discussed throughout the manual.

In particular, note that the default restart parameter for GMRES is 30, which may be too small for some
large-scale problems. One can alter this parameter with the option -ksp_gmres_restart <restart> or by
calling KSPGMRESSetRestart (). Section 4.3 gives information on setting alternative GMRES orthogonaliza-
tion routines, which may provide much better parallel performance.

11.8 Finding Memory Leaks

PETSc provides a number of tools to aid in detection of problems with memory allocation. We briefly
describe these below.

e The PETSc memory allocation (which collects statistics and performs error checking), is employed
by default for codes compiled in a debug mode (BOPT=g, BOPT=g_c++, BOPT=g_complex). PETSc
memory allocation can be activated for other other cases, such as BOPT=0, with the option -trmalloc,
while -notrmalloc forces the use of conventional memory allocation for the BOPT=g, BOPT=g_c++, and
BOPT=g_complex versions. When running timing tests, one should always use -notrmalloc or the
BOPT=0 version of the libraries.

e When the PETSc memory allocation routines are used, the option —-trdump will print a list of un-
freed memory at the conclusion of a program. If all memory has been freed, only a message stating
the maximum allocated space will be printed. However, if some memory remains unfreed, this in-
formation will be printed. Note that the option —trdump merely activates a call to TrDump() during
PetscFinalize(); the user can also call TrDump() elsewhere in a program.
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The utility $(PETSCDIR)/bin/petscview can illustrate graphically what PETSc objects have never
been properly destroyed during a run. First, one should check that the source has been compiled with
the -DPETSC_LOG flag (which is the default for all versions). Then one runs the program with the -log
option, and views the resulting log file with petscview, which uses colors to illustrate different levels
of object activity. When PETSc objects have been destroyed, they change color (gray, by default).
Any objects that have not been properly destroyed (so that their memory remains allocated) should
not turn gray.

11.9 Machine-specific Optimizations

On the IBM SP, using the mpirun option -nopoll may improve the performance of some PETSc
programs.

11.10 System-related Problems

The performance of a code can be affected by a variety of factors, including the cache behavior and other

users
them.

on the machine. Below we briefly describe some common problems and possibilities for overcoming

Problem too large for physical memory size: When timing a program, one should always leave
at least a 10 percent margin between the total memory a process is using and the physical size of the
machine’s memory. One way to estimate the amount of memory used by given process is with the
UNIX ps command. Also, the PETSc option -log_summary prints the amount of memory used by the
basic PETSc objects, thus providing a lower bound on the memory used.

Effects of other users: If other users are running jobs on the same physical processor nodes on which
a program is being profiled, the timing results are essentially meaningless.

Overhead of timing routines on certain machines: On certain machines, even calling the system
clock in order to time routines is slow; this skews all of the flop rates and timing results. The file
$(PETSCDIR)/src/benchmarks/PetscTime. ¢ contains a simple test problem that will approximate
the amount of time required to get the current time in a running program. On good systems it will on
the order of 1.e-6 seconds or less.

Problem too large for good cache performance: Certain machines with low memory bandwidths
(slow memory access) attempt to compensate by having a very large cache; Sun UltraSparcs and DEC
Alphas are examples of such machines. Thus, if a significant portion of an application fits within the
cache, the program will achieve very good performance; if the code is too large, the performance can
degrade markedly. To analyze whether this situation affects a particular code, one can try plotting
the total flop rate as a function of problem size. If the flop rate decreases rapidly at some point, the
problem may likely be too large for the cache size. There is really no solution to this performance
problem, except not purchasing such equipment. For example, IBM RS/6000 machines do not display
this problem.

Inconsistent timings: Inconsistent timings are likely due to other users on the machine, thrashing
(using more virtual memory than available physical memory), or paging in of the initial executable.
Section 10.8 provides information on overcoming paging overhead when profiling a code.
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Chapter 12

Other PETSc Features

12.1 Options

Allowing the user to modify parameters and options easily at runtime is very desirable for many applica-
tions. PETSc 2.0 provides a simple mechanism to enable such runtime customization. Each PETSc process
maintains a database of option names and values (stored as text strings). This database is generated with
the command PETScInitialize(), which is listed below in its C/C++ and Fortran variants, respectively:

ierr = PetscInitialize(int *argc,char ***args,char *file_name,char *help_message);
call PetscInitialize(character file_name,integer ierr)

The arguments arge and args (in the C/C++ version only) are the usual command line arguments, while
the file name is a name of a file that can contain additional options. By default this file is called .petscrcin
the user’s home directory. The user can also specify options via the environmental variable PETSC_OPTIONS.
The options are processed in the following order:

o file
e environmental variable
e command line

Thus, the command line options supersede the environmental variable options, which in turn supersede the
options file.
The file format for specifying options is

-optionname possible_value
—anotheroptionname possible_value

All of the option names must begin with a dash (-) and have no intervening spaces. The option values can
have no intervening spaces in them either. The user can employ any naming convention. For uniformity
throughout PETSc, we employ the format -package_option (for instance, ~ksp_type and -mat_view_info).

Users can specify an alias for any option name (to avoid typing the sometimes lengthy default name) by
adding an alias to the .petscrc file in the format

alias —newname —oldname
For example:
alias -kspt -ksp_type
alias -sd -start_in_debugger

Comments can be placed in the .petscre file by using one of the following symbols in the first column of a
line: #, %, or !.
Any subroutine in a PETSc program can add entries to the database with the command

ierr = OptionsSetValue(char #name,char *value);

though this is rarely done. To locate options in the database, one should use the commands
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ierr = OptionsHasName(char *pre,char *name,int *flg);

ierr = OptionsGetInt(char *pre,char *name,int *value,int *flg);

ierr = OptionsGetDouble(char *pre,char *name,double *value,int *flg);

ierr = OptionsGetString(char *pre,char *name,char *value,int maxlen,int *flg);

ierr = OptionsGetIntArray(char *pre,char *name,int *value,int *nmax,int *flg);

ierr = OptionsGetDoubleArray(char *pre,char *name,double *value, int *nmax,int *flg);

All of these routines set £1g=1 if the corresponding option was found, £1g=0 if it was not found. The
optional argument pre indicates that the true name of the option is the given name (with the dash “”
removed) prepended by the prefix pre. Usually pre should be set to PETSC_NULL (or PETSC_NULL_CHARACTER
for Fortran); its purpose is to allow someone to rename all the options in a package without knowing the
names of the individual options. For example, when using block Jacobi preconditioning, the KSP and PC
methods used on the individual blocks can be controlled via the options —sub_ksp_type and -sub_pc_type.

One useful means of keeping track of user-specified runtime options is use of —optionstable, which
prints to stdout during PetscFinalize() a table of all runtime options that the user has specified. A
related option is —optionsleft, , which prints the options table and indicates any options that have not
been requested upon a call to PetscFinalize(). This feature is useful to check whether an option has been
activated for a particular PETSc object (such as a solver or matrix format) or whether an option name may
have been accidentally misspelled.

Since PETSc has a large number of options that can be easily forgotten, we have included a Tk/Tel
program, $PETSC DIR/bin/petscopts, that provides a GUI interface to set the options. This program sets
the options in the user’s .petscrc file. Chapter 14.3 gives details.

12.2 Viewers: Looking at PETSc Objects

PETSc employs a consistent scheme for examining, printing, and saving objects through commands of the
form

ierr = XXXView(XXX obj,Viewer viewer);
Here obj is any PETSc object of type XXX, where XXX is Mat, Vec, SNES, and so forth. There are several

predefined viewers:

e Passing in a zero for the viewer causes the object to be printed to stdout; this i1s most useful when
viewing an object in a debugger.

e VIEWER_STDOUT_SELF causes the object to be printed to stdout. For parallel objects the parts owned
by individual processors are printed in random order.

e VIEWER_STDOUT WORLD is similar to VIEWER_STDOUT _SELF, except that parallel objects are printed in
the natural order that would occur if only a single processor were in use for the entire problem; this
viewer uses the communicator MPT_COMM_WORLD.

e VIEWER DRAWX_WORLD causes the object to be drawn in a default X window.

e VIEWER DRAWX_SELF causes the object to be drawn in a default X window.

e Passing in a viewer obtained by ViewerDrawOpenX() causes the object to be displayed graphically.

e To save an object to a file in ASCII format, the user creates the viewer object with the command
ViewerFileOpenASCII(MPI Comm comm, char* file, Viewer *viewer). This object is analogousto
VIEWER_STDOUT SELF (for a communicator of MPI_COMM_SELF) and VIEWER_STDOUT_WORLD (for a parallel
communicator).

e To save an object to a file in binary format, the user creates the viewer object with the command

ViewerFileOpenBinary(MPI Comm comm,char* file,ViewerBinaryType type, Viewer *viewer).
Details of binary I/O are discussed below.
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e Vector and matrix objects can be passed to a running Matlab process with a viewer created by
ViewerMatlabOpen(MPI Comm comm, char *machine, int port, Viewer *viewer). On the Mat-
lab side, one must first run v = openport(int port) and then A = receive(v) to obtain the matrix
or vector. Once all objects have been received, the port can be closed from the Matlab end with
closeport(v). On the PETSc side, one should destroy the viewer object with ViewerDestroy (). The
corresponding Matlab mex files are located in $(PETSCDIR)/src/viewer/impls/matlab.

The user can control the format of ASCII printed objects with viewers created by ViewerFileOpenASCII()
by calling
ierr = ViewerSetFormat(Viewer viewer,int format,char *name);

Possible  formats include VIEWER FORMAT _ASCII DEFAULT, VIEWER_FORMAT ASCII MATLAB, and
VIEWER FORMAT _ASCII_IMPL. The implementation-specific format, VIEWER _FORMAT ASCII_IMPL, displays the
object in the most natural way for a particular implementation. For example, when viewing a block diagonal
matrix that has been created with MatCreateSeqBDiag(), VIEWER_FORMAT ASCII_IMPL prints by diagonals,
while VIEWER _FORMAT_ASCII DEFAULT uses the conventional row-oriented format.

The routines

ierr = ViewerPushFormat(Viewer viewer,int format,char *name);
ierr = ViewerPopFormat(Viewer viewer);

allow one to temporarily change the format of a viewer.

As discussed above, one can output PETSc objects in binary format by first opening a binary viewer
with ViewerFileOpenBinary() and then using MatView(), VecView(), and the like. The corresponding
routines for input of a binary object have the form XXXLoad (). In particular, matrix and vector binary input
is handled by the following routines:

ierr = MatLoad(Viewer viewer,MatType outtype,Mat *newmat);
ierr = VecLoad(Viewer viewer,Vec *newvec);

These routines generate parallel matrices and vectors if the viewer’s communicator has more than one
processor. The particular matrix and vector formats are determined from the options database; see the man
pages for details.

One can provide additional information about matrix data for matrices stored on disk by providing an
optional file matrixfilename.info, where matrixfilename is the name of the file containing the matrix.
The format of the optional file is the same as the .petscrc file and can (currently) contain the following:

-matload_block_size <bs>
-matload_bdiag_diags <si1,s2,s3,...>

The block size indicates the size of blocks to use if the matrix is read into a block oriented data structure (for
example, MATSEQBDIAG or MATMPIBAIJ). The diagonal information s1,s2,s3,... indicates which (block)
diagonals in the matrix have nonzero values. Section 15.5.9 gives details.

12.3 Error Handling

Errors are handled through the routine PetscError(). This routine checks a stack of error handlers and
calls the one on the top. If the stack is empty, it selects PetscTraceBackErrorHandler (), which tries to
print a traceback. A new error handler can be put on the stack with

ierr = PetscPushErrorHandler(int (*HandlerFunction)(int line,char *dir,char *file,

char *message,int number,void*),void *HandlerContext)

The arguments to HandlerFunction() are the line number where the error occurred, the file in which the er-
ror was detected, the corresponding directory, the error message, the error integer, and the HandlerContext.
The routine

ierr = PetscPopErrorHandler()
removes the last error handler and discards it.

PETSc provides two additional error handlers besides PetscTraceBackErrorHandler():

PetscAbortErrorHandler()

PetscAttachErrorHandler ()
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PetscAbortErrorHandler() calls abort on encountering an error, while PetscAttachErrorHandler () at-
taches a debugger to the running process if an error is detected. At runtime, these error handlers can
be set with the options —on_error_abort or —on_error_attach debugger [noxterm, dbx, xxgdb, x1db]
[-display DISPLAY].
All PETSc calls can be traced (useful for determining where a program is hanging without running in
the debugger) with the option

-log_trace [filename]
where filename is optional. By default the traces are printed to the screen. This can also be set with the
command PLogTraceBegin(FILE*).

It is also possible to trap signals by using the command

ierr = PetscPushSignalHandler( int (#Handler)(int,void *),void *ctx);

The default handler PetscDefaultSignalHandler () calls PetscError() and then terminates. In general,
a signal in PETSc indicates a catastrophic failure. Any error hander that the user provides should try to
clean up only before exiting. By default all PETSc programs use the default signal handler, although the
user can turn this off at runtime with the option -no_signal handler .

There 1s a separate signal handler for floating-point exceptions. = The option —-fp_trap turns on the
floating-point trap at runtime, and the routine

ierr = PetscSetFPTrap(int flag);
can be used in-line. A flag of PETSC_FP_TRAP _ON indicates that floating-point exceptions should be trapped,
while a value of PETSC_FP_TRAP OFF (the default) indicates that they should be ignored. Note that on certain
machines, in particular the IBM RS/6000, trapping is very expensive.

A small set of macros is used to make the error handling lightweight. These macros are used throughout
the PETSc libraries and can be employed by the application programmer as well. When an error is first
detected, one should set it by calling

SETERRQ(int flag,int pflag,char *message);

The user should check the return codes for all PETSc routines (and possibly user-defined routines as well)
with

ierr = PetscRoutine(...); CHKERRQ(int ierr);

Likewise, all memory allocations should be checked with

ptr = (double *) PetscMalloc(n*sizeof(double)); CHKPTRQ(void *ptr);

If this procedure is followed throughout all of the user’s libraries and codes, any error will by default generate
a clean traceback of the location of the error. In any main programs, however, the variants SETERRA(),
CHKERRA (), and CHKPTRA() should be used instead to cause all processes of program to abort when an error
has been detected. Use of the abort variant of the error checking commands is critical in the main program,
since they ensure that MPI_Abort() is called before the process ends; otherwise, other MPI processes that
did not generate errors may remain unterminated.

Note that the macro __FUNC__is used to keep track of routine names during error tracebacks. Users need
not worry about this macro in their application codes; however, users can take advantage of this feature
if desired by setting this macro before each user-defined routine that may call SETERRQ(), SETERRA(),
CHKERRQ(), or CHKERRA(). A simple example of usage is given below.

#undef __FUNC

#define __FUNC__ "MyRoutinel"
int MyRoutinel() {
/* code here */

return O;

12.4 Incremental Debugging

When developing large codes, one is often in the position of having a correctly (or at least believed to be
correctly) running code; making a change to the code then changes the results for some unknown reason.
Often even determining the precise point at which the old and new codes diverge is a major pain. In
other cases, a code generates different results when run on different numbers of processors, although in exact
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arithmetic the same answer is expected. (Of course, this assumes that ezactly the same solver and parameters
are used in the two cases.)

PETSc provides some support for determining exactly where in the code the computations lead to different
results. Frist, one should compile both programs with different names. Next, one should start running both
programs as a single MPI job. This procedure is dependent on the particular MPI implementation being
used. For example, when using MPICH on workstations, procgroup files can be used to specify the processors
on which the job is to be run. Thus, to run two programs, old and new, each on two processors, one should
create the procgroup file with the following contents:

local O

workstationl 1 /home/bsmith/old
workstation2 1 /home/bsmith/new
workstation3 1 /home/bsmith/new

(Of course, workstationl, etc. can be the same machine.) Then, one can execute the command
mpirun -p4pg <procgroup_filemame> old -compare <tolerance> [your_program_options]

Note that the same runtime options must be used for the two programs. The first time an inner product or
norm detects an inconsistency larger than <tolerance>, PETSc will generate an error. The usual runtime
options —start_in_debugger and -on_error_attach debugger may be used. The user can also place the
commands

PetscCompareDouble()
PetscCompareScalar()
PetscCompareInt ()

in portions of the application code to check for consistency between the two versions.

12.5 Complex Numbers

PETSc supports the use of complex numbers in application programs written in C, C++, and Fortran.
To do so, we employ C++ versions of the PETSc libraries in which the basic “scalar” datatype, given in
PETSc codes by Scalar, is defined as complex (or complex<double> for machines using templated complex
class libraries). To work with complex numbers, the user should compile the PETSc libraries (including
the Fortran interface library) and the application code with BOPT=[g_complex,0_complex,Opg_complex] for
debugging, optimized, and profiling versions, respectively. The file $(PETSCDIR)/Installation provides
detailed instructions for installing PETSc.

Recall that each variant of the PETSc libraries is stored in a different directory, given by
$(PETSCDIR)/1ib/1ib$(BOPT)/$(PETSC_ARCH), according to the architecture and BOPT optimization vari-
able. Thus, the libraries for complex numbers are maintained separately from those for real numbers. When
using any of the complex numbers versions of PETSc, all vector and matrix elements are treated as complex,
even if their imaginary components are zero. Of course, one can elect to use only the real parts of the
complex numbers when using the complex versions of the PETSc libraries; however, when working only with
real numbers in a code, one should use a version of PETSc for real numbers for best efficiency.

The program $(PETSCDIR)/src/sles/examples/tutorials/ex11.c solves a linear system with a com-
plex coefficient matrix. Its Fortran counterpart is $(PETSCDIR)/src/sles/examples/tutorials/ex11f.F.

12.6 Emacs Users

If users develop application codes on UNIX machines using Emacs (which we highly recommend), the etags
feature can be used to search PETSc files quickly and efficiently. To use this feature, one should first check
that the file $(PETSCDIR)/TAGS exists. If this file is not present, it should be generated by running make
etags from the PETSc home directory. Once the file exists, from Emacs the user should issue the command
“M-x visit-tags—table”, where “M” denotes the Emacs Meta key, and enter the name of the TAGS file.
Then the command “M-.” will cause Emacs to find the file and line number where a desired PETSc function
is defined. Any string in any of the PETSc files can be found with the command “M-x tags-search”. To
find repeated occurrences, one can simply use “M-,” to find the next occurrence.
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12.7 VI Users

If users develop application codes on UNIX machines using VI, the ctags feature can be used to browse
PETSc files quickly and efficiently. To use this feature, one should first check that the file, $(PETSC_DIR)/tags
exists. If this file is not present, it should be generated by running make tags from the PETSc home direc-
tory. Once the file exists, from VI, the user should issue the command “:set tags=$(PETSCDIR)/tags”
or the user should add to his “/.exrc ” file the line “set tags=$(PETSCDIR)/tags”. Then the command
“:tag FunctionName” will cause VI to find the file and line number where a desired PETSc function is

defined.

12.8 Parallel Communication

When used in a message-passing environment, all communication within PETSc is done through MPI, the
Message Passing Interface standard [14]. Any file that includes petsc.h (or any other PETSc include file),
can freely use any MPI routine.
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Chapter 13

Makefiles

This chapter describes the design of the PETSc makefiles, which are the key to managing code across a wide
variety of Unix systems.

13.1 Our Makefile System

To make a program named ex1, one may use the command
make BOPT=[g,0,0pg] PETSC_ARCH=arch exl

which will compile a debugging, optimized, or profiling version of the example and automatically link the
appropriate libraries. The architecture, arch, is one of sun4, solaris, rs6000, IRIX, hpux, freebsd,
and so on. Note that when using command line options with make (as illustrated above), one must not place
spaces on either side of the “=" signs. The variables BOPT and PETSC_ARCH can also be set as environmental
variables. Although PETSc is written in C, it can be compiled with a C++ compiler. For many C++ users
this may be the preferred route. To compile with the C++ compiler, one should use the option BOPT=g_c++
or BOPT=0_c++, or BOPT=0pg_c++. The options BOPT=g_complex, BOPT=0_complex, and BOPT=0pg_complex

will create versions that use complex double-precision numbers.

13.1.1 Makefile Commands

The directory $(PETSCDIR)/bmake contains virtually all makefile commands and customizations to enable
portability across different architectures. Most makefile commands for maintaining the PETSc system are
defined in the file $ (PETSC DIR)/bmake/common. These commands, which process all appropriate files within
the directory of execution, include

e 1lib - Updates the PETSc libraries based on the source code in the directory.

e libfast - Updates the libraries faster. Since 1ibfast recompiles all source files in the directory at
once, rather than individually, this command saves time when many files must be compiled.

e clean - Removes garbage files.
Most other commands are intended for PETSc developers are generally not needed by users.
e ci- Uses the RCS ci mechanism to check in all files in the directory.

e co - Uses the RCS co mechanism to check out all files in the directory.

fortranstubs - Generates the Fortran wrapper routines.
e latexpages - Updates the LaTeX version of the man pages.

o wywpages - Updates the HT'ML version of the man pages.
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The tree command enables the user to execute a particular action within a directory and all of its
subdirectories. The action is specified by ACTION=[action], where action is one of the basic commands
listed above. For example, if the command

make BOPT=g ACTION=1ib tree

were executed from the directory $(PETSCDIR)/src/ksp, the debugging library for all Krylov subspace
solvers would be built.

13.1.2 Customized Makefiles

The directory $(PETSC DIR)/bmake contains a subdirectory for each architecture that contains machine-
specific information, enabling the portability of our makefile system. For instance, for Sun SPARCstations
running OS 4.1.3, the directory is called sun4. Each architecture directory contains several base makefiles:

e base.site - locations of all needed include and library files for a particular site. This file (discussed
below) is usually the only one that the user needs to alter.

e base - definitions of the compilers, linkers, etc.

e base.g - debugging options for C version.

e base.0 - optimization options for C version.

e base.Opg - optimization options for C version, with gprof profiling.

e base.g complex - debugging options for complex version.

e base.0_complex - optimization options for complex version.

e base.Opg_complex - optimization options for complex version, with gprof profiling.

e base.g c++ - debugging options for C4++ version.

e base.0_c++ - optimization options for C++ version.

e base.Opg._c++ - optimization options for C++ version, with gprof profiling.
Each architecture base file, denoted by $(PETSC_DIR)/bmake/$(PETSC_ARCH)/base, includes the file
$(PETSCDIR)/bmake/common, which contains the rules discussed in Section 13.1.1 that are common to
all machines.

We discovered that for no apparent reason, under freeBSD the include syntax is different from that of all
other makefiles. Thus, under freeBSD gnumake must be used.

13.2 PETSc Flags

PETSc has several flags that determine how the source code will be compiled. The default flags for particular
versions are specified by the variable PETSCFLAGS within the base files of $(PETSC_DIR)/bmake/$ (PETSC_ARCH),
discussed in Section 13.1.2. The flags include

e PETSC_DEBUG - The PETSc debugging options are activated. We recommend always using this.
e PETSC_COMPLEX - The version with scalars represented as complex numbers is used.

e PETSC_LOG - Various monitoring statistics on floating-point operations and message-passing activity
are kept.
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Sample Makefiles

Maintaining portable PETSc makefiles 1s very simple. In Figures 22, 23, and 24 we present three sample
makefiles.
The first 1s a minimum Makefile for maintaining a single program that uses the PETSc libraires.

ALL: ex2

CFLAGS = $(CPPFLAGS)
FFLAGS =

SOURCEC =

SOURCEF =

SOURCEH =

0BJSC =

0BJSF =

LIBBASE = libpetscsles
DIRS =

include $(PETSC_DIR)/bmake/$(PETSC_ARCH) /base

ex2: ex2.o chkopts
$ (CLINKER) -0 ex2 ex2.o $(PETSC_LIB)
$(RM) ex2.0

Figure 22: Sample PETSc Makefile for Building a Single Program

The most important line in this makefile is the line starting include; this line includes other makefiles
that provide the needed definitions and rules.
The second controls the generation of several example programs.

CFLAGS
SOURCEC =

SOURCEF =

SOURCEH =

0BJSC =

0BJSF =

LIBBASE = libpetscsles
RUNEXAMPLES_1 = runexl runex2
RUNEXAMPLES_2 = runex4
RUNEXAMPLES_3 = runex3

$(CONF) $(PETSC_INCLUDE)

EXAMPLESC = exl.c ex2.c ex4.c
EXAMPLESF = ex3.F

EXAMPLES_1 = ex1 ex2
EXAMPLES_2 = ex4

EXAMPLES_3 = ex3

exl: exl.o
-$(CLINKER) -0 exl exl.o $(PETSC_LIB)
$(RM) exl.o

ex2: ex2.0
-$(CLINKER) -0 ex2 ex2.0 $(PETSC_LIB)
$(RM) ex2.0

ex3: ex3.0
-$(FLINKER) -o ex3 ex3.o0 $(PETSC_FORTRAN_LIB) $(PETSC_LIB)
$(RM) ex3.o0

ex4: exd.o
-$(CLINKER) -0 ex4 ex4.o0 $(PETSC_LIB)
$(RM) ex4.o
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runexl:

-Q@$ (MPIRUN) exl

runex?:

-Q@$(MPIRUN) -np 2 ex2 -mat_seqdense -optionsleft

runex3:

-0$(MPIRUN) ex3 -v -log_summary

runex4:

-Q@$(MPIRUN) -np 4 ex4 -trdump

include $(PETSC_DIR)/bmake/$(PETSC_ARCH) /base

Figure 23: Sample PETSc Makefile for Example Programs

The two most important lines in the makefile of Figure 23 are the location of the PETSc home directory,
set with PETSC DIR, and the include line that includes the files defining all of the macro variables. The
variable PETSC DIR is automatically defined for the examples within the PETSc library structure. In general,
the user should set PETSCDIR to be the location of the local PETSc library. As listed in the sample makefile,
the appropriate include file 1s automatically completely specified; the user should not alter this statement

with
L ]
L ]

in the makefile. Some additional variables used in the makefile are defined as follows:
CLINKER, FLINKER - the C and Fortran linkers.
RM - the remove command for deleting files.

PETSC_INCLUDE - the directory locations of any PETSc (or PETSc needed) files that are included in
programs.

CONF - various defines that indicate what packages are available.

PCONF - defined in $(PETSC_ARCH)/base.site to indicate which external packages are available at a
particular site.

COPTFLAGS - flags defined for each system and level of optimization (C/C++ compiler).

FOPTFLAGS - flags defined for each system and level of optimization (Fortran compiler).

CPPFLAGS - flags defined for each system and level of optimization for C/C++ preprocessor.
EXAMPLES_1 - examples that will be built with make BOPT=[g,0,0pg] examples (see Section 13.1.1)
RUNEXAMPLES 1 - examples that will be run with make runexamples (see Section 13.1.1)

EXAMPLESC - all C examples that will be checked in/out of RCS with make ci and make co (not
generally needed by users).

EXAMPLESF - all Fortran examples that will be checked in/out of RCS with make ci and make co (not
generally needed by users).

PETSC_LIB - all of the base PETSc libraries.

PETSC FORTRAN _LIB - the PETSc Fortran interface library.

Note that the PETSc example programs are divided into several categories, which currently include:

EXAMPLES_ 1 - basic C suite used in installation tests

EXAMPLES 2 - additional C suite including graphics

EXAMPLES 3 - basic Fortran .F suite

EXAMPLES 4 - subset of 1 and 2 that runs on only a single processor
EXAMPLES 5 - examples that require complex numbers

EXAMPLES 8 - C examples that do not work with complex numbers
EXAMPLES 7 - C examples that require BlockSolve

EXAMPLES 8 - Fortran .F examples that do not work with complex numbers
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EXAMPLES 9 - uniprocessor version of 3
EXAMPLES 10 - Fortran .F examples that require complex numbers

We next list in Figure 24 a makefile that maintains a PETSc library. Although most users do not need
to understand or deal with such makefiles, they are also easily used.

ALL: 1ib

CFLAGS
SOURCEC
SOURCEF

SOURCEH
0BJSC
0BJSF

LIBBASE
MANSEC

$(PETSC_INCLUDE) -I../../.. -I$(PETSC_DIR)/pinclude $(CONF)
splwd.c spinver.c spnd.c spqmd.c sprcm.c
degree.f fnroot.f gengmd.f gqmdqt.f rcm.f fnilwd.f genlwd.f \
genrcm.f gmdrch.f rootls.f fndsep.f gennd.f qmdmrg.f gmdupd.f

splwd.o spinver.o spnd.o spqmd.o sprcm.o

degree.o fnroot.o gengmd.o gmdqt.o rcm.o fnlwd.o genlwd.o \
genrcm.o gmdrch.o rootls.o fndsep.o gennd.o qmdmrg.o gmdupd.o
libpetscmat

2

include $(PETSC_DIR)/bmake/$(PETSC_ARCH) /base

Figure 24: Sample PETSc Makefile for Library Maintenance

The library’s name is 1libpetscmat.a, and the source files being added to it are indicated by SOURCEC
(for C files) and SOURCEF (for Fortran files). Note that the OBJSF and 0OBJSC are identical to SOURCEF and
SOURCEC, respectively, except they use the suffix .o rather than .c or .f.

The variable MANSEC indicates that any manual pages generated from this source should be included in
the second section.

13.3 Limitations

This approach to portable makefiles has some minor limitations, including the following:

e Each makefile must be called “makefile”.

e Each makefile can maintain at most one archive library.
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Chapter 14

PETSc GUI Utilities

PETSc includes two GUI utilities, PETScView and PETScOpts, that facilitate library use and interpretation
of computational results. We acknowledge the contributions of Matt Hille (Washington State University),
who focused on the design and documentation of these tools while a participant in Argonne’s Summer
Student Research Participation Program, 1995.

As discussed in Chapter 10, PETSc incorporates uniform event logging throughout the library in the
form of statistics regarding object creation and destruction, floating-point operations, execution time, and
memory usage. The utility PETScView provides an abstract interpretation of the profile data for a high-level
view of the interrelationships among various code modules. PETScView assists in debugging, analysis, and
performance enhancement and is especially useful for complex simulations that employ a combination of
numerical methods and modeling techniques.

An additional GUI tool is PETScOpts, which provides a simple interface to the full range of PETSc
options database commands. As discussed in Section 12.1, these options enable the user to set particular
solvers, data structures, profiling options, and so on at runtime, thereby facilitating the customization and
comparison of various algorithms and storage schemes.

14.1 Getting Started

PETScView and PETScOpts use the Tecl and the Tk Toolkit [1]. Therefore, in order to use the PETSc
utility programs, the Tcl and Tk packages must be installed on the user’s local system. See the following
WWW site for information about Tcl/Tk: http://www.sunlabs.com/research/tcl/.

In order for PETScView and PETScOptions to work properly, a slight modification of the source
code is required. Using any text editor, the user should load the file $(PETSCDIR)/bin/petscview (or
$ (PETSC.DIR)/bin/petscopts) and change the first line in the source code to point to the proper location of
where wish can be found. For example, if wish is located at /usr/bin/wish, the first line for each program

should be changed to
#! /usr/local/wish -f
After this modification, PETScView and PETScOpts are ready to run.

Since Tel/Tk are constantly changing (even faster than PETSc), it is difficult to keep PetscView and
PetscOpts compatible with the latest release of Tcl/Tk, while still working with earlier releases. Thus, the
user may have to modify the PetscView and PetscOpts script slightly to get them working with a particular
version of Tcl/Tk.

14.2 Using PETScView

Whenever a PETSc program is executed with the -log_all or -log option, a log file is produced that can
then be interpreted by PETScView. PETScView generates a dynamic tree-shaped hierarchy whose nodes
contain icons that uniquely identify PETSc objects (such as linear solvers, matrices, and distributed arrays).
The objects are color coded to denote the various states of activity, so that PETScView illustrates the
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Figure 25: A Sample PETScView Object Tree

changing relationships among objects during program execution. A sample PETScView object tree is shown
in Figure 25 for a parallel linear solver.

A number of built-in commands enable the application programmer to navigate easily through the simu-
lation. In addition, PETScView can display performance statistics for particular objects and their children,
thus enabling users to focus performance tuning efforts. This section provides introductory information
regarding PETScView. Additional details are available via the “help” feature of the utility.

14.2.1 Running PETScView

Because of fundamental limitations of Tel/Tk, PETScView can be run only with relatively small log files
(at most a couple of thousand events). If the user generates a very large log file, Tcl/Tk will hang and often
swamp the machine.

To begin PETScView, the user should type petscview from the UNIX shell prompt. To load a PETSc
log file, one runs PETScView, giving the log file name as a command line argument:

petscview Log.0

This command invokes PETScView and automatically loads and interprets the profiling data contained in
the file Log.0. PETScView can also be run without a log file given as a command line argument. In this
case, the user must load the log file from within PETScView. To do this, the user selects the “Open File”
command from the file menu. PETScView will automatically present the user with another window from
which the file can be selected.

PETScView supports several additional command line arguments, as listed in Table 7. Note that the
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Table 7: PETScView Command Line Options

Argument Purpose

-def file filename The location of the definitions file
-time Show the time

-notime Do not show the time

-stepsize N Set the stepsize to N

—-delay N Set the delay to N milliseconds
-printer dest DESTINATION Set the destination (File or Printer)
-print_command COMMAND Set the postscript print command
-printer PRINTER Specify the printer
-print_orientation 1 or 0 1 = landscape , 0 = portrait
-print_color Specify color mode (color, gray, mono)

command line options override the default values within the user’s .petscviewrc file, which is discussed
further in the following section.

14.2.2 Loading a Configuration File

PETSc configuration files contain information that determines the graphical representation of PETSc objects
within PETScView. Whenever PETScView is invoked, a configuration file is automatically read. The
location of this file 1s specified in .petscviewrc, which is stored in the user’s home directory. By default,
.petscviewrc points to the configuration file, ($PETSCDIR/bin/petscview.cfg); however, this can be
changed to point to a configuration file created by the application programmer. Section 14.2.6 gives more
information about changing the .petscviewrc file.

Even though PETScView loads a definitions file whenever it is initially run, a file of new definitions can
be loaded from within PETScView at any time. This command is found in the file menu. Loading a new
definitions file will automatically update all PETSc objects.

14.2.3 Printing a PETScView Object Tree

The “print” command of the file menu displays a dialog box from which the user can change the printing
options. The default values are loaded from .petscviewrc when PETScView is first run. When the proper
options are set for printing, one clicks on the “print” button or presses “return”. If the user is printing to a
file, another dialog box will appear from which the user may specify the output filename.

Note: Currently, PETScView prints trees of size less than 1024 x 768 (measured in pixels). If the
scrollbars are needed to view any parts of a tree, 1t 1s very unlikely that the whole tree will be printed. This
situation presents no problem, however, when the tree is printed to a file.

14.2.4 Exiting PETScView

To exit PETScView, one selects the “Exit” option of the file menu. When this action is confirmed,
PETScView will terminate and return the user to the calling shell.

14.2.5 The PETScView Simulation

Navigation

Once a file has been loaded by PETScView, the user can navigate through the simulation by using PETScView’s
play bar. The play bar is located at the bottom of the window and contains buttons whose appearances
and functioning resemble the buttons on a tape player. From left to right, these buttons have the following
functions:

e Rewind - Rewinds the simulation to the zeroth step.
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Step Backward - Steps backward through the simulation.

Play Backward - Plays the simulation in reverse with an appropriate delay between steps.

Stop - Brings the simulation to a halt.

Play Forward - Plays forward through the simulation with an appropriate delay between steps.
e Step Forward - Steps forward through the simulation
e Finish - Immediately jumps to the last step of the simulation.

In addition to the play bar buttons, the scale directly below these buttons enables the user to navigate
to an arbitrary position in the simulation. To use the scale, one clicks the left mouse button at the desired
position on the scale. (The scale ranges from the zeroth step to the last step of the simulation.) The scale
is scaled and labeled appropriately.

All of the above functions can also be accessed through the “player” menu. Selecting the player menu
lists the commands in addition to their accelerator keys. The player menu also contains two additional
commands that allow the user to jump to an arbitrary step in the simulation or to an arbitrary time during
the simulation. When one of these commands is invoked, the user is prompted for the proper target jump
value.

The View Menu

The View menu contains several additional commands that can be useful in the profiling of a PETSc program.
These commands enable the user to view the raw profiling data as well as various statistics about program
performance.

Changing Viewer Options

The options menu allows the user to change certain options that are set by default whenever PETScView
is initially invoked. (The default values are defined in .petscviewrc.) These options include the step size
when stepping through the simulation, the delay between events when playing through the simulation, and
the colors chosen to denote the internal states of the PETSc objects.

The simulation’s step size can be changed at any time during the simulation by selecting the “step
size” command of the Options menu. Whenever the user clicks on the this selection, a dialog box appears
prompting the user for the desired step size. Valid step sizes range from 1 to the total number of events in
the simulation.

To change the delay, one selects the “delay” command of the options menu. A cascading menu presents
the user with a few built-in delays, which include none, real-time, and second delay. (The real-time delay
option causes delays between events in the simulation to be proportionate to the delays in the actual execution
of the PETSc program.) To specify a user-defined delay, the user clicks on the “after delay” selection. Then
the user will be presented with a dialog box in which the user can specify the desired delay in milliseconds.
Only values ranging from 1 to 2000 are valid.

The final selection on the Options menu presents the user with a cascading menu with entries that allow
the user to change PETScView’s object color-coding scheme. Selecting any one of the entries presents the user
with another window from which the color may be chosen. (The colors are taken from /usr/1ib/X11/rgb.txt.)

14.2.6 Advanced Features

PETScView allows the user to define/redefine the graphical representation of PETSc objects. To do so, the
user creates a configuration file, a Tcl script file, which includes specific definitions for group shapes, group
labels, object icons, object labels, and action strings. Whenever PETScView is invoked, a configuration file is
read from the location specified in the .petscviewrcfile. By default, it is set to point to the configuration file
included with the PETSc package ($PETSC_DIR/bin/petscview.cfg). Allowing the application programmer
to create a customized configuration file enables PETScView to interpret the profiling data even when new
PETSc objects have been created.
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Table 8: PETSc Object Group Definitions

Group Object_cookie
Viewers 0
Index Sets 1
Vectors 2
Vector Scattering 3
Matrices 4
Draw (simple graphics) 5
Line Graphs 6
Krylov Subspace Solvers 7
Preconditioners 8
Simplified Linear Equations Solvers 9
Grids 10
Stencils 11
Simplified Nonlinear Solvers 12
Distributed Arrays 13
Matrix Scattering 14

Group Definitions

Each PETSc object group is identified by its integer-valued object cookie. Table 8 lists the currently
available object groups and their associated object cookies. For each group of objects, the PETScView
requires the following definitions:

set GroupShape(OBJECT_COOKIE) SHAPE

set GroupDesc(OBJECT_COOKIE) "GROUP DESCRIPTION"
where OBJECT_COOKIE is the integer used to identify the group of objects and SHAPE is one of the predefined
shapes used by PETScView. These shapes include

Square Wide_Rectangle Down_Triangle
Thin_RectangleV Tall_Oval Octagon
Thin_RectangleH Wide_0Oval Circle
Rectangle Up_Triangle

GROUP DESCRIPTION is a line of text enclosed by quotes to describe the object group. For example,
vectors have the following group descriptions:

set GroupShape(2) Thin_RectangeV
set GroupDesc(2) Vectors

Object Definitions

Within each group, the object is identified with the use of a second integer (OBJECT_TYPE). This specifies
the type of object within the object group. PETScView requires both a name and an icon to be defined for
every object. These definitions have the following syntax:

set Icon(OBJECT_COOKIE,OBJECT_TYPE) "-text TEXT" or

set Icon(OBJECT_COOKIE,OBJECT_TYPE) "-bitmap @BITMAP_LOC"

set Name(OBJECT_COOKIE,OBJECT_TYPE) "OBJECT DESCRIPTION"
where TEXT is a short description of the object (used if a bitmap is inappropriate) and BITMAP_LOC is the
location of the bitmap graphic. The OBJECT DESCRIPTION is a line of text used to describe the object. As
an example, we give the following definitions:

set Icon(2,0) "-bitmap Q@$env(PETSC_DIR)/bitmaps/vector.bit"

set Name(2,0) "Sequential Vector"

set Icon(2,1) "-bitmap @$env(PETSC_DIR)/bitmaps/vectorp.bit"

set Name(2,1) "Parallel Vector"
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Notice the syntax that Tcl requires for the location of the bitmap. The bitmap location must be preceded
by a @ in order for PETScView the work properly. $env($PETSCDIR) is used to access the value of the
environmental variable PETSC_ DIR. To use the value of any other environmental variables in specifying a file

location, one must use in the expression the following syntax:
$env(ENVIRONMENTAL_VARIABLE)
To create one’s own bitmap picture to represent an object, the user creates the bitmap using a program

such as bitmap. Once this is done, PETScView must know the location of the bitmap. The user must
specify the precise location in the file system where the bitmap graphic can be found. For example, suppose
that one creates a new bitmap to symbolize a parallel vector. Since the bitmap is located in the user’s home

directory, the following definition will not create an error:
set Icon(2,1) "-bitmap $env(HOME)/vectorp.bit"
More examples on defining additional PETSc objects and information about how PETSc defines the

object types are given in $PETSC DIR/bin/petscview.cfg.

Action Strings

When certain actions occur during the execution of a PETSc program, these actions are also recorded in
the profiling data. Once again, PETSc uses an integer to specify the type of action that is being performed.
PETScView interprets the actions using the definitions contained in action() string definitions. These

definitions are also located in the configuration file. An action definition has the following syntax:
set Action(ACTION_ID) "ACTION"
where ACTION_ID is an integer that encodes the action and ACTION is a descriptive string. Currently,

PETScView uses the action definitions as defined in petscview.cfg.

14.3 Using PETScOpts

PETScOpts is a PETSc utility program that enables the application programmer to modify his or her
personal .petscrc file. As described in Section 12.1, the .petscrc file contains a list of options that will be
passed to a PETSc program whenever it is executed. This file has the following format:

-optionname possible_value

—anotheroptionname possible_value
Even though this file can be manually modified by the application programmer with any text editor,

PETScOpts greatly simplifies this task.

14.3.1 Running PETScOpts

The command petscopts will invoke PETScOpts from the UNIX shell prompt. Any entries contained in
the .petscrc file of the user’s home directory will automatically be interpreted by PETScOpts. Once inside
PETScOpts, a number of entry boxes, check buttons, radio buttons, and other widgets allow the application
programmer to specify the options that should be saved in the .petscrc file for future use.

PETScOpts can also write the PETSc command line options to a file other than the default .petscrc
file. To do so, run PETScOpts with the file name as a command line argument:

petscopts file_name
From within PETScOpts, a different file can be loaded at any time by selecting the “Open file” option of

the file menu.

14.3.2 Getting Help

Even though many of PETSc’s command line options are self-explanatory, a single descriptive line of text
1s displayed at the bottom of the window whenever the pointer is positioned over any check button, radio
button, or entry that specifies an option.

14.3.3 Exiting PETScOpts

The user can exit PETScOpts at any time by selecting the exit button from the file menu. If a .petscrc
file was loaded when PETScOpts was initiated, the user is asked whether the current or original settings (or
neither) should be saved in .petscrec.
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Chapter 15

Design and Implementations of the
Abstract Classes

PETSc 2.0 is designed using strong data encapsulation. Hence, any collection of data (for instance, a sparse
matrix) is stored in a way that is completely private from the application code. The application code
can manipulate the data only through a well-defined interface, as it does not know how the data is stored
internally.

PETSc is designed around several components (e.g., Vec (vectors), Mat (matrices, both dense and sparse)).
Each component has

o Its own include file $(PETSC DIR)/include/<component>.h
e Its own directory, $ (PETSC DIR)/src/<component>

e An abstract data structure defined in the file $(PETSCDIR)/src/<component>/<component>impl.h.
This data structure i1s shared by all the different implementations of the component. For example, for
matrices it is shared by dense, sparse, parallel, and sequential formats.

e An abstract interface that defines the application callable functions for the component. These are
defined in the directory $(PETSCDIR)/src/<component>/interface.

e One or more actual implementations of the components (for example, sparse uniprocessor and par-
allel matrices implemented with the AIJ storage format). These are each in a subdirectory of
$(PETSCDIR)/src/<component>/impls. Except in rare circumstances, data structures defined here
should not be referenced from outside this directory.

Each type of object, for instance a vector, is defined in its own include file, by typedef _Object*
Object;, (for example, typedef Vec* Vec;). This organization allows the compiler to perform type check-
ing while at the same time completely removing the details of the implementation of _Object from the
application code. The exact details of _Object may be changed at link time. This capability is extremely
important because it allows the library internals to be changed without altering or recompiling the application
code.

Polymorphism is supported through the directory $(PETSCDIR)/src/<component>/interface, which
contains the code that implements the abstract interface to the operations on the object. Essentially, these
routines do some error checking of arguments and logging of profiling information and then call the func-
tion appropriate for the particular implementation of the object. The name of the abstract function is
ObjectOperation, for instance, MatMult or PCCreate, while the name of a particular implementation is
ObjectOperation Implementation, for instance, MatMult SeqAIJ or PCCreate ILU. These naming conven-
tions are used to simplify code maintenance.

Fach object structure (named _Object) consists of three parts: a common PETSc header (defined in
include/phead.h, a pointer to a list of operations for the object, and any additional information that is
appropriate for the particular abstract object. The PETSc header includes an integer cookie, an integer
type, an MPI communicator, a function pointer that indicates a destroy routine, and a function pointer that
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indicates a viewer routine. The header can also contain additional records. Several routines are provided for
manipulating data within the header, including

int PetscObjectGetComm(PetscObject object,MPI_Comm *comm)
which returns in comm the MPI communicator associated with the specified object.

After the header, each PETSc object contains a pointer to a list of operations for the object. For example,
the vector operations include norms, assembly routines, scatters, and gathers. Finally, information that is
appropriate for the particular abstract object is included. Generally, this information includes a pointer to
data used by a particular implementation. For example, the _Vec structure is given by

struct _Vec {

PETSCHEADER
struct _VeOps ops;
void *data;

};

15.1 Names

Consistency of names for variables, functions, and the like is extremely important in making the package
both usable and maintainable. We use several conventions:

e All function names and enum types consist of words, each of which is capitalized, for example,
SLESSolve() and MatGetReordering().

e All enum elements and macro variables are capitalized. When they consist of several complete words,
there 1s an underscore between each word.

e Functions that are private to PETSc (not callable by the application code) either
have an appended _Private (for example, StashValues Private) or
have an appended _ObjectSubtype (for example, MatMult SeqAIlJ).

In addition, functions that are not intended for use outside of a particular file are declared static.

e Function names in structures are the same as the base application function name without the object
prefix, and all are in small letters. For example, MatMultTrans () has a structure name of multtrans().

e Each application usable function begins with the name of the object, for example, ISInvertPermutation
or MatMult.

15.2 Coding Conventions and Style Guide

Within the PETSc source code, we adhere to the following guidelines so that the code is uniform and easily
maintainable:

e All PETSc function bodies are indented two characters.

e Each additional level of loops, if statements, and so on is indented two more characters.
e Wrapping lines should be avoided whenever possible.

e Source code lines should not be more than 120 characters wide.

e The macros SETERRQ() and CHKERRQ() should be on the same line as the routine to be checked unless
this violates the 120-character-width rule. Try to make error messages short, but informative.

e The local variable declarations should be aligned. For example, use the style

int i,j;
Scalar a;
instead of
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int 1i,j;
Scalar a;

o All local variables of a particular type (e.g., int) should be listed on the same line if possible; otherwise,
they should be listed on adjacent lines.

e Equal signs should be aligned in regions where possible.

e For routines of more than a few lines, there should be a blank line between the local variable declarations
and the body of the function.

e Indentation for if statements should be done either as

it () A
¥
else {
¥

or as
it () A
} else {
¥

e No tabs are allowed in any of the source code.

15.3 Option Names

Since consistency simplifies usage and code maintenance, the names of PETSc routines, flags, options, and so
on have been selected with great care. The default option names are of the form -package _subpackage name.
For example, the option name for the basic convergence tolerance for the KSP package is ~ksp_atol. In
addition, operations in different packages of a similar nature have a similar name. For example, the option
name for the basic convergence tolerance for the SNES package is —snes_atol.

15.4 Implementation of Profiling

This section provides details about the implementation of event logging and profiling within PETSc. Chap-
ter 10 gives information about using the profiling in application codes.

The interface for profiling in PETSc is contained in the file $(PETSCDIR)/include/petsclog.h. It
includes

PLogObjectCreate(PetscObject h);
which logs the creation of any PETSc object. This should be included in any PETSc source code that uses
PetscHeaderCreate().

Just before an object is destroyed, it is logged with

PLogObjectDestroy(PetscObject h);

If an object has a clearly defined parent object (for instance, when a work vector is generated for use in
a Krylov solver), this information is logged with the command,

PLogObjectParent (PetscObject parent,PetscObject child);
It is also useful to log information about the state of an object, as can be done with the command

#if defined(PETSC_LOG)

PLogObjectState(PetscObject h,char *format,...);

#endif
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For example, for sparse matrices we usually log the matrix dimensions and number of nonzeros.
As discussed in the preceding section, events are logged using the pair

PLogEventBegin(int event,PetscObject ol,PetscObject 02,PetscObject 03,PetscObject o04);
PLogEventEnd(int event,PetscObject ol,PetscObject 02,PetscObject 03,PetscObject o4);

This logging is usually done in the abstract interface file for the operations, for example, src/mat/src/matrix.c
Several routines that will be used rarely by the application programmer are
PLogBegin();
PLogAllBegin();
PLogDump (char *filename);
PLogPrintSummary (FILE *fd);

These routines are normally called by the PetscInitialize() and PetscFinalize() routines when the
option -log, ~log_summary, or ~log_all is given.

15.5 The Various Matrix Classes

PETSc provides a variety of matrix implementations, since no single matrix format is appropriate for all
problems. The following sections briefly describe the ever-expanding assortment of matrix types within

PETSc.

15.5.1 Sequential AIJ Sparse Matrices

The default matrix representation within PETSc is the general sparse AIJ format (also called the Yale sparse
matrix format or compressed sparse row format, CSR). Section 3.1.1 describes this matrix type.

15.5.2 Parallel AIJ Sparse Matrices
15.5.3 Sequential Block AIJ Sparse Matrices

The sequential and parallel block AlJ formats, which are extensions of the AIJ formats described above,
are intended especially for use with multicomponent PDEs. The block variants store matrix elements by
fixed-sized dense nb x nb blocks, where currently nb ranges from two through five. These formats are fully
compatible with standard Fortran 77 storage. That is, the stored row and column indices can begin at either
one (as in Fortran) or zero.

The routine for creating a sequential block AIJ matrix with m rows, n columns, and a block size of nb is

ierr = MatCreateSeqBAIJ(MPI_Comm comm,int nb,int m,int n,int nz,int *nnz, Mat *A)

The arguments nz and nnz can be used to preallocate matrix memory by indicating the number of block
nonzeros per row. For good performance during matrix assembly, preallocation is crucial; however, the user
can set nz=0 and nzz=PETSC_NULL for PETSc to dynamically allocate matrix memory as needed. Section 3.1.1
discusses preallocation for the AIJ format; extension to the block AlJ format is straightforward.

15.5.4 Parallel Block AIJ Sparse Matrices

Parallel block AlJ matrices with block size nb can be created with the command

ierr = MatCreateMPIBAIJ(MPI_Comm comm,int nb,int m,int n,int M,int N,int d_n=z,
int *d_nnz, int o_nz,int *o_nnz,Mat *A4);
A is the newly created matrix, while the arguments m, n, M, and N, indicate the number of local rows and
columns and the number of global rows and columns, respectively. Either the local or global parameters
can be replaced with PETSC DECIDE, so that PETSc will determine them. The matrix is stored with a fixed
number of rows on each processor, given by m, or determined by PETSc if m is PETSC DECIDE.

If one does not use PETSC _DECIDE for m and n, one must ensure that they are chosen to be compatible with
the vectors. To do this, one first considers the product y = Ax. The m that one uses in MatCreateMPIBAIJ()
must match the local size used in the VecCreateMPI() for y. The n used must match that used as the local
size 1n VecCreateMPI() for x.
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The user must set d nz=0, o nz=0, d nnz=PETSC NULL, and o_nnz=PETSCNULL for PETSc to control
dynamic allocation of matrix memory space. Analogous to nz and nnz for the routine MatCreateSeqBAIJ(),
these arguments optionally specify block nonzero information for the diagonal (d.nz and d.nnz) and off-
diagonal (onz and o.nnz) parts of the matrix. For a square global matrix, we define each processor’s
diagonal portion to be its local rows and the corresponding columns (a square submatrix); each processor’s
off-diagonal portion encompasses the remainder of the local matrix (a rectangular submatrix). Section 3.1.1
gives an example of preallocation for the parallel AIJ matrix format; extension to the block parallel AIJ case
1s straightforward.

15.5.5 Sequential Dense Matrices

PETSc provides both sequential and parallel dense matrix formats, where each processor stores its entries in
a column-major array in the usual Fortran 77 style. Section 3.1.2 provides details on creating these matrices.

15.5.6 Parallel Dense Matrices

The parallel dense matrices are partitioned by rows across the processors, so that each local rectangular
submatrix 1s stored in the dense format described above.

15.5.7 Parallel Cyclic Block Dense Matrices

Not yet implemented.

15.5.8 Parallel BlockSolve Sparse Matrices

PETSc provides a parallel, sparse, row-based matrix format that is intended for use in conjunction with the
ILU and ICC preconditioners in BlockSolve95. Section 4.4.1 gives details on this matrix type.

15.5.9 Block Diagonal Sparse Matrices

Storage by block diagonals is available in both uniprocessor and parallel versions, although currently only a
subset of matrix operations is supported. Each element of a block diagonal is defined to be a square dense
block of size nb x nb, where conventional diagonal storage results for nb=1. Such storage is particularly
useful for multicomponent PDEs discretized on regular grids.

The routine for creating a uniprocessor block diagonal matrix with m rows, n columns, and a block size
of nb is

ierr = MatCreateSeqBDiag(MPI_COMM_SELF,int m,int n,int nd,int nb,int *diag,

Scalar **diagv,Mat *A);

The argument nd is the number of block diagonals, and diag is an array of block diagonal numbers. For
the matrix element A;;, where ¢ and j respectively denote the row and column number of the element, the
block diagonal number is computed using integer division by

diag = i/nb— j/nb.

If matrix storage space is allocated by the user, the argument diagv is a pointer to the actual diagonals (in
the same order as the diag array). For PETSc to control memory allocation, the user should merely set
diagv=PETSCNULL.

A simple example of this storage format is illustrated below for block size nb=1. Here nd = 4 and diag
=[2, 1, 0, -3]. The diagonals need not be listed in any particular order, so that diag = [-3, 0, 1, 2] or diag
= [0, 2, -3, 1] would also be valid values for the diag array.

a00 0 0 a03 0 0
ald all 0 0 al4d 0
a20 a2l a22 0 0 a2b
0 a3l a32 a33 0 0
0 0 ad2 ad3 ad4d 0
0 0 0 ab3 abd abb




15.5.10 Parallel Block Diagonal Sparse Matrices

The parallel block diagonal matrices are partitioned by rows across the processors, so that each local rect-
angular submatrix is stored by block diagonals as described above. The routine for creating a parallel block
diagonal matrix with m local rows, ¥ global rows, n global columns, and a block size of nb is

ierr = MatCreateMPIBDiag(MPI_COMM_SELF,int m,int M,int N,int nd,int nb,int *diag,
Scalar **diagv,Mat *A);
Either the m or M can be set to PETSC_DECIDE for PETSc to determine the corresponding quantity.

15.6 Other Libraries and Packages

It is not the intention of PETSc to provide all of the software pieces to solve a user’s application problem.
The intention is that other libraries can provide the pieces that are not in PETSc. Unfortunately, not many
robust, general-purpose, easy-to-use software packages are available, and some of those that do exist have a
very low-level user interface.

To simplify the use of certain packages, we have integrated into PETSc an interface to those pack-
ages. At the moment, these include parts of LAPACK, BLAS, BlockSolve95, and the reordering routines
in SPARSPAK. We invite users to let us know (by writing to petsc-maint@mecs.anl.gov) whether they need
particular libraries that are related to PETSc for an application; we may try to provide easy-to-use PETSc
interfaces for them.

To allow the portable use of BLAS and LAPACK from C, we constructed a new include file,
$(PETSCDIR)/include/pinclude/plapack.h, that uses defines to make a uniform naming scheme for BLAS
(all routines begin with BL) and LAPACK (all routines begin with LA). This file incorporates function pro-
totypes for the BLAS and LAPACK routines used. In addition, the include file deals with different Fortran
77 compilers’ treatment of function names (for instance, Sun compilers put an underscore at the end of all
functions created in Fortran 77). The include file also deals with the fact that on Crays, C double precision
is the same as Fortran 77 single precision. Lastly, it also calls the appropriate complex LAPACK and BLAS
routines when needed.
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Appendix A

PETSc Function Reference List

Routine Prefixes

Vec Vector

SLES Linear equation solvers
pPC Preconditioners

SNES Nonlinear equation solvers
TS timesteppers

Petsc  Miscellaneous system

AO Application

A.1 Vector Routines

Data Structures:

e Vec - a vector of any type

Mat
KSP

IS

DA
Options
Draw
PLog

Matrix routines

Krylov subspace methods
Index sets

Distributed arrays
Options database
Drawing graphics routines
Profiling functions

e VecScatter - an object used in scatter routines, which allows reuse of communication information
between different (but identical) scatters

e AO - application orderings, which provide mappings between user orderings and PETSc orderings

Norms:
e NORM_1
e NORM_2

o NORM_INFINITY or NORM_MAX

InsertMode:

o INSERT_VALUES

e ADD_VALUE
Runtime Options:

e -vec_mpi

® -vec_view

e -vec_view_draw

e -vec_view_draw_lg

e -vec_view_matlab
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Ftinclude “vec.h”

int DrawTensorContour(Draw win,int m,int n,double *x,double *y,Vec V)
Draws a contour plot for a two-dimensional array that is stored as a PETSc vector.

int VecAXPBY (Scalar *alpha,Scalar *beta,Vec x,Vec y)
Computes y = alpha x + beta y.

int VecAXPY (Scalar *alpha,Vec x,Vec y)
Computes y = alpha x + y.

int VecAYPX(Scalar *alpha,Vec x,Vec y)
Computes y = x + alpha y.

int VecAbs(Vec v)

Replaces every element in a vector with its absolute value.

int VecAssemblyBegin(Vec vec)
Begins assembling the vector. This routine should be called after completing all calls to VecSetValues().

int VecAssemblyEnd(Vec vec)
Completes assembling the vector. This routine should be called after VecAssemblyBegin().

int VecCopy(Vec x,Vec y)
Copies a vector.

int VecCreateMPI(MPI_Comm comm,int n,int N,Vec *vv)
Creates a parallel vector.

int VecCreateSeq(MPI_Comm comm,int n,Vec *V)
Creates a standard, sequential array-style vector.

int VecCreate(MPI_Comm comm,int n,Vec *V)
Creates a vector, where the vector type is determined from the options database. Generates a parallel MPI
vector if the communicator has more than one processor.

int VecDestroyVecs(Vec *vv,int m)
Frees a block of vectors obtained with VecDuplicateVecs().

int VecDestroy(Vec v)
Destroys a vector.

int VecDot(Vec x, Vec y, Scalar *val)
Computes the vector dot product.

int VecDuplicateVecs(Vec v,int m,Vec **V)
Creates several vectors of the same type as an existing vector.

int VecDuplicate(Vec v,Vec *newv)
Creates a new vector of the same type as an existing vector.

int VecEqual(Vec vecl,Vec vec2,PetscTruth *fig)
Compares two vectors.

int VecGetArrays(Vec *x,int n,Scalar ***a)
Returns a pointer to the arrays in a set of vectors that were created by a call to VecDuplicateVecs(). You
MUST call VecRestoreArrays() when you no longer need access to the array.

int VecGetArray(Vec x,Scalar **a)
Returns a pointer to vector data. For default PETSc vectors, VecGetArray() returns a pointer to the local
data array. Otherwise, this routine is implementation dependent. You MUST call VecRestoreArray() when
you no longer need access to the array.

int VecGetLocalSize(Vec x,int *size)
Returns the number of elements of the vector stored in local memory. This routine may be implementation
dependent, so use with care.

int VecGetOwnershipRange(Vec x,int *low,int *high)
Returns the range of indices owned by this processor, assuming that the vectors are laid out with the first
nl elements on the first processor, next n2 elements on the second, etc. For certain parallel layouts this
range may not be well defined.

int VecGetSize(Vec x,int *size)
Returns the global number of elements of the vector.

int VecGetType(Vec vec,VecType *type,char **name)
Gets the vector type and name (as a string) from the vector.
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int VecLoad(Viewer viewer,Vec *newvec)
Loads a vector that has been stored in binary format with VecView().

int VecMAXPY (int nv,Scalar *alpha,Vec x,Vec *y)
Computes y[j] = alpha[j] x + y[j]-

int VecMDot(int nv,Vec x,Vec *y,Scalar *val)
Computes vector multiple dot products.

int VecMTDot(int nv,Vec x,Vec *y,Scalar *val)
Computes indefinite vector multiple dot products. That is, it does NOT use the complex conjugate.

int VecMax(Vec x,int *p,double *val)
Determines the maximum vector component and its location.

int VecMin(Vec x.int *p,double *val)
Determines the minimum vector component and its location.

int VecNorm(Vec x,NormType type,double *val)
Computes the vector norm.

int VecPlaceArray(Vec vec,Scalar *array)
Allows one to replace the array in a vector with a user provided one. This is useful to avoid copying an

array into a vector. EXPERTS ONLY.

int VecPointwiseDivide(Vec x,Vec y,Vec w)
Computes the componentwise division w = x/y.

int VecPointwiseMult(Vec x,Vec y,Vec w)
Computes the componentwise multiplication w = x*y.

int VecReciprocal(Vec v)
Replaces each component of a vector by its reciprocal.

int VecRestoreArrays(Vec *x,int n,Scalar ***a)
Restores a group of vectors after VecGetArrays() has been called.

int VecRestoreArray(Vec x,Scalar **a)
Restores a vector after VecGetArray() has been called.

int VecScale(Scalar *alpha,Vec x)
Scales a vector.

int VecScatterBegin(Vec x,Vec y,InsertMode addv,ScatterMode mode,VecScatter inctx)
Begins a generalized scatter from one vector to another. Complete the scattering phase with

VecScatterEnd().

int VecScatterCopy( VecScatter sctx,VecScatter *ctx )
Makes a copy of a scatter context.

int VecScatterCreate(Vec xin,IS ix,Vec yin,IS iy,VecScatter *newctx)
Creates a vector scatter context.

int VecScatterDestroy( VecScatter ctx )
Destroys a scatter context created by VecScatterCreate().

int VecScatterEnd(Vec x,Vec y,InsertMode addv,ScatterMode mode, VecScatter ctx)
Ends a generalized scatter from one vector to another. Call after first calling VecScatterBegin().

int VecScatterPostRecvs(Vec x,Vec y,InsertMode addv,ScatterMode mode,VecScatter inctx)
Posts the receives required for the ready-receiver version of the VecScatter routines.

int VecScatterRemap(VecScatter scat,int *rto,int *rfrom)
Remaps the "from” and ”to” indices in a vector scatter context. FOR EXPERTS ONLY!

int VecScatterView(VecScatter ctx, Viewer viewer)
Views a vector scatter context.

int VecSetLocalToGlobalMapping(Vec x, int n,int *indices)
Sets a local numbering to global numbering used by the routine VecSetValuesLocal() to allow users to
insert vector entries using a local (per-processor) numbering.

int VecSetOption(Vec x,VecOption op)
Allows one to set options for a vectors behavior.

int VecSetRandom(PetscRandom rctx,Vec x)
Sets all components of a vector to random numbers.
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int VecSetValuesLocal(Vec x,int ni,int *ix,Scalar *y,InsertMode iora)
Inserts or adds values into certain locations of a vector, using a local ordering of the nodes.

int VecSetValues(Vec x,int ni,int *ix,Scalar *y,InsertMode iora)
Inserts or adds values into certain locations of a vector.

void VecSetValue(Vec v,int row,Scalar value, InsertMode mode);
Set a single entry into a vector.

int VecSet(Scalar *alpha,Vec x)
Sets all components of a vector to a scalar.

int VecShift(Scalar *shift,Vec v)
Shifts all of the components of a vector by computing x[i] = x[i] + shift.

int VecSum/(Vec v,Scalar *sum)
Computes the sum of all the components of a vector.

int VecSwap(Vec x,Vec y)

Swaps the vectors x and y.
int VecTDot(Vec x,Vec y,Scalar *val)

Computes an indefinite vector dot product. That is, this routine does NOT use the complex conjugate.
int VecValid(Vec v,PetscTruth *fig)

Checks whether a vector object is valid.

int VecView(Vec v,Viewer viewer)
Views a vector object.

int VecWAXPY (Scalar *alpha,Vec x,Vec y,Vec w)
Computes w = alpha x + y.

A.2 DMatrix Routines

Data Structures:
e Mat - a matrix of any type (including matrix-free)
Matrix options:
o MAT_ROW_ORIENTED - inserts are done with row-oriented blocks
e MAT_COLUMN_ORIENTED - inserts are done with column-oriented blocks
o MAT_ROWS_SORTED - row indices in the inserted block are sorted
o MAT_COLUMNS_SORTED - column indices in the inserted block are sorted
e MAT_NO_NEW_NONZERO_LOCATIONS - additional inserts will not be allowed if they generate a

New non-zero.
e MAT_YES_NEW_NONZERO_LOCATIONS - additional inserts will be allowed
e MAT SYMMETRIC_MATRIX - matrix is symmetric
e MAT STRUCTURALLY SYMMETRIC_MATRIX - matrix is symmetric in nonzero structure
Orderings:
e ORDER_NATURAL - Natural
e ORDER_ND - Nested Dissection
e ORDER_1IWD - One-Way Dissection
ORDER_RCM - Reverse Cuthill-McKee

ORDER_QMD - Quotient Minimum Degree
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Norms:
e NORM_1
e NORM_2
¢ NORM_FROBENIUS
e NORM_NFINITY or NORM_MAX
Options to MatAssemblyXXX():
e MAT FLUSH_ASSEMBLY - intermediate matrix assembly
e MAT_FINAL_ASSEMBLY - final matrix assembly
Options to MatGetlInfo():
e MAT_LOCAL
e MAT_GLOBAL_MAX
e MAT GLOBAL_SUM
MatType:
e MATSAME - same format as current (e.g., used for MatConvert())
e MATSEQATJ - sequential sparse row (AIJ) format
e MATMPIALJ - parallel sparse row (AIJ) format
e MATSEQDENSE - sequential dense format
¢ MATMPIDENSE - parallel dense format
¢ MATMPIROWRBS - parallel row-based format compatible with BlockSolve95
e MATSEQBATIJ - sequential sparse block row (BAIJ) format
e MATMPIBAIJ - parallel sparse block row (BAIJ) format
e MATSEQBDIAG - sequential block diagonal format
o MATMPIBDIAG - parallel block diagonal format
MatGetSubMatrixCall:
e MAT_INITIAL_MATRIX
e MAT_REUSE_MATRIX
Runtime Options:
e -mat_aij
e -mat_aij_dxml
e -mat_aij_essl
e -mat_aij_inode_limit [limit]
e -mat_aij no_inode
e -mat_aij_oneindex

e -mat_aij_superlu
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-mat_baij

-mat_bdiag

-mat_bdiag_diags [diag number_1,diag number_2,...]
-mat_bdiag_ndiag [number_of_diagonals]
-mat_block_size [size]
-mat_coloring

-mat_dense

-matdluAfill [fill]

-matJu_fill [fill]
-matJlu_pivotthreshold [threshold]
-mat_mpiaij

-mat_mpibaij

-mat_mpibdiag

-mat_mpidense

-mat_mpirowbs

-mat_no_unroll

-mat_order [order]
-mat_rowbs_no_inode

-mat_seqaij

-mat_seqbaij

-mat_seqbdiag

-mat_seqdense

-mat_view

-mat_view_draw

-mat_view_info
-mat_view_info_detailed
-mat_view_matlab

-matload _bdiag_diags
-matload_block_size [size]

-matload_ignore_info
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Ftinclude “mat.h”

int MatAXPY (Scalar *a,Mat X,Mat Y)
Computes Y = a*X + Y.

int MatAssemblyBegin(Mat mat,MatAssemblyType type)
Begins assembling the matrix. This routine should be called after completing all calls to MatSetValues().

int MatAssemblyEnd(Mat mat,MatAssemblyType type)
Completes assembling the matrix. This routine should be called after Mat AssemblyBegin().

int MatBDiagGetData(Mat mat,int *nd,int *bs,int **diag,int **bdlen,Scalar ***diagv)
Gets the data for the block diagonal matrix format. For the parallel case, this returns information for the
local submatrix.

int MatCholeskyFactorNumeric(Mat mat,Mat *fact)
Performs numeric Cholesky factorization of a symmetric matrix. Call this routine after first calling

MatCholeskyFactorSymbolic().

int MatCholeskyFactorSymbolic(Mat mat,IS perm,double f,Mat *fact)
Performs symbolic Cholesky factorization of a symmetric matrix.

int MatCholeskyFactor(Mat mat,IS perm,double f)
Performs in-place Cholesky factorization of a symmetric matrix.

int MatColoringGetName(MatColoring meth,char **name)
Gets the name associated with a coloring.

int MatColoringPatch(Mat mat,int n,int *colorarray,ISColoring *iscoloring)
EXPERTS ONLY, used inside matrix coloring routines that use matGetRowlJ() and/or
MatGetColumnlJ().

int MatColoringRegister All()

Registers all of the matrix coloring routines in PETSc.

int MatColoringRegisterDestroy()
Frees the list of coloringing routines.

int MatColoringRegister(MatColoring *name,char *sname,int
(*color)(Mat,MatColoring,ISColoring*))

Adds a new sparse matrix coloring to the matrix package.

int MatCompress(Mat mat)
Tries to store the matrix in as little space as possible. May fail if memory is already fully used, since it
tries to allocate new space.

int MatConvert(Mat mat,MatType newtype,Mat *M)
Converts a matrix to another matrix, either of the same or different type.

int MatCopy(Mat A,Mat B)

Copys a matrix to another matrix.

int MatCreate MPIAIJ(MPI_Comm comm,int m,int n,int M,int N, int d nz,int *d_nnz,int o_nz,int
*omnnz,Mat *A)
Creates a sparse parallel matrix in AIJ format (the default parallel PETSc format). For good matrix
assembly performance the user should preallocate the matrix storage by setting the parameters d_nz (or
d_nnz) and onz (or onnz). By setting these parameters accurately, performance can be increased by more
than a factor of 50.

int MatCreate MPIBAIJ(MPI_Comm comm,int bs,int m,int n,int M,int N, int d nz,int *d_nnz,int
onz,int *o_nnz,Mat *A)
Creates a sparse parallel matrix in block AIJ format (block compressed row). For good matrix assembly
performance the user should preallocate the matrix storage by setting the parameters d_nz (or d_nnz) and
oz (or onnz). By setting these parameters accurately, performance can be increased by more than a
factor of 50.

int MatCreateMPIBDiag(MPI_Comm comm,int m,int M,int N,int nd,int bs, int *diag,Scalar
**diagv,Mat *A)

Creates a sparse parallel matrix in MPIBDiag format.

int MatCreateMPIDense(MPI_Comm comm,int m,int n,int M,int N,Scalar *data,Mat *A)
Creates a sparse parallel matrix in dense format.

int MatCreate MPIRowbs(MPI_Comm comm,int m,int M,int nz,int *nnz,void *procinfo,Mat

*newA)
Creates a sparse parallel matrix in the MATMPIROWBS format. This format is intended primarily as an

interface for BlockSolve95.
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int MatCreateSeqAIJ(MPI_Comm comm,int m,int n,int nz,int *nnz, Mat *A)
Creates a sparse matrix in AIJ (compressed row) format (the default parallel PETSc format). For good
matrix assembly performance the user should preallocate the matrix storage by setting the parameter nz
(or the array nzz). By setting these parameters accurately, performance during matrix assembly can be
increased by more than a factor of 50.

int MatCreateSeqBAIJ(MPI_Comm comm,int bs,int m,int n,int nz,int *nnz, Mat *A)
Creates a sparse matrix in block AIJ (block compressed row) format. For good matrix assembly
performance the user should preallocate the matrix storage by setting the parameter nz (or the array nzz).
By setting these parameters accurately, performance during matrix assembly can be increased by more
than a factor of 50.

int MatCreateSeqBDiag(MPI_Comm comm,int m,int n,int nd,int bs,int *diag, Scalar **diagv,Mat
*A)

Creates a sequential block diagonal matrix.

int MatCreateSeqDense(MPI_Comm comm,int m,int n,Scalar *data,Mat *A)
Creates a sequential dense matrix that is stored in column major order (the usual Fortran 77 manner).
Many of the matrix operations use the BLAS and LAPACK routines.

int MatCreateShell( MPI_Comm comm,int m,int n,int M,int N,void *ctx,Mat *A)
Creates a new matrix class for use with a user-defined private data storage format.

int MatCreate(MPI_Comm comm,int m,int n,Mat *A)
Creates a matrix where the type is determined from the options database. Generates a parallel MPI
matrix if the communicator has more than one processor. The default matrix type is AlJ, using the

routines MatCreateSeqAIJ() and MatCreate MPIALJ().

int MatDestroyMatrices(int n,Mat **mat)
Destroys a set of matrices obtained with MatGetSubMatrices().

int MatDestroy(Mat mat)
Frees space taken by a matrix.

int MatDiagonalScale(Mat mat,Vec 1,Vec r)
Scales a matrix on the left and right by diagonal matrices that are stored as vectors. Either of the two

scaling matrices can be PETSC_NULL.

int MatDiagonalShift(Mat Y,Vec D)

Computes Y = Y + D, where D is a diagonal matrix that is represented as a vector.

int MatEqual(Mat A ,Mat B,PetscTruth *fig)

Compares two matrices.

int MatFDColoringApply(Mat J,MatFDColoring coloring,Vec x1,Vec wl,Vec w2,Vec w3, int
(*f)(void *,Vec,Vec,void*),void *sctx,void *fctx)
Given a matrix for which a MatFDColoring has been created, computes the Jacobian for a function via
finite differences.

int MatFDColoringCreate(Mat mat,ISColoring iscoloring,MatFDColoring *color)
Creates a matrix coloring context for finite difference computation of Jacobians.

int MatFDColoringDestroy(MatFDColoring c)

Destroys a matrix coloring context that was created via MatFDColoringCreate().

int MatFDColoringPrintHelp(MatFDColoring fd)

Prints help message for matrix finite difference calculations using coloring.

int MatFDColoringSetFromOptions(MatFDColoring matfd)

Set coloring finite difference parameters from the options database.

int MatFDColoringSetParameters(MatFDColoring matfd,double error,double umin)
Sets the parameters for the approximation of Jacobian using finite differences.

int MatFDColoringView(MatFDColoring color,Viewer viewer)
Views a finite difference coloring context.

int MatGetArray(Mat mat,Scalar **v)
Returns a pointer to the element values in the matrix. This routine is implementation dependent, and may
not even work for certain matrix types. You MUST call MatRestoreArray() when you no longer need to
access the array.

int MatGetBlockSize(Mat mat,int *bs)
Returns the matrix block size; useful especially for the block row and block diagonal formats.
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int MatGetColoringTypeFromOptions(char *prefix,MatColoring *type)
Gets matrix coloring method from the options database.

int MatGetColoring(Mat mat,MatColoring type,ISColoring *iscoloring)
Gets a coloring for a matrix to reduce fill or to improve numerical stability of LU factorization.

int MatGetColumnlIJ(Mat mat,int shift,PetscTruth symmetric,int *n,int **ia,int** ja,PetscTruth
*done)
Returns the compress Column storage i and j indices for sequential matrices. EXPERTS ONLY.

int MatGetDiagonal(Mat mat,Vec v)
Gets the diagonal of a matrix.

int MatGetInfo(Mat mat,MatInfoType flag,MatInfo *info)
Returns information about matrix storage (number of nonzeros, memory, etc.).

int MatGetLocalSize(Mat mat,int *m,int* n)
Returns the number of rows and columns in a matrix stored locally. This information may be
implementation dependent, so use with care.

int MatGetOwnershipRange(Mat mat,int *m,int* n)
Returns the range of matrix rows owned by this processor, assuming that the matrix is laid out with the
first n1 rows on the first processor, the next n2 rows on the second, etc. For certain parallel layouts this
range may not be well defined.

int MatGetReorderingTypeFromOptions(char *prefix,MatReordering *type)
Gets matrix reordering method from the options database.

int MatGetReordering(Mat mat,MatReordering type,IS *rperm,IS *cperm)
Gets a reordering for a matrix to reduce fill or to improve numerical stability of LU factorization.

int MatGetRowlIJ(Mat mat,int shift,PetscTruth symmetric,int *n,int **ia,int** ja,PetscTruth
*done)
Returns the compress row storage i and j indices for sequential matrices. EXPERTS ONLY.

int MatGetRow(Mat mat,int row,int *ncols,int **cols,Scalar **vals)
Gets a row of a matrix. You MUST call MatRestoreRow() for each row that you get to ensure that your
application does not bleed memory.

int MatGetSize(Mat mat,int *m,int* n)
Returns the numbers of rows and columns in a matrix.

int MatGetSubMatrices(Mat mat,int n,IS *irow,IS *icol,MatGetSubMatrixCall scall, Mat
**submat)
Extracts several submatrices from a matrix. If submat points to an array of valid matrices, it may be
reused.

int MatGetTypeFromOptions(MPI_Comm comm,char *pre,MatType *type,int *set)
Determines from the options database what matrix format the user has specified.

int MatGetType(Mat mat,MatType *type,char **name)
Gets the matrix type and name (as a string) from the matrix.

int MatGetValues(Mat mat,int m,int *idxm,int n,int *idxn,Scalar *v)
Gets a block of values from a matrix.

int MatHasOperation(Mat mat,MatOperation op,PetscTruth *has)
Determines if the given matrix supports the particular operation.

int MatILUDTFactor(Mat mat,double dt,int maxnz,IS row,IS col,Mat *fact)
Performs a drop tolerance ILU factorization.

int MatILUFactorSymbolic(Mat mat,IS row,IS col,double f,int fill, Mat *fact)
Performs symbolic ILU factorization of a matrix. Uses levels of fill only, not drop tolerance. Use
MatLUFactorNumeric() to complete the factorization.

int MatILUFactor(Mat mat,IS row,IS col,double f,int level)
Performs in-place ILU factorization of matrix.

int MatIncompleteCholeskyFactorSymbolic(Mat mat,IS perm,double f,int fill, Mat *fact)
Performs symbolic incomplete Cholesky factorization for a symmetric matrix. Use
MatCholeskyFactorNumeric() to complete the factorization.

int MatIncreaseOverlap(Mat mat,int n, IS *is,int ov)
Given a set of submatrices indicated by index sets, replaces the index by larger ones that represent
submatrices with more overlap.
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int MatLUFactorNumeric(Mat mat,Mat *fact)
Performs numeric LU factorization of a matrix. Call this routine after first calling

MatLUFactorSymbolic().

int MatLUFactorSymbolic(Mat mat,IS row,IS col,double f,Mat *fact)
Performs symbolic LU factorization of matrix. Call this routine before calling MatLUFactorNumeric().

int MatLUFactor(Mat mat,IS row,IS col,double f)

Performs in-place LU factorization of matrix.

int MatLoad(Viewer viewer,MatType outtype,Mat *newmat)
Loads a matrix that has been stored in binary format with MatView(). The matrix format is determined
from the options database. Generates a parallel MPI matrix if the communicator has more than one
processor. The default matrix type is AlJ.

int MatMultAdd(Mat mat,Vec v1,Vec v2,Vec v3)
Computes v3 = v2 + A * vl.

int MatMultTransAdd(Mat mat,Vec vl,Vec v2,Vec v3)
Computes v3 = v2 + A’ * vl.

int MatMultTrans(Mat mat,Vec x,Vec y)
Computes matrix transpose times a vector.

int MatMult(Mat mat,Vec x,Vec y)
Computes the matrix-vector product, y = Ax.

int MatNorm(Mat mat,NormType type,double *norm)
Calculates various norms of a matrix.

int MatPermute(Mat mat,IS row,IS col,Mat *B)
Creates a new matrix with rows and columns permuted from the original.

int MatPrintHelp(Mat mat)
Prints all the options for the matrix.

int MatRelax(Mat mat,Vec b,double omega,MatSORType flag,double shift, int its,Vec x)
Computes one relaxation sweep.

int MatReorderForNonzeroDiagonal(Mat mat,double atol,IS ris,IS cis )
Changes matrix ordering to remove zeros from diagonal. This may help in the LU factorization to prevent
a zero pivot.

int MatReorderingGetName(MatReordering meth,char **name)
Gets the name associated with a reordering.

int MatReorderingRegisterAll()

Registers all of the matrix reordering routines in PETSc.

int MatReorderingRegisterDestroy()
Frees the list of ordering routines.

int MatReorderingRegister(MatReordering *name,char *sname,int
(*order)(Mat,MatReordering,IS*,IS*))

Adds a new sparse matrix reordering to the matrix package.

int MatRestoreArray (Mat mat,Scalar **v)
Restores the matrix after MatGetArray has been called.

int MatRestoreColumnlJ(Mat mat,int shift,PetscTruth symmetric,int *n,int **ia,int**

ja,PetscTruth *done)
Call after you are completed with the ia,ja indices obtained with MatGetColumnlJ(). EXPERTS ONLY.

int MatRestoreRowIJ(Mat mat,int shift,PetscTruth symmetric,int *n,int **ia,int** ja,PetscTruth

*done)
Call after you are completed with the ia,ja indices obtained with MatGetRowlJ(). EXPERTS ONLY.

int MatRestoreRow(Mat mat,int row,int *ncols,int **cols,Scalar **vals)
Frees any temporary space allocated by MatGetRow().

int MatScale(Scalar *a,Mat mat)
Scales all elements of a matrix by a given number.

int MatSetLocalToGlobalMapping(Mat x, int n,int *indices)
Sets a local numbering to global numbering used by the routine MatSetValuesLocal() to allow users to
insert matrices entries using a local (per-processor) numbering.
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int MatSetOption(Mat mat,MatOption op)
Sets a parameter option for a matrix. Some options may be specific to certain storage formats. Some
options determine how values will be inserted (or added). Sorted, row-oriented input will generally
assemble the fastest. The default is row-oriented, nonsorted input.

int MatSetUnfactored(Mat mat)
Resets a factored matrix to be treated as unfactored.

int MatSetValuesLocal(Mat x,int nrow,int *irow,int ncol, int *icol,Scalar *y,InsertMode iora)
Inserts or adds values into certain locations of a matrix, using a local ordering of the nodes.

int MatSetValues(Mat mat,int m,int *idxm,int n,int *idxn,Scalar *v,InsertMode addv)
Inserts or adds a block of values into a matrix. These values may be cached, so MatAssemblyBegin() and

MatAssemblyEnd() MUST be called after all calls to MatSetValues() have been completed.

void MatSetValue(Mat m,int row,int col,Scalar value,InsertMode mode);
Set a single entry into a matrix.

int MatShellGetContext(Mat mat,void **ctx)
Returns the user-provided context associated with a shell matrix.

int MatShellSetOperation(Mat mat,MatOperation op, void *f)
Allows user to set a matrix operation for a shell matrix.

int MatShift(Scalar *a,Mat Y)

Computes Y = Y + a I, where a is a scalar and [ is the identity matrix.

int MatSolveAdd(Mat mat,Vec b,Vec y,Vec x)

Computes x = y + inv(A)*b, given a factored matrix.

int MatSolveTransAdd(Mat mat,Vec b,Vec y,Vec x)

Computes x = y + inv(trans(A)) b, given a factored matrix.

int MatSolveTrans(Mat mat,Vec b,Vec x)
Solves A’ x = b, given a factored matrix.

int MatSolve(Mat mat,Vec b,Vec x)
Solves A x = b, given a factored matrix.

int MatTranspose(Mat mat,Mat *B)
Computes an in-place or out-of-place transpose of a matrix.

int MatValid(Mat m,PetscTruth *fig)

Checks whether a matrix object is valid.

int MatView(Mat mat,Viewer viewer)
Visualizes a matrix object.

int MatZeroEntries(Mat mat)
Zeros all entries of a matrix. For sparse matrices this routine retains the old nonzero structure.

int MatZeroRowsLocal(Mat mat,IS is, Scalar *diag)
Zeros all entries (except possibly the main diagonal) of a set of rows of a matrix; using local numbering of
rows.

int MatZeroRows(Mat mat,IS is, Scalar *diag)
Zeros all entries (except possibly the main diagonal) of a set of rows of a matrix.

A.3 Simplified Linear Solvers
Data Structures:

e SLES - linear equation solver context
Runtime Options:

o sles_view

Ftinclude “sles.h”
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int SLESAppendOptionsPrefix(SLES sles,char *prefix)
Appends to the prefix used for searching for all SLES options in the database. You must include the - at
the beginning of the prefix name.

int SLESCreate(MPI_Comm comm,SLES *outsles)

Creates a linear equation solver context.

int SLESDestroy(SLES sles)
Destroys the SLES context.

int SLESGetKSP(SLES sles, KSP *ksp)
Returns the KSP context for a SLES solver.

int SLESGetOptionsPrefix(SLES sles,char **prefix)
Gets the prefix used for searching for all SLES options in the database.

int SLESGetPC(SLES sles,PC *pc)
Returns the preconditioner (PC) context for a SLES solver.

int SLESPrintHelp(SLES sles)
Prints SLES options.

int SLESSetFromOptions(SLES sles)
Sets various SLES parameters from user options. Also takes all KSP and PC options.

int SLESSetOperators(SLES sles,Mat Amat,Mat Pmat,MatStructure flag)
Sets the matrix associated with the linear system and a (possibly) different one associated with the
preconditioner.

int SLESSetOptionsPrefix(SLES sles,char *prefix)
Sets the prefix used for searching for all SLES options in the database. You must include the - at the
beginning of the prefix name.

int SLESSetUpOnBlocks(SLES sles)
Sets up the preconditioner for each block in the block Jacobi, block Gauss-Seidel, and overlapping Schwarz
methods.

int SLESSetUp(SLES sles,Vec b,Vec x)

Performs set up required for solving a linear system.

int SLESSolve(SLES sles,Vec b,Vec x,int *its)

Solves a linear system.

int SLESView(SLES sles,Viewer viewer)
Prints the SLES data structure.

A.4 Preconditioners

Data Structures:
e PC - preconditioner context
Available Methods:
e PCNONE - null preconditioner
e PCJACOBI - Jacobi
e PCSOR - SOR/SSOR and other variants
o PCEISENSTAT - SOR using the Eisenstat trick
e PCBJACOBI - block Jacobi
e PCASM - additive overlapping Schwarz
e PCILU - incomplete LU
e PCICC - incomplete Cholesky
e PCBGS - block Gauss-Seidel
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e PCMG - multigrid
e PCSHELL - user-defined shell preconditioner
e PCLU - LU (direct solver)
MGType:
e MGMULTIPLICATIVE
e MGADDITIVE
e MGFULL
e MGKASKADE
Runtime Options:
e -pc_type [jacobi,bjacobi,sor,eisenstat,ilu icc,asm bgs,mg lu,shell none]
e -pc_asm_blocks [blocks]

e -pc_asm_overlap [overlap]

-pc-bgs_blocks [blocks]

e -pc_bgs_symmetric

-pc_bgs_truelocal

e -pc_bjacobi_blocks [blocks]

e -pc_bjacobi_truelocal

e -pc_eisenstat_diagonal_scaling
e -pc_eisenstat_omega [omegal

e -pc_icc_factorpointwise

-pe_ilu_factorpointwise

e -pc_ilun_place

-pe-ilu_levels [levels]

e -pc_ilu_preserve_row_sums
e -pc_ilu_reuse_fill

e -pc_ilu_reuse_reordering

e -pc_ilu_use_drop_tolerance
e -pclu_in_place

e -pcmg_cycles [eycles]

e -pc_mg levels [levels]

e -pcmg_method [method]
e -pc_mg-smoothdown

e -pc_mg-smoothup

e -pc_sor_backward
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e -pc_sor_its [iterations]

e -pc_sor_local_backward
e -pc_sor_local forward

e -pc_sor_local_symmetric
e -pcsor_omega [omegal

e -pc_sor_symmetric

Ftinclude “pc.h”

int MGCheck(PC pc)
Checks that all components of the MG structure have been set.

int MGDefaultResidual(Mat mat,Vec b,Vec x,Vec r)

Default routine to calculate the residual.

int MGGetCoarseSolve(PC pc,SLES *sles)

Gets the solver context to be used on the coarse grid.

int MGGetLevels(PC pc,int *levels)
Gets the number of levels to use with MG.

int MGGetSmootherDown(PC pc,int 1,SLES *sles)

Gets the SLES context to be used as smoother before coarse grid correction (pre-smoother).

int MGGetSmootherUp(PC pc,int 1,SLES *sles)

Gets the SLES context to be used as smoother after coarse grid correction (post-smoother).

int MGGetSmoother(PC pc,int 1,SLES *sles)
Gets the SLES context to be used as smoother for both pre- and post-smoothing. Call both
MGGetSmootherUp() and MGGetSmootherDown() to use different functions for pre- and post-smoothing.

int MGSetCyclesOnLevel(PC pc,int l,int ¢)

Sets the number of cycles to run on this level.

int MGSetCycles(PC pc,int n)
Sets the number of cycles to use. 1 denotes a V-cycle; 2 denotes a W-cycle. Use MGSetCyclesOnLevel()
for more complicated cycling.

int MGSetInterpolate(PC pc,int l,Mat mat)
Sets the function to be used to calculate the interpolation on the Ith level.

int MGSetLevels(PC pc,int levels)
Sets the number of levels to use with MG. Must be called before any other MG routine.

int MGSetNumberSmoothDown(PC pc,int n)
Sets the number of pre-smoothing steps to use on all levels. Use MGGetSmootherDown() to set different
pre-smoothing steps on different levels.

int MGSetNumberSmoothUp(PC pec,int n)
Sets the number of post-smoothing steps to use on all levels. Use MGGetSmootherUp() to set different
numbers of post-smoothing steps on different levels.

int MGSetResidual(PC pc,int L,int (*residual)(Mat,Vec,Vec,Vec),Mat mat)

Sets the function to be used to calculate the residual on the lth level.

int MGSetRestriction(PC pc,int 1,Mat mat)
Sets the function to be used to restrict vector from level 1 to 1-1.

int MGSetRhs(PC pc,int 1,Vec c)
Sets the vector space to be used to store the right-hand side on a particular level. The user should free this
space at the conclusion of multigrid use.

int MGSetR(PC pc,int 1,Vec c)
Sets the vector space to be used to store the residual on a particular level. The user should free this space
at the conclusion of multigrid use.

int MGSetType(PC pc,MGType form)

Determines the form of multigrid to use: multiplicative, additive, full, or the Kaskade algorithm.

int MGSetX(PC pc,int 1,Vec c)
Sets the vector space to be used to store the solution on a particular level. The user should free this space
at the conclusion of multigrid use.
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int PCASMCreateSubdomains2D (int m,int n,int M,int N,int dof,int overlap,int *Nsub,IS **is)
Creates the index sets for the overlapping Schwarz preconditioner for a two-dimensional problem on a
regular grid.

int PCASMGetSubSLES(PC pc,int *n_local,int *first_local,SLES **sles)
Gets the local SLES contexts for all blocks on this processor.

int PCASMSetLocalSubdomains(PC pc, int n, IS *is)
Sets the local subdomains (for this processor only) for the additive Schwarz preconditioner. Either all or
no processors in the PC communicator must call this routine.

int PCASMSetOverlap(PC pc, int ovl)
Sets the overlap between a pair of subdomains for the additive Schwarz preconditioner. Either all or no
processors in the PC communicator must call this routine.

int PCASMSetTotalSubdomains(PC pc, int N, IS *is)
Sets the subdomains for all processor for the additive Schwarz preconditioner. Either all or no processors
in the PC communicator must call this routine, with the same index sets.

int PCAppendOptionsPrefix(PC pc,char *prefix)
Appends to the prefix used for searching for all PC options in the database. You must NOT include the -
at the beginning of the prefix name.

int PCApplyBAorABTrans(PC pc,PCSide side,Vec x,Vec y,Vec work)

Applies the transpose of the preconditioner and operator to a vector.

int PCApplyBAorAB(PC pc, PCSide side,Vec x,Vec y,Vec work)

Applies the preconditioner and operator to a vector.

int PCApplyRichardsonExists(PC pc, PetscTruth *exists)
Determines whether a particular preconditioner has a built-in fast application of Richardson’s method.

int PCApplyRichardson(PC pc,Vec x,Vec y,Vec w,int its)
Applies several steps of Richardson iteration with the particular preconditioner. This routine is usually
used by the Krylov solvers and not the application code directly.

int PCApplySymmetricLeft(PC pc,Vec x,Vec y)
Applies the left part of a symmetric preconditioner to a vector.

int PCApplySymmetricRight(PC pc,Vec x,Vec y)
Applies the right part of a symmetric preconditioner to a vector.

int PCApplyTrans(PC pc,Vec x,Vec y)

Applies the transpose of preconditioner to a vector.

int PCApply(PC pc,Vec x,Vec y)

Applies the preconditioner to a vector.

int PCBGSGetSubSLES(PC pc,int *n local,int *first_local,SLES **sles)
Gets the local SLES contexts for all blocks on this processor.

int PCBGSSetLocalBlocks(PC pc, int blocks,int *lens)
Sets the local number of blocks for the block Gauss-Seidel (BGS) preconditioner.

int PCBGSSetSymmetric(PC pc, PCBGSType flag)
Sets the BGS preconditioner to use symmetric, backward, or forward relaxation. By default, forward
relaxation is used.

int PCBGSSetTotalBlocks(PC pc, int blocks,int *lens)
Sets the global number of blocks for the block Gauss-Seidel (BGS) preconditioner.

int PCBGSSetUseTrueLocal(PC pc)
Sets a flag to indicate that the block problem is associated with the linear system matrix instead of the
default (where it is associated with the preconditioning matrix). That is, if the local system is solved
iteratively then it iterates on the block from the matrix using the block from the preconditioner as the
preconditioner for the local block.

int PCBJacobiGetSubSLES(PC pc,int *n_local,int *first local,SLES **sles)
Gets the local SLES contexts for all blocks on this processor.

int PCBJacobiSetLocalBlocks(PC pc, int blocks,int *lens)

Sets the local number of blocks for the block Jacobi preconditioner.

int PCBJacobiSetTotalBlocks(PC pc, int blocks,int *lens)
Sets the global number of blocks for the block Jacobi preconditioner.
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int PCBJacobiSetUseTrueLocal(PC pc)
Sets a flag to indicate that the block problem is associated with the linear system matrix instead of the
default (where it is associated with the preconditioning matrix). That is, if the local system is solved
iteratively then it iterates on the block from the matrix using the block from the preconditioner as the
preconditioner for the local block.

int PCCreate(MPI_Comm comm,PC *newpc)
Creates a preconditioner context.

int PCDestroy(PC pc)
Destroys PC context that was created with PCCreate().

int PCEisenstatSetOmega(PC pc,double omega)
Sets the SSOR relaxation coefficient, omega, to use with Eisenstat’s trick (where omega = 1.0 by default).

int PCEisenstatUseDiagonalScaling(PC pc)
Causes the Eisenstat preconditioner to do an additional diagonal preconditioning. For matrices with very
different values along the diagonal, this may improve convergence.

int PCGetFactoredMatrix(PC pc,Mat *mat)
Gets the factored matrix from the preconditioner context. This routine is valid only for the LU, incomplete
LU, Cholesky, and incomplete Cholesky methods.

int PCGetOperators(PC pc,Mat *mat,Mat *pmat,MatStructure *flag)
Gets the matrix associated with the linear system and possibly a different one associated with the
preconditioner.

int PCGetOptionsPrefix(PC pc,char **prefix)
Gets the prefix used for searching for all PC options in the database.

int PCGetType(PC pc,PCType *meth,char **name)
Gets the PC method type and name (as a string) from the PC context.

int PCILUSetLevels(PC pc,int levels)

Sets the number of levels of fill to use.

int PCILUSetReuseFill(PC pc,PetscTruth flag)
When matrices with same nonzero structure are ILUDT factored, this causes later ones to use the fill
computed in the initial factorization.

int PCILUSetReuseReordering(PC pc,PetscTruth flag)
When similar matrices are factored, this causes the ordering computed in the first factor to be used for all
following factors; applies to both fill and drop tolerance ILUs.

int PCILUSetUseDropTolerance(PC pc,double dt,int dtcount)

The preconditioner will use an ILU based on a drop tolerance.

int PCILUSetUseInPlace(PC pc)

Tells the system to do an in-place incomplete factorization.

int PCLUSetUseInPlace(PC pc)
Tells the system to do an in-place factorization. For some implementations, for instance, dense matrices,
this enables the solution of much larger problems.

int PCModifySubMatrices(PC pc,int nsub,IS *row,IS *col,Mat *submat,void *ctx)
Calls an optional user-defined routine within certain preconditioners if one has been set with

PCSetModifySubMarices().

int PCNullSpaceCreate(MPI_Comm comm, int has_cnst, int n, Vec *vecs,PCNullSpace *SP)
Creates a data-structure used to project vectors out of null spaces.

int PCNullSpaceDestroy(PCNullSpace sp)

Destroys a data-structure used to project vectors out of null spaces.

int PCNullSpaceRemove(PCNullSpace sp,Vec vec)

Removes all the components of a null space from a vector.

int PCPostSolve(PC pc,KSP ksp)
Optional post-solve phase, intended for any preconditioner-specific actions that must be performed after
the iterative solve itself.

int PCPreSolve(PC pc,KSP ksp)
Optional pre-solve phase, intended for any preconditioner-specific actions that must be performed before
the iterative solve itself.

int PCPrintHelp(PC pc)
Prints all the options for the PC component.
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int PCRegisterAll()
Registers all of the preconditioners in the PC package.

int PCRegisterDestroy()
Frees the list of preconditioners that were registered by PCRegister().

int PCRegister(PCType name,char *sname,int (*create)(PC))
Adds the preconditioner to the preconditioner package, given a preconditioner name (PCType) and a
function pointer.

int PCSORSetlIterations(PC pc, int its)
Sets the number of inner iterations to be used by the SOR preconditioner. The default is 1.

int PCSORSetOmega(PC pc, double omega)
Sets the SOR relaxation coeflicient, omega (where omega = 1.0 by default).

int PCSORSetSymmetric(PC pc, MatSORType flag)
Sets the SOR preconditioner to use symmetric (SSOR), backward, or forward relaxation. The local
variants perform SOR on each processor. By default forward relaxation is used.

int PCSetFromOptions(PC pc)
Sets PC options from the options database. This routine must be called before PCSetUp() if the user is to
be allowed to set the preconditioner method.

int PCSetModifySubMatrices(PC pc,int(*func) (PC,int,IS*,IS* Mat*,void*),void *ctx)
Sets a user-defined routine for modifying the submatrices that arise within certain subdomain-based
preconditioners. The basic submatrices are extracted from the preconditioner matrix as usual; the user can
then alter these (for example, to set different boundary conditions for each submatrix) before they are used
for the local solves.

int PCSetOperators(PC pc,Mat Amat,Mat Pmat,MatStructure flag)
Sets the matrix associated with the linear system and a (possibly) different one associated with the
preconditioner.

int PCSetOptionsPrefix(PC pc,char *prefix)
Sets the prefix used for searching for all PC options in the database. You must NOT include the - at the
beginning of the prefix name.

int PCSetType(PC ctx,PCType type)

Builds PC for a particular preconditioner.

int PCSetUpOnBlocks(PC pc)
Sets up the preconditioner for each block in the block Jacobi, block Gauss-Seidel, and overlapping Schwarz
methods.

int PCSetUp(PC pc)

Prepares for the use of a preconditioner.

int PCSetVector(PC pc,Vec vec)

Sets a vector associated with the preconditioner.

int PCShellGetName(PC pc,char **name)

Gets an optional name that the user has set for a shell preconditioner.

int PCShellSetApplyRichardson(PC pc, int (*apply)(void*,Vec,Vec,Vec,int), void *ptr)
Sets routine to use as preconditioner in Richardson iteration.

int PCShellSetApply(PC pc, int (*apply)(void*,Vec,Vec),void *ptr)
Sets routine to use as preconditioner.

int PCShellSetName(PC pc,char *name)

Sets an optional name to associate with a shell preconditioner.

int PCView(PC pc,Viewer viewer)
Prints the PC data structure.

A.5 Krylov Subspace Methods

Data Structures:
e KSP - Krylov space solver context

Available Methods:
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o KSPCG - Conjugate Gradient
o KSPGMRES - Generalized Minimal Residual (GMRES)
e KSPBCGS - BiCGSTAB
e KSPCGS - Conjugate Gradient Squared
e KSPTFQMR - Transpose-Free Quasi-Minimal Residual (var. 1)
e KSPTCQMR - Transpose-Free Quasi-Minimal Residual (var. 2)
e KSPCR - Conjugate Residual
e KSPLSQR - Least Squares Method
o KSPRICHARDSON - Richardson’s method
e KSPCHEBYCHEYV - Chebyshev method
o KSPPREONLY - shell for no KSP method
Runtime Options:
o -ksp_type [cg,cgs,begs gmres,teqmr,tfgmr,cr richardson,chebyshev lsqr,qcg, preonly]
o -ksp_atol [absolute_tolerance]

e -ksp_bsmonitor

-ksp_cg_Hermitian

e -ksp_cg_symmetric

e -ksp_compute_eigenvalues

e -ksp_compute_eigenvalues_explicitly
e -ksp_divtol [divergence_tolerance]

e -ksp_eigen

e -ksp_gmres_rorthog

e -ksp_gmres_preallocate

o -ksp_gmres_restart [restart_number]
e -ksp_gmres_unmodifiedgramschmidt
e -ksp_left_pc

e -ksp_max_it [maximum_iterations]

e -ksp_monitor

-ksp_plot_eigenvalues

-ksp_plot_eigenvalues_explicitly

e -ksp_preres

-ksp_richardson_scale

-ksp_right_pc

-ksp_rtol [relative_tolerance]
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e -ksp_singmonitor
e -ksp_smonitor

e -ksp_symmetric_pc

-ksp_truemonitor
e -ksp_type
e -ksp_xmonitor

e -ksp_xtruemonitor

Ftinclude “ksp.h”

int KSPAddOptionsChecker(int (*kspcheck)(KSP) )
Adds an additional function to check for KSP options.

int KSPAppendOptionsPrefix(KSP ksp,char *prefix)
Appends to the prefix used for searching for all KSP options in the database. You must NOT include the -
at the beginning of the prefix name.

int KSPBuildResidual(KSP ctx, Vec t, Vec v, Vec *V)

Builds the residual in a vector provided.

int KSPBuildSolution(KSP ctx, Vec v, Vec *V)
Builds the approximate solution in a vector provided. This routine is NOT commonly needed (see

SLESSolve()).

int KSPCGSetType(KSP ksp, KSPCGType type)
Sets the variant of the conjugate gradient method to use for solving a linear system with a complex
coefficient matrix. This option is irrelevant when solving a real system.

int KSPChebychevSetEigenvalues(KSP ksp,double emax,double emin)

Sets estimates for the extreme eigenvalues of the preconditioned problem.

int KSPComputeEigenvaluesExplicitly (KSP ksp,int nmax,double *r,double *c)
Computes all of the eigenvalues of the preconditioned operator using LAPACK. This is very slow but will
generally provide accurate eigenvalue estimates. It will only run for small problems, say n | 500. It
explicitly forms a dense matrix representing the preconditioned operator.

int KSPComputeEigenvalues(KSP ksp,int n,double *r,double *c)
Computes the extreme eigenvalue for the preconditioned operator. Called after or during KSPSolve()
(SLESSolve()). This does not usually provide accurate estimates; it is only for helping people understand
the convergence of iterative methods, not for eigenanalysis.

int KSPComputeExplicitOperator(KSP ksp, Mat *mat)
Computes as a dense matrix the explicit preconditioned operator. This is done by applying the operators
to columns of the identity matrix.

int KSPComputeExtremeSingularValues(KSP ksp,double *emax,double *emin)
Computes the extreme singular values for the preconditioned operator. Called after or during KSPSolve()

(SLESSolve()).

int KSPCreate(MPI_Comm comm,KSP *ksp)
Creates the default KSP context.

int KSPDefaultConverged(KSP ksp,int n,double rnorm,void *dummy)
Determines convergence of the iterative solvers (default code).

int KSPDefaultMonitor(KSP ksp,int n,double rnorm,void *dummy)
Print the residual norm at each iteration of an iterative solver.

int KSPDestroy(KSP ksp)
Destroys KSP context.

int KSPGMRESSetOrthogonalization( KSP ksp,int (*fcn)(KSP,int) )
Sets the orthogonalization routine used by GMRES.

int KSPGMRESSetPreAllocateVectors(KSP ksp)
Causes GMRES to preallocate all its needed work vectors at initial setup rather than the default, which is
to allocate them in chunks when needed.

int KSPGMRESSetRestart(KSP ksp,int max_k )
Sets the number of search directions for GMRES before restart.
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int KSPGetConvergenceContext(KSP ksp, void **ctx)
Gets the convergence context set with KSPSetConvergenceTest().

int KSPGetMonitorContext(KSP ksp, void **ctx)
Gets the monitoring context, as set by KSPSetMonitor().

int KSPGetOptionsPrefix(KSP ksp,char **prefix)
Gets the prefix used for searching for all KSP options in the database.

int KSPGetPC(KSP ksp, PC *B)
Returns a pointer to the preconditioner context set with KSPSetPC().

int KSPGetPreconditionerSide(KSP ksp, PCSide *side)

Gets the preconditioning side.

int KSPGetRhs(KSP ksp,Vec *r)
Gets the right-hand-side vector for the linear system to be solved.

int KSPGetSolution(KSP ksp, Vec *v)
Gets the location of the solution for the linear system to be solved. Note that this may not be where the
solution is stored during the iterative process; see KSPBuildSolution().

int KSPGetTolerances(KSP ksp,double *rtol,double *atol,double *dtol, int *maxits)
Gets the relative, absolute, divergence, and maximum iteration tolerances used by the default KSP
convergence tests.

int KSPGetType(KSP ksp, KSPType *type,char **name)
Gets the KSP type and method name (as a string) from the method type.

int KSPLGMonitorCreate(char *host,char *label,int x,int y,int m, int n, DrawLG *draw)
Creates a line graph context for use with KSP to monitor convergence of preconditioned residual norms.

int KSPLGMonitorDestroy(DrawLG drawlg)
Destroys a line graph context that was created with KSPLGMonitorCreate().

int KSPLGTrueMonitorCreate(MPI_Comm comm,char *host,char *label,int x,int y,int m, int n,
DrawLG *draw)
Creates a line graph context for use with KSP to monitor convergence of true residual norms (as opposed
to preconditioned residual norms).

int KSPLGTrueMonitorDestroy(DrawLG drawlg)
Destroys a line graph context that was created with KSPLGTrueMonitorCreate().

int KSPPrintHelp(KSP ksp)
Prints all options for the KSP component.

int KSPRegisterAll()
Registers all of the Krylov subspace methods in the KSP package.

int KSPRegisterDestroy()
Frees the list of KSP methods that were registered by KSPRegister().

int KSPRegister(KSPType name, char *sname, int (*create)(KSP))
Adds the iterative method to the KSP package, given an iterative name (KSPType) and a function
pointer.

int KSPResidual(KSP ksp,Vec vsoln,Vec vtl,Vec vt2,Vec vres, Vec vbinvf,Vec vb)

Computes the residual.

int KSPRichardsonSetScale(KSP ksp,double scale)
Call after KSPCreate(KSPRICHARDSON) to set the damping factor; if this routine is not called, the
factor defaults to 1.0.

int KSPSetComputeEigenvalues(KSP ksp)
Sets a flag so that the extreme eigenvalues values will be calculated via a Lanczos or Arnoldi process as the
linear system is solved.

int KSPSetComputeResidual(KSP ksp,PetscTruth flag)

Sets a flag to indicate whether the two norm of the residual is calculated at each iteration.

int KSPSetComputeSingularValues(KSP ksp)
Sets a flag so that the extreme singular values will be calculated via a Lanczos or Arnoldi process as the
linear system is solved.

int KSPSetConvergenceTest(KSP ksp,int (*converge)(KSP,int,double,void*),void *cctx)
Sets the function to be used to determine convergence.
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int KSPSetFromOptions(KSP ksp)
Sets KSP options from the options database. This routine must be called before KSPSetUp() if the user is
to be allowed to set the Krylov type.

int KSPSetInitialGuessNonzero(KSP ksp)
Tells the iterative solver that the initial guess is nonzero; otherwise KSP assumes the initial guess is to be
zero (and thus zeros it out before solving).

int KSPSetMonitor(KSP ksp, int (*monitor)(KSP,int,double,void*), void *mctx)
Sets the function to be called at every iteration to monitor the residual/error etc.

int KSPSetOptionsPrefix(KSP ksp,char *prefix)
Sets the prefix used for searching for all KSP options in the database. You must not include the - at the
beginning of the prefix name.

int KSPSetPC(KSP ksp,PC B)

Sets the preconditioner to be used to calculate the application of the preconditioner on a vector.

int KSPSetPreconditionerSide(KSP ksp,PCSide side)

Sets the preconditioning side.

int KSPSetResidualHistory(KSP ksp, double *a, int na)
Sets the array used to hold the residual history. If set, this array will contain the residual norms computed
at each iteration of the solver.

int KSPSetRhs(KSP ksp,Vec b)
Sets the right-hand-side vector for the linear system to be solved.

int KSPSetSolution(KSP ksp, Vec x)

Sets the location of the solution for the linear system to be solved.

int KSPSetTolerances(KSP ksp,double rtol,double atol,double dtol,int maxits)
Sets the relative, absolute, divergence, and maximum iteration tolerances used by the default KSP
convergence testers.

int KSPSetType(KSP ksp, KSPType itmethod)
Builds KSP for a particular solver.

int KSPSetUp(KSP ksp)

Sets up the internal data structures for the later use of an iterative solver.

int KSPSetUsePreconditionedResidual(KSP ksp)
Sets a flag so that the two norm of the preconditioned residual is used rather than the true residual, in the
default convergence tests.

int KSPSingularValueMonitor(KSP ksp,int n,double rnorm,void *dummy)
Prints the two norm of the true residual and estimation of the extreme eigenvalues of the preconditioned
problem at each iteration.

int KSPSolve(KSP ksp, int *its)
Solves linear system; call it after calling KSPCreate(), KSPSetup(), and KSPSet*().

int KSPTrueMonitor(KSP ksp,int n,double rnorm,void *dummy)
Prints the true residual norm as well as the preconditioned residual norm at each iteration of an iterative
solver.

int KSPUnwindPreconditioner(KSP ksp,Vec vsoln,Vec vtl)
Unwinds the preconditioning in the solution.

int KSPView(KSP ksp,Viewer viewer)
Prints the KSP data structure.

A.6 Nonlinear Solvers

Data Structures:
e SNES - nonlinear solver context
Available Methods:
e SNES_EQ_LS - line search for systems of nonlinear equations

e SNES_EQ_TR - trust region for systems of nonlinear equations
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o SNES_UM_LS - line search for unconstrained minimization
e SNES_UM_TR - trust region for unconstrained minimization
Runtime Options:
e -snes_type [ls,tr,umtr umls, test]
e -snes_atol [absolute_tolerance]
e -snes_eq_ls
e -snes_eq_ls_alpha [alpha]
e -snes_eq ls_maxstep [maxstep]
e -snes_eq_ls_steptol [steptol]
o —snes_eq_tr_delta0 [delta0]
o -snes_eq_tr_deltal [deltal]
o -snes_eq_tr_delta2 [delta2]
e —snes_eq_tr_delta3 [delta3]
e -snes_eq_tr_eta [eta]
e -snes_eq_tr_mu [mu]
e -snes_eq_tr_sigma [sigmal
e -snes_fd
e -snes_fmin
o -snes_ksp_ew_alpha [alpha]
o -snes_ksp_ew_alpha2 [alpha2]
e -snes_ksp_ew_conv [conv]
o -snes_ksp_ew_gamma [gammal)
o —snes_ksp_ew_rtol0 [rtol0]
o -snes_ksp_ew_rtolmax [rtolmax]
o -snes_ksp_ew_threshold [threshold]
o -snes_ksp_ew_version [version]
e -snes_max funcs [maximum function_evaluations]
e -snes_maxit [maximum_.iterations]
e -snes_mf
e -snes_mf_err [err]
e -snes_mf_operator
e -snes_mf{_umin [minimum-_value]

e -snes_monitor

-snes_rtol [relative_tolerance]
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e -snes_smonitor

o -snes_stol [step_tolerance]
e -snes_test_display
e -snes_trtol [trust_region_tolerance]

e -snes_um-_delta0

e —snes_um-_etal

e -snes_um._eta?

e -snes_um-eta3

e —snes_um_etad

e -snes_um- _factorl

e -snes_um-_s_ftol

e -snes_ums_gamma factor
e -snes_um-s_gtol

e -snes_um_s_maxfev
e -snes_um-_s_rtol

e -snes_um_ls_stepmax
e -snes_um_s_stepmin
e -snes_view

e -snes_xmonitor

Ftinclude “snes.h”

int SNESAddOptionsChecker(int (*snescheck)(SNES) )
Adds an additional function to check for SNES options.

int SNESAppendOptionsPrefix(SNES snes,char *prefix)
Appends to the prefix used for searching for all SNES options in the database. You must NOT include the
- at the beginning of the prefix name.

int SNESComputeFunction(SNES snes,Vec x, Vec y)
Computes the function that has been set with SNESSetFunction().

int SNESComputeGradient(SNES snes,Vec x, Vec y)
Computes the gradient that has been set with SNESSetGradient().

int SNESComputeHessian(SNES snes,Vec x,Mat *A,Mat *B,MatStructure *flag)
Computes the Hessian matrix that has been set with SNESSetHessian().

int SNESComputeJacobian(SNES snes,Vec X,Mat *A,Mat *B,MatStructure *fig)
Computes the Jacobian matrix that has been set with SNESSetJacobian().

int SNESComputeMinimizationFunction(SNES snes,Vec x,double *y)
Computes the function that has been set with SNESSetMinimizationFunction().

int SNESConverged EQ_LS(SNES snes,double xnorm,double pnorm,double fnorm,void *dummy)
Monitors the convergence of the solvers for systems of nonlinear equations (default).

int SNESConverged EQ_TR(SNES snes,double xnorm,double pnorm,double fnorm,void *dummy)
Monitors the convergence of the trust region method SNES_EQ_TR for solving systems of nonlinear
equations (default).

int SNESConverged UM_LS(SNES snes,double xnorm,double gnorm,double f, void *dummy)
Monitors the convergence of the SNESSolve_UM_LS() routine (default).
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int SNESConverged UM_TR(SNES snes,double xnorm,double gnorm,double f, void *dummy)
Monitors the convergence of the SNESSolve_UM_TR() routine (default).

int SNESCreate(MPI_Comm comm,SNESProblemType type,SNES *outsnes)

Creates a nonlinear solver context.

int SNESCubicLineSearch(SNES snes,Vec x,Vec f,Vec g,Vec y,Vec w, double fnorm,double
*ynorm,double *gnorm,int *flag)
Performs a cubic line search (default line search method).

int SNESDefaultComputeHessian(SNES snes,Vec x1,Mat *J,Mat *B,MatStructure *flag,void *ctx)
Computes the Hessian using finite differences.

int SNESDefaultComputeJacobianWithColoring(SNES snes,Vec x1,Mat *JJ,Mat *B,MatStructure
*flag,void *ctx)
nput Parameters: . snes - nonlinear solver object . x1 - location at which to evaluate Jacobian . ctx -
MatFDColoring contex

int SNESDefaultComputeJacobian(SNES snes,Vec x1,Mat *J,Mat *B,MatStructure *flag,void
*ctx)
Computes the Jacobian using finite differences.

int SNESDefaultMatrixFreeMatAddNullSpace(Mat J,int has_cnst,int n,Vec *vecs)
Provides a null space that an operator is supposed to have. Since roundoff will create a small component in
the null space, if you know the null space you may have it automatically removed.

int SNESDefaultMatrixFreeMatCreate(SNES snes,Vec x, Mat *J)
Creates a matrix-free matrix context for use with a SNES solver. This matrix can be used as the Jacobian
argument for the routine SNESSetJacobian().

int SNESDefaultMonitor (SNES snes,int its,double fgnorm,void *dummy)
Monitoring progress of the SNES solvers (default).

int SNESDestroy(SNES snes)

Destroys the nonlinear solver context that was created with SNESCreate().

int SNESGetApplicationContext( SNES snes, void **usrP )
Gets the user-defined context for the nonlinear solvers.

int SNESGetFunctionNorm (SNES snes,Scalar *fnorm)
Gets the norm of the current function that was set with SNESSSetFunction().

int SNESGetFunction(SNES snes,Vec *r)

Returns the vector where the function is stored.

int SNESGetGradientNorm(SNES snes,Scalar *gnorm)
Gets the norm of the current gradient that was set with SNESSSetGradient().

int SNESGetGradient(SNES snes,Vec *r)

Returns the vector where the gradient is stored.

int SNESGetHessian(SNES snes,Mat *A,Mat *B, void **ctx)

Returns the Hessian matrix and optionally the user provided context for evaluating the Hessian.

int SNESGetlIterationNumber(SNES snes,int* iter)
Gets the current iteration number of the nonlinear solver.

int SNESGetJacobian(SNES snes,Mat *A,Mat *B, void **ctx)

Returns the Jacobian matrix and optionally the user provided context for evaluating the Jacobian.

int SNESGetMinimizationFunction(SNES snes,double *r)

Returns the scalar function value for unconstrained minimization problems.

int SNESGetNumberLinearIterations(SNES snes,int* lits)
Gets the total number of linear iterations used by the nonlinear solver.

int SNESGetNumberUnsuccessfulSteps(SNES snes,int* nfails)
Gets the number of unsuccessful steps attempted by the nonlinear solver.

int SNESGetOptionsPrefix(SNES snes,char **prefix)
Sets the prefix used for searching for all SNES options in the database.

int SNESGetSLES(SNES snes,SLES *sles)
Returns the SLES context for a SNES solver.

int SNESGetSolutionUpdate(SNES snes,Vec *x)

Returns the vector where the solution update is stored.

163




int SNESGetSolution(SNES snes,Vec *x)

Returns the vector where the approximate solution is stored.

int SNESGetTolerances(SNES snes,double *atol,double *rtol,double *stol,int *maxit,int *maxf)
Gets various parameters used in convergence tests.

int SNESGetType(SNES snes, SNESType *method,char **name)
Gets the SNES method type and name (as a string).

int SNESNoLineSearch(SNES snes, Vec x, Vec f, Vec g, Vec y, Vec w, double fnorm, double
*ynorm, double *gnorm,int *flag )
This routine is not a line search at all; it simply uses the full Newton step. Thus, this routine is intended
to serve as a template and is not recommended for general use.

int SNESPrintHelp(SNES snes)
Prints all options for the SNES component.

int SNESQuadraticLineSearch(SNES snes, Vec x, Vec f, Vec g, Vec y, Vec w, double fnorm, double
*ynorm, double *gnorm,int *flag)
Performs a quadratic line search.

int SNESRegisterAll()
Registers all of the nonlinear solvers in the SNES package.

int SNESRegisterDestroy()
Frees the list of nonlinear solvers that were registered by SNESRegister().

int SNESRegister(int name, char *sname, int (*create) (SNES))
Adds the method to the nonlinear solver package, given a function pointer and a nonlinear solver name of

the type SNESType.

int SNESSetApplicationContext(SNES snes,void *usrP)
Sets the optional user-defined context for the nonlinear solvers.

int SNESSetConvergenceHistory(SNES snes, double *a, int na)
Sets the array used to hold the convergence history.

int SNESSetConvergenceTest(SNES snes,int (*func)(SNES,double,double,double,void*),void *cctx)

Sets the function that is to be used to test for convergence of the nonlinear iterative solution.

int SNESSetFromOptions(SNES snes)

Sets various SNES and SLES parameters from user options.

int SNESSetFunction( SNES snes, Vec r, int (*func)(SNES,Vec,Vec,void*),void *ctx)
Sets the function evaluation routine and function vector for use by the SNES routines in solving systems of
nonlinear equations.

int SNESSetGradient(SNES snes,Vec r,int (*func)(SNES,Vec,Vec,void*),void *ctx)

Sets the gradient evaluation routine and gradient vector for use by the SNES routines.

int SNESSetHessian(SNES snes,Mat A,Mat B,int (*func)(SNES,Vec,Mat* ,Mat*,
MatStructure*,void*),void *ctx)
Sets the function to compute Hessian as well as the location to store the matrix.

int SNESSetJacobian(SNES snes,Mat A,Mat B,int (*func)(SNES,Vec,Mat* ,Mat*,
MatStructure*,void*),void *ctx)
Sets the function to compute Jacobian as well as the location to store the matrix.

int SNESSetLineSearch(SNES snes,int (*func)(SNES,Vec,Vec,Vec,Vec,Vec,
double,double*,double*,int*))
Sets the line search routine to be used by the method SNES_EQ_LS.

int SNESSetMatrixFreeParameters(SNES snes,double error,double umin)
Sets the parameters for the approximation of matrix-vector products using finite differences.

int SNESSetMinimizationFunctionTolerance(SNES snes,double ftol)
Sets the minimum allowable function tolerance for unconstrained minimization solvers.

int SNESSetMinimizationFunction(SNES snes,int (*func)(SNES,Vec,double*,void*), void *ctx)

Sets the function evaluation routine for unconstrained minimization.

int SNESSetMonitor( SNES snes, int (*func)(SNES,int,double,void*),void *mctx )
Sets the function that is to be used at every iteration of the nonlinear solver to display the iteration’s
progress.

int SNESSetOptionsPrefix(SNES snes,char *prefix)
Sets the prefix used for searching for all SNES options in the database. You must NOT include the - at the
beginning of the prefix name.
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int SNESSetTolerances(SNES snes,double atol,double rtol,double stol,int maxit,int maxf)
Sets various parameters used in convergence tests.

int SNESSetTrustRegionTolerance(SNES snes,double tol)

Sets the trust region parameter tolerance.

int SNESSetType(SNES snes,SNESType method)

Sets the method for the nonlinear solver.

int SNESSetUp(SNES snes,Vec x)

Sets up the internal data structures for the later use of a nonlinear solver.

int SNESSolve(SNES snes,Vec x,int *its)
Solves a nonlinear system. Call SNESSolve after calling SNESCreate() and optional routines of the form
SNESSetXXX().

int SNESView(SNES snes,Viewer viewer)
Prints the SNES data structure.

int SNES_KSP _SetConvergenceTest EW (SNES snes)

Sets alternative convergence test for the linear solvers within an inexact Newton method.

int SNES_KSP _SetParametersEW (SNES snes,int version,double rtol_0, double rtol_max,double
gamma?2,double alpha, double alpha2,double threshold)
Sets parameters for Eisenstat-Walker convergence criteria for the linear solvers within an inexact Newton
method.

A.7 Timestepping, ODE Solvers
Available Methods:
e TS_EULER - Euler method
e TS_BEULER - backward Euler method
e TS_PSEUDO_POSITION_INDEPENDENT_TIMESTEP - pseudo-transient timestep variant 1
e TS_PSEUDO_POSITION_DEPENDENT_TIMESTEP - pseudo-transient timestep variant 2 TSType:
Data Structures:
e TS - timestepping context
TSProblemType:
e TS_LINEAR
e TS_NONLINEAR
Runtime Options:
e -ts_max steps [steps]
e -ts_monitor
e -ts_pseudo_increment [increment]
e -ts_type
o -ts_view

Ftinclude “ts.h”

int TSCreate(MPI_Comm comm,TSProblemType problemtype, TS *outts)
Creates a timestepper context.

int TSDestroy(TS ts)
Destroys the timestepper context that was created with TSCreate().
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int TSGetApplicationContext( TS ts, void **usrP )
Gets the user-defined context for the timestepper.

int TSGetSLES(TS ts,SLES *sles)
Returns the SLES (linear solver) associated with a TS (timestepper) context.

int TSGetSNES(TS ts,SNES *snes)
Returns the SNES (nonlinear solver) associated with a TS (timestepper) context. Valid only for nonlinear
problems.

int TSGetSolution(TS ts,Vec *v)
Returns the solution at the present timestep. It is valid to call this routine inside the function that you are
evaluating in order to move to the new timestep. This vector not changed until the solution at the next
timestep has been calculated.

int TSGetTimeStepNumber(TS ts,int* iter)
Gets the current number of timesteps.

int TSGetTimeStep(TS ts,double* dt)

Gets the current timestep size.

int TSGetType(TS ts, TSType *method,char **name)
Gets the T'S method type and name (as a string).

int TSPrintHelp(TS ts)
Prints all options for the TS (timestepping) component.

int TSPseudoComputeTimeStep(TS ts,double *dt)
Computes the next timestep for a currently running pseudo-timestepping process.

int TSPseudoDefaultTimeStep(TS ts,double* newdt,void* dtctx)
Default code to compute pseudo-timestepping. Use with T'SPseudoSetTimeStep().

int TSPseudoDefaultVerify TimeStep(TS ts,Vec update,void *dtctx,double *newdt,int *flag)
Default code to verify the quality of the last timestep.

int TSPseudoIncrementDtFromInitialDt(TS ts)
Indicates that a new timestep is computed via initial_dt*initial_fnorm/current_fnorm rather then the
default current_dt*previous_fnorm/current_fnorm.

int TSPseudoSetTimeStepIncrement(TS ts,double inc)
Sets the scaling increment applied to dt when using the TSPseudoDefault TimeStep() routine.

int TSPseudoSetTimeStep(TS ts,int (*dt)(TS,double*,void*),void* ctx)

Sets the user-defined routine to be called at each pseudo-timestep to update the timestep.

int TSPseudoSetVerify TimeStep(TS ts,int (*dt)(TS,Vec,void*,double*,int*),void* ctx)
Sets a user-defined routine to verify the quality of the last timestep.

int TSPseudoVerifyTimeStep(TS ts,Vec update,double *dt,int *flag)
Verifies whether the last timestep was acceptable.

int TSRegisterAll()
Registers all of the timesteppers in the TS package.

int TSRegisterDestroy()
Frees the list of nonlinear solvers that were registered by TSRegister().

int TSRegister(int name, char *sname, int (*create)(TS))
Adds the method to the nonlinear solver package, given a function pointer and a nonlinear solver name of
the type TSType.

int TSSetApplicationContext(TS ts,void *usrP)
Sets an optional user-defined context for the timesteppers.

int TSSetDuration(TS ts,int maxsteps,double maxtime)
Sets the maximum number of timesteps to use and maximum time for iteration.

int TSSetFromOptions(TS ts)

Sets various T'S parameters from user options.

int TSSetInitialTimeStep(TS ts,double initial time,double time _step)
Sets the initial timestep to be used, as well as the initial time.

int TSSetMonitor(TS ts, int (*monitor)(TS,int,double,Vec,void*), void *mctx )
Sets the function that is to be used at every timestep to display the iteration’s progress.

int TSSetRHSFunction(TS ts,int (*f)(TS,double,Vec,Vec,void*),void *ctx)
Sets the routine for evaluating the function, F(t,u), where U_t = F(t,u).
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int TSSetRHSJacobian(TS ts,Mat A, Mat B,int (*f)(TS,double,Vec,Mat* ,Mat*,

MatStructure*,void*),void *ctx)
Sets the function to compute the Jacobian of F, where U_t = F(U,t), as well as the location to store the

matrix.
int TSSetRHSMatrix(TS ts,Mat A, Mat B,int (*f)(TS,double,Mat* ,Mat*,
MatStructure*,void*),void *ctx)
Sets the function to compute the matrix A, where U_t = A(t)u. Also sets the location to store A.
int TSSetSolution(TS ts,Vec x)
Sets the initial solution vector for use by the TS routines.
int TSSetTimeStep(TS ts,double time _step)
Allows one to reset the timestep at any time, useful for simple pseudo-timestepping codes.
int TSSetType(TS ts,TSType method)
Sets the method for the timestepping solver.
int TSSetUp(TS ts)
Sets up the internal data structures for the later use of a timestepper. Call TSSetUp() after calling
TSCreate() and optional routines of the form TSSetXXX(), but before calling T'SStep().

int TSStep(TS ts,int *steps,double *time)
Steps the requested number of timesteps.

int TSView(TS ts,Viewer viewer)
Prints the T'S data structure.

A.8 Index Sets, Distributed Arrays, and Application Orderings

Data Structures:

e IS - an index set

e DA - a distributed array

e AO - an application ordering
DAPeriodicType:

e DA_NONPERIODIC

e DA XPERIODIC

e DA_YPERIODIC

e DA XYPERIODIC

e DA XYZPERIODIC

e DA XZPERIODIC

e DA_YZPERIODIC

e DA_ZPERIODIC
DAStencil Type:

e DA STENCIL_STAR

e DA STENCIL_BOX
Runtime Options:

® -a0_view

e -da_partition_blockcomm
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e -da_partition_nodes_at_end

o -da_view

Ftinclude “is.h”
Ftinclude “da.h”

int AOApplicationToPetscIS(AO ao,IS is)
Maps an index set in the application-defined ordering to the PETSc ordering.

int AOApplicationToPetsc(AO ao,int n,int *ia)
Maps a set of integers in the application-defined ordering to the PETSc ordering.

int AODestroy(AO ao)

Destroys an application ordering set.

int AOPetscToApplicationIS(AO ao,IS is)
Maps an index set in the PETSc ordering to the application-defined ordering.

int AOPetscToApplication(AO ao,int n,int *ia)
Maps a set of integers in the PETSc ordering to the application-defined ordering.

int AOView(AO ao, Viewer viewer)
Displays an application ordering.

int DACreateld(MPI_Comm comm,DAPeriodicType wrap,int M,int w,int s,DA *inra)
Creates a one-dimensional regular array that is distributed across some processors.

int DACreate2d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType stencil_type, int M,int
N.,int m,int n,int w,int s,DA *inra)
Creates a two-dimensional regular array that is distributed across some processors.

int DACreate3d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType stencil_type, int M,int
N.,int P,int m,int n,int p,int w,int s,DA *inra)
Creates a three-dimensional regular array that is distributed across some processors.

int DADestroy(DA da)
Destroys a distributed array.

int DAGetAO(DA da, AO *ao)

Gets the application ordering context for a distributed array.

int DAGetBilinearInterpolation2dBox (DA dac,DA daf,Mat *A)

Gets the matrix representing bilinear interpolation from a DA grid to the next refinement.

int DAGetColoring2dBox(DA da,ISColoring *coloring,Mat *J)

Gets the coloring required for computing the Jacobian via finite differences on a function defined using the
nine point stencil on a two dimensional grid.

int DAGetCorners(DA da,int *x,int *y,int *z,int *m, int *n, int *p)
Returns the global (x,y,z) indices of the lower left corner of the local region, excluding ghost points.

int DAGetDistributedVector(DA da,Vec* g)

Gets a distributed vector for a distributed array. Additional vectors of the same type can be created with
VecDuplicate().

int DAGetGhostCorners(DA da,int *x,int *y,int *z,int *m, int *n, int *p)
Returns the global (x,y,z) indices of the lower left corner of the local region, including ghost points.

int DAGetGlobalIlndices(DA da, int *n,int **idx)

Returns the global node number of all local nodes, including ghost nodes.

int DAGetInfo(DA da,int *dim,int *M,int *N,int *P,int *m,int *n,int *p,int *w,int *s)
Gets information about a given distributed array.

int DAGetLocalVector(DA da,Vec* 1)

Gets a local vector (including ghost points) for a distributed array. Additional vectors of the same type
can be created with VecDuplicate().

int DAGetProcessorSubset(DA da,DADirection dir,int gp,MPI_Comm *comm)
Returns a communicator consisting only of the processors in a DA that own a particular global x, y, or z
grid point (corresponding to a logical plane in a 3D grid or a line in a 2D grid).

int DAGetScatter(DA da, VecScatter *1tog,VecScatter *gtol,VecScatter *ltol)
Gets the local-to-global, local-to-global, and local-to-local vector scatter contexts for a distributed array.
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int DAGlobalToLocalBegin(DA da,Vec g, InsertMode mode,Vec 1)
Maps values from the global vector to the local patch; the ghost points are included. Must be followed by
DAGlobalToLocalEnd() to complete the exchange.

int DAGlobalToLocalEnd(DA da,Vec g, InsertMode mode,Vec 1)
Maps values from the global vector to the local patch; the ghost points are included. Must be preceeded by
DAGlobalToLocalBegin().

int DALocalToGlobal(DA da,Vec 1, InsertMode mode,Vec g)
Maps values from the local patch back to the global vector. The ghost points are discarded.

int DALocalToLocalBegin(DA da,Vec g, InsertMode mode,Vec 1)
Maps from a local vector (including ghost points that contain irrelevant values) to another local vector
where the ghost points in the second are set correctly. Must be followed by DALocalToLocalEnd().

int DALocalToLocalEnd(DA da,Vec g, InsertMode mode,Vec 1)
Maps from a local vector (including ghost points that contain irrelevant values) to another local vector
where the ghost points in the second are set correctly. Must be preceeded by DALocalToLocalBegin().

int DAPrintHelp(DA da)

Prints command line options for DA.

int DARefine(DA da, DA *daref)

Creates a new distributed array that is a refinement of a given distributed array.

int DAView(DA da, Viewer v)

Visualizes a distributed array object.

int ISBlockGetBlockSize(IS is,int *size)

Returns the number of elements in a block.

int ISBlockGetIndices(IS in,int **idx)

Gets the indices associated with each block.

int ISBlockGetSize(IS is,int *size)
Returns the number of blocks in the index set.

int ISBlockRestoreIndices(IS is,int **idx)
Restores the indices associated with each block.

int ISBlock(IS is,PetscTruth *flag)
Checks if an index set is blocked.

int ISColoringCreate(MPI_Comm comm,int n,int *colors,ISColoring *iscoloring)
From lists (provided by each processor) of colors for each node, generate a ISColoring

int ISColoringDestroy(ISColoring iscoloring)
Destroy’s a coloring context.

int ISColoringView (ISColoring iscoloring,Viewer viewer)
View’s a coloring context.

int ISCreateBlock(MPI_Comm comm,int bs,int n,int *idx,IS *is)
Creates a data structure for an index set containing a list of integers. The indices are relative to entries,
not blocks.

int ISCreateGeneral( MPI_Comm comm,int n,int *idx,IS *is)
Creates a data structure for an index set containing a list of integers.

int ISCreateStride(MPI_Comm comm,int n,int first,int step,IS *is)
Creates a data structure for an index set containing a list of evenly spaced integers.

int ISDestroy(IS is)

Destroys an index set.

int ISEqual(IS isl1, IS is2, PetscTruth *fig)

Compares if two index sets have the same set of indices.

int ISGetIndices(IS is,int **ptr)
Returns a pointer to the indices. The user should call ISRestorelndices() after having looked at the indices.

The user should NOT change the indices.

int ISGetSize(IS is,int *size)
Returns the global length of an index set.

int ISIdentity (IS is,PetscTruth *ident)
Determines whether index set is the identity mapping.
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int ISInvertPermutation (IS is,IS *isout)
Creates a new permutation that is the inverse of a given permutation.

int ISLocalToGlobalMapping ApplyIS(ISLocalToGlobalMapping mapping, IS is, IS *newis)
Creates a new IS using the global numbering defined in an ISLocalToGlobalMapping from an IS in the
local numbering.

void ISLocalToGlobalMapping Apply (ISLocalToGlobalMapping mapping,int N,int *in,int *out);
Takes a list of integers in local numbering and converts them to global numbering.

int ISLocalToGlobalMappingCreate(int n, int *indices,ISLocalToGlobalMapping *mapping)
Creates a mapping between a local (0 to n) ordering and a global parallel ordering.

int ISLocalToGlobalMappingDestroy(ISLocalToGlobalMapping mapping)
Destroys a mapping between a local (0 to n) ordering and a global parallel ordering.

int ISPermutation(IS is,PetscTruth *perm)
PETSC_TRUE or PETSC_FALSE depending on whether the index set has been declared to be a

permutation.

int ISRestoreIndices(IS is,int **ptr)
Restores an index set to a usable state after a call to ISGetIndices().

int ISSetIdentity (IS is)

Informs the index set that it is an identity.

int ISSetPermutation(IS is)
Informs the index set that it is a permutation.

int ISSorted(IS is, PetscTruth *flg)

Checks the indices to determine whether they have been sorted.

int ISSort(IS is)

Sorts the indices of an index set.

int ISStrideGetInfo(IS is,int *first,int *step)
Returns the first index in a stride index set and the stride width.

int ISStride(IS is,PetscTruth *flag)

Determines if an IS is based on a stride.

int ISView(IS is, Viewer viewer)
Displays an index set.

A.9 Utility and System Routines

Runtime Options:
e -debugger_nodes [nodes]

e -debugger_pause [seconds]

e -fp_trap
e -help (or -h)
e -log history

e -mpidump

-no_signal_handler
e -on_error_abort
e -on_error_attach_debugger

e -on_error_stop

-optionsleft

-optionstable
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e -trdebug
e -trdump
e -trinfo

e -trmalloc

o -trmalloc_off
e -version (or -v)

Ftinclude “sys.h”
Ftinclude “options.h”

int OptionsAllUsed()

Returns a count of the number of options in the database that have never been selected.

int OptionsGetDoubleArray(char* pre,char *name,double *dvalue, int *nmax,int *flg)
Gets an array of double precision values for a particular option in the database. The values must be
separated with commas with no intervening spaces.

int OptionsGetDouble(char* pre,char *name,double *dvalue,int *flg)
Gets the double precision value for a particular option in the database.

int OptionsGetIntArray(char* pre,char *name,int *dvalue,int *nmax,int *fig)
Gets an array of integer values for a particular option in the database. The values must be separated with
commas with no intervening spaces.

int OptionsGetInt(char*pre,char *name,int *ivalue,int *fig)
Gets the integer value for a particular option in the database.

int OptionsGetScalar(char* pre,char *name,Scalar *dvalue,int *flg)
Gets the scalar value for a particular option in the database. At the moment can get only a Scalar with 0
imaginary part.

int OptionsGetString(char *pre,char *name,char *string,int len, int *flg)
Gets the string value for a particular option in the database.

int OptionsHasName(char* pre,char *name,int *flg)
Determines whether a certain option is given in the database.

int OptionsPrint(FILE *fd)
Prints the options that have been loaded. This is useful for debugging purposes.

int OptionsSetValue(char *name,char *value)
Sets an option name-value pair in the options database, overriding whatever is already present.

int PetscAbortErrorHandler(int line,char *function,char *file,char* dir,int number,int p, char
*message,void *ctx)
Error handler that calls abort on error. This routine is very useful when running in the debugger, because
the user can look directly at the stack frames and the variables.

int PetscAttachDebuggerErrorHandler(int line,char* fun,char *file,char* dir,int num,int p, char*
mess,void *ctx)
Error handler that attaches a debugger to a running process when an error is detected. This routine is
useful for examining variables, etc.

int PetscAttachDebugger()
Attaches the debugger to the running process.

int PetscBinaryRead(int fd,void *p,int n,PetscBinaryType type)
Reads from a binary file.

int PetscBinaryWrite(int fd,void *p,int n,PetscBinaryType type,int istemp)
Writes to a binary file.

int PetscCObject ToFortranObject(void *cobj,int *fobj)
Converts a PETSc object represented in C to one appropriate to pass to a Fortran routine.

int PetscCompareDouble(double d)
Compares doubles while running with PETSc’s incremental debugger; triggered with the -compare jtol;
flag.

171



int PetscComparelInt(int d)
Compares intss while running with PETSc’s incremental debugger; triggered with the -compare option.

int PetscCompareScalar(Scalar d)
Compares scalars while running with PETSc’s incremental debugger; triggered with the -compare jtol;,
flag.

int PetscDefaultSignalHandler( int sig, void *ptr)
Default signal handler.

int PetscDoubleView(int N,double* idx,Viewer viewer)
Prints an array of double, useful for debugging.

int PetscError(int line,char *function,char* file,char *dir,int number,int p,char *message)
Routine that is called when an error has been detected, usually called through the macro SETERRQ().

int PetscFClose(MPI_Comm comm,FILE *{d)

Has the first processor in the communicator close a file; all others do nothing.

FILE *PetscFOpen(MPI_Comm comm,char *name,char *mode)

Has the first process in the communicator open a file; all others do nothing.

int PetscFPrintf(MPI_Comm comm,FILE* fd,char *format,...)
Prints to a file, only from the first processor in the communicator.

int PetscFinalize()
Checks for options to be called at the conclusion of the program and calls MPI_Finalize().

int PetscFortranObject ToCObject(int fobj,void *cobj)
Converts a PETSc object represented in Fortran to one appropriate for C.

int PetscGetArchType(char *str,int slen)
Returns a standardized architecture type for the machine that is executing this routine.

int PetscGetFileFromPath(char *path,char *defname,char *name,char *fname, char mode)
Finds a file from a name and a path string. A default can be provided.

int PetscGetFullPath( char *path, char *fullpath, int flen )
Given a filename, returns the fully qualified file name.

int PetscGetHomeDirectory(int maxlen,char *dir)
Returns user’s home directory name.

int PetscGetHostName( char *name, int nlen )
Returns the name of the host. This attempts to return the entire Internet name. It may not return the
same name as MPI_Get_processor_name().

int PetscGetRealPath(char * path, char *rpath )
Get the path without symbolic links etc. and in absolute form.

int PetscGetRelativePath( char *fullpath, char *path, int flen )
Given a filename, returns the relative path (removes all directory specifiers).

int PetscGetUserName( char *name, int nlen )
Returns the name of the user.

int PetscGetWorkingDirectory( char *path,int len )
Gets the current working directory.

void PetscInitializeFortran()
Routine that should be called from C after the call to PetscInitialize() if one is using a C main program
that calls Fortran routines that call PETSc routines.

int PetscInitializeLargeInts(int *p,int n )
Intializes an array of integers with very large values.

int PetscInitializeNans(Scalar *p,int n )
Intialize certain memory locations with NANs. This routine is used to mark an array as unitialized so that
if values are used for computation without first having been set, a floating point exception is generated.

int PetscInitialize(int *argc,char ***args,char *file,char *help)
Initializes the PETSc database and MPI. PetscInitialize calls MPI_Init() if that has yet to be called, so this

routine should always be called near the beginning of your program — usually the very first line!

int PetscIntView(int N,int* idx,Viewer viewer)
Prints an array of integers, useful for debugging.

int PetscMPIDump(FILE *fd)

Dumps a listing of incomplete MPI operations, such as sends that have never been received, etc.
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int PetscMemcmp(void * strl, void *str2, int len)
Compares two byte streams in memory.

void PetscMemcpy(void *a,void *b,int n)
Copies n bytes, beginning at location b, to the space beginning at location a.

void PetscMemzero(void *a,int n)
Zeros the specified memory.

int PetscObjectDestroy(PetscObject obj)
Destroys any PetscObject, regardless of the type. This routine should seldom be needed.

int PetscObjectExists(PetscObject obj,int *exists)
Determines whether a PETSc object has been destroyed.

int PetscObjectGetChild(PetscObject obj,void **child)
Gets the child of any PetscObject.

int PetscObjectGetComm (PetscObject obj,MPI_Comm *comm)
Gets the MPI communicator for any PetscObject, regardless of the type.

int PetscObjectGetCookie(PetscObject obj,int *cookie)
Gets the cookie for any PetscObject,

int PetscObjectGetName(PetscObject obj,char **name)
Gets a string name associated with a PETSc object.

int PetscObjectGetNewTag(PetscObject obj,int *tag)
Gets a unique new tag from a PETSc object. All processors that share the object MUST call this routine
EXACTLY the same number of times. This tag should only be used with the current object’s
communicator; do NOT use it with any other MPI communicator.

int PetscObjectGetType(PetscObject obj,int *type)
Gets the object type of any PetscObject.

int PetscObjectInherit(PetscObject obj,void *ptr, int (*copy)(void *,void **), int
(*destroy)(void*))
Associate another object with a given PETSc object. This is to provide a limited support for inheritence.

int PetscObjectReference(PetscObject obj)
Indicate to any PetscObject that it is being referenced in another PetscObject. This increases the reference
count for that object by one.

int PetscObjectRestoreNewTag(PetscObject obj,int *tag)
Restores a new tag from a PETSc object. All processors that share the object MUST call this routine
EXACTLY the same number of times.

int PetscObjectSetName(PetscObject obj,char *name)
Sets a string name associated with a PETSc object.

int PetscPopErrorHandler()
Removes the latest error handler that was pushed with PetscPushErrorHandler().

int PetscPrintf(MPI_Comm comm,char *format,...)
Prints to standard out, only from the first processor in the communicator.

int PetscPushErrorHandler(int (*handler)(int,char *,char* ,char*,int,int,char*,void*),void *ctx )
Sets a routine to be called on detection of errors.

int PetscPushSignalHandler(int (*routine)(int, void*),void* ctx )
Catches the usual fatal errors and calls a user-provided routine.

int PetscRandomCreate(MPI_Comm comm,PetscRandomType type,PetscRandom *r)
Creates a context for generating random numbers, and initializes the random-number generator.

int PetscRandomDestroy(PetscRandom r)
Destroys a context that has been formed by PetscRandomCreate().

int PetscRandomGetValue(PetscRandom r,Scalar *val)
Generates a random number. Call this after first calling PetscRandomCreate().

int PetscRandomSetInterval(PetscRandom r,Scalar low,Scalar high)
Sets the interval over which the random numbers will be randomly distributed. By default, this interval is
[0,1).
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int PetscRegisterCookie(int *cookie)
Registers a new cookie for use with a newly created PETSc object class. The user should pass in a variable
initialized to zero; then it will be assigned a cookie. Repeated calls to this routine with the same variable
will not change the cookie.

int PetscRemoveHomeDirectory(char *path)
Given a complete true path, removes the user’s home directory.

int PetscSequentialPhaseBegin(MPI_Comm comm,int ng )
Begins a sequential section of code.

int PetscSequentialPhaseEnd(MPI_Comm comm,int ng )
Ends a sequential section of code.

int PetscSetCommWorld(MPI_Comm comm)
Sets a communicator to be PETSc’s world communicator (default is MPI_COMM_WORLD). Must call
BEFORE Petsclnitialize().

int PetscSetDebugger(char *debugger, int xterm,char *display)
Sets options associated with the debugger.

int PetscSetFPTrap(int flag)

Enables traps/exceptions on common floating point errors. This option may not work on certain machines.

int PetscSetMalloc(void *(*imalloc) (unsigned int,int,char*,char*,char*), int
(*ifree) (void*,int,char*,char*,char*))
Sets the routines used to do mallocs and frees. This routine MUST be called before Petsclnitialize() and
may be called only once.

void PetscSleep(int s)
Sleeps some number of seconds.

int PetscSortDoubleWithPermutation(int n, double *i, int *idx )
Computes the permutation of values that gives a sorted sequence.

int PetscSortDouble(int n,double *v)
Sorts an array of doubles in place in increasing order.

int PetscSortIntWithPermutation(int n, int *i, int *idx )
Computes the permutation of values that gives a sorted sequence.

int PetscSortInt( int n, int *i )
Sorts an array of integers in place in increasing order.

int PetscStopErrorHandler(int line,char *fun,char *file,char *dir,int number,int p, char
*message,void *ctx)
Calls MPI_abort() and exists.

int PetscSynchronizedFlush(MPI_ Comm comm)
Flushes to the screen output from all processors involved in previous PetscSynchronizedPrintf() calls.

int PetscSynchronizedPrintf(MPI_ Comm comm,char *format,...)
Prints output from several processors that is synchronized so that printed by first processor is followed by
second etc.

int PetscTrDump( FILE *fp )
Dumps the allocated memory blocks to a file. The information printed is: size of space (in bytes), address
of space, id of space, file in which space was allocated, and line number at which it was allocated.

int PetscTrLogDump(FILE *fp)
Dumps the log of all calls to malloc.

int PetscTrLog()
Indicates that you wish all calls to malloc to be logged.

int PetscTrSpace( double *space, double *fr, double *maxs )
Returns space statistics.

int PetscTraceBackErrorHandler(int line,char *fun,char* file,char *dir,int number,int p, char
*message,void *ctx)
Default error handler routine that generates a traceback on error detection.
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A.10 Viewers

Default Viewers:
¢ VIEWER_STDOUT_WORLD
¢ VIEWER_STDOUT_SELF
o VIEWER_.DRAWX_WORLD
¢ VIEWER_DRAWX_SELF
e VIEWER_MATLAB_-WORLD

Format options:

o ASCII_FORMAT_DEFAULT - default
o ASCII_FORMAT_MATLAB - Matlab format

e ASCII_FORMATIMPL - implementation-specific format (which is, in many cases, the same as the
default)

e ASCII_FORMAT_INFO - basic information about object
e ASCII_FORMAT INFO_DETAILED - more detailed info about object
e ASCII_FORMAT_COMMON - identical output format for all objects of a particular type

e BINARY_FORMAT_NATIVE - store the object to disk in the format it is in. This currently works
only for dense matrices.

int Viewer ASCIIGetPointer(Viewer viewer, FILE **{d)
Extracts the file pointer from an ASCII viewer.

int ViewerBinaryGetDescriptor(Viewer viewer,int *fdes)
Extracts the file descriptor from a viewer.
int ViewerBinaryGetInfoPointer(Viewer viewer,FILE **file)
Extracts the file pointer for the ASCII info file associated with a binary file.
int ViewerDestroy(Viewer v)
Destroys a viewer.
int ViewerFileOpenASCII(MPI Comm comm,char *name,Viewer *lab)
Opens an ASCII file as a viewer.

int ViewerFileOpenBinary(MPI_Comm comm,char *name,ViewerBinaryType type,Viewer *binv)
Opens a file for binary input/output.

int ViewerFlush(Viewer v)
Flushes a viewer (i.e. tries to dump all the data that has been printed through a viewer).

int ViewerGetType(Viewer v,ViewerType *type)
Returns the type of a viewer.

int ViewerMatlabOpen(MPI_Comm comm,char *machine,int port,Viewer *lab)
Opens a connection to a Matlab server.

int ViewerPopFormat(Viewer v)
Resets the format for file viewers.

int ViewerPushFormat(Viewer v,int format,char *name)
Sets the format for file viewers.

int ViewerSetFormat(Viewer v,int format,char *name)
Sets the format for file viewers.

int ViewerStringOpen(MPI_Comm comm,char *string,int len, Viewer *lab)
Opens a string as a viewer. This is a very simple viewer; information on the object is simply stored into
the string in a fairly nice way.

int ViewerStringSPrintf(Viewer v,char *format,...)
Prints information to a viewer string.
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A.11 Profiling

Runtime Options:
o -log [filename]
e -log_summary
o -log_all [filename]

e -log_mpe [filename]

int PLogAllBegin()
Turns on extensive logging of objects and events. Logs all events. This creates large log files and slows the
program down.

int PLogBegin()
Turns on logging of objects and events. This logs flop rates and object creation and should not slow
programs down too much. This routine may be called more than once.

int PLogDestroy()
Destroys the object and event logging data and resets the global counters.

int PLogDump(char* sname)
Dumps logs of objects to a file. This file is intended to be read by petsc/bin/petscview.

int PLogEventActivateClass(int cookie)
Activates event logging for a PETSc object class.

int PLogEventActivate(int event)
Indicates that a particular event should be logged. Note: the event may be either a pre-defined PETSc
event (found in include/petsclog.h) or an event number obtained with PLogEventRegister().

void PLogEventBegin(int e,PetscObject o1,PetscObject 02,PetscObject 03, PetscObject 04)
Logs the beginning of a user event.

int PLogEventDeactivateClass(int cookie)
Deactivates event logging for a PETSc object class.

int PLogEventDeactivate(int event)
Indicates that a particular event should not be logged. Note: the event may be either a pre-defined PETSc
event (found in include/petsclog.h) or an event number obtained with PLogEventRegister().

void PLogEventEnd(int e,PetscObject ol,PetscObject 02,PetscObject 03, PetscObject 04)
Log the end of a user event.

int PLogEventMPEActivate(int event)
Indicates that a particular event should be logged using MPE. Note: the event may be either a pre-defined
PETSc event (found in include/petsclog.h) or an event number obtained with PLogEventRegister().

int PLogEventMPEDeactivate(int event)
Indicates that a particular event should not be logged using MPE. Note: the event may be either a

pre-defined PETSc event (found in include/petsclog.h) or an event number obtained with
PLogEventRegister().

int PLogEventRegister(int *e,char *string,char *color)
Registers an event name for logging operations in an application code.

void PLogFlops(int f)
Adds floating point operations to the global counter.

int PLogInfoActivateClass(int objclass)
Activates PlogInfo() messages for a PETSc object class.

int PLogInfoAllow(PetscTruth flag)
Causes PLogInfo() messages to be printed to standard output.

int PLogInfoDeactivateClass(int objclass)
Deactivates Ploglnfo() messages for a PETSc object class.

int PLogInfo(void *vobj,char *message,...)
Logs informative data, which is printed to standard output when the option -log_info is specified.

int PLogMPEBegin()

Turns on MPE logging of events. This creates large log files and slows the program down.
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int PLogMPEDump(char* sname)
Dumps the MPE logging info to file for later use with Upshot.

int PLogPrintSummary(MPI_Comm comm,FILE *fd)

Prints a summary of the logging.

int PLogSet(int (*b)(int,int,PetscObject,PetscObject,PetscObject,PetscObject), int
(*e) (int,int,PetscObject,PetscObject,PetscObject,PetscObject))
Sets the logging functions called at the beginning and ending of every event.

int PLogStagePop()
Users can log up to 10 stages within a code by using -log_summary in conjunction with PLogStagePush()

and PLogStagePop().

int PLogStagePush(int stage)
Users can log up to 10 stages within a code by using -log_summary in conjunction with PLogStagePush()

and PLogStagePop().

int PLogStageRegister(int stage, char *sname)
Attaches a charactor string name to a logging stage.

int PLogTraceBegin(FILE *file)

Activates trace logging. Every time a PETSc event begins or ends, the event name is printed.

void PetscBarrier(PetscObject obj)
Blocks Until this routine is executed by all processors owning the object A.

double PetscGetFlops()

Returns the number of flops used on this processor since the program began.

double PetscGetTime()

Returns the current time of day in seconds. This returns wall-clock time.

A.12 Graphics Routines

Data Structures:
e Draw - a drawing surface, probably a window.
e DrawAxis - a two-dimensional line graph axis.

o DrawLG - a two-dimensional line graph.

Ftinclude “draw.h”

int DrawAppendTitle(Draw draw,char *title)
Appends to the title of a Draw context.

int DrawAxisCreate(Draw win,DrawAxis *ctx)
Generate the axis data structure.

int DrawAxisDestroy(DrawAxis ad)
Frees the space used by an axis structure.

int DrawAxisDraw(DrawAxis ad)
Draws an axis.

int DrawAxisSetColors(DrawAxis ad,int ac,int tc,int cc)
Sets the colors to be used for the axis, tickmarks, and text.

int DrawAxisSetLabels(DrawAxis ad,char* top,char *xlabel,char *ylabel)
Sets the x and y axis labels.

int DrawAxisSetLimits(DrawAxis ad,double xmin,double xmax,double ymin,double ymax)
Sets the limits (in user coords) of the axis

int DrawBOP( Draw draw )

Begins a new page or frame on the selected graphical device.

int DrawCheckResizedWindow(Draw draw)

Checks if the user has resized the window.

int DrawClear(Draw draw)
Clears graphical output.
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int DrawCreatePopUp(Draw draw,Draw *popup)
Creates a popup window associated with a Draw window.

int DrawDestroy(Draw draw)
Deletes a draw context.

int DrawEOP( Draw draw )

Ends a page or frame on the selected graphical device.

int DrawFlush(Draw draw)
Flushs graphical output.

int DrawGetCoordinates(Draw draw,double *x1l,double *yl,double *xr,double *yr)
Gets the application coordinates of the corners of the window (or page).

int DrawGetMouseButton(Draw draw,DrawButton *button,double* x_user,double *y_user, double
*x_phys,double *y_phys)
Returns location of mouse and which button was pressed. Waits for button to be pressed.

int DrawGetPause(Draw draw,int *pause)
Gets the amount of time that program pauses after a DrawPause() is called.

int DrawGetTitle(Draw draw,char **title)
Gets pointer to title of a Draw context.

int DrawIsNull(Draw draw,PetscTruth *yes)
Returns PETSC_TRUE if draw is a null draw object.

int DrawLGAddPoints(DrawLG lg,int n,double **xx,double **yy)
Adds several points to each of the line graphs. The new points must have an X coordinate larger than the
old points.

int DrawLGAddPoint(DrawLG lg.,double *x,double *y)
Adds another point to each of the line graphs. The new point must have an X coordinate larger than the
old points.

int DrawLGCreate(Draw win,int dim,DrawLG *outctx)
Creates a line graph data structure.

int DrawLGDestroy (DrawLG lg)

Frees all space taken up by line graph data structure.

int DrawLGDraw(DrawLG lg)

Redraws a line graph.

int DrawLGGetAxis(DrawLG lg,DrawAxis *axis)
Gets the axis context associated with a line graph. This is useful if one wants to change some axis
property, such as labels, color, etc. The axis context should not be destroyed by the application code.

int DrawLGGetDraw(DrawLG lg,Draw *win)

Gets the draw context associated with a line graph.

int DrawLGIndicateDataPoints(DrawLG lg)
Causes LG to draw a big dot for each data-point.

int DrawLGReset(DrawLG lg)

Clears line graph to allow for reuse with new data.

int DrawLGSetDimension(DrawLG lg,int dim)
Change the number of lines that are to be drawn.

int DrawLGSetLimits( DrawLG lg,double x_min,double x_max,double y_min, double y_max)
Sets the axis limits for a line graph. If more points are added after this call, the limits will be adjusted to
include those additional points.

int DrawLineGetWidth(Draw draw,double *width)
Gets the line width for future draws. The width is relative to the user coordinates of the window; 0.0
denotes the natural width; 1.0 denotes the interior viewport.

int DrawLineSetWidth(Draw draw,double width)
Sets the line width for future draws. The width is relative to the user coordinates of the window; 0.0
denotes the natural width; 1.0 denotes the entire viewport.

int DrawLine(Draw draw,double xl,double yl,double xr,double yr,int cl)
Draws a line onto a drawable.

int DrawOpenVRML(MPI_Comm comm,char* fname,char *title, Draw* inctx)
Opens an VRML viewer for use with the Draw routines.
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int DrawOpenX (MPI_Comm comm,char* display,char *title,int x,int y,int w,int h, Draw* inctx)
Opens an X-window for use with the Draw routines.

int DrawPause(Draw draw)
Waits n seconds or until user input, depending on input to DrawSetPause().

int DrawPointSetSize(Draw draw,double width)
Sets the point size for future draws. The size is relative to the user coordinates of the window; 0.0 denotes
the natural width, 1.0 denotes the entire viewport.

int DrawPoint(Draw draw,double xl,double yl,int cl)
Draws a point onto a drawable.

int DrawRectangle(Draw draw,double xl,double yl,double xr,double yr, int c1, int ¢2,int ¢3,int c4)
Draws a rectangle onto a drawable.

int DrawSPAddPoints(DrawSP sp,int n,double **xx,double **yy)
Adds several points to each of the scatter plots.

int DrawSPAddPoint(DrawSP sp,double *x,double *y)
Adds another point to each of the scatter plots.

int DrawSPCreate(Draw win,int dim,DrawSP *outctx)
Creates a scatter plot data structure.

int DrawSPDestroy(DrawSP sp)
Frees all space taken up by scatter plot data structure.

int DrawSPDraw(DrawSP sp)

Redraws a scatter plot.

int DrawSPGetAxis(DrawSP sp,DrawAxis *axis)
Gets the axis context associated with a line graph. This is useful if one wants to change some axis
property, such as labels, color, etc. The axis context should not be destroyed by the application code.

int DrawSPGetDraw(DrawSP sp,Draw *win)
Gets the draw context associated with a line graph.

int DrawSPReset(DrawSP sp)

Clears line graph to allow for reuse with new data.

int DrawSPSetDimension(DrawSP sp,int dim)
Change the number of sets of points that are to be drawn.

int DrawSPSetLimits( DrawSP sp,double x_min,double x_max,double y_min, double y_max)
Sets the axis limits for a line graph. If more points are added after this call, the limits will be adjusted to
include those additional points.

int DrawSetCoordinates(Draw draw,double xl,double yl,double xr, double yr)
Sets the application coordinates of the corners of the window (or page).

int DrawSetDoubleBuffer(Draw draw)
Sets a window to be double buffered.

int DrawSetPause(Draw draw,int pause)
Sets the amount of time that program pauses after a DrawPause() is called.

int DrawSetTitle(Draw draw,char *title)
Sets the title of a Draw context.

int DrawSetViewPort(Draw draw,double xl,double yl,double xr,double yr)
Sets the portion of the window (page) to which draw routines will write.

int DrawSyncClear(Draw draw)
Clears graphical output. All processors must call this routine. Does not return until the drawable is clear.

int DrawSyncFlush(Draw draw)
Flushes graphical output. This waits until all processors have arrived and flushed, then does a global flush.
This is usually done to change the frame for double buffered graphics.

int DrawTextGetSize(Draw draw,double *width,double *height)
Gets the size for charactor text. The width is relative to the user coordinates of the window; 0.0 denotes
the natural width; 1.0 denotes the entire viewport.

int DrawTextSetSize(Draw draw,double width,double height)
Sets the size for charactor text. The width is relative to the user coordinates of the window; 0.0 denotes
the natural width; 1.0 denotes the entire viewport.
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int DrawTextVertical(Draw draw,double xl,double yl,int cl,char *text)
Draws text onto a drawable.

int DrawText(Draw draw,double xl,double yl,int cl,char *text)
Draws text onto a drawable.

int DrawTriangle(Draw draw,double x1,double y1,double x2,double y2, double x3,double y3.,int c1,
int ¢2,int ¢3)
Draws a triangle onto a drawable.

Viewer VIEWER DRAWX_(MPI_Comm comim)

Creates a window viewer shared by all processors in a communicator.

int ViewerDrawGetDrawLG (Viewer v, DrawLG *drawlg)
Returns DrawL.G object from Viewer object. This DrawL.G object may then be used to perform graphics
using DrawLGXXX() commands.

int ViewerDrawGetDraw(Viewer v, Draw *draw)
Returns Draw object from Viewer object. This Draw object may then be used to perform graphics using

DrawXXX() commands.

int ViewerDrawOpenVRML(MPI_Comm comm,char* fname,char *title,Viewer *viewer)
Opens an VRML file for use as a viewer. If you want to do graphics in this window, you must call
ViewerDrawGetDraw() and perform the graphics on the Draw object.

int ViewerDrawOpenX (MPI_Comm comm,char* display,char *title,int x,int y, int w,int h,Viewer
*viewer)
Opens an X window for use as a viewer. If you want to do graphics in this window, you must call
ViewerDrawGetDraw() and perform the graphics on the Draw object.
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