
Distribution Category:Mathematics andComputer Science (UC-405)ANL-95/18
Users Guide to the PGAPack ParallelGenetic Algorithm LibrarybyDavid LevineMathematics and Computer Science Division

January 1996This work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of theO�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

Contents0 Quick Start 1I Getting Started 21 Introduction 32 Installation 42.1 Obtaining PGAPack : 42.2 Requirements : 42.3 Structure of the Distribution Directory : 42.4 Installation Instructions : 52.5 Installation Examples : 62.5.1 Sequential Installation : 62.5.2 Parallel Installation : 62.6 Mailing Lists, Web Page, and Bug Reporting : 73 Examples 83.1 Maxbit Problem in C : 83.2 Maxbit Problem in Fortran : 83.3 Specifying Nondefault Values : 103.4 Parallel I/O : 103.5 Compiling, Linking, and Execution : 12II Users Guide 144 The Structure of PGAPack 154.1 Native Data Types : 154.2 Context Variable : 154.3 Levels of Usage Available : 154.4 Function Call{Based Library : 164.5 Header File and Symbolic Constants : 164.6 Evaluation Function : 164.7 Parallelism : 164.8 Implementation : 175 Basic Usage 185.1 Required Functions : 185.2 Population Replacement : 195.3 Stopping Criteria : 215.4 Initialization : 215.5 Selection : 22iii

5.6 Crossover : 225.7 Mutation : 225.8 Restart : 235.9 String Evaluation and Fitness : 235.10 Accessing Allele Values : 245.10.1 Representing an Integer with a Binary String : 255.10.2 Representing a Real Value with a Binary String : 255.10.3 Example : 265.11 Report Options : 275.12 Utility Functions : 275.12.1 Random Numbers : 275.12.2 Print Functions : 275.12.3 Miscellaneous : 275.13 Command-Line Arguments : 286 Explicit Usage 296.1 Notation : 296.2 Simple Sequential Example : 296.3 Complex Example : 306.4 Explicit PGAPack Functions : 327 Custom Usage: Native Data Types 337.1 Basics : 337.2 Example Problem: C : 347.3 Example Problem: Fortran : 348 Custom Usage: New Data Types 378.1 Basics : 378.2 Example Problem : 379 Hill-Climbing and Hybridization 4410 Parallel Aspects 4610.1 Basic Usage : 4610.2 Explicit Use : 4610.3 Example : 4710.4 Performance : 4711 Fortran Interface 4912 Debugging Tools 51III Appendixes 54A Default Values 55B Function Bindings 57C Parallelism Background 64D Machine Idiosyncrasies 68E Common Problems 71Acknowledgments 73Bibliography 74iv

Chapter 0Quick StartIf you wish to get started by just typing a few lines and running an example, this section is for you. We assumeyou have ftped the compressed tar �le pgapack.tar.Z containing the distribution into /home/username. Tobuild a sequential version of PGAPack for a Sun SparcStation in /usr/local/pga and run a test example,type1. uncompress /home/username/pgapack.tar.Z2. mkdir /usr/local/pga3. cd /usr/local/pga4. tar xvf /home/username/pgapack.tar5. configure -arch sun46. make install7. /usr/local/pga/examples/c/maxbitTo build an optimized (no built-in debugging capabilities), parallel version of PGAPack for an IBM SPparallel computer, using an MPI implementation with include �les in /usr/local/mpi/include and libraryin /usr/local/mpi/lib, and run a test example using four processes, type1. uncompress /home/username/pgapack.tar.Z2. mkdir /usr/local/pga3. cd /usr/local/pga4. tar xvf /home/username/pgapack.tar5. configure -arch rs6000 \-mpiinc /usr/local/mpi/include -mpilib /usr/local/mpi/lib/libmpi.a6. make install7. mpirun -np 4 /usr/local/pga/examples/c/maxbitStep 7, the execution step, is completely dependent on the MPI implementation. This example uses thempirun script that is distributed with the MPICH implementation [1]. Other MPI implementations may haveother ways to specify the number of processes to use.More details on the installation process and various options are given in Chapter 2. Chapter 3 (exampleproblems) and Sections 5.1 (required functions) and 5.9 (string evaluation and �tness) should be read next.1

Part IGetting Started

2

Chapter 1IntroductionPGAPack is a parallel genetic algorithm library that is intended to provide most capabilities desired in agenetic algorithm package, in an integrated, seamless, and portable manner. Key features of PGAPack areas follows:� Ability to be called from Fortran or C.� Executable on uniprocessors, multiprocessors, multicomputers, and workstation networks.� Binary-, integer-, real-, and character-valued native data types.� Object-oriented data structure neutral design.� Parameterized population replacement.� Multiple choices for selection, crossover, and mutation operators.� Easy integration of hill-climbing heuristics.� Easy-to-use interface for novice and application users.� Multiple levels of access for expert users.� Full extensibility to support custom operators and new data types.� Extensive debugging facilities.� Large set of example problems.
3

Chapter 2Installation2.1 Obtaining PGAPackThe complete distribution of PGAPack is available by anonymous ftp from ftp.mcs.anl.gov in the �lepub/pgapack/pgapack.tar.Z. The distribution contains all source code, installation instructions, this usersguide, and a collection of examples in C and Fortran. The current release of PGAPack is 1.0. You can checkwhich version of PGAPack you have by running any C language PGAPack program with the command-lineoption -pgaversion.2.2 RequirementsTo compile PGAPack, youmust have an ANSI C compiler that includes a full implementation of the StandardC library and related header �les. If you wish only to build a sequential version of PGAPack this is all thatis required.To build a parallel version, you must have an implementation of the Message Passing Interface (MPI)[5, 6] for the parallel computer or workstation network you are running on. If you do not have a nativeversion of MPI for your computer, several machine-independent implementations are available. Most of thetesting and development of PGAPack was done by using the MPICH implementation of MPI which is freelyavailable [1].2.3 Structure of the Distribution DirectoryThe PGAPack distribution contains the following �les and subdirectories:� CHANGES: Changes new to this release of PGAPack.� COPYRIGHT: The usage terms.� README: General instructions, including how to build and install PGAPack.� con�gure.in: The \source code" for the configure script.� con�gure: A Unix shell script that con�gures Makefile.in for a speci�c architecture.� Make�le.in: Prototype make�le that is con�gured into the �le Makefile for a speci�c architectureby con�gure.� docs: The users guide and any other supporting �les.� examples: A directory containing C and Fortran examples.� include: The PGAPack include directory. 4

� lib: The top-level directory where PGAPack will be installed.� man: The directory containing the PGAPack man pages.� source: The source code for PGAPack.In the rest of this guide we use \." as the top-level directory, e.g., ./source, ./examples/c/maxbit.c.2.4 Installation InstructionsWhen installing PGAPack you make two choices: whether to build a sequential (the default) or parallelversion (see the ags -mpiinc and -mpilib below) and whether to build an optimized (the default) or debugversion (the -debug ag). In broad outline, the installation steps are as follows.1. Make a directory to install PGAPack in (mkdir /usr/local/pga).2. Change directories to the directory created in the last step (cd /usr/local/pga).3. Obtain the compressed tar �le pgapack.tar.Z by anonymous ftp from ftp.mcs.anl.gov in the direc-tory pub/pgapack.4. Uncompress the tar �le (uncompress pgapack.tar.Z).5. Untar the uncompressed PGAPack tar �le (tar xvf pgapack.tar).6. Use configure to con�gure the make�les (configure -arch ARCH TYPE)where ARCH TYPE is one of sun4 for Sun SparcStations workstations, next for NeXT workstations,rs6000 for IBM RS/6000 workstations, irix for Silicon Graphics workstations, hpux for HewlettPackard workstations, alpha for DEC Alpha workstations, linux for machines running Linux, freebsdfor machines running FreeBSD, generic for generic 32-bit machines, powerchallenge for the SiliconGraphics Power Challenge Array, challenge for the Silicon Graphics Challenge, t3d for the Cray T3D,sp2 for the IBM SP2, paragon for the Intel Paragon, or exemplar for the Convex Exemplar.The full configure options are configure -arch ARCH TYPE [-cc CC] [-cflags CFLAGS] [-f77FC] [-fflags FFLAGS] [-debug] [-mpiinc MPI INCLUDE DIRECTORY] [-mpilib MPI LIBRARY][-help] where all parameters except -arch are optional and do the following:� -cc: The name of the ANSI C compiler, cc by default.� -cflags: Options passed to the C compiler.� -f77: The name of the Fortran 77 compiler, f77 by default. (The Fortran compiler is used onlyto compile the Fortran examples in the ./examples/fortran directory.)� -fflags: Options passed to the Fortran compiler.� -debug: If speci�ed, enables the debugging features (see Chapter 12) and compiles the sourcecode with the -g ag. If this ag is not speci�ed the debugging features are disabled, and thelibrary is compiled with the -O ag� -mpiinc: The directory where MPI include �les are located.� -mpilib: The full path to the MPI library.If -mpiinc and -mpilib are speci�ed, a parallel version of PGAPack will be built. If these ags arenot speci�ed, a sequential version of PGAPack will be built.7. Execute the make�le (make install).8. Add PGAPack's man pages to your man page path. (setenv MANPATH "$MANPATH"":/home/pgapack/man")9. Execute a test problem 5

� /usr/local/pga/examples/c/maxbit in C� /usr/local/pga/examples/fortran/maxbit in Fortran.If a parallel version of PGAPack was used, the actual commands to execute a parallel program in Step9 will depend on the particular MPI implementation and parallel computer used. See Appendix D for someexamples.2.5 Installation ExamplesThese installation examples assume you have ftped the compressed tar �le pgapack.tar.Z containing thedistribution into /home/username.2.5.1 Sequential InstallationTo build a sequential version of PGAPack for a Sun SparcStation in /usr/local/pga and run a test example,type:1. uncompress /home/username/pgapack.tar.Z2. mkdir /usr/local/pga3. cd /usr/local/pga4. tar xvf /home/username/pgapack.tar5. configure -arch sun46. make install7. /usr/local/pga/examples/c/maxbit2.5.2 Parallel InstallationTo build an optimized (no built-in debugging capabilities), parallel version of PGAPack for an IBM SPparallel computer using an MPI implementation with include �les in /usr/local/mpi/include and libraryin /usr/local/mpi/lib, and run a test example using four processes, type:1. uncompress /home/username/pgapack.tar.Z2. mkdir /usr/local/pga3. cd /usr/local/pga4. tar xvf /home/username/pgapack.tar5. configure -arch rs6000 \-mpiinc /usr/local/mpi/include -mpilib /usr/local/mpi/lib/libmpi.a6. make install7. mpirun -np 4 /usr/local/pga/examples/c/maxbitStep 7, the execution step, is completely dependent on the MPI implementation. This example uses thempirun script that is distributed with the MPICH implementation [1]. Other MPI implementations may haveother ways to specify the number of processes to use.6

2.6 Mailing Lists, Web Page, and Bug ReportingTo join the PGAPack mailing list to receive announcements of new versions, enhancements, and bug �xes,send electronic mail to pgapack@mcs.anl.gov. Bug reports should be sent to pgapack-bugs@mcs.anl.gov.The World Wide Web page for PGAPack is http://www.mcs.anl.gov/pgapack.html and contains up-to-date news and a list of bug reports.When reporting a bug, please include as much information and documentation as possible. Helpfulinformation would include PGAPack version number (-pgaversion), MPI implementation and version used,con�guration options, type of computer system, problem description, and error message output. It is helpfulif you put a PGAPrintContextVariable call before and after the PGASetUp call. Additionally, if possible,build a debug version of PGAPack and send \high-level" output from running your program with the tracefacility enabled (Chapter 12).

7

Chapter 3ExamplesThis chapter presents some simple PGAPack programs. The problem chosen is the Maxbit problem. Theobjective is to maximize the number of 1-bits in a string.Section 3.1 presents a simple PGAPack program in C whose structure is su�cient to solve many prob-lems. Section 3.2 presents this same program in Fortran. Section 3.3 shows how to change default valuesin PGAPack. Section 3.4 contains an example that shows how keyboard input may be read in an MPIenvironment. Finally, Section 3.5 shows how to compile, link, and execute a PGAPack program. These andother examples may be found in the ./examples/c and ./examples/fortran directories.3.1 Maxbit Problem in CFigure 3.1 shows a minimal program and evaluation function in C for the Maxbit problem. All PGAPackC programs must include the header �le pgapack.h. The PGACreate call is always the �rst function calledin a PGAPack program. It initializes the context variable, ctx. The parameters to PGACreate are thearguments to the program (given by argc and argv), the data type selected (PGA DATATYPE BINARY), thestring length (100), and the direction of optimization (PGA MAXIMIZE). The PGASetUp call initializes allparameters and function pointers not explicitly set by the user to default values.PGARun executes the genetic algorithm. Its second argument is the name of a user-de�ned function(evaluate) that will be called to evaluate the strings. PGADestroy releases all memory allocated by PGA-Pack. Note that all PGAPack functions take the context variable as an argument (except PGACreate, whichcreates the context variable).The evaluate function must be written by the user, must return a double, and must follow the exactcalling sequence shown. PGAGetStringLength returns the string length. PGAGetBinaryAllele returns thevalue of the ith bit of string p in population pop.3.2 Maxbit Problem in FortranThe Fortran Maxbit problem in Figure 3.2 is similar to the C version in Figure 3.1. The Fortran include�le is pgapackf.h and should be included in every Fortran function or subroutine that makes PGAPackcalls1. Since Fortran provides no standard mechanism for specifying command line arguments, these areomitted from the PGACreate function call. The context variable, ctx, is declared integer in Fortran.The evaluation function evaluate must contain exactly the calling sequence shown and must return adouble precision value. Note that evaluate is declared in an external statement in the program unitin which it is used as an actual argument. This is a requirement of the Fortran language. In Fortran, therange of allele values is 1:stringlen, rather than 0:stringlen-1 as in C.1Since not all Fortran compilers support the -I mechanism for specifying the include �le search path, you will need to copyor set up a symbolic link to pgapackf.h from the directory you are compiling a Fortran program in.8

#include "pgapack.h"double evaluate (PGAContext *ctx, int p, int pop);int main(int argc, char **argv){ PGAContext *ctx;ctx = PGACreate (&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);PGASetUp (ctx);PGARun (ctx, evaluate);PGADestroy (ctx);return;}double evaluate (PGAContext *ctx, int p, int pop){ int i, nbits, stringlen;stringlen = PGAGetStringLength(ctx);nbits = 0;for (i=0; i<stringlen; i++)if (PGAGetBinaryAllele(ctx, p, pop, i))nbits++;return((double) nbits);} Figure 3.1: PGAPack C Program for the Maxbit Exampleinclude "pgapackf.h"external evaluateinteger ctxctx = PGACreate (PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE)call PGASetUp (ctx)call PGARun (ctx, evaluate)call PGADestroy(ctx)stopenddouble precision function evaluate (ctx, p, pop)include "pgapackf.h"integer ctx, p, pop, i, bit, nbits, stringlenstringlen = PGAGetStringLength(ctx)nbits = 0do i=1, stringlenbit = PGAGetBinaryAllele(ctx, p, pop, i)if (bit .eq. 1) thennbits = nbits + 1endifenddoevaluate = dble(nbits)returnend Figure 3.2: PGAPack Fortran Program for the Maxbit Example9

#include "pgapack.h"double evaluate (PGAContext *ctx, int p, int pop);int main(int argc, char **argv){ PGAContext *ctx;ctx = PGACreate (&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);PGASetPopSize (ctx, 500);PGASetFitnessType (ctx, PGA_FITNESS_RANKING);PGASetCrossoverType (ctx, PGA_CROSSOVER_UNIFORM);PGASetUp (ctx);PGARun (ctx, evaluate);PGADestroy (ctx);return;} Figure 3.3: Specifying Nondefault Values3.3 Specifying Nondefault ValuesPGAPack o�ers a wide range of choices for parameter values, operators, and algorithmic choices. Thesewill be set to default values in PGASetUp if the user does not explicitly set a value for them. A nondefaultvalue may be set by using the PGASet family of calls after PGACreate has been called, but before PGASetUphas been called.In Figure 3.3 the PGASet calls change the default values for population size, �tness calculation, andcrossover type. PGASetPopSize changes the population size to 500. PGASetFitnessType speci�es thatthe �tness values be determined by using a ranking procedure rather than by direct use of the evaluationfunction values. PGASetCrossoverType speci�es that uniform crossover, rather than the default of two-pointcrossover is to be used. Most PGASet calls are discussed in Chapter 5.3.4 Parallel I/OThe examples in Figures 3.4 (C) and 3.5 (Fortran) read values for the two parameters len (string length)and maxiter (maximumnumber of GA iterations) from standard input. These examples will work correctlywith either a sequential or parallel version of PGAPack. However, the explicit use of MPI calls for I/O isnecessary only if a parallel version of PGAPack is used, and parameter values are read from standard input.The purpose is to be sure that each process receives a copy of the input values. See Appendix C for furtherdetails.MPI Init(&argc, &argv) is always the �rst function called in any MPI program. Each process executesMPI Comm rank(MPI COMM WORLD, &myid) to determine its unique rank in the communicator2 MPI COMM WORLD.The logic used in this program is to have process 0 read and write from/to standard input/output and broad-cast (using MPI Bcast) the parameters to the other processes. The PGAPack function calls are similar tothose in the previous examples. If the user called MPI Init, the user must also call MPI Finalize beforeexiting.We elaborate here on the MPI Bcast function because of its practical value in the model of parallel I/Oshown. For more detailed discussion of MPI concepts and functions, the user should consult [5, 6].The C binding for MPI Bcast isint MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm)and the Fortran binding2See Appendix C 10

#include "pgapack.h"double evaluate (PGAContext *ctx, int p, int pop);int main(int argc, char **argv){ PGAContext *ctx;int myid, len, maxiter;MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &myid);if (myid == 0) { /* Process 0 has a dialog */printf("String length? "); /* with the user and */scanf("%d", &len); /* broadcasts the user's */printf("Max iterations? "); /* parameters to all */scanf("%d", &maxiter); /* other processes */}MPI_Bcast(&len, 1, MPI_INT, 0, MPI_COMM_WORLD);MPI_Bcast(&maxiter, 1, MPI_INT, 0, MPI_COMM_WORLD);ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, len, PGA_MAXIMIZE);PGASetMaxGAIterValue(ctx, maxiter);PGASetUp(ctx);PGARun(ctx, evaluate);PGADestroy(ctx);MPI_Finalize();return(0);} Figure 3.4: PGAPack Maxbit Example in C with I/O
11

include 'pgapackf.h'include 'mpif.h'double precision evaluateexternal evaluateinteger ctx, myid, len, maxiter, ierrorcall MPI_Init(ierror)call MPI_Comm_rank(MPI_COMM_WORLD, myid, ierror)c Process 0 has a dialog with the user and broadcasts the user'sc parameters to all other processesif (myid .eq. 0) thenprint *, 'String length?'read *, lenprint *, 'Max iterations?'read *, maxiterendifcall MPI_Bcast(len, 1, MPI_INT, 0, MPI_COMM_WORLD, ierror)call MPI_Bcast(maxiter, 1, MPI_INT, 0, MPI_COMM_WORLD, ierror)ctx = PGACreate(PGA_DATATYPE_BINARY, len, PGA_MAXIMIZE)call PGASetMaxGAIterValue(ctx, maxiter)call PGASetUp(ctx)call PGARun(ctx, evaluate)call PGADestroy(ctx)call MPI_Finalize(ierror)stopend Figure 3.5: PGAPack Maxbit Example in Fortran with I/OMPI_BCAST(buffer, count, datatype, root, comm, ierror)<type> buffer(*)integer count, datatype, root, comm, ierrorMPI Bcast will result in every process in communicator comm receiving a copy of the contents of *buf/buffer.The other parameters are the number of items (count), the datatype (datatype), which may be one ofMPI DOUBLE, MPI INT, MPI CHAR, MPI UNSIGNED, or MPI LONG; the rank of the process with the original copy(root); the MPI communicator (comm); and, for Fortran, a variable to handle an error return code (ierror).3.5 Compiling, Linking, and ExecutionWhen PGAPack was installed, the make�les in the ./examples/c and ./examples/fortran directories werecorrectly con�gured for the machine PGAPack was installed on using the version of MPI speci�ed (if any).To run your own programs, it is best to copy the appropriate make�le (C or Fortran) to your directory andmodify it to use your source code �les. The make�le will compile your source code �les, link in the PGAPacklibrary (and MPI library if a parallel version of PGAPack was built), and build your executable.How you execute your program will depend on whether a sequential or parallel version of PGAPack was12

built, the MPI implementation used and the machine you are running on. If a sequential version of PGAPackwas built (i.e., one where the user did not supply a version of MPI), the executable maxbit can be executedon a uniprocessor Unix system by typing maxbit. If the MPICH implementation of MPI was used, it may beexecuted (using four processes) by mpirun maxbit -np 4. Appendix D contains some examples.

13

Part IIUsers Guide

14

Chapter 4The Structure of PGAPackThis chapter provides a general overview of the structure of PGAPack.4.1 Native Data TypesPGAPack is a data-structure-neutral library. By this we mean that a data-hiding capability provides thefull functionality of the library to the user, in a transparent manner, irrespective of the data type used.PGAPack supports four native data types: binary-valued, integer-valued, real-valued, and character-valuedstrings. In addition, PGAPack is designed to be easily extended to support other data types (see Chapter 7).The binary (or bit) data type (i.e., |1|0|1|1|) is the traditional GA coding. The bits may either be inter-preted literally or decoded into integer or real values by using either binary coded decimal or binary-reectedGray codes. In PGAPack the binary data type is implemented by using each distinct bit in a computer wordas a gene, making the software very memory-e�cient. The integer-valued data type (i.e., |3|9|2|4|) is oftenused in routing and scheduling problems. The real-valued data type (i.e., |4.2|7.1|-6.3|0.8|) is useful innumerical optimization applications. The character-valued data type (i.e., |h|e|l|l|o|w|o|r|l|d|is usefulfor symbolic applications.4.2 Context VariableIn PGAPack the context variable is the data structure that provides the data hiding capability. The con-text variable is a pointer to a C language structure, which is itself a collection of other structures. These(sub)structures contain all the information necessary to run the genetic algorithm, including data type spec-i�ed, parameter values, which functions to call, operating system parameters, debugging ags, initializationchoices, and internal scratch arrays. By hiding the actual data type selected and speci�c functions that op-erate on that data type in the context variable, user-level functions in PGAPack can be called independentof the data type.Almost all �elds in the context variable have default values. However, the user can set values in thecontext variable by using the PGASet family of function calls. The values of �elds in the context variablemay be read with the PGAGet family of function calls.4.3 Levels of Usage AvailablePGAPack provides multiple levels of control to support the requirements of di�erent users. At the simplestlevel, the genetic algorithm \machinery" is encapsulated within the PGARun function, and the user needspecify only three parameters: the data type, the string length, and the direction of optimization. Allother parameters have default values. At the next level, the user calls the data-structure-neutral functionsexplicitly (e.g., PGASelect, PGACrossover, PGAMutation). This mode is useful when the user wishes moreexplicit control over the steps of the genetic algorithm or wishes to hybridize the genetic algorithm with a15

hill-climbing heuristic. At the third level, the user can customize the genetic algorithm by supplying his orher own function(s) to provide a particular operator(s) while still using one of the native data types. Finally,the user can de�ne his or her own datatype, write the data-structure-speci�c low-level GA functions forthe datatype (i.e., crossover, mutation, etc.), and have the data-structure-speci�c functions executed by thehigh-level data-structure-neutral PGAPack functions.4.4 Function Call{Based LibraryAll the access to, and functionality of, the PGAPack library is provided through function calls.� The PGASet family of functions sets parameter values, allele values, and speci�es which GA operatorsto use. For example, PGASetPopSize(ctx,500) sets the GA population size to 500.� The PGAGet family of functions returns the values of �elds in the context variable and allele values inthe string. For example, bit = PGAGetBinaryAllele(ctx,p,pop,i) returns the value of the ith bitin string p in population pop into bit.� The simplest level of usage is provided by the PGARun function. This function will run the geneticalgorithm by using any nondefault values speci�ed by the user and default values for everything else.� The next level of usage is provided by the data-structure-neutral functions, which the user can callto have more control over the speci�c steps of the genetic algorithm. Some of these functions arePGASelect, PGACrossover, PGAMutate, PGAEvaluate, and PGAFitness.� The data-structure-speci�c functions deal directly with native data types. In general, the user nevercalls these functions directly.� System calls in PGAPack provide miscellaneous functionality, including debugging, random numbergeneration, output control, and error reporting.4.5 Header File and Symbolic ConstantsThe PGAPack header �le contains symbolic constants and type de�nitions for all functions and shouldbe included in any �le (or function or subroutine in Fortran) that calls a PGAPack function. For example,PGA CROSSOVER UNIFORM is a symbolic constant that is used as an argument to the functionPGASetCrossoverType to specify uniform crossover. In C the header �le is pgapack.h. In Fortran it ispgapackf.h4.6 Evaluation FunctionPGAPack requires that the user supply a function that returns an evaluation of a string that it will map toa �tness value. This function is called whenever a string evaluation is required. The calling sequence andreturn value of the function must follow the format discussed in Section 5.9.4.7 ParallelismPGAPack can be run on both sequential computers (uniprocessors) and parallel computers (multiprocessors,multicomputers, and workstation networks). The parallel programming model used is message passing, inparticular the single program, single data (SPMD) model. PGAPack version 1.0 supports sequential andparallel implementations of the global population model (see Chapter 10).16

4.8 ImplementationPGAPack is written in ANSI C. A set of interface functions allows most user-level PGAPack functionsto be called from Fortran. All message-passing calls follow the Message Passing Interface (MPI) standard[5, 6]. Nonoperative versions of the basic MPI functions used in the examples are supplied if the userdoes not provide an MPI implementation for their machine. These routines simply return and provide noparallel functionality. Their purpose is to allow the PGAPack library to be built in the absence of an MPIimplementation.Most low-level internal functions in PGAPack are data-structure speci�c and use addresses and/or o�setsof the population data structures. The user-level routines, however, provide the abstractions of data-structureneutrality and an integer indexing scheme for access to population data structures.

17

Chapter 5Basic UsageAs the examples in Chapter 3 show, a PGAPack program can be written with just four function calls anda string evaluation function. This basic usage is discussed further in Section 5.1. Sections 5.3{5.12 explainoptions available in PGAPack. Section 5.13 discusses PGAPack command line arguments.5.1 Required FunctionsAny �le (or function or subroutine in Fortran) that uses a PGAPack function must include the PGAPackheader �le. In C this �le is pgapack.h. In Fortran this �le is pgapackf.h. The �rst PGAPack call made isalways to PGACreate. In C this call looks likePGAContext *ctx;ctx = PGACreate (&argc, argv, datatype, len, maxormin);PGACreate allocates space for the context variable, ctx (Section 4.2), and returns its address. argc andargv are the standard list of arguments to a C program. datatype must be one of PGA DATATYPE BINARY,PGA DATATYPE INTEGER, PGA DATATYPE REAL, or PGA DATATYPE CHARACTER to specify strings consisting ofbinary-valued, integer-valued, real-valued, or character-valued strings, respectively. len is the length of thestring (i.e., the number of genes). maxormin must be PGA MAXIMIZE or PGA MINIMIZE to indicate whetherthe user's problem is maximization or minimization, respectively.In Fortran the call to PGACreate isinteger ctxctx = PGACreate (datatype, len, maxormin)where datatype, len, and maxormin are the same as for C programs. After the PGACreate call, the usermay optionally set nondefault values. These are then followed by a call to PGASetUp to initialize to defaultvalues all options, parameters, and operators not explicitly speci�ed by the user. For example,ctx = PGACreate(&argc, argv, datatype, len, maxormin);PGASetPopSize (ctx, 500);PGASetFitnessType (ctx, PGA_FITNESS_RANKING);PGASetCrossoverType (ctx, PGA_CROSSOVER_UNIFORM);PGASetUniformCrossoverProb (ctx, 0.6);PGASetUp (ctx);will change the default values for the population size, the mapping of the user's evaluation to a �tnessvalue, and the crossover type. All PGASet calls should be made after PGACreate has been called, but beforePGASetUp has been called; all such calls are optional. Note also that all PGAPack functions other thanPGACreate take the context variable as their �rst argument.The PGARun function executes the genetic algorithm. Its second argument is the name of a user-suppliedevaluation function that returns a double (double precision in Fortran) value that is the user's evaluationof an individual string. In C the prototype for this function looks like18

double evaluate (PGAContext *ctx, int p, int pop);and in Fortrandouble precision function evaluate (ctx, p, pop)integer ctx, p, popThe user must write the evaluation function, and itmust have the calling sequence shown above and discussedfurther in Section 5.9. After PGARun terminates, PGADestroy is called to release all memory allocated byPGAPack. 1Except for writing an evaluation function (Section 5.9) the information contained in rest of this chapteris optional|defaults will be set for all other GA parameters. We do note, however, that the defaults usedare the result of informal testing and results reported in the GA literature. They are by no means optimal,and additional experimentation with other values may well yield better performance on any given problem.5.2 Population ReplacementTwo population replacement schemes are common in the literature. The �rst, the generational replacementgenetic algorithm (GRGA), replaces the entire population each generation and is the traditional geneticalgorithm [7]. The second, the steady-state genetic algorithm (SSGA), typically replaces only a few stringseach generation and is a more recent development [9, 10, 11]. PGAPack supports both GRGA and SSGAand variants in between via parameterized population replacement. For example, the PGASet callsPGASetPopSize (ctx,200);PGASetNumReplaceValue (ctx,10);PGASetPopReplacementType(ctx, PGA_POPREPL_BEST);specify that each generation a new population is created consisting of ten strings created via recombi-nation, and the 190 most �t strings from the old population. The 190 strings can also be selected ran-domly, with or without replacement, by setting the second argument of PGASetPopReplacementType toPGA POPREPL RANDOM REP or PGA POPREPL RANDOM NOREP, respectively.By default, the number of new strings created each generation is 10 percent of the population size (anSSGA population replacement strategy). A GRGA can be implemented by setting PGASetNumReplaceValueto the population size (the default population size is 100). Setting PGASetNumReplaceValue to one less thanthe population size will result in an elitist GRGA, where the most �t string is always copied to the newpopulation (since PGA POPREPL BEST is the default population replacement strategy).Traditionally, strings created through recombination �rst undergo crossover and then mutation. Somepractitioners [3] have argued that these two operators should be separate. By default, PGAPackapplies mutation only to strings that did not undergo crossover. This is equivalent to settingPGASetMutationOrCrossoverFlag (ctx,PGA TRUE). To have strings undergo both crossover and mutation,one should use PGASetMutationAndCrossoverFlag (ctx,PGA TRUE).By default, PGAPack allows duplicate strings in the population. Some practitioners advocate not allowingduplicate strings in the population in order to maintaindiversity. The function call PGASetNoDuplicatesFlag(ctx,PGA TRUE) will not allow duplicate strings in the population: It repeatedly applies the mutation oper-ator (with an increasing mutation rate) to a duplicate string until it no longer matches any string in the newpopulation. If the mutation rate exceeds 1.0, however, the duplicate string will be allowed in the population,and a warning message will be issued.Figure 5.1 shows the generic population replacement scheme in PGAPack. Both populations k and k+1are of �xed size (the value returned by PGAGetPopSize). First, PGAGetPopSize - PGAGetNumReplaceValuestrings are copied over directly from generation k. The way the strings are chosen, the most �t, or randomlywith or without replacement, depends on the value set by PGASetPopReplacementType. The remainingPGAGetNumReplaceValue strings are created by crossover and mutation.1PGADestroy will also call MPI finalize, if MPI was started by PGACreate.19

k+1k

temp

PGAGetPopSize()

PGAGetNumReplaceValue()

PGAGetPopSize() -

PGAGetNumReplaceValue()

Figure 5.1: Population Replacement
20

5.3 Stopping CriteriaPGAPack terminates when at least one of the stopping rule(s) speci�ed has been met. The three stoppingrules are (1) iteration limit exceeded, (2) population too similar, and (3) no change in the best solution foundin a given number of iterations. The default is to stop when the iteration limit (by default, 1000 iterations)is reached.The choice of stopping rule is set by PGASetStoppingRuleType. For example, PGASetStoppingRuleType(ctx,PGA STOP MAXITER) is the default. Other choices are PGA STOP TOOSIMILAR and PGA STOP NOCHANGEfor population too similar and no change in the best solution found, respectively. PGASetStoppingRuleTypemay be called more than once. The di�erent stopping rules speci�ed are ored together.If PGA STOP MAXITER is one of the stopping rules, PGASetMaxGAIterValue(ctx,500) will changethe maximum iteration limit to 500. If PGA STOP NOCHANGE is one of the stopping rules,PGASetMaxNoChangeValue(ctx,50) will change from 100 (the default) to 50 the maximum number of iter-ations in which no change in the best evaluation is allowed before the GA stops. If PGA STOP TOOSIMILAR isone of the stopping rules, PGASetMaxSimilarityValue(ctx,99) will change from 95 to 99 the percentageof the population allowed to have the same evaluation function value before the GA stops.5.4 InitializationStrings are either initialized randomly (the default), or set to zero. The choice is speci�ed by settingthe second argument of PGASetRandomInitFlag to either PGA TRUE or PGA FALSE, respectively. Randominitialization depends on the datatype.If binary-valued strings are used, each gene is set to 1 or 0 with an equal probability. To set the probabilityof randomly setting a bit to 1 to 0.3, use PGASetBinaryInitProb(ctx,0.3).For integer-valued strings, the default is to set the strings to a permutation on a range of integers. Thedefault range is [0; L� 1], where L is the string length. PGASetIntegerInitPermute(ctx, 500, 599) willset the permutation range to [500; 599]. The length of the range must be the same as the string length.Alternatively, PGASetIntegerInitRange will set each gene to a random value selected uniformly from aspeci�ed range. For example, the codestringlen = PGAGetStringLength(ctx);for(i=0;i<stringlen;i++) {low[i] = 0;high[i] = i;}PGASetIntegerInitRange(ctx, low, high);will select a value for gene i uniformly randomly from the interval [0,i].If real-valued strings are used, the alleles are set to a value selected uniformly randomly from a speci�edinterval. The interval may be speci�ed with either the PGASetRealInitRange or PGASetRealInitPercentfunctions. For example, the codestringlen = PGAGetStringLength(ctx);for(i=0;i<stringlen;i++) {low[i] = -10.0;high[i] = (double) i;}PGASetRealInitRange(ctx, low, high);will select a value for allele i uniformly randomly from the interval [�10:0; i]. This is the default strategyfor initializing real-valued strings. The default interval is [0; 1:0].PGASetRealInitPercent speci�es the interval with a median value and percent o�set. For example,stringlen = PGAGetStringLength(ctx);for(i=1;i<=stringlen;i++) {median[i] = (double) i; 21

percent[i] = .5;}PGASetRealInitPercent(ctx, median, percent);will select a value for allele i uniformly randomly from the increasing intervals [12 i; 32 i]. Note that if themedian value is zero for some i, than an interval of [0; 0] will be de�ned.If character-valued strings are used, PGASetCharacterInitType(ctx,PGA CINIT UPPER)will set the allelevalues to uppercase alphabetic characters chosen uniformly randomly. Other options are PGA CINIT LOWERfor lower case letters only (the default) and PGA CINIT MIXED for mixed case letters, respectively.5.5 SelectionThe selection phase allocates reproductive trials to strings on the basis of their �tness. PGAPack supportsfour selection schemes: proportional selection, stochastic universal selection, binary tournament selection,and probabilistic binary tournament selection. The choice may be speci�ed by setting the second argumentof PGASetSelectType to one of PGA SELECT PROPORTIONAL, PGA SELECT SUS, PGA SELECT TOURNAMENT, andPGA SELECT PTOURNAMENT for proportional, stochastic universal, tournament, and probabilistic tournamentselection, respectively. The default is tournament selection. For probabilistic tournament selection, thedefault probability that the string that wins the tournament is selected is 0.6. It may be set to 0.8, forexample, with PGASetPTournamentProb(ctx, 0.8).5.6 CrossoverThe crossover operator takes bits from each parent string and combines them to create child strings. The typeof crossover may be speci�ed by setting PGASetCrossoverType to PGA CROSSOVER ONEPT, PGA CROSSOVER TWOPT,or PGA CROSSOVER UNIFORM for one-point, two-point, or uniform crossover, respectively. The default is two-point crossover. By default the crossover rate is 0.85. It may be set to 0.6 by PGASetCrossoverProb(ctx,0.6), for example.Uniform crossover is parameterized by pu, the probability of swapping two parent bit values [8]. Bydefault, pu = 0:5. The function call PGASetUniformCrossoverProb(ctx, 0.7) will set pu = 0:7.5.7 MutationThe mutation rate is the probability that a gene will undergo mutation. The mutation rate is independentof the datatype used. The default mutation rate is the reciprocal of the string length. The function callPGASetMutationProb(ctx,.001) will set the mutation rate to .001.The type of mutation depends on the data type. For binary-valued strings, mutation is a bit complementoperation For character-valued strings, mutation replaces one alphabetic character with another chosenuniformly randomly. The alphabetic characters will be lower, upper, or mixed case depending on how thestrings were initialized.For integer-valued strings, if the strings were initialized to a permutation and gene i is to be mutated,the default mutation operator swaps gene i with a randomly selected gene. If the strings were initialized toa random value from a speci�ed range and gene i is to be mutated, by default gene i will be replaced by avalue selected uniformly random from the initialization range.The mutation operator for integer-valued strings may be changed irrespective of how the strings wereinitialized. If PGASetMutationType is set to PGA MUTATION RANGE, gene i will be replaced with a value se-lected uniformly randomly from the initialization range. If the strings were initialized to a permutation,the minimum and maximum values of the permutation de�ne the range. If PGASetMutationType is set toPGA MUTATION PERMUTE, gene i will be swapped with a randomly selected gene. If PGASetMutationTypeis set to PGA MUTATION CONSTANT, a constant integer value (by default one) will be added (subtracted)to (from) the existing allele value. The constant value may be set to 34, for example, withPGASetMutationIntegerValue(ctx,34). 22

Three of the four real-valued mutation operators are of the form v v � p � v, where v is the existingallele value. They vary by how p is selected. First, if PGASetMutationType is set to PGA MUTATION CONSTANT,p is the constant value 0.01. It may be set to .02, for example, with PGASetMutationRealValue(ctx,.02).Second, if PGASetMutationType is set to PGA MUTATION UNIFORM, p is selected uniformly from the interval(0; :1). To select p uniformly from the interval (0; 1) set PGASetMutationRealValue(ctx,1). Third, ifPGASetMutationType is set to PGA MUTATION GAUSSIAN, p is selected from a Gaussian distribution (thisis the default real-valued mutation operator) with mean 0 and standard deviation 0.1. To select p froma Gaussian distribution with mean 0 and standard deviation 0.5 set PGASetMutationRealValue(ctx,.5).Finally, if PGASetMutationType is set to PGA MUTATION RANGE, gene i will be replaced with a value selecteduniformly random from the initialization range of that gene.Some of the integer- and real-valued mutation operators may generate allele values outside the initial-ization range of that gene. If this happens, by default, the allele value will be reset to the lower (upper)value of the initialization range for that gene. By setting PGASetMutationBoundedFlag(ctx, PGA FALSE)the allele values will not be reset if they fall outside of the initialization range.5.8 RestartThe restart operator reseeds a population from the best string. It does so by seeding the new populationwith the best string and generating the remainder of the population as mutated variants of the best string.By default the restart operator is not invoked. Setting PGASetRestartFlag(ctx,PGA TRUE)will cause the restart operator to be invoked. By default PGAPack will restart every 50 iterations.PGASetRestartFrequencyValue (ctx,100) will restart every 100 iterations instead. When creating thenew strings from the best string an individual allele undergoes mutation with probability 0.5. This can bechanged to 0.9 with the function call PGASetRestartAlleleChangeProb(ctx,0.9).For binary-valued strings the bits are complemented. For integer- and real-valued strings the amount tochange is set with PGASetMutationIntegerValue and PGASetMutationRealValue, respectively. Character-valued strings are changed according to the rules in Section 5.7 for mutating character strings.5.9 String Evaluation and FitnessIn a genetic algorithm each string is assigned a nonnegative, real-valued �tness. This is a measure, relative tothe rest of the population, of how well that string satis�es a problem-speci�c metric. In PGAPack calculatinga string's �tness is a two-step process. First, the user supplies a real-valued evaluation (sometimes calledthe raw �tness) of each string. Second, this value is mapped to a �tness value.It is the user's responsibility to supply a function to evaluate an individual string. As discussed inSection 5.1, the name of this function is speci�ed as the second argument to PGARun. The calling sequencefor this function (which we call evaluate in the rest of this section, but may have any name) must followthe format given here. In C the format isdouble evaluate (PGAContext *ctx, int p, int pop);and in Fortrandouble precision function evaluate (ctx, p, pop)integer ctx, p, popThe function evaluate will be called by PGARun whenever a string evaluation is required. p is the indexof the string in population pop that will be evaluated. The correct values of p and pop will be passed to theevaluation function by PGARun. (If PGARun is not used, PGAEvaluate must be. See Chapter 6.) As shownbelow, p and pop are used for reading (and sometimes writing) allele values Sample evaluation functions areshown in Figures 3.1 and 3.2, and online in the ./examples directory.Traditionally, genetic algorithms assume �tness values are nonnegative and monotonically increasing themore �t a string is. The user's evaluation of a string, however, may reect a minimization problem and/orbe negative. Therefore, the user's evaluation value is mapped to a nonnegative and monotonically increasing23

�tness value. First, all evaluations are mapped to positive values (if any were negative). Next, these valuesare translated to a maximization problem (if the direction of optimization speci�ed was minimization).Finally, these values are mapped to a �tness value by using the identity (the default), linear ranking, orlinear normalization, The choice of �tness mapping may be set with the function PGASetFitnessType. Thesecond argument must be one of PGA FITNESS RAW, PGA FITNESS RANKING, or PGA FITNESS NORMAL, for theidentity, linear ranking, or linear normalization, respectively.A linear rank �tness function [2, 10] is given byMin + (Max�Min)rank(p)� 1N � 1 ; (5:1)where rank(p) is the index of string p in a list sorted in order of decreasing evaluation function value, andN is the population size. Ranking requires that 1 � Max � 2, and Min+Max = 2. The default value forMax is 1.2. It may be set to 1.1 with PGASetMaxFitnessRank(ctx,1.1).In linear normalization the �tness function is given byK � (rank(p) �C); (5:2)where K and C are the constants � � N and �, where � is the standard deviation of the user's evaluationfunction values after they have been transformed to positive values for a maximization problem.If the direction of optimization is minimization, the values are remapped for maximization. The functioncall PGASetFitnessMinType(ctx,PGA FITNESSMIN CMAX) will remap by subtracting the worst evaluationvalue from each evaluation value (this is the default). The worst evaluation value is multiplied by 1.01 beforethe subtraction so that the worst string has a nonzero �tness. The function call PGASetFitnessCmaxValue(ctx,1.2) will change the multiplier to 1.2 Alternatively, if PGA FITNESSMIN RECIPROCAL is speci�ed the remap-ping is done by using the reciprocal of the evaluation function.5.10 Accessing Allele ValuesFor each of the native data types, PGAPack provides a matched pair of functions that allow the user to reador write (change) any allele value. If the data type is PGA DATATYPE BINARYint bit;bit = PGAGetBinaryAllele (ctx, p, pop, i);will assign to bit the binary value of the ith gene in string p in population pop. To set the ith gene instring p in population pop to 1, usePGASetBinaryAllele(ctx, p, pop, i, 1);If the data type is PGA DATATYPE INTEGERint k;k = PGAGetIntegerAllele (ctx, p, pop, i);will assign to k the integer value of the ith gene in string p in population pop. To set the ith gene in stringp in population pop to 34, usePGASetIntegerAllele(ctx, p, pop, i, 1, 34);If the data type is PGA DATATYPE REALdouble x;x = PGAGetRealAllele (ctx, p, pop, i);will assign to x the real value of the ith gene in string p in population pop. To set the ith gene in string pin population pop to 123.456, usePGASetRealAllele(ctx, p, pop, i, 1, 123.456);24

If the data type is PGA DATATYPE CHARACTERchar c;c = PGAGetCharacterAllele (ctx, p, pop, i);will assign to c the character value of the ith gene in string p in population pop. To set the ith gene instring p in population pop to \Z", usePGASetCharacterAllele(ctx, p, pop, i, 1, 'Z');5.10.1 Representing an Integer with a Binary StringA binary string may be used to represent an integer by decoding the bits into an integer value. In a binarycoded decimal (BCD) representation, a binary string is decoded into an integer k 2 [0; 2N � 1] according tok = NXi=1 bi2i�1; (5:3)where N is the string length, and bi the value of the ith bit. For example, to decode the integer k from theten bits in bit positions 20{29, useint kk = PGAGetIntegerFromBinary(ctx,p,pop,20,29);The function PGAEncodeIntegerAsBinary will encode an integer as a binary string. For example, to encodethe integer 564 as a 12-bit binary string2 in the substring de�ned by bits 12{23, usePGAEncodeIntegerAsBinary(ctx,p,pop, 12, 23, 564);In a BCD representation, two numbers that are contiguous in their decimal representations may be farfrom each other in their binary representations. For example, 7 and 8 are consecutive integers, yet their 4-bitbinary representations, 0111 and 1000, di�er in the maximumnumber of bit positions.3 Gray codes de�ne adi�erent mapping of binary strings to integer values from that given by Eq. (5.3) and may alternatively beused for representing integer (or real, see below) values in a binary string. The second and third columns inTable 5.1 show how the integers 0{7 are mapped to Eq. (5.3) and to the binary reected Gray code (the mostcommonly used Gray code sequence), respectively. In the binary reected Gray code sequence, the binaryrepresentations of consecutive integers di�er by only one bit (a Hamming distance of one).To decode the integer k from a binary reected Gray code interpretation of the binary string, usek = PGAGetIntegerFromGrayCode(ctx,p,pop,20,29);To encode 564 as a 12-bit binary string in the substring de�ned by bits 12{23 using a Gray code, usePGAEncodeIntegerAsGaryCode(ctx,p,pop, 12, 23, 564);5.10.2 Representing a Real Value with a Binary StringA binary string may also be used to represent a real value. The decoding of a binary string to a real-value isa two-step process. First, the binary string is decoded into an integer as described in Section 5.10.1. Next,the integer is mapped from the discrete interval [0; 2N � 1] to the real interval [L;U] by using the formulax = (k � a)� (U � L)=(b � a) + L(and generalizing [0; 2N � 1] to [a; b]). For example, to decode the double x from the 20 bits given by thebinary string stored in bit positions 10{29 onto the interval [�10:0; 20:0], use2Even though only ten bits are necessary to encode 564, the user may want to allow the GA any value between [0;4095],hence the twelve bits.3Technically, this is known as a Hamming cli�. 25

Table 5.1: Binary and Gray Codesk Eq. (5.3) Gray code0 000 0001 001 0012 010 0113 011 0104 100 1105 101 1116 110 1017 111 100x = PGAGetRealFromBinary(ctx,p,pop,10,29,-10.0,20.0);To encode -18.3 on the interval [�50:0; 50:0] using a 20-bit BCD binary string, usePGAEncodeRealAsBinary(ctx,p,pop,0,19,-50.0,50.0,-18.3);The functions PGAGetRealFromGrayCode and PGAEncodeRealAsGrayCode provide similar functionality forGray-coded strings.5.10.3 ExampleAs an example, suppose the user has a real-valued function f of three real variables x1, x2, and x3. Further,the variables are constrained as follows. �10 � x1 � 00 � x2 � 10�10 � x3 � 10The user wishes to use 10 bits for the binary representation of x1 and x2, and 20 bits for the binaryrepresentation of x3 (perhaps for higher accuracy), and a Gray code encoding. This may be done as follows.#include "pgapack.h"double grayfunc (PGAContext *ctx, int p, int pop);double f (double x1, double x2, double x3);int main(int argc, char **argv){ PGAContext *ctx;ctx = PGACreate (&argc, argv, PGA_DATATYPE_BINARY, 40, PGA_MINIMIZE);PGASetUp (ctx);PGARun (ctx, grayfunc);PGADestroy (ctx);return;}double grayfunc (PGAContext *ctx, int p, int pop){ double x1, x2, x3, v;x1 = PGAGetRealFromGrayCode (ctx, p, pop, 0, 9, -10., 0.);x2 = PGAGetRealFromGrayCode (ctx, p, pop, 10, 19, 0., 10.);x3 = PGAGetRealFromGrayCode (ctx, p, pop, 20, 39, -10., 10.);v = f(x1,x2,x3);return(v);} 26

In Fortran, the bit indices would be 1{10, 11{20, and 21{40, respectively. The number of bits allocated forthe binary representation determines the accuracy with which the real value can be calculated. Note in thisexample the function f need not be modi�ed; the function grayfunc is used as a \wrapper" to get variablevalues out of the GA and return the value calculated by f.5.11 Report OptionsPGASetPrintFrequencyValue(ctx,40) will print population statistics every 40 iterations. The default isevery ten iterations. The best evaluation is always printed. To print additional statistics, set the second argu-ment of the function PGASetPrintOptions to PGA REPORT ONLINE, PGA REPORT OFFLINE, PGA REPORT WORST,PGA REPORT AVERAGE, PGA REPORT HAMMING, or PGA REPORT STRING to print the online analysis, o�ine analy-sis, worst evaluation, average evaluation, Hammingdistance, or string itself, respectively. PGASetPrintOptionsmay be called multiple times to specify multiple print options.5.12 Utility Functions5.12.1 Random NumbersBy default, PGAPack will seed its random number generator by using a value from the system clock.Therefore, each time PGAPack is run, a unique sequence of random numbers will be used. For debuggingor reproducibility purposes, however, the user may wish to use the same sequence of random numbers eachtime. This may be done using the function PGASetRandomSeed to initialize the random number generatorwith the same seed each time, for example, PGASetRandomSeed(ctx,1).PGARandom01(ctx,0) will return a random number generated uniformly on [0; 1]. If the secondargument is not 0, it will be used to reseed the random number sequence. PGARandomFlipips a biased coin. For example, PGARandomFlip(ctx,.7) will return PGA TRUE approximately70% of the time. PGARandomInterval(-10,30)will return an integer value generated uniformly on [�10; 30].PGARandomUniform (ctx,-50.,50.) will return a real value generated uniformly randomly on the interval[�50; 50]. PGARandomGaussian (ctx,0.,1.) will return a real value generated from a Gaussian distributionwith mean zero and standard deviation one.5.12.2 Print FunctionsPGAPrintPopulation(ctx,stdout,pop) will print the evaluation function value, �tness value, and stringfor each member of population pop to stdout. This function may not be called until after PGASetUp has beencalled. PGAPrintContextVariable(ctx,stdout) will print the value of all �elds in the context variable tostdout. PGAPrintIndividual(ctx,stdout,p,pop) will print the evaluation function value, �tness value,and string of individual p in population pop to stdout. PGAPrintString(ctx,stdout,p,pop)will print thestring of individual p in population pop to stdout. PGAPrintVersionNumber(ctx) will print the PGAPackversion number.5.12.3 MiscellaneousPGAGetGAIterValue(ctx) will return the current iteration of the GA. PGAGetBestIndex(ctx,pop)(PGAGetWorstIndex) will return the index of the most (least) �t member of population pop.PGAUpdateOffline(ctx,pop) (PGAUpdateOnline) will update the o�ine (online) analysis based on thenew generation's results. PGAHammingDistance(ctx,pop) returns a double, which is the average Hammingdistance between the binary strings in population pop. The function callPGAError(ctx, "popindex=", PGA_FATAL, PGA_INT, (void *)&popindex)will print the message \popindex=-1" (assuming the value of popindex is -1) and then exit PGAPack. Ifthe third argument had been PGA WARNING instead, execution would have continued. In addition to PGA INT,valid data types are PGA DOUBLE, PGA CHAR, and PGA VOID.27

5.13 Command-Line ArgumentsPGAPack provides several command-line arguments. These are only available to C programs, althoughin some cases both C and Fortran programs can achieve the equivalent functionality with function calls.For example, PGAUsage(ctx) provides the same functionality as the -pgahelp command line option. SeeChapter 12 for the function call equivalents.-pgahelp get this message-pgahelp debug list of debug options-pgadbg <level> set debug option-pgadebug <level> set debug option-pgaversion Print current PGAPack version number, parallel orsequential, and debug or optimized

28

Chapter 6Explicit UsageThis chapter discusses how the user may obtain greater control over the steps of the GA by not using thePGARun command, but instead calling the data-structure-neutral functions directly. One rami�cation ofthis is that the PGARun interface no longer masks some of the di�erences between parallel and sequentialexecution. The examples in this chapter are written for sequential execution only. Chapter 10 shows howthey may be executed in parallel.6.1 NotationTo understand the calling sequences of the functions discussed in this chapter, one must know of the existenceof certain data structures and the user interface for accessing them. It is not necessary to know how thesedata structures are implemented, since that is hidden by the user interface to PGAPack.PGAPack maintains two populations: an old one and a new one. The size of each population is the valuereturned by PGAGetPopSize. In addition, each population contains two temporary working locations. Thestring length is the value speci�ed to PGACreate and returned by PGAGetStringLength.Formally, string p in population pop is referred to by the 2-tuple (p,pop) and the value of gene i in thatstring by the 3-tuple (i,p,pop). In PGAPack, popmust be one of the two symbolic constants PGA OLDPOP orPGA NEWPOP to refer to the old or new population, respectively. At the end of each GA iteration, the functionPGAUpdateGeneration makes sure these symbolic constants are remapped to the correct population. Thestring index p must be either an integer between 0 and P � 1 (or 1 and P in Fortran) or one of the symbolicconstants PGA TEMP1 or PGA TEMP2, to reference one of the two temporary locations, respectively.6.2 Simple Sequential ExampleThe example in Figure 6.1 is a complete PGAPack program that does not use PGARun. It is an alternativeway to write the main program for the Maxbit example of Section 3.1. We refer to it as a simple examplebecause it uses PGARunMutationAndCrossover to encapsulate the recombination step. The PGACreate andPGASetUp functions were discussed in the last chapter. PGASetUp creates and randomly initializes the initialpopulation. This population, referred to initially by the symbolic constant PGA OLDPOP, is evaluated by thePGAEvaluate function. The third argument to PGAEvaluate is the name of the user's evaluation function.The function prototype for evaluate must be as shown in Figure 6.1 and discussed earlier in Sections 5.1and 5.9. The PGAFitness function maps the user's evaluation function values into �tness values.The while loop runs the genetic algorithm. PGADone returns PGA TRUE if any of the speci�ed stoppingcriteria have been met, otherwise PGA FALSE. PGASelect performs selection on population PGA OLDPOP.PGARunMutationAndCrossover uses the selected strings to create the new population by applying thecrossover and mutation operators. PGAEvaluate and PGAFitness evaluate and map to �tness values thenewly created population. PGAUpdateGeneration updates the GA iteration count and resets several im-portant internal arrays (don't forget to call it!). PGAPrintReport writes out genetic algorithm statistics29

#include "pgapack.h"double evaluate (PGAContext *ctx, int p, int pop);int main(int argc, char **argv){ PGAContext *ctx;ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);PGASetUp (ctx);PGAEvaluate(ctx, PGA_OLDPOP, evaluate, NULL);PGAFitness (ctx, PGA_OLDPOP);while(!PGADone(ctx, NULL)) {PGASelect (ctx, PGA_OLDPOP);PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP);PGAEvaluate (ctx, PGA_NEWPOP, evaluate, NULL);PGAFitness (ctx, PGA_NEWPOP);PGAUpdateGeneration (ctx, NULL);PGAPrintReport (ctx, stdout, PGA_OLDPOP);}PGADestroy(ctx);return(0);} Figure 6.1: Simple Example of Explicit Usageaccording to the report options speci�ed. Note that the argument to PGAPrintReport is the old popula-tion, since after PGAUpdateGeneration is called, the newly created population is in PGA OLDPOP. Finally,PGADestroy releases any memory allocated by PGAPack when execution is complete.The functions PGADone, PGAUpdateGeneration, and PGAEvaluate take an MPI communicator (see Ap-pendix C and Chapter 10) as an argument. For sequential execution the value NULL should be speci�ed forthis argument. A parallel, or sequential and parallel, version of this example is given in Section 10.2.6.3 Complex ExampleThe primary di�erence between the \complex" example in Figure 6.2 and the \simple" example in Fig-ure 6.1 is that the steps encapsulated by PGARunMutationAndCrossoverhave been written out explicitly. Thefunction PGASortPop sorts a population according to the criteria speci�ed by PGASetPopReplacementType(Section 5.2). The sorted indices are accessed via PGAGetSortedPopIndex. In the example, the �ve linesthat follow PGASortPop copy the strings that are not created by recombination from the old population tothe new population.The while loop that follows creates the remainder of the new population. PGASelectNextIndex re-turns the indices of the strings selected by PGASelect. PGARandomFlip ips a coin biased by the crossoverprobability to determine whether the selected strings should undergo crossover and mutation or should becopied directly into the new population. PGACrossover uses the parent strings m1 and m2 from populationPGA OLDPOP to create two child strings in the temporary locations PGA TEMP1 and PGA TEMP2 in PGA NEWPOPpopulation.PGAMutatemutates the child strings and PGACopyIndividual, then copies them into the new population.If the strings do not undergo crossover and mutation, they are copied into the new population unchanged.The rest of the steps are the same as those in Figure 6.1, except that for illustrative purposes we callPGAPrintReport before PGAUpdateGeneration. In that case we use population PGA NEWPOP as the populationpointer. 30

#include "pgapack.h"double evaluate(PGAContext *ctx, int p, int pop);int main(int argc, char **argv){ PGAContext *ctx;int i, j, n, m1, m2, popsize, numreplace;double probcross;ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);PGASetUp(ctx);probcross = PGAGetCrossoverProb(ctx);popsize = PGAGetPopSize(ctx);numreplace = PGAGetNumReplaceValue(ctx);PGAEvaluate(ctx, PGA_OLDPOP, evaluate, NULL);PGAFitness (ctx, PGA_OLDPOP);while(!PGADone(ctx, NULL)) {PGASelect (ctx, PGA_OLDPOP);PGASortPop(ctx, PGA_OLDPOP);n = popsize - numreplace;for (i=0; i < n; i++) {j = PGAGetSortedPopIndex(ctx, i);PGACopyIndividual(ctx, j, PGA_OLDPOP, i, PGA_NEWPOP);}while (n < popsize) {m1 = PGASelectNextIndex(ctx);m2 = PGASelectNextIndex(ctx);if(PGARandomFlip(ctx, probcross)) {PGACrossover(ctx, m1, m2, PGA_OLDPOP, PGA_TEMP1, PGA_TEMP2, PGA_NEWPOP);PGAMutate (ctx,PGA_TEMP1,PGA_NEWPOP);PGAMutate (ctx,PGA_TEMP2,PGA_NEWPOP);PGACopyIndividual (ctx,PGA_TEMP1,PGA_NEWPOP,n, PGA_NEWPOP);PGACopyIndividual (ctx,PGA_TEMP2,PGA_NEWPOP,n+1,PGA_NEWPOP);n += 2;}else {PGACopyIndividual (ctx, m1, PGA_OLDPOP, n, PGA_NEWPOP);PGACopyIndividual (ctx, m2, PGA_OLDPOP, n+1, PGA_NEWPOP);n += 2;}}PGAEvaluate(ctx, PGA_NEWPOP, evaluate, NULL);PGAFitness (ctx, PGA_NEWPOP);PGAPrintReport(ctx, stdout, PGA_NEWPOP);PGAUpdateGeneration(ctx, NULL);}PGADestroy(ctx);return 0;} Figure 6.2: Example of Explicit Usage31

6.4 Explicit PGAPack FunctionsThis section briey discusses other functions not shown in the previous examples or discussed in Chapter 5.Additional information about these and other PGAPack functions is contained in Appendix B (functionbindings) and the ./examples directory.PGARunMutationAndCrossover and PGARunMutationOrCrossover perform the recombination step. Theformer applies mutation to strings that undergo crossover. The latter applies only mutation to strings thatdid not undergo crossover.The restart operator described earlier in Section 5.8 can be invoked explicitly with PGARestart(ctx,oldpop, newpop), where the best string from population oldpop is used to initialize population newpop.PGADuplicate(ctx,p,PGA OLDPOP,PGA NEWPOP,20) returns PGA TRUE if string p in population PGA OLDPOPis a duplicate of any of the �rst 20 strings in population PGA NEWPOP. PGAChange(ctx, p, PGA OLDPOP) re-peatedly applies the mutation operator to string p in population PGA OLDPOP until at least one mutation hasoccurred.In PGAPack three values are associated with each string: (1) the user's evaluation function value, (2) aBoolean ag to indicate whether the evaluation function value is up to date with respect to the actual string,and (3) the �tness value. If PGARun is not used, the user must manage these values explicitly.PGAEvaluate(ctx, PGA NEWPOP, evaluate, comm)will execute the user's evaluation function, evaluate,on each string in population PGA NEWPOP that has changed (for example, from crossover) since its last eval-uation. PGAEvaluate will set both the evaluation function value and associated Boolean ag automatically.The argument comm is an MPI communicator. Valid values are NULL for an explicitly sequential example,or any valid MPI communicator. Depending on the number of processes speci�ed when the program wasinvoked, and the value of the comm argument, PGAEvaluate may be run with one or more processes. SeeChapter 10 for further discussion.PGAFitness will calculate the population �tness values from the evaluation function values. It is an errorto call PGAFitness if all the evaluation function values are not up to date.These same three values may be read also. PGAGetEvaluation(ctx, p, PGA OLDPOP) returns theevaluation function value. PGAGetEvaluationUpToDateFlag(ctx, p, PGA OLDPOP) returns PGA TRUE orPGA FALSE to indicate whether the evaluation is up to date with the actual string or not, respectively. IfPGAPack was compiled for debugging,PGAGetEvaluation will print a warning message if the evaluation isnot up to date. PGAGetFitness(ctx, p, PGA OLDPOP) returns the �tness value.At times, (e.g., applying a hill-climbing function) the user may need to explicitly set the evaluationfunction value and associated Boolean ag (�tness values can be calculated only by calling PGAFitness).PGASetEvaluation(ctx, p, PGA OLDPOP, 123.4) will set the evaluation function value to 123.4and the associated Boolean ag to PGA TRUE. The Boolean ag may be set independently withPGASetEvaluationUpToDateFlag. For example, PGASetEvaluationUpToDateFlag (ctx, p, PGA OLDPOP,PGA FALSE) sets the status of the Boolean ag of string p in population PGA OLDPOP to out of date.PGAMean(ctx, a, n) returns the mean of the n values in array a. PGAStddev(ctx, a, n, mean) returnsthe standard deviation of the n values in array a whose mean is mean. PGARank(ctx, p, order, n) returnsan index that is the rank of string p as given by the sorted array order of length n.PGAGetPrintFrequency(ctx) returns the frequency with which GA statistics are reported.PGAGetWorstIndex (ctx, PGA OLDPOP) returns the index of the string in population PGA OLDPOP with theworst evaluation function value. PGAGetBestIndex(ctx, PGA OLDPOP) returns the index of the string inpopulation PGA OLDPOP with the best evaluation function value.
32

Chapter 7Custom Usage: Native Data TypesThis chapter discusses how PGAPack may be extended by replacing some of the standard PGAPack functionswith user-de�ned functions for use with one of PGAPack's four native data types. This can be done fromboth C and Fortran.7.1 BasicsIn PGAPack, high-level (data-structure-neutral) functions call data-structure-speci�c functions that corre-spond to the data type used. The implementation uses function pointers that, by default, are set to thecorrect values for the datatype used. The user may change these defaults and set the function pointersto execute their functions instead. The functions the user can substitute for are initialization, crossover,mutation, checking for duplicate strings, string printing, termination criteria, and a generic function calledat the end of each GA iteration.The function call PGASetUserFunction(ctx, PGA USERFUNCTION MUTATION, mymute) will cause PGA-Pack to execute the function mymute whenever the mutation operator is called. Table 7.1 is a list offunctions that can be customized for use with a native datatype. The �rst column describes the func-tionality, and the second column the symbolic constant for use with PGASetUserFunction. The call-ing sequence for these functions is �xed and must follow the function prototypes in Table 7.2. The �les./examples/templates/uf native.c and ./examples/templates/uf native.f contain template routinesfor these functions. A speci�c example is given below.Checking the termination criteria requires some discussion. The function PGADone will either check tosee if the standard stopping criteria (see Section 5.3) have been met, or call the user function speci�ed byPGA USERFUNCTION STOPCOND. If you wish to have the user function check for the standard stopping criteriain addition to whatever else it does, it should call PGACheckStoppingConditions(ctx). Do not call PGADoneas this will cause an in�nite loop to occur. Note that in a parallel program PGACheckStoppingConditionsshould only be called by the master process (see Chapter 10).The end of generation function (which is null by default) may be used for gathering statistics about theGA, displaying custom output, etc. This function is called after all generational computation is complete, butTable 7.1: Customizeable Functions: Native Data TypesFunctionality Symbolic ConstantInitialization PGA USERFUNCTION INITSTRINGCrossover PGA USERFUNCTION CROSSOVERMutation PGA USERFUNCTION MUTATIONDuplicate Checking PGA USERFUNCTION DUPLICATEString Printing PGA USERFUNCTION PRINTSTRINGTermination Criteria PGA USERFUNCTION STOPCONDEnd of generation PGA USERFUNCTION ENDOFGEN33

Table 7.2: Calling Sequences for Customizable FunctionsSymbolic Constant Return Function PrototypePGA USERFUNCTION INITSTRING void (PGAContext*, int, int)PGA USERFUNCTION CROSSOVER void (PGAContext*, int, int, int, int, int, int)PGA USERFUNCTION MUTATION int (PGAContext*, int, int, double)PGA USERFUNCTION DUPLICATE int (PGAContext*, int, int, int, int)PGA USERFUNCTION PRINTSTRING void (PGAContext*, FILE *, int, int)PGA USERFUNCTION STOPCOND int (PGAContext*)PGA USERFUNCTION ENDOFGEN void (PGAContext*)before the population pointers (PGA NEWPOP, PGA OLDPOP) have been switched and the standard PGAPackoutput printed. Therefore, be sure to use PGA NEWPOP as the population pointer. There is no mechanism forsuppressing the standard PGAPack generational output.7.2 Example Problem: CThe example problem in Figure 7.1 is to maximizePLj=1 xj with 1 � xj � L, where L is the string length.The optimal solution to this problem, L2, is achieved by setting each xj to L. The �les for this example,./examples/maxint.c and ./examples/maxint.f, contain template routines for these functions.The example shows the use of a custom mutation function with an integer data type. ThePGASetUserFunction function speci�es that this function, MyMutation, will be called when the mutationoperator is applied, rather than the default mutation operator. MyMutation generates a random integer onthe interval [1; L].7.3 Example Problem: FortranFigure 7.2 is the same example as in Figure 7.1 written in Fortran.

34

#include <pgapack.h>double evaluate (PGAContext *ctx, int p, int pop);int myMutation (PGAContext *ctx, int p, int pop, double pm);int main(int argc, char **argv){ PGAContext *ctx;int i, maxiter;ctx = PGACreate (&argc, argv, PGA_DATATYPE_INTEGER, 10, PGA_MAXIMIZE);PGASetUserFunction (ctx, PGA_USERFUNCTION_MUTATION, myMutation);PGASetIntegerInitPermute(ctx, 1, 10);PGASetUp (ctx);PGARun (ctx, evaluate);PGADestroy (ctx);return(0);}int myMutation(PGAContext *ctx, int p, int pop, double pm){ int stringlen, i, k, count = 0;stringlen = PGAGetStringLength(ctx);for (i = 0; i < stringlen; i++)if (PGARandomFlip(ctx, pm)) {k = PGARandomInterval(ctx, 1, stringlen);PGASetIntegerAllele(ctx, p, pop, i, k);count++;}return ((double) count);}double evaluate(PGAContext *ctx, int p, int pop){ int stringlen, i, sum = 0;stringlen = PGAGetStringLength(ctx);for (i = 0; i < stringlen; i++)sum += PGAGetIntegerAllele(ctx, p, pop, i);return ((double)sum);} Figure 7.1: PGAPack C Example Using Custom Mutation Operator35

include 'pgapackf.h'include 'mpif.h'double precision evaluateinteger myMutationexternal evaluate, myMutationinteger ctx, i, maxiter, ierrorcall MPI_Init(ierror)ctx = PGACreate (PGA_DATATYPE_INTEGER, 10, PGA_MAXIMIZE)call PGASetUserFunction (ctx, PGA_USERFUNCTION_MUTATION,& myMutation)call PGASetIntegerInitPermute(ctx, 1, 10);call PGASetUp (ctx);call PGARun (ctx, evaluate);call PGADestroy (ctx);call MPI_Finalize(ierror)stopendinteger function myMutation(ctx, p, pop, pm)include 'pgapackf.h'integer ctx, p, popdouble precision pminteger stringlen, i, k, countcount = 0stringlen = PGAGetStringLength(ctx)do i=0, stringlenif (PGARandomFlip(ctx, pm) .eq. PGA_TRUE) thenk = PGARandomInterval(ctx, 1, stringlen)call PGASetIntegerAllele(ctx, p, pop, i, k)count = count + 1endifenddomyMutation = countreturnenddouble precision function evaluate(ctx, p, pop)include 'pgapackf.h'integer ctx, p, popinteger stringlen, i, sumsum = 0stringlen = PGAGetStringLength(ctx)do i=0, stringlensum = sum + PGAGetIntegerAllele(ctx, p, pop, i)enddoevaluate = sumreturnend Figure 7.2: PGAPack Fortran Example Using Custom Mutation Operator36

Chapter 8Custom Usage: New Data TypesThis chapter discusses how PGAPack may be extended by de�ning a new data type. De�ning a new datatype may be done only in C programs.8.1 BasicsTo create a new data type, you must (1) specify PGA DATATYPE USER for the datatype in the PGACreate calland (2) for each entry in Table 8.1, call PGASetUserFunction to specify the function that will perform thegiven operation on the new data type. If the data type is PGA DATATYPE USER, the string length speci�edto PGACreate can be whatever the user desires. It will be returned by PGAGetStringLength but is nototherwise used in the data-structure-neutral functions of PGAPack.The calling sequences for the functions in Table 8.1 are given in Table 8.2. The �le./examples/templates/uf new.c contains template routines for these functions.While PGAPack requires that the user supply all the functions in Table 8.1, your program may notrequire the functionality of all of them. For example, the user really does not need to write a function topack the strings for message-passing unless a parallel version of PGAPack is being used. In these cases,we suggest that the user supply a stub function; i.e., a function with the correct calling sequence but nofunctionality.8.2 Example ProblemThis example illustrates use of a user-de�ned structure as the new data type. The problem is oneof molecular docking where one protein molecule (the ligand) is to be docked into a second, target proteinmolecule. Figure 8.1 contains the function prototypes for each function that will operate on the new datatype,the de�nition of the user's structure (ligand), and the main program.The �rst three doubles of the array t in structure ligand represent the translation of the ligand moleculein the x-, y-, and z-axes, respectively. The last three doubles in the array t represent the rotation of theTable 8.1: Functions Required for New Data TypesFunctionality Symbolic ConstantMemory allocation PGA USERFUNCTION CREATESTRINGString packing PGA USERFUNCTION BUILDDATATYPEMutation PGA USERFUNCTION MUTATIONCrossover PGA USERFUNCTION CROSSOVERString printing PGA USERFUNCTION PRINTSTRINGString copying PGA USERFUNCTION COPYSTRINGDuplicate checking PGA USERFUNCTION DUPLICATE37

Table 8.2: Calling Sequences for New Data Type FunctionsSymbolic Constant Return Function PrototypePGA USERFUNCTION CREATESTRING void (PGAContext*, int, int, int)PGA USERFUNCTION BUILDDATATYPE int (PGAContext*, int, int)PGA USERFUNCTION MUTATION int (PGAContext*, int, int, double)PGA USERFUNCTION CROSSOVER void (PGAContext*, int, int, int, int, int, int)PGA USERFUNCTION PRINTSTRING void (PGAContext*, FILE *, int, int)PGA USERFUNCTION COPYSTRING int (PGAContext*, int, int, int, int)PGA USERFUNCTION DUPLICATE int (PGAContext*, int, int, int, int)#include <pgapack.h>double energy (double *, int *);double Evaluate (PGAContext *, int, int);void CreateString (PGAContext *, int, int, int);int Mutation (PGAContext *, int, int, double);void Crossover (PGAContext *, int, int, int, int, int, int);void WriteString (PGAContext *, FILE *, int, int);void CopyString (PGAContext *, int, int, int, int);int DuplicateString (PGAContext *, int, int, int, int);MPI_Datatype BuildDT (PGAContext *, int, int);typedef struct {double t[6]; /* ligand translation and rotation */int sc[40]; /* ligand sidechain rotations */} ligand;int main(int argc, char **argv) {PGAContext *ctx;int maxiter;ctx = PGACreate(&argc, argv, PGA_DATATYPE_USER, 46, PGA_MINIMIZE);PGASetRandomSeed (ctx, 1);PGASetMaxGAIterValue(ctx, 5000);PGASetUserFunction (ctx, PGA_USERFUNCTION_CREATESTRING, CreateString);PGASetUserFunction (ctx, PGA_USERFUNCTION_MUTATION, Mutation);PGASetUserFunction (ctx, PGA_USERFUNCTION_CROSSOVER, Crossover);PGASetUserFunction (ctx, PGA_USERFUNCTION_PRINTSTRING, WriteString);PGASetUserFunction (ctx, PGA_USERFUNCTION_COPYSTRING, CopyString);PGASetUserFunction (ctx, PGA_USERFUNCTION_DUPLICATE, DuplicateString);PGASetUserFunction (ctx, PGA_USERFUNCTION_BUILDDATATYPE, BuildDT);PGASetUp (ctx);PGARun (ctx, Evaluate);PGADestroy (ctx);return (0);} Figure 8.1: Main Program for Structure Data Type38

void CreateString(PGAContext *ctx, int p, int pop, int InitFlag) {int i;ligand *ligand_ptr;PGAIndividual *new;new = PGAGetIndividual(ctx, p, pop);if (!(new->chrom = malloc(sizeof(ligand)))) {fprintf(stderr, "No room for new->chrom");exit(1);}ligand_ptr = (ligand *)new->chrom;if (InitFlag) {for (i = 0; i < 3; i++)ligand_ptr->t[i] = PGARandom01(ctx, 0) * 20.0 - 10.0;for (i = 3; i < 6; i++)ligand_ptr->t[i] = PGARandom01(ctx, 0) * 6.28 - 3.14;for (i = 0; i < 40; i++)ligand_ptr->sc[i] = PGARandomInterval(ctx, -20, 20);} else {for (i = 0; i < 6; i++)ligand_ptr->t[i] = 0.0;for (i = 0; i < 40; i++)ligand_ptr->sc[i] = 0;}} Figure 8.2: Creation and Initialization Function for Structure Data Typeligand molecule about each of the axes. The ints in the sc array represent side chain rotations (which arediscrete) of the ligand molecule.Figure 8.2 contains the function CreateString that allocates and initializes the ligand structure. At thislevel of usage it is no longer always possible to maintain the (p,pop) abstraction to specify an individual (astring and associated �elds). CreateString works directly with the string pointer that (p,pop) is mappedto. If InitFlag is true, CreateString will initialize the �elds; otherwise they are set to 0.PGAGetIndividual(ctx, p, pop) returns a pointer of type PGAIndividual to the individual (the stringand associated �elds) speci�ed by (p,pop). PGAIndividual is a structure, one of the �elds of which ischrom, a void pointer to the string itself. That pointer, new->chrom, is assigned the address of the memoryallocated by the malloc function. As malloc returns a void pointer, no cast is necessary.The value of InitFlag is passed by PGAPack to the user's string creation routine. It speci�es whether torandomly initialize the string or set it to zero. By default, PGA OLDPOP (except for PGA TEMP1 and PGA TEMP1which are set to zero) is randomly initialized, and PGA NEWPOP is set to zero. This choice may be changedwith the PGASetRandomInitFlag function discussed in Section 5.4.)Figure 8.3 contains the mutation function Mutation for the ligand data type. Each of the 46 genes hasa probability of mr of being changed. If a mutation occurs, Mutation adds or subtracts one tenth to theexisting value of a double, and adds or subtracts one to an int.Figure 8.4 contains the crossover function Crossover, which implements uniform crossover for the liganddata type. The linesparent1 = (ligand *)PGAGetIndividual(ctx, p1, pop1)->chrom;parent2 = (ligand *)PGAGetIndividual(ctx, p2, pop1)->chrom;child1 = (ligand *)PGAGetIndividual(ctx, t1, pop2)->chrom;child2 = (ligand *)PGAGetIndividual(ctx, t2, pop2)->chrom;39

int Mutation(PGAContext *ctx, int p, int pop, double mr) {ligand *ligand_ptr;int i, count = 0;ligand_ptr = (ligand *)PGAGetIndividual(ctx, p, pop)->chrom;for (i = 0; i < 6; i++)if (PGARandomFlip(ctx, mr)) {if (PGARandomFlip(ctx, 0.5))ligand_ptr->t[i] += 0.1*ligand_ptr->t[i];elseligand_ptr->t[i] -= 0.1*ligand_ptr->t[i];count++;}for (i = 0; i < 40; i++)if (PGARandomFlip(ctx, mr)) {if (PGARandomFlip(ctx, 0.5))ligand_ptr->sc[i] += 1;elseligand_ptr->sc[i] -= 1;count++;}return (count);} Figure 8.3: Mutation for Structure Data Typeare worthy of mention. Each implements in one line what the two linesnew = PGAGetIndividual(ctx, p, pop);string = (ligand *)new->chrom;in Mutation did. Either style is acceptable. PGAGetIndividual returns a pointer whose chrom �eld (a voidpointer) is cast to the ligand data type.Figure 8.5 contains the code for DuplicateString, which checks for duplicate ligand structures. It usesthe ANSI C memcmp function for this purpose.Figure 8.6 contains the evaluation function for this example. It again uses PGAGetIndividual to map(p, pop) into a pointer to the string of interest. For user data types, PGAPack does not provide aPGAGetUserAllele function, so access to the allele values is made directly through the pointer.Figure 8.7 contains the function BuildDT that builds an MPI datatype for sending strings to otherprocessors. Consult an MPI manual for further information.
40

void Crossover(PGAContext *ctx, int p1, int p2, int pop1, int t1, int t2,int pop2) {int i;ligand *parent1, *parent2, *child1, *child2;double pu;parent1 = (ligand *)PGAGetIndividual(ctx, p1, pop1)->chrom;parent2 = (ligand *)PGAGetIndividual(ctx, p2, pop1)->chrom;child1 = (ligand *)PGAGetIndividual(ctx, t1, pop2)->chrom;child2 = (ligand *)PGAGetIndividual(ctx, t2, pop2)->chrom;pu = PGAGetUniformCrossoverProb(ctx);for (i = 0; i < 6; i++)if (PGARandomFlip(ctx, pu)) {child1->t[i] = parent1->t[i];child2->t[i] = parent2->t[i];} else {child1->t[i] = parent2->t[i];child2->t[i] = parent1->t[i];}for (i = 0; i < 40; i++)if (PGARandomFlip(ctx, pu)) {child1->sc[i] = parent1->sc[i];child2->sc[i] = parent2->sc[i];} else {child1->sc[i] = parent2->sc[i];child2->sc[i] = parent1->sc[i];}} Figure 8.4: Crossover for Structure Data Typeint DuplicateString(PGAContext *ctx, int p1, int pop1, int p2, int pop2) {void *a, *b;a = PGAGetIndividual(ctx, p1, pop1)->chrom;b = PGAGetIndividual(ctx, p2, pop2)->chrom;return (!memcmp(a, b, sizeof(ligand)));} Figure 8.5: Duplicate Testing for Structure Data Type41

double Evaluate(PGAContext *ctx, int p, int pop) {int i, j;double x[6];int sc[40];PGAIndividual *ind;ligand *lig;lig = (ligand *)PGAGetIndividual(ctx, p, pop)->chrom;for (i = 0; i < 6; i++)x[i] = lig->t[i];for (i = 0; i < 40; i++)sc[i] = lig->sc[i];return (energy(x,sc));} Figure 8.6: Evaluation Function for Structure Data Type
42

MPI_Datatype BuildDT(PGAContext *ctx, int p, int pop) {int counts[5];MPI_Aint displs[5];MPI_Datatype types[5];MPI_Datatype DT_PGAIndividual;PGAIndividual *P;ligand *S;P = PGAGetIndividual(ctx, p, pop);S = (ligand *)P->chrom;/* Build the MPI datatype. Every user defined function needs these.* The first two calls are stuff that is internal to PGAPack, but* the user still must include it. See pgapack.h for details one the* fields (under PGAIndividual)*/MPI_Address(&P->evalfunc, &displs[0]);counts[0] = 2;types[0] = MPI_DOUBLE;/* Next, we have an integer, evaluptodate. */MPI_Address(&P->evaluptodate, &displs[1]);counts[1] = 1;types[1] = MPI_INT;/* Finally, we have the actual user-defined string. */MPI_Address(S->t, &displs[2]);counts[2] = 6;types[2] = MPI_DOUBLE;MPI_Address(S->sc, &displs[3]);counts[3] = 40;types[3] = MPI_INT;MPI_Type_struct(4, counts, displs, types, &DT_PGAIndividual);MPI_Type_commit(&DT_PGAIndividual);return(DT_PGAIndividual);} Figure 8.7: Message Packing Function for Structure Data Type43

Chapter 9Hill-Climbing and HybridizationHill-climbing heuristics attempt to improve a solution by moving to a better neighbor solution. Whenever theneighboring solution is better than the current solution, it replaces the current solution. Genetic algorithmsand hill-climbing heuristics have complementary strong and weak points. GAs are good at �nding promisingareas of the search space, but not as good at �ne-tuning within those areas. Hill-climbing heuristics, onthe other hand, are good at �ne-tuning, but lack a global perspective. Practice has shown that a hybridalgorithm that combines GAs with hill-climbing heuristics often results in an algorithm that can outperformeither one individually.There are two general schemes for creating hybrid algorithms. The simplest is to run the genetic algorithmuntil it terminates and then apply a hill-climbing heuristic to each (or just the best) string. The secondapproach is to integrate a hill-climbing heuristic with the genetic algorithm. Choices to be made in thesecond case include how often to apply the hill-climbing heuristic and how many strings in the populationto apply it to.PGAPack supports hybrid schemes in the following ways:� By passing, the context variable as a parameter to the user's hill-climbing function, the user has accessto solution and parameter values, debug ags, and other information.� The functions PGAGetBinaryAllele, PGAGetIntegerAllele, PGAGetRealAllele, andPGAGetCharacterAllele allow the user's hill-climbing function to read allele values, and the functionsPGASetBinaryAllele, PGASetIntegerAllele, PGASetRealAllele, and PGASetCharacterAllele al-low the user's hill-climbing function to set allele values explicitly.� The functions PGADecodeRealAsBinary, PGADecodeRealAsGrayCode, PGADecodeIntegerAsBinary,and PGADecodeIntegerAsGrayCode allow the user's hill-climbing function to read integer or real num-bers encoded as binary or Gray code strings.� The functions PGAEncodeRealAsBinary, PGAEncodeRealAsGrayCode, PGAEncodeIntegerAsBinary,and PGAEncodeIntegerAsGrayCode allow the user's hill-climbing function to encode integer or realnumbers as binary or Gray code strings.� The functions PGAGetEvaluation and PGASetEvaluation allow the user's hill-climbing functionto get and set evaluation function values, and PGASetEvaluationUpToDateFlag andPGAGetEvaluationUpToDateFlag to get and set the ag that indicates whether an evaluation functionvalue is up to date.One way to run a hybrid GA and use PGARun is to use the PGASetUserFunction discussed in Chapter 7to specify a user function to be called at the end of each GA iteration. A more exible approach would befor the user to call the high-level PGAPack functions, and their hillclimber to explicitly specify the steps ofthe hybrid GA.Figure 9.1 is a version of the Maxbit problem given in Section 3.1. It uses the hill-climbing functionhillclimb, which is called after the recombination step. It randomly selects a gene to set to one. Note thePGASetEvaluationUpToDateFlag call. It sets the ag that indicates the evaluation function is not current44

with the string (since the string was changed). It is critical that this ag be set when the user changes astring, since the value of this ag determines whether PGAEvaluate will invoke the user's function evaluationroutine.#include "pgapack.h"double evaluate(PGAContext *, int, int);void hillclimb (PGAContext *, int);int main(int argc, char **argv){ PGAContext *ctx;ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);PGASetUp (ctx);PGAEvaluate(ctx, PGA_OLDPOP, evaluate, NULL);PGAFitness (ctx, PGA_OLDPOP);while(!PGADone(ctx, NULL)) {PGASelect (ctx, PGA_OLDPOP);PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP);hillclimb (ctx, PGA_NEWPOP);PGAEvaluate (ctx, PGA_NEWPOP, evaluate, NULL);PGAFitness (ctx, PGA_NEWPOP);PGAUpdateGeneration (ctx, NULL);PGAPrintReport (ctx, stdout, PGA_OLDPOP);}PGADestroy(ctx);return 0;}void hillclimb(PGAContext *ctx, int pop){ int i, p, popsize, stringlen;popsize = PGAGetPopSize(ctx);stringlen = PGAGetStringLength(ctx);for (p=0; p<popsize; p++) {i = PGARandomInterval(ctx, 0, stringlen-1);PGASetBinaryAllele (ctx, p, pop, i, 1);PGASetEvaluationUpToDateFlag (ctx, p, pop, PGA_FALSE);}} Figure 9.1: Hill-Climbing Heuristic for Maxbit Example
45

Chapter 10Parallel AspectsThis chapter assumes familiaritywith the background material in Appendix C. It also assumes that a parallelversion of PGAPack was built and that programs are linked with an MPI library (see Section 2.4).Version 1.0 of PGAPack supports parallel and sequential implementations of the single population globalmodel (GM). The parallel implementation uses a master/slave algorithm in which one process, the master,executes all steps of the genetic algorithm except the function evaluations. The function evaluations areexecuted by the slave processes1 .10.1 Basic UsageBoth sequential and parallel versions of PGAPack may be run by using PGARun. The choice of sequential orparallel execution depends on the number of processes speci�ed when the program is started. If one processis speci�ed, the sequential implementation of the GM is used (even in a parallel version of PGAPack). If twoor more processes are speci�ed, the parallel implementation of the GM is used. The examples in Chapter 3can all be run in parallel by specifying more than one process at startup.The speci�cation of the number of processors is done at run time. The actual format of the speci�cationdepends on the MPI implementation and computer used (see Appendix C for some examples). PGARun usesthe default MPI communicator, MPI COMM WORLD. This speci�es that all processes speci�ed at startup partic-ipate in the computation: one as the master process, the others as slave processes. A di�erent communicatormay be speci�ed with PGASetCommunicator(ctx, comm), where comm is an MPI communicator.PGARun is really a \wrapper" function that calls PGARunGM with the MPI COMM WORLD communicator. Theuser may call PGARunGM directly, that is, PGARunGM(ctx,evaluate,MPI COMM WORLD) where evaluate is thename of the user's evaluation function and the third argument is an MPI communicator. Note that thecommunicator speci�ed by PGASetCommunicator does not a�ect PGARunGM.10.2 Explicit UseIn general, explicit use of the parallel features is more complicated than in the case of sequential func-tions. This is because the user's program must coordinate the execution threads of multiple processes.PGARunGM encapsulates all that is necessary into one routine, and parts of its source code may serveas a useful starting point if one wishes to develop an explicitly parallel program. The parallel func-tions in PGAPack may be viewed as a hierarchy with PGARun and PGARunGM at the top of the hierarchy,PGAEvaluate next, PGASendIndividual, PGAReceiveIndividual, and PGASendReceiveIndividual next,and PGABuildDatatype at the bottom of the hierarchy.PGAGetRank(ctx,comm) returns the rank of the process in communicator comm. If comm is NULL it returns0. PGAGetNumProcs(ctx,comm) returns the number of processes in communicator comm. If comm is NULL itreturns 1.1In the special case of exactly two processes, the master executes function evaluations as well.46

The type of algorithm used to execute PGAEvaluate(ctx,pop,f,comm) will depend on the number ofprocesses in the communicator comm. If it is NULL or contains one process, a sequential implementation willbe used. If more than one process is speci�ed it will execute a master/slave evaluation of the strings inpopulation pop that require evaluation by applying, f, the user's evaluation function. PGAEvaluate shouldbe called by all processes in communicator comm.PGASendIndividual(ctx,p,pop,dest,tag,comm) will send string p in population pop to process dest.tag is a tag used to identify the message, and comm is an MPI communicator. This function calls MPI Sendto perform the actual message passing. In addition to string p itself, the evaluation function value, �tnessfunction value, and evaluation status ag are also sent.PGAReceiveIndividual is the complementary function to PGASendIndividual. For example,PGAReceiveIndividual (ctx,p,pop,source,tag,comm,status) will store in location p in population popthe string and �elds of the individual sent from process sourcewith the MPI tag tag and MPI communicatorcomm. status is an MPI status vector.PGASendReceiveIndividual combines the functionality of PGASendIndividual andPGAReceiveIndividual. This may be useful in avoiding potential deadlock on some systems. For example,PGASendReceiveIndividual (ctx,sp,spop,dest,stag,rp,rpop,source, rtag,comm,status). Here, spis the index of the string in population spop to send to process dest with tag stag. The string receivedfrom process source with tag rtag is stored in location rp in population rpop. comm and status are thesame as de�ned earlier.PGABuildDatatype(ctx,p,pop) packs together the string and �elds that PGASendIndividual,PGAReceiveIndividual, and PGASendReceiveIndividual send and receive. The result is of typeMPI Datatype.10.3 ExampleFigure 10.1 is a parallel version of the example in Figure 6.1. Since we now have multiple processes executingthe program at the same time, we must coordinate each ones execution. In the example, the master process(the one with rank 0 as determined by PGAGetRank) executes all functions, and the slave processes executeonly those functions that take a communicator as an argument. Note that this example will execute correctlyeven if only one process is in the communicator.10.4 PerformanceThe parallel implementation of the GM will produce the same result as the sequential implementation,usually faster. However, the parallel implementation varies with the number of processes. If two processesare used, both the master process and the slave process will compute the function evaluations. If morethan two processes are used, the master is responsible for bookkeeping only, and the slaves for executing thefunction evaluations. In general, the speedup obtained will vary with the amount of computation associatedwith a function evaluation and the computational overhead of distributing and collecting information to andfrom the slave processes.The speedup that can be achieved with the master/slave model is limited by the number of functionevaluations that can be executed in parallel. This number depends on the population size and the numberof new strings created each generation. For example, if the population size is 100 and a 100 new stringsare created each GA generation, then up to 100 processors can be put to e�ective use to run the slaveprocesses. However, with the default rule of replacing only 10% of the population each GA generation, only10 processors can be used e�ectively. 47

#include "pgapack.h"double evaluate (PGAContext *ctx, int p, int pop);int main(int argc, char **argv){ PGAContext *ctx;int rank;ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);PGASetUp (ctx);rank = PGAGetRank(ctx, MPI_COMM_WORLD);PGAEvaluate(ctx, PGA_OLDPOP, evaluate, MPI_COMM_WORLD);if (rank == 0)PGAFitness (ctx, PGA_OLDPOP);while(!PGADone(ctx, MPI_COMM_WORLD)) {if (rank == 0) {PGASelect (ctx, PGA_OLDPOP);PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP);}PGAEvaluate(ctx, PGA_OLDPOP, evaluate, MPI_COMM_WORLD);if (rank == 0)PGAFitness (ctx, PGA_NEWPOP);PGAUpdateGeneration (ctx, MPI_COMM_WORLD);if (rank == 0)PGAPrintReport (ctx, stdout, PGA_OLDPOP);}PGADestroy(ctx);return(0);} Figure 10.1: Simple Parallel Example of Explicit Usage
48

Chapter 11Fortran InterfacePGAPack is written entirely in ANSI C. A set of interface functions, also written in C, is designed to becalled by Fortran programs and then call the \real" C routine. This mechanism provides most of PGAPack'sfunctionality to Fortran programs. The following list contains most major di�erences between C and Fortran.Additional, machine-speci�c idiosyncrasies are noted in Appendix D.� The Makefiles for the Fortran examples (in ./examples/fortran and ./examples/mgh) are not con-�gured to use the -I mechanism for specifying the include �le search path (since not all Fortran compilerssupport this). Therefore, you will need to copy or set up a symbolic link to ./include/pgapackf.hfrom the directory you are compiling a Fortran program in.� The context variable is declared integer (or integer*8, see Appendix D) in Fortran.� PGACreate takes only three arguments in Fortran (not argc or argv as in C).� The Fortran include �le is pgapackf.h and should be included in any Fortran subroutine or functionthat calls a PGAPack function, to ensure correct typing and de�nition of functions and symbolicconstants.� If a C function returns an f int, double, pointerg, the corresponding Fortran function returns anf integer, double precision, integerg. If the C function is void it is implemented as a Fortransubroutine.� When supplying function arguments, a C int corresponds to a Fortran integer, and a C doublecorresponds to a Fortran double precision. For example, to set the crossover probability to 0.6, usecall PGASetCrossoverProb(ctx, 0.6d0),ordouble precision pcpc = 0.6call PGASetCrossoverProb(ctx, pc)� Gene indices are [0; L� 1] in C, and [1; L] in Fortran, where L is the string length.� Population member indices are [0; N � 1] in C, and [1; N] in Fortran, where N is the population size.� Fortran does not support command line arguments (Section 5.13).� Fortran allows custom usage with native data types (Chapter 7), but not with new data types (Chap-ter 8).� In the MPICH implementation of MPI, the Fortran and C versions of MPI Init are di�erent. If the mainprogram is in C, then the C version of MPI Init must be called. If the main program is in Fortran, theFortran version of MPI Init must be called. Therefore, Fortran users of PGAPack with MPICH mustcall MPI Init themselves since PGACreate, which calls MPI Init if users haven't called it themselves,is written in C. 49

� The DEC Alpha and Silicon Graphics Power Challenge, which have 64-bit C pointers and 32-bit Fortranintegers (but not the Cray T3D which has 64-bit Fortran integers), have additional di�erences1 . Thesearise because a Fortran integer is too small to hold the address returned by the C interface routine.{ The context variable should be declared integer*8.{ MPI COMM WORLD should not be passed directly to PGAPack Fortran functions. Instead,PGAGetCommunicator should be called to return the address into an integer*8 variable. Forexampleinteger pidinteger*8 commcomm = PGAGetCommunicator(ctx):pid = PGAGetRank(ctx, comm){ MPI COMM WORLD can and should be passed directly to any MPI routines called directly fromFortran.{ Calling an MPI routine that returns a communicator is safe. However, passing the returnedcommunicator to a PGAPack Fortran function will usually fail.

1More generally, these issues arise whenever the size of a Fortran integer is less than the size of a pointer.50

Chapter 12Debugging ToolsPGAPack has a sophisticated built-in trace facility that is useful for debugging. When the facility is invoked,print statements to stdout allow the programmer to trace the sequence of functions PGAPack executes. Dueto the negative impact on performance this facility is not available by default. Instead, you must explicitlyenable tracing when con�guring PGAPack with the -debug ag. See Section 2.4.The trace facility uses the concept of a debug level. For example, executing the Maxbit example (Fig-ure 3.1) with a debug level of 12, maxbit -pgadbg 12, will print the output shown in Figure 12.1. The \0:"is the process rank. This is followed by the name of a PGAPack function and the \action" that caused theprint statement to execute. In this case, the action is entering the function. Note that the rank printed fora process is always its rank in the MPI COMM WORLD communicator, even if another communicator was set.Tracing is enabled by specifying one or more debug levels to trace. A list of debug levels is given inTable 12.1. Not all debug level values are currently used. The values 1{10 are reserved for users as describedbelow.C programmers may set the debug level from the command line using either -pgadbg <debug level>or -pgadebug <debug level>. Several forms of the <debug level> argument are allowed. -pgadbg 12 willtrace entering all high-level functions as shown in Figure 12.1. -pgadbg 12,13 or -pgadbg 12-13 will traceentering and exiting of all high-level functions. The command line option -pgahelp debug will list the debuglevel options and then exit.Fortran (and C) programmers may access the trace facility via function calls. The functionPGASetDebugLevel may be called to set a debug level. For example, call PGASetDebugLevel(ctx,12)would produce the same output shown in Figure 12.1. PGAClearDebugLevel(ctx,12) will clear printsassociated with debug level 12. PGAPrintDebugOptions(ctx) will print the list of available debug options.The function PGASetDebugLevelByName will turn on debugging of the named function. For exam-ple, PGASetDebugLevelByName(ctx,''PGACrossover'') will enable all the trace prints of PGACrossover.PGAClearDebugLevelByName will disable the tracing of the speci�ed function.Users can use the trace facility in their own functions (e.g., their evaluation function) in two ways.First, they can insert PGADebugPrint function calls in their functions using one of the symbolic constantsde�ned in the header �le pgapack.h. These are PGA DEBUG ENTERED, PGA DEBUG EXIT, PGA DEBUG MALLOC,PGA DEBUG PRINTVAR, PGA DEBUG SEND, and PGA DEBUG RECV for entering a function, exiting a function, al-locating memory, print a variable's value, and sending or receiving a string, respectively.For example, PGADebugPrint(ctx, PGA DEBUG ENTERED, "MyFunc", "Entered", PGA VOID, NULL)willprint the line0: MyFunc : Enteredwhen the debug level of 12 is speci�ed. PGADebugPrint(ctx, PGA DEBUG PRINTVAR, "MyFunc", "i = ",PGA INT, (void *) &i) will print the line0: MyFunc : i = 1when the debug level of 82 is speci�ed. Users can also use the reserved debug levels of 1{10 to customize thetrace facilities for use in their own functions. For example PGADebugPrint(ctx, 5, "MyFunc", "Aftercall to MyCleanUp", PGA VOID, NULL); will print the line51

0: PGACreate : Entered0: PGASetRandomSeed : Entered0: PGASetMaxGAIterValue : Entered0: PGASetUp : Entered0: PGACreatePop : Entered0: PGACreateIndividual : Entered::0: PGACreateIndividual : Entered0: PGACreatePop : Entered0: PGACreateIndividual : Entered::0: PGARun : Entered0: PGARunSeq : Entered0: PGAEvaluate : Entered0: PGAFitness : Entered0: PGAGetStringLength : Entered:: Figure 12.1: PGAPack Partial Trace Output for Maxbit Example0: MyFunc : After call to MyCleanUpwhen the debug level of �ve is speci�ed.Note that we use MPI COMM WORLD (1) for the random number seed and (2) for PGADebugPrint calls.

52

Table 12.1: Debug Levels in PGAPack0 Trace all debug prints11 Trace high-level functions12 Trace all function entries13 Trace all function exits20 Trace high-level parallel functions21 Trace all parallel functions22 Trace all send calls23 Trace all receive calls30 Trace Binary functions32 Trace Integer functions34 Trace Real functions36 Trace Character functions40 Trace population creation functions42 Trace select functions44 Trace mutation functions46 Trace crossover functions48 Trace function evaluation functions50 Trace �tness calculation functions52 Trace duplicate checking functions54 Trace restart functions56 Trace reporting functions58 Trace stopping functions60 Trace sorting functions62 Trace random number functions64 Trace system routines66 Trace utility functions80 Trace memory allocations82 Trace variable print statements
53

Part IIIAppendixes

54

Appendix ADefault Values

55

Table A.1: PGAPack Default ValuesCONCEPT DEFAULT SET WITHPopulation size 100 PGASetPopSizeCopied for population replacement PGA POPREPL BEST PGASetPopReplacementTypeStopping rule PGA STOP MAXITER PGASetStoppingRuleTypeMaximum iterations 1000 PGASetMaxGAIterValueMaximum no change iters 100 PGASetMaxNoChangeValueMax. population homogeneity before stopping 95 PGASetMaxSimilarityValueNumber of new strings to generate 10 PGASetNumReplaceValueApply mutation and crossover PGA FALSE PGASetMutationAndCrossoverFlagApply mutation or crossover PGA TRUE PGASetMutationOrCrossoverFlagCrossover type PGA CROSSOVER TWOPT PGASetCrossoverTypeProbability of crossover 0.85 PGASetCrossoverProbUniform crossover bias 0.6 PGASetUniformCrossoverProbMutation type (Real strings) PGA MUTATION GAUSSIAN PGASetMutationTypeMutation type (Integer strings) PGA MUTATION PERMUTE PGASetMutationTypeMutation type (Character strings) Same as initialization PGASetCharacterInitTypeMutation probability 1/L PGASetMutationProbReal mutation constant 0.1 PGASetMutationRealValueInteger mutation constant 1 PGASetMutationIntegerValueMutation range bounded PGA TRUE PGASetMutationBoundedFlagSelect type PGA SELECT TOURNAMENT PGASetSelectTypeProbabilistic binary tournament parameter 0.6 PGASetPTournamentProbUse restart operator PGA FALSE PGASetRestartFlagRestart frequency 50 PGASetRestartFrequencyValueRestart allele mutation rate 0.5 PGASetRestartAlleleChangeProbAllow duplicate strings PGA FALSE PGASetNoDuplicatesFlagFitness type PGA FITNESS RAW PGASetFitnessTypeFitness type for minimization PGA FITNESSMIN CMAX PGASetFitnessMinTypeMultiplier for minimization problems 1.01 PGASetCMaxValueParameter MAX in �tness by ranking 1.2 PGASetMaxFitnessRankFrequency of statistics printing 10 PGASetPrintFrequencyValuePrint strings PGA FALSE PGASetPrintOptionsPrint o�ine statistics PGA FALSE PGASetPrintOptionsPrint online statistics PGA FALSE PGASetPrintOptionsPrint best string PGA FALSE PGASetPrintOptionsPrint worst string PGA FALSE PGASetPrintOptionsPrint Hamming distance PGA FALSE PGASetPrintOptionsRandomly initialize population PGA TRUE PGASetRandomInitFlagProbability of initializing a bit to one 0.5 PGASetBinaryInitProbHow to initialize real strings Range PGASetrealInitRangeReal initialization range [0; 1] PGASetRealInitRangeHow to initialize integer strings Permutation PGASetIntegerInitPermuteInteger initialization range [0; L� 1] PGASetIntegerInitPermuteHow to initialize character strings PGA CINIT LOWER PGASetCharacterInitFlagSeed random number with clock PGA TRUE PGASetRandomSeedDefault MPI communicator MPI COMM WORLD PGASetCommunicatorL is the string length 56

Appendix BFunction BindingsSymbolic ConstantsPGAPack de�nes many symbolic constants that are used as arguments to PGAPack functions. Theseconstants are the same for both Fortran and C. Below is a list of these constants. These constants are thesame for both Fortran and C.� PGAPack Data Types{ PGA DATATYPE BINARY{ PGA DATATYPE INTEGER{ PGA DATATYPE REAL{ PGA DATATYPE CHARACTER{ PGA DATATYPE USER� String Types{ PGABinary{ PGAInteger{ PGAReal{ PGACharacter� Data Types used in PGAError Calls{ PGA INT{ PGA DOUBLE{ PGA CHAR{ PGA VOID� True and False{ PGA TRUE{ PGA FALSE� Miscellaneous PGAPack Flags{ PGA FATAL{ PGA WARNING{ PGA UNINITIALIZED INT 57

{ PGA UNINITIALIZED DOUBLE� PGAPack Temporary and Population Constants{ PGA TEMP1{ PGA TEMP2{ PGA OLDPOP{ PGA NEWPOP� Debug Levels{ PGA DEBUG ENTERED{ PGA DEBUG EXIT{ PGA DEBUG MALLOC{ PGA DEBUG PRINTVAR{ PGA DEBUG SEND{ PGA DEBUG RECV� Direction of Optimization{ PGA MAXIMIZE{ PGA MINIMIZE� Stopping Criteria{ PGA STOP MAXITER{ PGA STOP NOCHANGE{ PGA STOP TOOSIMILAR� Crossover{ PGA CROSSOVER ONEPT{ PGA CROSSOVER TWOPT{ PGA CROSSOVER UNIFORM� Fitness{ PGA FITNESS RAW{ PGA FITNESS NORMAL{ PGA FITNESS RANKING� Fitness Minimization{ PGA FITNESSMIN RECIPROCAL{ PGA FITNESSMIN CMAX� Mutation Type{ PGA MUTATION CONSTANT{ PGA MUTATION RANGE{ PGA MUTATION UNIFORM{ PGA MUTATION GAUSSIAN{ PGA MUTATION PERMUTE 58

� Population Replacement{ PGA POPREPL BEST{ PGA POPREPL RANDOM NOREP{ PGA POPREPL RANDOM REP� Initialization Options{ PGA CINIT LOWER{ PGA CINIT UPPER{ PGA CINIT MIXED{ PGA IINIT PERMUTE{ PGA IINIT RANGE{ PGA RINIT PERCENT{ PGA RINIT RANGE� Report Options{ PGA REPORT ONLINE{ PGA REPORT OFFLINE{ PGA REPORT HAMMING{ PGA REPORT STRING{ PGA REPORT WORST{ PGA REPORT AVERAGE� Selection{ PGA SELECT PROPORTIONAL{ PGA SELECT SUS{ PGA SELECT TOURNAMENT{ PGA SELECT PTOURNAMENT� User Functions{ PGA USERFUNCTION CREATESTRING{ PGA USERFUNCTION MUTATION{ PGA USERFUNCTION CROSSOVER{ PGA USERFUNCTION PRINTSTRING{ PGA USERFUNCTION COPYSTRING{ PGA USERFUNCTION DUPLICATE{ PGA USERFUNCTION INITSTRING{ PGA USERFUNCTION BUILDDATATYPE{ PGA USERFUNCTION STOPCOND{ PGA USERFUNCTION ENDOFGEN 59

ANSI C BindingsThe use of any PGAPack function requires that the user have #include "pgapack.h" at the top of the �lethat references PGAPack functions.Type FunctionMPI Datatype PGABuildDatatype(PGAContext *ctx, int p, int pop)void PGAChange(PGAContext *ctx, int p, int pop)int PGACheckStoppingConditions(PGAContext *ctx)int PGACheckSum(PGAContext *ctx, int p, int pop)void PGAClearDebugLevel(PGAContext *ctx, int level)void PGAClearDebugLevelByName(PGAContext *ctx, char *funcname)void PGACopyIndividual(PGAContext *ctx, int p1, int pop1, int p2, int pop2)PGAContext* PGACreate(int *argc, char **argv, int datatype, int len, int maxormin)void PGACrossover(PGAContext *ctx, int p1, int p2, int pop1, int c1, int c2, int pop2)void PGADebugPrint(PGAContext *ctx, int level, char *funcname,char *msg, int datatype, void *data)void PGADestroy(PGAContext *ctx)int PGADone(PGAContext *ctx, MPI Comm comm)int PGADuplicate(PGAContext *ctx, int p, int pop1, int pop2, int n)void PGAEncodeIntegerAsBinary(PGAContext *ctx, int p, int pop, int start, int end, int val)void PGAEncodeIntegerAsGrayCode(PGAContext *ctx, int p, int pop, int start, int end, int val)void PGAEncodeRealAsBinary(PGAContext *ctx, int p, int pop,int start, int end, double low, double high, double val)void PGAEncodeRealAsGrayCode(PGAContext *ctx, int p, int pop,int start, int end, double low, double high, double val)void PGAError(PGAContext *ctx, char *msg, int level, int datatype, void *data)void PGAEvaluate(PGAContext *ctx, int pop,double(*f)(PGAContext *, int, int), MPI Comm comm)void PGAFitness(PGAContext *ctx, int popindex)int PGAGetBestIndex(PGAContext *ctx, int pop)int PGAGetBinaryAllele(PGAContext *ctx, int p, int pop, int i)double PGAGetBinaryInitProb(PGAContext *ctx)char PGAGetCharacterAllele(PGAContext *ctx, int p, int pop, int i)MPI Comm PGAGetCommunicator(PGAContext *ctx)double PGAGetCrossoverProb(PGAContext *ctx)int PGAGetCrossoverType(PGAContext *ctx)int PGAGetDataType(PGAContext *ctx)double PGAGetEvaluation(PGAContext *ctx, int p, int pop)int PGAGetEvaluationUpToDateFlag(PGAContext *ctx, int p, int pop)double PGAGetFitness(PGAContext *ctx, int p, int pop)double PGAGetFitnessCmaxValue(PGAContext *ctx)int PGAGetFitnessMinType(PGAContext *ctx)int PGAGetFitnessType(PGAContext *ctx)int PGAGetGAIterValue(PGAContext *ctx)int PGAGetIntegerAllele(PGAContext *ctx, int p, int pop, int i)int PGAGetIntegerFromBinary(PGAContext *ctx, int p, int pop, int start, int end)int PGAGetIntegerFromGrayCode(PGAContext *ctx, int p, int pop, int start, int end)int PGAGetIntegerInitType(PGAContext *ctx)60

Type Functiondouble PGAGetMaxFitnessRank(PGAContext *ctx)int PGAGetMaxGAIterValue(PGAContext *ctx)int PGAGetMaxIntegerInitValue(PGAContext *ctx, int i)double PGAGetMaxMachineDoubleValue(PGAContext *ctx)int PGAGetMaxMachineIntValue(PGAContext *ctx)double PGAGetMaxRealInitValue(PGAContext *ctx, int i)int PGAGetMinIntegerInitValue(PGAContext *ctx, int i)double PGAGetMinMachineDoubleValue(PGAContext *ctx)int PGAGetMinMachineIntValue(PGAContext *ctx)double PGAGetMinRealInitValue(PGAContext *ctx, int i)int PGAGetMutationAndCrossoverFlag(PGAContext *ctx)int PGAGetMutationBoundedFlag(PGAContext *ctx)int PGAGetMutationIntegerValue(PGAContext *ctx)int PGAGetMutationOrCrossoverFlag(PGAContext *ctx)double PGAGetMutationProb(PGAContext *ctx)double PGAGetMutationRealValue(PGAContext *ctx)int PGAGetMutationType(PGAContext *ctx)int PGAGetNoDuplicatesFlag(PGAContext *ctx)int PGAGetNumProcs(PGAContext *ctx, MPI Comm comm)int PGAGetNumReplaceValue(PGAContext *ctx)int PGAGetOptDirFlag(PGAContext *ctx)double PGAGetPTournamentProb(PGAContext *ctx)int PGAGetPopReplaceType(PGAContext *ctx)int PGAGetPopSize(PGAContext *ctx)int PGAGetPrintFrequencyValue(PGAContext *ctx)int PGAGetRandomInitFlag(PGAContext *ctx)int PGAGetRandomSeed(PGAContext *ctx)int PGAGetRank(PGAContext *ctx, MPI Comm comm)double PGAGetRealAllele(PGAContext *ctx, int p, int pop, int i)double PGAGetRealFromBinary(PGAContext *ctx, int p, int pop,int start, int end, double lower, double upper)double PGAGetRealFromGrayCode(PGAContext *ctx, int p, int pop,int start, int end, double lower, double upper)int PGAGetRealInitType(PGAContext *ctx)double PGAGetRestartAlleleChangeProb(PGAContext *ctx)int PGAGetRestartFlag(PGAContext *ctx)int PGAGetRestartFrequencyValue(PGAContext *ctx)int PGAGetSelectType(PGAContext *ctx)int PGAGetSortedPopIndex(PGAContext *ctx, int n)int PGAGetStoppingRuleType(PGAContext *ctx)int PGAGetStringLength(PGAContext *ctx)double PGAGetUniformCrossoverProb(PGAContext *ctx)int PGAGetWorstIndex(PGAContext *ctx, int pop)double PGAHammingDistance(PGAContext *ctx, int popindex)double PGAMean(PGAContext *ctx, double *a, int n)int PGAMutate(PGAContext *ctx, int p, int pop)void PGAPrintContextVariable(PGAContext *ctx, FILE *fp)void PGAPrintIndividual(PGAContext *ctx, FILE *fp, int p, int pop)void PGAPrintPopulation(PGAContext *ctx, FILE *fp, int pop)void PGAPrintReport(PGAContext *ctx, FILE *fp, int pop)void PGAPrintString(PGAContext *ctx, FILE *�le, int p, int pop)void PGAPrintVersionNumber(PGAContext *ctx)61

Type Functiondouble PGARandom01(PGAContext *ctx, int newseed)int PGARandomFlip(PGAContext *ctx, double p)double PGARandomGaussian(PGAContext *ctx, double mean, double sigma)int PGARandomInterval(PGAContext *ctx, int start, int end)double PGARandomUniform(PGAContext *ctx, double start, double end)int PGARank(PGAContext *ctx, int p, int *order, int n)void PGAReceiveIndividual(PGAContext *ctx, int p, int pop, int source,int tag, MPI Comm comm, MPI Status *status)void PGARestart(PGAContext *ctx, int source pop, int dest pop)int PGARound(PGAContext *ctx, double x)void PGARun(PGAContext *ctx, double(*evaluate)(PGAContext *c, int p, int pop))void PGARunGM(PGAContext *ctx, double(*f)(PGAContext *, int, int), MPI Comm comm)void PGARunMutationAndCrossover(PGAContext *ctx, int oldpop, int newpop)void PGARunMutationOrCrossover(PGAContext *ctx, int oldpop, int newpop)void PGASelect(PGAContext *ctx, int popix)int PGASelectNextIndex(PGAContext *ctx)void PGASendIndividual(PGAContext *ctx, int p, int pop, int dest, int tag, MPI Comm comm)void PGASendReceiveIndividual(PGAContext *ctx, int send p,int send pop, int dest, int send tag, int recv p, int recv pop,int source, int recv tag, MPI Comm comm, MPI Status *status)void PGASetBinaryAllele(PGAContext *ctx, int p, int pop, int i, int val)void PGASetBinaryInitProb(PGAContext *ctx, double probability)void PGASetCharacterAllele(PGAContext *ctx, int p, int pop, int i, char value)void PGASetCharacterInitType(PGAContext *ctx, int value)void PGASetCommunicator(PGAContext *ctx, MPI Comm comm)void PGASetCrossoverProb(PGAContext *ctx, double crossover prob)void PGASetCrossoverType(PGAContext *ctx, int crossover type)void PGASetDebugLevel(PGAContext *ctx, int level)void PGASetDebugLevelByName(PGAContext *ctx, char *funcname)void PGASetEvaluation(PGAContext *ctx, int p, int pop, double val)void PGASetEvaluationUpToDateFlag(PGAContext *ctx, int p, int pop, int status)void PGASetFitnessCmaxValue(PGAContext *ctx, double val)void PGASetFitnessMinType(PGAContext *ctx, int �tness type)void PGASetFitnessType(PGAContext *ctx, int �tness type)void PGASetIntegerAllele(PGAContext *ctx, int p, int pop, int i, int value)void PGASetIntegerInitPermute(PGAContext *ctx, int min, int max)void PGASetIntegerInitRange(PGAContext *ctx, int *min, int *max)void PGASetMaxFitnessRank(PGAContext *ctx, double �tness rank max)void PGASetMaxGAIterValue(PGAContext *ctx, int maxiter)void PGASetMaxNoChangeValue(PGAContext *ctx, int max no change)void PGASetMaxSimilarityValue(PGAContext *ctx, int max similarity)void PGASetMutationAndCrossoverFlag(PGAContext *ctx, int ag)void PGASetMutationBoundedFlag(PGAContext *ctx, int val)void PGASetMutationIntegerValue(PGAContext *ctx, int val)void PGASetMutationOrCrossoverFlag(PGAContext *ctx, int ag)void PGASetMutationProb(PGAContext *ctx, double mutation prob)void PGASetMutationRealValue(PGAContext *ctx, double val)void PGASetMutationType(PGAContext *ctx, int mutation type)62

Type Functionvoid PGASetNoDuplicatesFlag(PGAContext *ctx, int no dup)void PGASetNumReplaceValue(PGAContext *ctx, int pop replace)void PGASetPTournamentProb(PGAContext *ctx, double ptournament prob)void PGASetPopReplaceType(PGAContext *ctx, int pop replace)void PGASetPopSize(PGAContext *ctx, int popsize)void PGASetPrintFrequencyValue(PGAContext *ctx, int print freq)void PGASetPrintOptions(PGAContext *ctx, int option)void PGASetRandomInitFlag(PGAContext *ctx, int RandomBoolean)void PGASetRandomSeed(PGAContext *ctx, int seed)void PGASetRealAllele(PGAContext *ctx, int p, int pop, int i, double value)void PGASetRealInitPercent(PGAContext *ctx, double *median, double *percent)void PGASetRealInitRange(PGAContext *ctx, double *min, double *max)void PGASetRestartAlleleChangeProb(PGAContext *ctx, double prob)void PGASetRestartFlag(PGAContext *ctx, int val)void PGASetRestartFrequencyValue(PGAContext *ctx, int numiter)void PGASetSelectType(PGAContext *ctx, int select type)void PGASetStoppingRuleType(PGAContext *ctx, int stoprule)void PGASetUniformCrossoverProb(PGAContext *ctx, double uniform cross prob)void PGASetUp(PGAContext *ctx)void PGASetUserFunction(PGAContext *ctx, int constant, void *f)void PGASortPop(PGAContext *ctx, int pop)double PGAStddev(PGAContext *ctx, double *a, int n, double mean)void PGAUpdateGeneration(PGAContext *ctx, MPI Comm comm)void PGAUsage(PGAContext *ctx)Fortran 77 BindingsUse the rules de�ned in Chapter 11 (and the machine-speci�c idiosyncrasies noted in Appendix D) todetermine the Fortran bindings.

63

Appendix CParallelism BackgroundParallel Computer TaxonomyTraditionally, parallel computers are classi�ed according to Flynn's taxonomy [4]. Flynn's classi�cationdistinguishes parallel computers according to the number of instruction streams and data operands beingcomputed on simultaneously.Flynn's single-instruction single-data (SISD) model is the traditional sequential computer. A singleprogram counter fetches instructions frommemory. The instructions are executed on scalar operands. Thereis no parallelism in this model.In the single-instruction multiple-data (SIMD) model there is again a single program counter fetchinginstructions from memory. However, now the operands of the instructions can be one of two types: eitherscalar or array. If the instruction calls for execution involving only scalar operands, it is executed by thecontrol processor (i.e., the central processing unit fetching instructions from memory). If, on the other hand,the instruction calls for execution using array operands, it is broadcast to the array of processing elements.The processing elements are separate computing devices that rely upon the control processor to determinethe instructions they will execute.In a multiple-instruction multiple-data (MIMD) computer there exist multiple processors each of whichhas its own program counter. Processors execute independently of each other according to whatever in-struction the program counter points to next. MIMD computers are usually further subdivided according towhether the processors share memory or each has its own memory.In a shared-memory MIMD computer both the program's instructions and the part of the program's datato be shared exist within a single shared memory. Additionally, some data may be private to a processorand not be globally accessible by other processors. The processors execute asynchronously of each other.Communication and synchronization between the processors are handled by having them each read or writea shared-memory location.A distributed-memory MIMD computer consists of multiple \nodes." A node consists of a processor, itsown memory, a network interface, and sometimes a local disk. The program instructions and data reside inthe node's memory. The nodes are connected via some type of network that allows them to communicatewith each other. Parallelism is achieved by having each processor compute simultaneously on the data in itsown memory. Communication and synchronization are handled by passing of messages (a destination nodeaddress and the local data to be sent) over the interconnection network.Processes vs. ProcessorsWe distinguish the two terms process and processor. A process is a software abstraction with a unique addressspace that can be scheduled by the operating system. A processor is the physical computer hardware onwhich computations take place.On MIMD parallel computers, usually one process executes on each processor (although this is notrequired). On a uniprocessor, multiple processes timeshare the single processor.64

Message-Passing Programming ModelIn the message-passing programmingmodel multiple processes communicate by passing messages|transferringdata from the address space of one process into the address space of another process. When a process needsdata stored in the memory of another process, the data must be sent from the process that \owns" it, to thememory of the process that needs it.The message-passing programming model is currently one of the most popular. One reason for thepopularity is portability. Message passing is the natural programming model on distributed-memory MIMDcomputers. Each process is naturally mapped to one of the machine's nodes. A similar implementationis common on a workstation network where one process runs on each workstation. On a shared-memoryMIMD computer multiple processes can emulate message passing by communicating only via logical messagequeues|areas of shared memory partitioned by process. On a uniprocessor the multiple processes thattimeshare the physical processor can also emulate the idea of logical message queues for their communication.One example of the message-passing programming model is the master/slave model. In this model amaster process distributed work (computation to be performed) to the slave processes. The slaves performthe work and return the result to the master. In many implementations the master plays a bookkeeping roleonly and does not perform any computation.Parallel Genetic AlgorithmsWhen using the term \parallel genetic algorithm" it is important to distinguish between parallel models,their (parallel or sequential) implementation, and the computer hardware.ModelsA sequential GA model (more accurately called a global model) has a single population and no restrictions(partitioning) upon which strings recombine with which. The sequential GA is the traditional GA modelgiven in the literature. In a parallel GA model there are either multiple populations (an island model) or apartitioning of a single population (often called a �ne-grained model).ImplementationsBoth parallel and sequential GA models can have parallel or sequential implementations. A sequentialimplementation of the global model is the traditional approach discussed in the GA literature. One process,running on a uniprocessor (PCs and workstations), performs all the calculations. In a parallel implementationof the global model the steps of the GA (some or all of selection, crossover, mutation, and �tness calculation)are executed simultaneously by multiple processes running on a parallel computer or workstation network.In a sequential implementation of a parallel GA model, multiple processes, each responsible for a subpop-ulation or partition of the full population, time share the processor of the uniprocessor they are running on.In a parallel implementation of a parallel GA model, the multiple processes each run on a unique processorof a parallel computer or workstation network.MPIMPI (Message Passing Interface) is a speci�cation of a message-passing library for parallel computers andworkstation networks|it de�nes a set of functions and their behavior. The actual implementation of thisinterface is left up to vendors and researchers to develop. At the time of this writing several implementationsof MPI, both proprietary and freely available, exist. MPI was designed by a large group of parallel computervendors, computer researchers, and application developers as a standard for message passing.65

CommunicatorsAlmost all MPI functions require a communicator. If MPI routines are called directly, the user must supplya communicator. Also, if any of PGAPack's parallel routines, other than PGARun, are used, the user mustsupply a communicator as well.A communicator combines the notions of context and group. A context is an extension of the notion of a\tag" used in many other message-passing systems to identify a message. Contexts di�er from tags in thatthey are allocated by the system, not the user, and that no wild-card matching among contexts is allowed.A group contains n processes whose rank is an integer between 0; : : : ; n� 1. Processes may belong to morethan one group and have a unique rank within each.Any MPI implementation will always supply the default communicator MPI COMM WORLD. This communi-cator contains all processes that were created when MPI was initialized. For most users this is all they haveto know about communicators. Simply supply MPI COMM WORLD whenever a communicator is required as anargument. For more sophisticated use, users are referred to [5, 6].Parallel I/OThe issue of parallel I/O is independent of PGAPack. However, since we assume many PGAPack userswill wish to do I/O we address this topic. A primary consideration has to do with whether one or allprocessors do I/O. Consider the following two code fragments, keeping in mind that they are being executedsimultaneously by multiple processes:ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 30, PGA_MINIMIZE)andint len;scanf("%d",&len);ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, len, PGA_MINIMIZE);In the �rst case, all processes will receive the value of 30 for the string length since it is a constant. Inthe second case, however, the value of the string length is determined at run time. Whether one or allprocesses execute the scanf function is unde�ned in MPI and depends on the particular parallel computingenvironment. In PGAPack we require that all processes have the same values for all �elds in the contextvariable. Since some of these �elds may be set by using values speci�ed at run time, we suggest that yourI/O that reads in PGAPack parameters be done as follows:#include "pgapack.h"double evaluate (PGAContext *ctx, int p, int pop);int main(int argc, char **argv){ PGAContext *ctx;int myid, len;MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &myid);if (myid == 0) { /* Process 0 has a dialog */printf("String length? "); /* with the user and */scanf("%d", &len); /* broadcasts the user's */}MPI_Bcast(&len, 1, MPI_INT, 0, MPI_COMM_WORLD);ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, len, PGA_MAXIMIZE);PGASetUp(ctx);PGARun(ctx, evaluate);PGADestroy(ctx); 66

MPI_Finalize();return(0);} The key point is that only process 0 (as determined by MPI Comm rank) performs I/O and the value oflen is then broadcast (using MPI Bcast) to the other processes.

67

Appendix DMachine IdiosyncrasiesData Type SizesPGAPack is written entirely in ANSI C. However, because it is callable from Fortran, and no standards existfor interlanguage communication, problems may arise. These have to do with a lack of consistency in thesize of data types between the two languages.On all machines we have tested, an integer declaration in Fortran is the same size as an int declarationin C and everything works properly. For oating-point numbers, however, we have found at least oneinconsistency. The requirement is for the Fortran oating-point number to be the same size as a C double.On most machines a Fortran double precision declaration is the equivalent size. On the Cray T3D,however, by default, the Fortran data type double precision is not supported and must be handled asdescribed below.Since Fortran does not support pointers, an integer variable is used to hold the address of the contextvariable (and possibly MPI communicator addresses as well). Therefore, a Fortran integer must be \largeenough" to hold an address on the machine. For all 32-bit address space machines we have tested this isthe case. On machines with a 64-bit address space, however, this may not be true. In particular, the sizeof a Fortran integer on the Silicon Graphics Power Challenge and DEC Alpha (but not the Cray T3D) is32-bits and is not large enough to hold a machine address. The solution on these machines is to use the(nonstandard, but supported) Fortran declaration integer*8 for the context variable.StartupThe MPI standard provides for source code portability. However, the MPI standard does not specify howan MPI program shall be started or how the number of processes in the computation is speci�ed. Thesewill vary according to the computer being used and the choice of MPI implementation. The notes below arefrom our experiences testing PGAPack on di�erent machines.Silicon Graphics ChallengeThe Silicon Graphics Challenge is a 32-bit symmetric multiprocessor. We used MPICH with the ch shmemdevice and the ncc C compiler. Several warnings were receivedwarning(3262): parameter "ctx" declared and never referencedwarning(3141): cast between pointer-to-object and pointer-to-functionbut the library was successfully built. To run a parallel PGAPack program, use eithera.out -np nprocsor MPICH's mpirun command. 68

Silicon Graphics Power ChallengeThe Silicon Graphics Power Challenge is similar to the Challenge, except that it has a 64-bit address space.On this machine the size of an integer (int in C and integer in Fortran) is not the same as the size of anaddress. Fortran users should use the declaration integer*8 for the context variable (and integer for otherFortran integer declarations). See also Chapter 11.We used MPICH with the ch p4 device and the the MIPSpro C compiler (cc). We found a bug in pca, thePower C Analyzer, and recommend not using it for now. (To do this do not specify the -pca switch to cc).To run a parallel PGAPack program, usea.out -np nprocsor MPICH's mpirun command.Cray T3DThe Cray T3D has a 64-bit address space. However, the size of an integer on the T3D is the same as thesize of an address, and therefore no special considerations are needed for declaring the context variable inFortran.On the T3D a C double is 64 bits. The Fortran double precision data type, however, is not supported(by default). One workaround is to declare all oating-point numbers REAL, as these are 64 bits on the T3D.The other workaround is to use the compiler switch \-dp".To compile for a Cray T3D, cross compilation is done on a front-end machine (a Cray C90 in our case).Set Cray's TARGET environment variable so the compiler, linker, etc., will know which architecture to compilefor.setenv TARGET cray-t3dAn alternative is to use \-T cray-t3d" with cc and \-C cray-t3d" with cf77. Another alternative is toexplicitly use the cross compilers (/mpp/bin/cc and /mpp/bin/cf77) and linker (/mpp/bin/mppldr).We used the MPI in /usr/local/mpp/lib/libmpi.a. Adding -lmpi in your link step may also �nd theMPI library. If a successful T3D executable was built, the command \�le a.out" should say \MPP absolute."To run a parallel PGAPack program, usea.out -npes nprocswhere nprocs is a power of two.Intel ParagonWe used MPICH with the ch nx device and compiled with cc -nx. To run a parallel PGAPack program, usea.out -sz nprocsor MPICH's mpirun command.IBM SP2We tested the IBM SP2 using both MPICH with the ch eui device, and IBM's research MPI, MPI-F. Wecompiled PGAPack with xlc and linked with mpCC. Execution required setting a number of environmentvariables. We were successful with the following, but this may vary with the system software installed onthe SP you are using.setenv MP_HOSTFILE /sphome/hostfilesetenv MP_PROCS npsetenv MP_EUILIB ussetenv MP_INFOLEVEL 0setenv MP_HOLD_STDIN YESsetenv MP_PULSE 0a.out 69

Convex ExemplarWe used MPICH with the ch shmem device. Be sure to compile (the Fortran examples) with fort77, not f77.Also, you must link with /usr/lib/libU77.a last to satisfy iargc and getarg. This must be done manuallyin the prototype make�les ./examples/fortran/Makefile.in and ./examples/mgh/Makefile.in beforerunning configure. To run a parallel PGAPack program using MPICH use the mpirun command.Sun SparcStationWe used MPICH with the ch p4 device and the GNU C compiler gcc. The instverf test program was runusing 4 processes with:/usr/local/mpi/bin/mpirun instverf -arch sun4 -np 4Silicon Graphics WorkstationWe used MPICH with the ch p4 device and mpirun command, the cc C compiler, and f77 Fortran compiler.IBM/RS6000 WorkstationWe have successfully run PGAPack on both single workstations and networks of workstations using theMPICH implementation with the ch p4 device.Hewlett Packard WorkstationWe used MPICH with the ch shmem device and mpirun command, the gcc C compiler, and fort77 Fortrancompiler.DEC Alpha WorkstationDEC Alpha workstations have a 64-bit address space. On this machine the size of an integer (int in Cand integer in Fortran) is not the same as the size of an address. Fortran users should use the declarationinteger*8 for the context variable (and integer for other Fortran integer declarations). See also Chapter 11.

70

Appendix ECommon Problems� When reading input value to be used as parameters in PGASet calls, the PGAset calls themselves maynot be executed until after PGACreate has been called.� In C, when reading input parameters which are of type double, the scanf conversion speci�cationshould be of the form %lf, not %f which is appropriate for floats.� An in�nite loop can occur if the number of permutations of the bit string is less than the populationsize. For example, for a binary-valued string of length four, there are 24 = 16 possibilities. If thepopulation size is greater than 16, and duplicate strings are not allowed in the population, an in�niteloop will occur.� Erroneous results can occur if the name of a user's function conicts with a library function used byPGAPack. For example, if a program de�ned its own ceil function, this would conict with the Cmath library function of the same name.� All oating point constants and variables used in PGAPack are of type double. Particularly fromFortran, the user should be careful to make sure that they pass a double precision constant orvariable.� PGACreate removes command line arguments. One consequence is that if PGACreate is called twice inthe same program (unusual, but legal), the second PGACreate call will not receive the command-linearguments.� If one includes mpi.h (or mpif.h) when it should not be, errors will result, as well as warnings aboutrede�ning macros and typedefs. This usually happens when a sequential version of PGAPack is used(with \fake" MPI stub routines and de�nitions) and the user's program explicitly includes \real" mpi.hor mpif.h header �les.� If one fails to include mpi.h (or mpif.h) when it should be (such as calling MPI functions directly)errors may result. Since pgapack.h includes mpi.h this should not happen in C. The Fortran include�le, pgapackf.h, however, does not include mpif.h. The user must explicitly include it in everysubroutine and function that makes MPI calls. Not including mpif.h could result in any of severaldi�erent errors, including{ syntax errors when compiling (for example, MPI COMM WORLD being unde�ned){ general errors in the computed results{ the program crashing when it calls the unde�ned subroutine MPI Init{ general MPI errors such as:0 - Error in MPI_COMM_RANK : Invalid communicator[0] Aborting program! 71

We have also seen the following error from not including bmpif.h in the main program:PGACreate: Invalid value of datatype: 0PGAError: Fatal� If the ch p4 device in MPICH is used to run on workstations one must have a correct processor group�le (procgroup). The error message(ptera-36%)a.outp0_18429: p4_error: open error on procgroup file (procgroup): 0(ptera-37%)may occur if the processor group �le is not speci�ed correctly. See the MPICH users guide for moredetails.� A common error with the procgroup �le when using the ch p4 device in MPICH is to have an incorrectpath to the executable.� When compiling the examples directory we have seen \multiply de�ned" error messages. For example:Making C examplesCompiling classicld: /usr/local/mpi/lib/sun4/ch_p4/libmpi.a(initialize.o): _MPI_Initialized: multiply definedcollect2: ld returned 2 exit statusWe have seen this error occur when a sequential version of PGAPack was built and the library(./lib/arch/libpgag.a or ./lib/arch/libpgaO.a) was not deleted before attempting to build anew, parallel version of PGAPack. The \fake" MPI stub routines are in the sequential library andhave name conicts when a \real" MPI library is referenced. The solution is to delete the old .a �leand rerun make install.

72

AcknowledgmentsMuch of the code in PGAPack was originally developed as part of the author's Ph.D. thesis. Signi�cantcontributions to the development of PGAPack were made by Philip Hallstrom, David Noelle, Greg Reeder,and Brian Walenz, participants in Argonne's Science and Engineering Research Semester program.Many aspects of PGAPack|including the user interface, choice of some data structures, and design ofFortran wrappers|were strongly inuenced by the design of the PETSc (Portable and Extensible Tools forScienti�c Computing) library. I thank Bill Gropp, Lois Curfman McInnes, and Barry Smith for many helpfuldiscussions. The code in PGAPack for parsing command line arguments is a modi�ed version of that usedin the p4 system developed by Ralph Butler and Rusty Lusk.

73

Bibliography[1] MPICH World Wide Web home page, June 1995. Available by anonymous ftp fromftp.mcs.anl.gov in directory pub/mpi, �le mpich.tar.Z, or on the World Wide Web athttp://www.mcs.anl.gov/home/lusk/mpich/index.html.[2] J. Baker. Reducing bias and ine�ciency in the selection algorithm. In J. Grefenstette, editor, Proceedingsof the Second International Conference on Genetic Algorithms and Their Applications, pages 14{21,Hillsdale, New Jersey, 1987. Lawrence Erlbaum Associates.[3] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.[4] M. Flynn. Some computer organizations and their e�ectiveness. IEEE Transactions on Computers,21:948{960, 1972.[5] Message Passing Interface Forum. MPI: A message-passing interface standard. International Journalof Supercomputing Applications, 8(3/4), 1994.[6] W. Gropp, E. Lusk, and A. Skjellum. USING MPI Portable Parallel Programming with the Message-Passing Interface. The MIT Press, Cambridge, 1994.[7] J. Holland. Adaption in Natural and Arti�cial Systems. MIT Press, Cambridge, 1992.[8] W. Spears and K. DeJong. On the virtues of parameterized uniform crossover. In R. Belew andL. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages230{236, San Mateo, 1991. Morgan Kaufmann.[9] G. Syswerda. Uniform crossover in genetic algorithms. In J. Scha�er, editor, Proceedings of the ThirdInternational Conference on Genetic Algorithms, pages 2{9, San Mateo, 1989. Morgan Kaufmann.[10] D. Whitley. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproduc-tive trials is best. In J. Scha�er, editor, Proceedings of the Third International Conference on GeneticAlgorithms, pages 116{121, San Mateo, 1989. Morgan Kaufmann.[11] D. Whitley and J. Kauth. GENITOR: A di�erent genetic algorithm. In Rocky Mountain Conferenceon Arti�cial Intelligence, pages 118{130, Denver, 1988.
74

Distribution for ANL-95/18Internal:J. M. Beumer (10)F. Y. FradinW. D. GroppD. M. Levine (10)L. C. McInnesG. W. PieperB. F. SmithF. J. StevensR. L. StevensC. L. WilkinsonTIS FileExternal:DOE-OSTI, for distribution per UC-405 (52)ANL-E LibraryANL-W LibraryManager, Chicago Operations Office, DOEMathematics and Computer Science Division Review Committee:F. Berman, University of California at LaJollaG. Cybenko, Dartmouth CollegeT. DuPont, The University of ChicagoJ. G. Glimm, State University of New York at Stony BrookM. T. Heath, University of Illinois, UrbanaE. F. Infante, University of MinnesotaK. Kunen, University of Wisconsin at MadisonR. E. O'Malley, Rensselaer Polytechnic InstituteL. R. Petzold, University of MinnesotaF. Howes, Dept. of Energy - Office of Computational and Technology ResearchD. Nelson, Dept. of Energy - Office of Computational and Technology Research
75

