
Distribution Category:Mathematics andComputer Science (UC-405)ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439|||||{ANL-95/49|||||{Parallel Solution of the Time-dependent Ginzburg-LandauEquations and Other Experiences UsingBlockComm-Chameleon and PCN on the IBM SP,Intel iPSC/860, and Clusters of WorkstationsbyErhan Coskun1 and Man Kam Kwong2Mathematics and Computer Science DivisionSeptember 19951Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115. Present ad-dress: Karadeniz Technical University, Department of Mathematics, Trabzon, 61080 Turkey. E-mail:erhan@osf01.bim.ktu.edu.tr2This author was supported by the Mathematical, Information, and Computational Sciences Dvision sub-program of the O�ce of Computational and Technology Research, U.S. Department of Energy, under ContractW-31-109-Eng-38.

ContentsAbstract 11 Introduction 12 Preliminaries 23 Test Problems 44 Parallel Programs with BlockComm/Chameleon 64.1 ProgSumBC : 64.2 ProgPiBC : 94.3 ProgPdeBC : 94.4 ProgTdglBC : 115 Clusters of Workstations as a Parallel Computing Environment 136 Parallel Programs with PCN 146.1 ProgPiPCN : 146.2 ProgPdePCN : 167 Conclusion 19Acknowledgments 20Appendix: Program Listings 21References 37
iii

Parallel Solution of the Time-dependent Ginzburg-Landau Equations andOther Experiences Using BlockComm-Chameleon and PCNon the IBM SP, Intel iPSC/860, and Clusters of WorkstationsbyErhan Coskun and Man Kam KwongAbstractTime-dependent Ginzburg-Landau (TDGL) equations are considered for modeling athin-�lm �nite size superconductor placed under magnetic �eld. The problem then leadsto the use of so-called natural boundary conditions. Computational domain is partitionedinto subdomains and bond variables are used in obtaining the corresponding discrete systemof equations. An e�cient time-di�erencing method based on the Forward Euler method isdeveloped. Finally, a variable strength magnetic �eld resulting in a vortex motion in TypeII High Tc superconducting �lms is introduced.We tackled our problem using two di�erent state-of-the-art parallel computing tools:BlockComm/Chameleon and PCN. We had access to two high-performance distributedmemory supercomputers: the Intel iPSC/860 and IBM SP1. We also tested the codesusing, as a parallel computing environment, a cluster of Sun Sparc workstations.1 IntroductionIn our study of the mathematical modeling of superconductivity, we have developed an e�cientalgorithm to solve numerically the time-dependent Ginzburg-Landau (TDGL) equations intwo dimensions (see [3]). The corresponding problem in three dimensions is, however, verycomputationally extensive. The study is impractical on a conventional uniprocessor computer,even if the most e�cient algorithm is used. The numerical simulation of such Grand Challengeproblems (the three-dimensional TDGL in its entire generality) depends on high-performancecomputing techniques and resources.We tackled the 3D problem using two di�erent state-of-the-art parallel computing tools:BlockComm/Chameleon and PCN, the development of both involves Argonne scientists. Sincethe completion of this work, a new tool, the Message Passing Interface (MPI) [9], has emerged.It has an excellent prospect to become the standard message-passing tool. Future extensionof our work will de�nitely include MPI. We had access to two high-performance distributed-memory supercomputers: the Intel iPSC/860 and IBM SP. We also tested the codes using,as a parallel computing environment, a cluster of Sun Sparc workstations in the Mathematicsand Computer Science Division of Argonne National Laboratory.Although our main objective was to develop a parallel code for the forward Euler method(see [3]) to solve the TDGL equations, we started with three simpler warm-up problems. Ourexperience with these three problems is also described here; they are used as examples toillustrate some of the concepts of parallel programming tools. More in-depth discussion of allthe problems considered in this report, together with all complete parallel codes and runningprocedures, is given in [3].Dave Levine of Argonne National Laboratory has also developed parallel codes for solvingthe TDGL using BlockComm, but with a di�erent method of discretizing the equations; consult

[5], [10], and the forthcoming paper [16]. Earlier, two other colleagues, Paul Plassmann andSteve Wright, developed a parallel code for solving the static Ginzburg-Landau equations usingoptimization techniques; their work is reported in [6].2 PreliminariesWe begin by introducing some terminology that will be used throughout this report. We alsobrie
y describe the parallel programming tools and environments we used.When a particular instance of a code or a part of a code is executed on a machine, all ofthe work needed to execute that portion of the program is referred as a single task, or process.Parallel processing is information processing or numerical computation that emphasizes theconcurrent manipulation of data elements belonging to one or more processes in solving asingle problem.Early supercomputers achieved concurrency with the method of pipelining, namely, bydividing a computation into a number of steps that are processed in an assembly-line fashion.More modern architectures use multiple CPUs, each capable of executing instructions entirelyindependently of others.How a processor accesses the computer memory (shared memory or distributed memory)a�ects how a parallel program will be designed and coded. It is generally accepted [18] thatshared-memory parallel programming can usually be done through minor extensions to existingprogramming languages, operating systems, and code libraries. On the other hand, distributed-memory programming is a bit more involved, but it has the advantages of massive parallelism.Our experiments were done exclusively on distributed-memory environments.A parallel system [17] is the combination of an algorithm and the parallel architecture onwhich it is implemented. As mentioned in [17], the performance of a parallel algorithm cannotbe evaluated in isolation from a parallel architecture. Therefore, it is more appropriate to talkabout performance of a parallel system than performance of a parallel algorithm.Various metrics are used to measure the performance of a parallel system. We mentiononly a few of them below.� The parallel run time is the elapsed time from the moment a parallel computation startsto the moment the last processor �nishes execution.� The speedup is de�ned asSp = serial run time for the best sequential algorithmparallel run time using p processors :The speedup Sp represents the bene�t of solving a problem in parallel using p identicalprocessors. A more practical de�nition (since it is often di�cult to determine the bestsequential algorithm) is obtained by replacing the expression in the numerator above by\execution time of the same code using a single processor." We are using the secondde�nition to evaluate our numerical results.� The e�ciency is de�ned as Ep = Spp :In the ideal case of perfect speedup, Sp = p, and Ep = 1.2

� The cost of solving a problem on a parallel system is de�ned as the product of parallel runtime and the number of processors used. It re
ects the sum of time that each processorspends solving the problem.The generic goal in the development of parallel algorithms is to achieve as high a speedupas possible. The perfect speedup Sp = p, or optimal e�ciency Ep = 1, is obtainable only foressentially trivial problems. All causes of imperfect speedup of a parallel system are collectivelyreferred to as the overhead resulting from parallel processing. Some factors that cause overheadare as follows (see [13], [17], and [18]):� lack of a perfect degree of parallelism in the algorithm,� lack of perfect load balancing,� communication or contention time, and� extra computation.In the ideal situation when each computational step of an algorithm can be done independentlyof the other steps, we say that the algorithm has a perfect degree of parallelism. In reality,this rarely happens. A processor often must wait in the middle of a run until it has receivedall the data or information from other processors it needs to execute the next computationalstep.Load balancing is the assignment of tasks to the processors of the system so as to keepeach processor doing useful work for as much of the time as possible. The determination ofthis optimal assignment is also called the mapping problem. Load balancing may be achievedeither statically or dynamically. In static load balancing, tasks are assigned to processors atthe beginning of a computation. In dynamic load balancing, tasks are assigned to processorsas the computation proceeds.In distributed-memory system, each processor can address only its own local memory.Communication between processors takes place by message passing, a process that takes rel-atively more time than direct access to local memory. In a shared-memory system, all theprocessors have access to a common memory. Each processor can also have its own local, butlimited, memory for program code and intermediate results. Communication between indi-vidual processors is through the common memory. A major advantage of a shared memorysystem is the rapid communication of data between processors. A serious disadvantage is thatdi�erent processors may wish to use the common memory at about the same time (especiallywhen new values are to be deposited), in which case there will be a delay until the memory isfree, or until the proper order of access is established. This delay is called contention time.An e�cient serial algorithm may not lend itself to e�cient parallelization because ofthe dependency of computational steps on results from previous steps. As a consequence, aredesign of the algorithm necessitating extra computation may be required. In an extremesituation, a better serial algorithm may have to be sacri�ced in favor of an inferior one.We close this section by introducing the parallel programming tools Chameleon, Block-Comm, and PCN, used in our study.Chameleon is a library of low-level, comprehensive, and very e�cient message-passingroutines developed by W. Gropp and B. Smith [11].BlockComm is a library of high-level message-passing routines designed by Gropp tomanage the e�cient communication of blocks of data between processors. It provides short-cuts for many common message-passing tasks often found in the computational technique of3

domain decomposition. Both packages are still under active development. One can consult[7] for the most current documentation about BlockComm. Although the use BlockCommgreatly simpli�es the coding of domain decomposition algorithms, it does not provide the datareduction and broadcast routines that are needed in our case. Hence, we have used a combi-nation of Chameleon and BlockComm routines in the same program. Although both packageshave both Fortran and C versions, we have chosen Fortran as our programming language (seeSection 7).PCN (Program Composition Notation) is a parallel programming language developedjointly by Argonne (I. Foster), Caltech, and the Aerospace Corporation. It provides a paradigmfor composing parallel programs out of modules of parallel or sequential subroutines that maybe written either in PCN itself or in more conventional programming languages. The pro-grammer needs to specify only which modules are to be run concurrently and what datacommunications are needed between modules. The actual assignment of tasks to speci�c pro-cessors and message passing are transparent to the programmer. See [4] for more informationand its use for various parallel environments.The two programming tools we used are highly portable over a wide variety of computerarchitectures. We have used three di�erent parallel environments in our study: the InteliPSC/860, the IBM SP, and clusters of Sun Sparc workstations. All of them are distributed-memory multiple instruction multiple data (mImD) systems. For each problem, the sameprogram (recompiled with the appropriate make�les) were used in the three systems. The InteliPSC/860 at Argonne has eight nodes. All processor nodes are identical and are connected bybidirectional links in a hypercube topology. See [1] for its hardware and software speci�cations.We used this machine mainly for program development because it is freely accessible and thereis no limitation on the amount of time one can work on the machine. The Argonne IBM SP3has 128 nodes. Each node is an RS/6000 model 370 and has 128 MBytes of memory per node,1 GByte local disk per node, full Unix on each node, and a high-performance Omega switch.The peak performance of each node is 125 MFlops. There are several transport layers onthe SP including EUI, EUIH, and p4. EUIH is the low-overhead implementation of the EUIinterface. EUI is IBM's message-passing interface to the high-performance switch. See [8] formore current information about the SP and how to use these transport layers.3 Test ProblemsIn this section, we describe the four test problems in our experiments. Our ultimate goal is todevelop a parallel code implementing the forward Euler algorithm for the TDGL equations. Aswarm-up trials, we experimented with three simpler but computationally intensive problems.The �rst two problems are examples of the partitioning technique known as functionaldecomposition; the others use the domain decomposition technique.Problem 1: We consider the slowly divergent harmonic seriesNXi=1 1i : (3:1)Mathematicians are interested in investigating its rate of divergence. The extremely slow rateof divergence of the series means that a large number of terms will be needed in numerical3The work described in this report was done during the period of May 1993{May 1994. Since then, the SPsystem at Argonne has been upgraded, and more e�cient communication switches have been installed.4

experiments, and this requirement makes the problem an interesting example for parallelprogramming. A parallel code using BlockComm to compute the partial sums will be presentedtogether with some performance results. The code will be referred to as ProgSumBC.Problem 2: Our second problem is a well-known simple numerical integration problem.It has been the arch-example used in the introduction of many parallel programming toolmanuals. The objective is to approximate the integralZ 10 f(x)dx;where f(x) = 41 + x2 ;by using the rectangular rule: In(f) = h nXi=1 f(xi);where h = 1number and xi = (i� 12)h: One can easily modify ProgSumBC to obtain a parallelBlockComm code for this problem. A parallel PCN code for this problem, named ProgPiPCN,will also be presented.Problem 3: We study the following two-dimensional PDE:�uxx � uyy + cu� xy(cy2 � 6) = 0 (3.2)in (0; 1)� (0; 1) with the boundary conditionsu(x; 0) = 0; u(x; 1) = x; u(0; y) = 0; u(1; y) = y3;where c is a constant. The exact solution, as one can easily verify, is u = xy3. By approximatingthe second derivatives in the PDE by the usual central di�erence formulas, we obtain the linearsystem of equations�0@ U �2U + ~U�x2 1A� U" � 2U + U#�y2 !+ cU � xiyj(cy2j � 6) = 0; (3.3)for i = 1; : : : ; N � 1; j = 1; : : : ;M � 1, where �x = 1=N; �y = 1method; xi =i�x; yj = j�y. We use the notation U" to denote the value of U at the point abovethe current one, and so on.By expanding the function u(x; y) as a Taylor series at the point (xi; yj), we see thatthe truncation error involves only the fourth-order derivatives of u(x; y): Since u(x; y) = xy3,both uxxxx and uyyyy are identically zero. Therefore, the truncation error is identically zero aswell. When the parameter c is greater than approximately �2�2, the coe�cient matrix in thelinear system is positive de�nite (see [21]). The SOR (successive overrelaxation) method is,therefore, guaranteed to converge if the relaxation parameter is chosen from the interval (0,2).The parallel codes for this problem with BlockComm and PCN, which we named ProgPdeBCand ProgPdePCN, respectively, are given in the appendix.Problem 4: Mathematical details of the TDGL are given elsewhere (see [3], [14], [15],and the references cited therein). It su�ces to say that we are solving a system of (partialdi�erential) evolution equations governing two unknown functions of time and space position: a5

complex-valued scalar � (called the order parameter); and a three-dimensional vector A (calledthe vector potential). We used an unconventional method (see [14]) to discretize the equationswith respect to the space variables. The resulting system is then solved using a forward Eulermethod. A parallel BlockComm code ProgTdglBC, for implementing this algorithm is givenin the Appendix. Since the code itself is rather complicated and specialized, we will presentin this report only the performance results, and refer the readers to [3] for a detail discussionof the code. We note that we have also developed a parallel PCN code for this problem, butperformance results were less complete. As a consequence, we have decided not to present thecode in this report.4 Parallel Programs with BlockComm/Chameleon4.1 ProgSumBCProgSumBC is the parallel program for Problem 1 written with BlockComm and Chameleon.We give the program listing below and explain its content. The line numbers in the listinghave been added for easy reference and are not part of the code. The subroutine calls thatbegin with the letters BC are BlockComm routines, while those that begin with PI areChameleon routines. The �rst �ve lines of the program declare the appropriate function nameand variables.1 integer function worker()2 integer nbytes, PImytid, myid, sx, ex, N3 integer intsize, msg_int, Psallprocs4 parameter(intsize=4,msg_int=1,Psallprocs=0,nbytes=8)5 double precision t1, t2, SYGetElapsedTimeStrictly speaking, the name ProgSumBC refers to the �le PRofSumBC.f that contains aFortran subroutine, called worker(), as declared in line 1 above. The worker() subroutinelooks very much like the corresponding sequential code for the same problem, consisting ofinstructions for the numerical computations. In the actual execution of a parallel program, thecomputer needs some extra overhead instructions, such as initial setup directives (to round upthe processors, to establish communication links among them) and clean-up directives (neededafter all the computations are �nally completed). Many parallel programming tools requirethe programmer to explicitly include these instructions in their programs. Chameleon also hasthese instructions, such as PICall used to call worker() in a parallel execution mode, but itprovides a convenient alternative that frees a user from this extra e�ort. Overhead instructionsthat are common to most programs have been collected in a main subroutine and precompiledinto the object �les fmain.o (for Fortran codes) and cmain.o (for C codes), the appropriate oneof which is to be linked to the computational subroutine when compiling the program. Themoderate price to pay is that one no longer thinks in terms of writing a main Fortran code (ora main() routine in C), but just a function, with the mandatory name worker(), as we havedone in line 1. 6

6 myid = PImytid()7 if(myid .eq. 0) then8 print*,'Number of points'9 read(5,*) N10 endif11 call PIbcastSrc(N,intsize,0,Psallprocs,msg_int)When the code is executed on the computer, every processor is given the same set of in-structions contained in ProgSumBC, but not every processor will execute all the steps containedin the program. The program uses the ID number of the calling processor (obtained in line6 using the Chameleon routine PImytid() and assigned to the variable myid) to determinewhich segments of codes are appropriate for the processor. Lines 7 to 10 are an example ofsuch a segment. One of the processors, that with ID # 0, is given the responsibility to obtain(interactively) the user's input of the number of terms in the harmonic series to be summed.Line 11 calls the Chameleon routine PIbcastSrc to broadcast the value N to all processors.Even though only processor # 0 is the sender, and all other processors are receivers, this routinemust be called by all the processors. Roughly speaking, PIbcastSrc is shorthand for processor# 0 to send a message to all other processors, and for all other processors to wait for thismessage to arrive. The arguments of PIbcastSrc are, respectively, the variable (bu�er) thatcontains the message, the size of the bu�er, the ID of the processor that broadcast the message,the set of processors that receive the message (by conventions, all processor are involved whenthis argument is 0), and the data type of the message. For more precise syntax de�nitions ofChameleon routine calls, consult the Chameleon manual [11].12 call getindex(N,sx,ex)13 call PIgsync(0)14 t1=SYGetElapsedTime()15 call compute(sx,ex,myid)16 t2=SYGetElapsedTime() - t1Now that each processor knows the value of N, the next step is to �nd out the range ofthose terms in the harmonic series that it is responsible to work on. This is done in line 12, bycalling the subroutine getindex to compute the indices of the starting term sx and the lastterm ex in the range. The subroutine getindex is given below.In line 13, a global synchronization call is use to make all the processors begin timing atthe same time. Lines 14 and 16 return the elapsed time used by the subroutine compute inline 15, which does the actual summing.
7

subroutine getindex(mx,sx,ex)include '/home/gropp/tools.n/blkcm/meshf.h'integer mx, sx, ex, ndinteger sz(0:9,0:0)integer myid, nproc, PInumtids, PImytidnd=1sz(szmdim,0) = mxsz(szisparallel,0) = 1sz(szndim,0) = -1myid = PImytid()nproc = PInumtids()call BCGlobalToLocalArray(nd, sz, nproc, myid)sx = sz(szstart,0) + 1ex = sz(szend,0) + 1returnendThe BlockComm subroutine BCGlobalToLocalArray determines the appropriate datadomain that a processor is responsible for, given the decomposition style nd, the numberof processors nproc, and the processor ID # myid. The BlockComm call stores its results inthe array sz. The precise de�nitions of each components of sz are given in the manual.subroutine compute(sx,ex,myid)integer sx, ex, i, myiddouble precision sum, worksum=0.0do i=sx,exsum=sum+1d0integralenddocall PIgdsum(sum,1,work,0)if (myid .eq. 0)thenprint*,'sumall=',sumendifreturnendThe �rst part of compute �nds the partial sum of the series from the term with indexsx to the term with index ex, inclusively. The call PIgdsum �nds the fgglobal (fdgoubleprecision) sum, by adding up all the results stored in the local variable sum attached to eachprocessor. The other arguments of PIgdsum are, respectively, the length of the array sum (inthe current case, sum is a scalar and so the value of this argument is simply 1), a variablework of the same size as sum to be use as a work area to compute the global sum, and theset of processors involved (as mentioned earlier, a value of 0, by conventions, denotes that allprocessors are to be included). The result of the computation, the global sum, overwrites thelocal sum originally stored in the variable sum.Some self-explanatory performance results are illustrated in Figure 1.8

0 5 10
0

2

4

6

8

 P
a

ra
ll
e

l
R

u
n

 T
im

e

0 10 20
0

20

40

60

80

 Number of Processors
0 10 20

0

50

100

150

0 5 10
0.2

0.4

0.6

0.8

1

 E
ff

ic
ie

n
c
y

0 10 20
0.2

0.4

0.6

0.8

1

1.2

 Number of Processors
0 10 20

0.4

0.6

0.8

1

1.2

Figure 1: Parallel run time and e�ciency versus number of processors for ProgSumBC-SP1-EUIHsystem with N=10,000,000 (Left), N=100,000,000 (Middle), N=200,000,000 (Right)4.2 ProgPiBCOne needs only to modify the computation routine compute in ProgSumBC to get a parallelcode for Problem 2 in BlockComm. As a matter of fact, the only di�erence between Problem1 and Problem 2 is the form of the terms in the series to be summed. In other words, the onlychanges needed are in modifying the line \sum=sum+1d0integral."We include this example to make the point that once a prototype parallel program hasbeen written, most of it can be reused to write another program. Hence, the initial investmentis worthwhile.4.3 ProgPdeBCOur method of solution for Problem 3 is to decompose the domain in which the partial di�er-ential equation is de�ned into as many subdomains as the number of processors used. Each9

processor is assigned the data of one of the subdomains, called a block, and a share of the com-putations that involves mainly data in the associated block. At each time step, each processoralso requires some extra information from processors associated with neighboring blocks inorder to complete the assigned computation. In most domain decomposition algorithms forsolving partial di�erential equations, this extra information is typically data carried by a setof lattice points, the so-called ghost points, that borders the subdomain. The exchange of in-formation among processors is performed by message-passing library calls. A two-dimensionalcomputational domain with a typical subdomain and its ghost points for a �ve-point stencilis illustrated below. rrrrr rrrrr rrrrr rrrrr rrrrrb b b b bb b b b b b bb b b b b b bb b b b b b bb b b b b b bb b b b b b bb b b b b
Figure 2. A nine-processor decomposition of a 2D domain with ghost points (�)If only a general-purpose, low-level message-passing tool, such as Chameleon, is used towrite a parallel domain decomposition algorithm, one has to include explicit code segments to1. de�ne each subdomain (i.e., determine the ranges of indices for the lattice points thatbelongs to the subdomain),2. map each subdomain to a processor,3. determine the ghost points and the
ow of messages, and4. send and receive each message explicitly.BlockComm provides subroutine calls to automate these steps for a wide class of commondomain decomposition algorithms for rectangular domains. For example, the callBCGlobalToLocalArray, used earlier in the subroutine compute in Section 4.1, takes careof Steps 1{3. Another subroutine BCexec() can be used to automate Step 4.The complete ProgPdeBC is given in the Appendix. Some performance results are pre-sented in Table 1. For this particular experiment, c = 20, w (relaxation parameter) = 1, andwe have used 500 grid points and 1000 iteration steps.10

Table 1. Performance results for the ProgPdeBC-SP1-EUIH systemNum. of Proc. Parallel Run Time Speedup E�ciency1 1294.95 1 12 691.55 1.8725 0.93634 536.82 2.4123 0.60318 319.12 4.0579 0.507212 245.38 5.2773 0.439820 224.40 5.7707 0.28854.4 ProgTdglBCThe code for ProgTdglBC is rather long and is given in the Appendix. It has been run on theIntel iPSC/860, the IBM SP, and a cluster of Sun workstations without further modi�cation.Typical performance results for the ProgTdglBC-iPSC/860 and ProgTdglBC-SP1-P4 sys-tems are plotted in Figure 3. The latter uses the version of BlockComm that is based on thep4 macro package, developed by E. L. Lusk at Argonne, and uses the Ethernet transport layer.The graph suggests that the speedup for the �rst parallel system is far better than that ofthe second. This is due to the fact that our test problem has a rather low granularity for theSP. As a result, SP nodes have to spend more time in communication than in computation.This explanation is con�rmed by the fact that when we switched to the more e�cient transportlayer EUIH for the SP, the speedup curve shows a much better performance.

11

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Processors

S
pe

ed
up

Intel iPSC/860

IBM SP-1Figure 3. Speedup for the ProgTdglBC-SP1-P4 and ProgTdglBC-iPSC system
12

0 5 10 15 20 25 30 35 40
0

500

1000
 P

a
ra

ll
e
l
R

u
n
 T

im
e
(s

e
c
)

0 5 10 15 20 25 30 35 40
0

5

10

15

 S
p
e
e
d
u
p

0 5 10 15 20 25 30 35 40
0

0.5

1

 Number of Processors

E
ff
ic

ie
n
c
y

Figure 4. Some performance results for the ProgTdglBC-SP1-EUIH system5 Clusters of Workstations as a Parallel Computing EnvironmentDue to the low access priority given to parallel jobs running in the background, performance ona cluster of workstations is not consistent, varying according to the demand of other users onthe workstations. This environment is, therefore, mainly used for test runs and for debugging.Also, we observed that process creation on remote workstations takes a considerable amount13

of time. Typical performance results obtained by running ProgPiBC with n = 10; 000; 000 ona collection of workstations are shown below. Here, the real and system times are obtained bythe Unix's time command and elapsed time is computed by the program.Table 2. Performance results for ProgPiBC on a cluster of workstations(time in sec)Time Number of Workstations1 2 3 4 5 6 7 8Real 19.0 29.1 57.2 59.8 58.0 60.3 60.6 71.0System 0.2 0.6 0.9 1.1 1.4 1.5 1.6 1.8Elapsed 17.8 22.17 43.84 32.03 25.4 21.1 18.7 14.96 Parallel Programs with PCN6.1 ProgPiPCN1 main(argc, argv, rc)2 { ? argv ?= [_,n_intervals,interval_size] ->3 {;4 sys:string_to_integer(n_intervals,ni),5 sys:string_to_integer(interval_size,li),6 nx=ni*li,7 with=1.numberx,8 main_body(ni,li,with) in vts:array(ni),9 rc = 010 },11 default ->12 {;stdio:printf("Usage : %s <n_intervals> <int_size>\n",{argv[0]},_),13 rc = 114 }15 }The syntax of PCN is similar to that of C. The comma, however, is used as the commandterminator, while the semicolon is used to declare a sequential procedure. ProgPiPCN consistsof �ve PCN procedures and a Fortran procedure. The arguments argc and argv of main()have the usual meanings as in C, and rc is used for a return code. But unlike in C, thearguments to main() must be speci�ed in the de�nition, whether we are planning to pass anycommand line arguments to the program or not. Line 2 serves a dual purpose: the numberof command line arguments is checked, and if that is equal to two, the values of argv[1] andargv[2] are assigned to n intervals and interval size. In lines 4{5, PCN's sys moduleis used to de�ne ni and li to be the integer values represented by the strings n intervalsand interval size, respectively. In lines 6{7, the total number of points and the width of14

the intervals are computed. Line 8 is a call to the procedure main body; the in�x operatorin is used to specify the map function vts:array(ni), which creates a virtual array topologyof size ni. This topology guarantees the portability of the program across di�erent computerplatforms. See [4] for more on virtual topologies and map functions. Line 9 sets the returncode variable to zero. Lines 11{13 print an error message in case the number of argumentssupplied is wrong.16 main_body(ni,li,width)17 port globals[nodes()];18 {|| rectangle(ni,li,width,globals),19 display(0,0,globals,ni)20 }The built-in function nodes() determines the number of nodes present. In line 17, aport array globals with nodes() elements is created. This port array is used for the globaloperations to be performed later. Lines 18{19 are two procedure calls to be executed in parallelmode. The �rst procedure call implements the rectangular rule to approximate the value of�, and the second displays the results. The role of the arguments passed to these proceduresis clear from the context of the program.21 rectangle(ni,li,width,globals)22 port globals[];23 {|| i over 0 .. ni-1 :: /* ni intervals */24 start_interval(i,li,width,globals[i])@node(i)25 }start_interval(i,li,width,globals)double sum;{; compsum_(li,width,sum),stdio:printf("li=%d width=%f sum=%f\n",{li,width,sum},_),globals={sum},stdio:printf("globals=%f\n",{globals},_),}The iterative construct in line 23 creates ni instances of start interval(), each of whichcalls the Fortran procedure compsum to compute the local contribution to the value of �. Thisvalue is snapshot by the de�nitional variable globals for use in the procedure display.display (count,globsum,globals,ni)port globals[];{? count<ni ->{; display(count+1,globsum+globals[count],globals,ni) },default ->{; stdio:printf(" sumall =%16.10f\n",{globsum},_) }} 15

We ran this program on the Intel iPSC/860 and on the IBM SP. The performance resultsfor ProgPiPCN are illustrated below using gauge, an execution pro�ler for PCN programs. Thisutility provides many options to analyze the performance of a parallel PCN program. Amongthese are the pro�le data for the time spent in each procedure on each node, the number oftimes each procedure is called, idle times, internode message counts and volumes, and variousstatistical results based on these pro�le data. The �rst graph pertains to ProgPiPCN run onthe Intel iPSC/860 with eight nodes.
Execution Time by ProceduresFigure 5. Execution time metric of ProgPiPCNThe graph shows the execution time metric of ProgPiPCN by procedures. Those procedurenames with the pre�x compi belong to our code, and the other procedures are in the built-inPCN modules sys and stdio. Notice that the time spent by the Fortran procedure compsum ismuch greater than that of other procedures. Displayed below the graph is the total executiontimes, the number of reductions, and the number of suspensions. A reduction is one completedexecution of a process, and a suspension occurs when a process requires value of an unde�nedde�nitional variable. A process suspends until the de�nitional variable is given a value.6.2 ProgPdePCNFor the code ProgPdePCN we discuss only the procedure named square, which maps each blockto a node in a virtual array topology. The other procedures are similar to those of ProgPiPCN.The complete code is given in the Appendix. 16

square(max_iter,globals)port N[nodes()],E[nodes()],globals[];{|| i over 0 .. isize-1 ::{|| j over 0 .. jsize-1 ::{me=id(i,j),start_block(max_iter,i,j,N[me],N[id(i,j-1)],E[me],E[id(i-1,j)],globals[me])@node(me)}}}start_block(max_iter,i,j,N,S,E,W,global_s)...The domain is decomposed into isize horizontal and jsize vertical blocks. Each block isassigned an ID number by the function id and mapped to the member node(me) of the arraynode. The port arrays N[nodes()] and E[nodes()] are used to communicate data on theghost points (which form the edge). Notice that the north ghost points of block(id(i,j-1))are the south ghost points of block(id(i,j)). And the north input of a block is the southoutput of its north neighbor. The procedures send edge and receive edge in the Appendixsend and receive data on the edge.Figures 6{8 give the performance results of ProgPdePCN run on the IBM SP with ninenodes. The �rst graph shows the execution time by procedures. Notice that the time used bythe computational procedure compute is about one hundred times those by the communicationprocedures get edge and receive edge.The second graph shows the time breakdown by nodes. The gray bars represent idle timewhile the black ones represent the execution time. Notice that each node spends a considerableamount of time waiting for data from other nodes. To improve performance, one must �ndways to reduce this idle time.
17

Execution Time by ProceduresFigure 6. Performance of ProgPdePCN on the SP
Time Breakdown by NodesFigure 7. Time breakdown by nodes18

The third graph shows the execution time by procedure and nodes. The time is representedby the color (unfortunately, the color cannot be reproduced in this report) of the square thatcorresponds to the procedure and node.
Execution Time by Procedures and NodesFigure 8. Execution time by procedures and nodes7 ConclusionThe observations given below are based on our limited experience with the tools, and mayeven be outdated.� PCN is a programming language, whereas BlockComm is a library of routines. Froma user's point of view, this means that to use PCN, one has to master the languagesyntax, whereas to use BlockComm/Chameleon, one has to learn how and where to usethe BlockComm/Chameleon subroutines to modify a sequential code. The new MPI toolis more like the latter.� For more complicated applications, BlockComm must be supplemented by Chameleonroutines (for parallel I/O, data reduction, broadcasting, etc.).� Although BlockComm has versions for both Fortran and C, writing a domain decompo-sition code in C is not as convenient, because C arrays cannot be declared with arbitraryindex ranges. Indeed, our original sequential TDGL code was written in C, and we haveto convert it to Fortran to take advantage of the BlockComm package.� The current BlockComm documentation is written for Fortran users, whereas that ofChameleon is for C users. Since we need to use Chameleon routines in our Fortran19

program, we have to sometimes guess the Fortran syntax for some Chameleon routinecalls. It would be of great help to the users if both Fortran and C documentations forthe two packages were available.� To use PCN to rewrite a sequential code in general involves relatively more e�ort thanto use a message-passing tool.� Since the compilation technology for PCN is still in its infancy (and so is not as goodas that of Fortran or C), a program written entirely in PCN usually do not producethe most e�cient code. The approach of multilingual programming permits us to takeadvantage of the unique features of PCN, such as mapping, communication, and schedul-ing, to complement the proven e�ciency of Fortran and C programming for sequentialcomputation [4]. This approach calls for dividing up a sequential program into some con-venient parts and converting these pieces to procedures to be called by PCN. A Fortransequential subroutine can be called from PCN directly, except that the su�x \ " has tobe appended to the subroutine name to form the correspond PCN procedure name. Inthe case of C subroutines, arguments (except arrays) passed to a C procedure from PCNmust be declared as pointers in the C procedure.AcknowledgmentsWe thank our colleagues who have made their work on the various parallel programming toolsavailable to us and helped us with many of our questions. This list includes Ian Foster, WilliamGropp, Ewing L. Lusk, and Steve Tuecke. We also thank Dave Levine for sharing with us hisversion of parallel TDGL code and Paul Plassmann for his parallel GL code; both providedvaluable assistance to get us started in learning BlockComm.
20

APPENDIX: Program Listings%%%ProgPdePCN: A PCN Program for Problem 3%%%#include "grid.h"#define id(i,j) (((i+isize)%isize)+((j+jsize)%jsize)*isize)main(argc,argv,rc){? argv ?=[_,maxnum_of_iterations] ->{; sys:string_to_integer(maxnum_of_iterations,max_iter),main_body(max_iter) in vts:array(isize*jsize),rc=0}, default ->{;stdio:printf("usage:%s <max_iter>\n",{argv[0]},_),rc=1}}main_body(max_iter)port globals[nodes()];{|| square(max_iter,globals),display(0,0,globals)}square(max_iter,globals)port N[nodes()],E[nodes()],globals[];{|| i over 0 .. isize-1 ::{|| j over 0 .. jsize-1 ::{me=id(i,j), start_block(max_iter,i,j,N[me],N[id(i,j-1)],E[me],E[id(i-1,j)],globals[me])@node(me)}} }start_block(max_iter,i,j,N,S,E,W,global_s)double square[bsz*bsz],edge[bsz];{|| N={Ni,No},E={Ei,Eo},{ ? S?={So,Si}, W?={Wo,Wi}-> {;initialize_(i,j,square),start_clock(),block(max_iter,i,j,square,edge,{Ni,Si,Ei,Wi},{No,So,Eo,Wo},global_s,0)}}}block(max_iter,i,j,square,edge,Is,Os,global_s,count)double square[],edge[],error;{;send_edge(square,edge,Os,Os1),receive_edge(ni,si,ei,wi,Is,Is1),compute_(i,j,square,ni,si,ei,wi,error),{? count <max_iter ->{||block(max_iter,i,j,square,edge,Is1,Os1,global_s,count+1)}, 21

default ->{;stop_clock(),global_s=error,stdio:printf("done\n",{},_)}}}send_edge(square,edge,Os,Os1)double square[], edge[];{ ? Os?={N,S,E,W}->{; getedge_(NORTH,square,edge),N=[{edge}|N1],getedge_(SOUTH,square,edge),S=[{edge}|S1],getedge_(EAST,square,edge),E=[{edge}|E1],getedge_(WEST,square,edge),W=[{edge}|W1],Os1={N1,S1,E1,W1}}}receive_edge(ni,si,ei,wi,Is,Is1){ ? Is?={N,S,E,W} ->{||{? N?=[{nn}|N1_tmp] ->{;ni=nn,N1=N1_tmp}},{? S?=[{ss}|S1_tmp] ->{;si=ss,S1=S1_tmp}},{? E?=[{ee}|E1_tmp] ->{;ei=ee,E1=E1_tmp}},{? W?=[{ww}|W1_tmp] ->{;wi=ww,W1=W1_tmp}},Is1={N1,S1,E1,W1}}}display(count,globmax,globals)port globals[];{? count<isize*jsize ->{;temp_max=globals[count],getmax(globmax,temp_max,new_max),display(count+1,new_max,globals)},default ->{;stdio:printf("Max_error=%f\n",{globmax},_),stdio:printf("done\n",{},_)}}getmax(x,y,z){? x>y ->z=x,default ->z=y}#include ``grid.h''subroutine initialize(i,j,block)integer i, jdouble precision block(BSIZE,BSIZE)integer ii, jjdo ii=1, BSIZE 22

do jj=1, BSIZEblock(ii, jj) = 0.0enddoenddoreturnendsubroutine compute(i,j,v,ned,sed,eed,wed,errmax)integer i,j,ii,jjdouble precision v(BSIZE,BSIZE),u(0:BSIZE+1,0:BSIZE+1)double precision ned(BSIZE),sed(BSIZE)double precision eed(BSIZE),wed(BSIZE)double precision dx,dy,errmax,err,w,a,x(BSIZE),y(BSIZE)errmax=0.0dx=1.d0/(isize*BSIZE-1.d0)dy=dxw=1.d0a=20.d0do ii = 1,BSIZEdo jj = 1,BSIZEu(ii,jj)=v(ii,jj)enddoenddodo ii=1,BSIZEu(0,ii)=wed(ii)u(BSIZE+1,ii)=eed(ii)u(ii,BSIZE+1)=ned(ii)u(ii,0)=sed(ii)enddodo ii =1,BSIZEx(ii)=(BSIZE*i+(ii-1))*dxy(ii)=(BSIZE*j+(ii-1))*dyif (i .eq. 0) u(0,ii)=0.0if (i .eq. isize-1)u(BSIZE+1,ii)=y(ii)**3if (j .eq. 0) u(ii,0)=0.0if (j .eq. jsize-1)u(ii,BSIZE+1)=x(ii)enddodo kk=1,20errmax=0.0do jj=1,BSIZEdo ii=1,BSIZEu(ii,jj)=u(ii,jj)-w*((-u(ii+1,jj)+2*u(ii,jj)-u(ii-1,jj))/dx**2/ +(-u(ii,jj+1)+2*u(ii,jj)-u(ii,jj-1))/dy**2/ + a*u(ii,jj)-x(ii)*y(jj)*(a*y(jj)**2-6))/(4/dx**2+a)err=abs(u(ii,jj)-x(ii)*y(jj)**3)errmax=max(errmax,err)enddoenddoenddodo ii = 1,BSIZEdo jj=1,BSIZEv(ii,jj)=u(ii,jj)enddoenddoreturnendsubroutine getedge(id,block,edge)double precision block(BSIZE,BSIZE), edge(BSIZE)integer i,idC North faceif(id .eq. NORTH) then 23

do i=1,BSIZEedge(i) = block(i,BSIZE)enddoendifC South faceif (id .eq. SOUTH) thendo i=1,BSIZEedge(i) = block(i,1)enddoendifC East faceif (id .eq. EAST) thendo i=1,BSIZEedge(i) = block(BSIZE,i)enddoendifC West faceif (id .eq. WEST) thendo i=1,BSIZEedge(i) = block(1,i)enddoendifreturnend

24

%%ProgPdeBC:A BlockComm Program for Problem 3%%integer function worker()double precision errmax,work,dx,dy,winteger nx,nyparameter (nx=501, ny=501,a=20)double precision u((nx+2)*(ny+2)),x(nx+2),y(ny+2)double precision v((nx+2)*(ny+2))double precision t1, t2, SYGetElapsedTimeinteger pimytid, pgm,myid, nstepinteger sx,sxgp,ex,exgp,sy,sygp,ey,eygpmyid=pimytid()call indexcomp(nx,ny,sx,ex,sxgp,exgp,+sy,ey,sygp,eygp,pgm)errmax=0.0w=1.d0call InitDomain(u,nx,ny,sx,sxgp,ex,exgp,sy,sygp,ey,eygp)call InitDomain(v,nx,ny,sx,sxgp,ex,exgp,sy,sygp,ey,eygp)call PIgsync(0)t1 = SYGetElapsedTime()dx=1.d0/(nx-1)dy=1.d0/(ny-1)call bound(u,x,y,nx,ny,dx,dy,sx,sxgp,ex,exgp,sy,sygp,ey,eygp)call bound(v,x,y,nx,ny,dx,dy,sx,sxgp,ex,exgp,sy,sygp,ey,eygp)c begin iterationnstep=2000do 20 iter=0,nstep-1,2call BCexec(pgm,u,u)call compute(u,v,x,y,nx,ny,dx,dy,w,errmax,a,+sx,sxgp,ex,exgp,sy,sygp,ey,eygp)call BCexec(pgm,v,v)call compute(v,u,x,y,nx,ny,dx,dy,w,errmax,a,+sx,sxgp,ex,exgp,sy,sygp,ey,eygp)call PIgdmax(errmax,1,work,0)if (myid .eq. 0)print 30,w,IFIX(iter/2.0),errmax20 continue30 format(5x,f8.2,i10,f16.12)t2 = SYGetElapsedTime() - t1print *, 'Total time = ', t2, ' on ', pimytid()call BCfree(pgm)worker=0returnendSUBROUTINE indexcomp(nx,ny,sx,ex,sxgp,exgp,+ sy,ey,sygp,eygp,pgm)integer pimytid, pinumtids,iper(2)include '/home/gropp/tools.n/blkcm/meshf.h'integer myid, nproc,nx,ny,nd,NBYTESinteger pgm, sz(0:9,0:1)integer sx,sxgp,ex,exgp,sy,sygp,ey,eygpnd=2 25

NBYTES=8sz(szmdim,0) = nxsz(szisparallel,0) = 1sz(szndim,0) = -1sz(szmdim,1) = nysz(szisparallel,1) = 1sz(szndim,1) = -1call BCFindGhostFromStencil(nd, sz, 0, 0,1)myid = pimytid()nproc = pinumtids()if(myid .eq. 0) print*,'nproc=',nproccall BCGlobalToLocalArray(nd, sz, nproc, myid)iper(1)=0iper(2)=0call BCSetGhostWidths(nd,sz,iper)pgm = BCBuildArrayPGM(nd, sz, nproc, myid, NBYTES)call BCArrayCompile(pgm, 0)sx = sz(szstart,0) + 1ex = sz(szend,0) + 1sxgp = sz(szsg,0)exgp = sz(szeg,0)sy = sz(szstart,1) + 1ey = sz(szend,1) + 1sygp = sz(szsg,1)eygp = sz(szeg,1)returnendsubroutine InitDomain(u,nx,ny,sx,sxgp,ex,exgp,sy,sygp,ey,eygp)integer sx,sxgp,ex,exgp,sy,sygp,ey,eygpdouble precision u(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)integer i,j,nx,nydo j = sy-sygp,ey+eygpdo i = sx-sxgp,ex+exgpu(i,j) = 0.0d0enddoenddoreturnendsubroutine bound(u,x,y,nx,ny,dx,dy,+ sx,sxgp,ex,exgp,sy,sygp,ey,eygp)integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp,i,jdouble precision u(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision x(sx:ex)double precision y(sy:ey)double precision dx,dyinteger nx,nydo i=sx,exx(i)=(i-1)*dxenddodo j=sy,eyy(j)=(j-1)*dyenddoc Bottom (sy = 1)if (sy .eq. 1) thendo i=sx,exu(i,sy) = 0.0enddoendifc Top (ey = ny) 26

if (ey .eq. ny) thendo i=sx,exu(i,ey) = x(i)enddoendifc Left (sx = 1)if (sx .eq. 1) thendo j=sy,eyu(sx,j) = 0.0enddoendifc Right (ex = nx)if (ex .eq. nx) thendo j=sy,eyu(ex,j) = y(j)*y(j)*y(j)enddoendifreturnendsubroutine compute(u,v,x,y,nx,ny,dx,dy,w,errmax,a,+ sx,sxgp,ex,exgp,sy,sygp,ey,eygp)integer sx,sxgp,ex,exgp,sy,sygp,ey,eygpdouble precision u(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision v(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision x(sx:ex)double precision y(sy:ey)double precision dx,dy,errmax,err,winteger ssx,ssy,eex,eey,i,j,nx,nyssx=sxeex=exeey=eyssy=syif(sx .eq. 1)ssx=2if(sy .eq. 1)ssy=2if(ex .eq. nx)eex=nx-1if(ey .eq. ny)eey=ny-1errmax=0.0do 15 j=ssy,eeydo 15 i=ssx,eexv(i,j)=u(i,j)-w*((-u(i+1,j)+2*u(i,j)-u(i-1,j))/dx**2/ +(-u(i,j+1)+2*u(i,j)-u(i,j-1))/dy**2/ + a*u(i,j)-x(i)*y(j)*(a*y(j)**2-6))/(4/dx**2+a)err=abs(v(i,j)-x(i)*y(j)**3)errmax=max(errmax,err)15 continuereturnend
27

%%ProgTdglBC: A BlockComm Program for Problem 4%%integer function worker()INTEGER sx,ex,sy,ey,sxgp,exgp,sygp,eygpINTEGER nproc,myid,pimytid,pgm, sz(0:9,0:1)INTEGER nx,ny,nd,np,nr,ns,nsx(2),nsy(2),nxm,nym,countparameter(nx = 52, ny = 52, nd=2)double precision a(nx*ny),b(nx*ny)double precision da(nx*ny),db(nx*ny)double precision p1(nx*ny),p2(nx*ny)double precision dp1(nx*ny),dp2(nx*ny)double precision hh(nx*ny),seed(2)double precision time,SYGetElapsedTimedouble precision dx,dt0,dxy,dt,t,dy,rky,tp,h,rkdouble precision dx2,rkx,rk2,dy2myid=pimytid()CALL getindex(nx,ny,nd,sz,sx,ex,sy,ey,sxgp,sygp,exgp,eygp,pgm)CALL checkindex(sz,sx,ex,sxgp,exgp,sy,ey,sygp,eygp,+ nx,ny,myid,nproc)if (myid.eq.0) print*, 'Reading parameters.'CALL main_input(rk,h,tp,nx,ny,np,nr,ns,+ dx2,dy2,rk2,rkx,rky,dxy,nxm,nym,+ dt0,dx,dy,nsx,nsy,seed,myid)if (myid.eq.0) print*, 'Initializing.'CALL initialize(p1,p2,a,b,h,dx,+sx,ex,sxgp,exgp,sy,ey,sygp,eygp,+nsx,nsy,seed,ns,myid,nx,ny)t=0count=0dt=0c ********** Main loop **********if (myid .eq. 0) print*,'Start time=',SYGetElapsedTime()10 IF (t.lt.tp)THENCALL bound(p1,p2,a,b,h,rk,nx,ny,dx,dy,nxm,nym,+ sx,ex,sxgp,exgp,sy,ey,sygp,eygp,rkx,rky)CALL compf(p1,p2,a,b,da,db,dp1,dp2,dxy,+nx,ny,dx,dy,nxm,nym,dx2,dy2,rkx,rky,rk2,rk,h,dt,count,+sx,ex,sxgp,exgp,sy,ey,sygp,eygp,pgm)if ((MOD(count,np).eq.0)) thenCALL compsum(p1,p2,a,b,hh,myid,count,pgm,+ dx,dx2,dy,dy2,rkx,rky,rk2,nx,ny,nxm,nym,h,rk,t,+ sx,ex,sxgp,exgp,sy,ey,sygp,eygp)endifdt=min(tp-t,dt0)t =t+dtcount=count+1GO TO 10ENDIF 28

c End of main loopif(myid .eq. 0)thentime=SYGetElapsedTime()print*,' Elapsed time : ',timeprint*,' Average Time : ',time/countendifworker=0RETURNENDSUBROUTINE getindex(nx,ny,nd,sz,sx,ex,sy,ey,+sxgp,sygp,exgp,eygp,pgm)integer pimytid, pinumtids,iper(2)include '/home/gropp/tools.n/blkcm/meshf.h'integer myid, nproc,nx,ny,nd,NBYTESinteger pgm, sz(0:9,0:1)integer sx,sxgp,ex,exgp,sy,sygp,ey,eygpNBYTES=8sz(szmdim,0) = nxsz(szisparallel,0) = 1sz(szndim,0) = -1sz(szmdim,1) = nysz(szisparallel,1) = 1sz(szndim,1) = -1call BCFindGhostFromStencil(nd, sz, 0, 0,1)myid = pimytid()nproc = pinumtids()if(myid .eq. 0) print*,'nproc=',nproccall BCGlobalToLocalArray(nd, sz, nproc, myid)iper(1)=0iper(2)=0call BCSetGhostWidths(nd,sz,iper)pgm = BCBuildArrayPGM(nd, sz, nproc, myid, NBYTES)call BCArrayCompile(pgm, 0)sx = sz(szstart,0) + 1ex = sz(szend,0) + 1sxgp = sz(szsg,0)exgp = sz(szeg,0)sy = sz(szstart,1) + 1ey = sz(szend,1) + 1sygp = sz(szsg,1)eygp = sz(szeg,1)returnend#include ``tools.h''#include ``comm/comm.h''#include <stdio.h>#include ``blkcm/bc.h''#include ``blkcm/mesh.h''#include ``comm/io/pio.h''#ifdef rs6000#define checkindex_ checkindex#endifvoid checkindex_(size,sx,ex,sxgp,exgp,sy,ey,sygp,eygp,nx,ny,myid,nproc)BCArrayPart size[10];int *sx, *ex, *sxgp, *exgp;int *sy, *ey, *sygp, *eygp;int *nx,*ny; 29

int *myid, *nproc;{ FILE *pw;static char filename[] = ``blk_rep'';int i, lx, ly;int glx, gly; /*dimension of blocks with ghosts*/if (*myid == 0) {printf(``Writing report\n'');if ((pw = fopen(filename,''w'')) == NULL) {printf(``cannot open %s\n'',filename);exit(0);}fprintf(pw, `` Decomposition Report\n'');fprintf(pw, ``**\n\n'');fprintf(pw, ``Total processors : %d\n'', *nproc);fprintf(pw, ``Global size (x,y) : %d %d\n'',*nx, *ny);fprintf(pw, ``Block Decomposition : ``);fprintf(pw, ``Processor Distribution (x, y): %d %d\n\n'',size[0].ndim, size[1].ndim);fprintf(pw, ``node\tblock size\tblock endpoints\t'');fprintf(pw, ``block w/ghosts points\n'');for (i=1;i<=70;i++) fprintf(pw,''-'');fprintf(pw, ``\n'');fclose(pw);}lx = *ex-*sx+1;ly = *ey-*sy+1;glx = *ex+*exgp-*sx+*sxgp+1;gly = *ey+*eygp-*sy+*sygp+1;for (i=0; i<=*nproc; i++) {if (GTOKEN(0,i)) {pw = fopen(filename, ``a'');fprintf(pw,'' %d\t(%d %d) ``,*myid,lx,ly);fprintf(pw,''\t(%d:%d, %d:%d)'',*sx,*ex,*sy,*ey);fprintf(pw,''\t(%d:%d, %d:%d)\n'',*sx-*sxgp,*ex+*exgp,*sy-*sygp,*ey+*eygp);/* fprintf(pw,''done\n'');*/fclose(pw);}}}c The input file is read by processor 0 and then the data isc scattered to the other processorsSUBROUTINE main_input(rk,h,tp,nx,ny,np,nr,ns,+ dx2,dy2,rk2,rkx,rky,dxy,nxm,nym,+ dt0,dx,dy,nsx,nsy,seed,myid)integer isz,msg_int,msg_dbl,all ,dszparameter(isz=4,msg_int=1,all=0)parameter(dsz=8,msg_dbl=4)real*8 dx,dt0,dxy,dy,cfl,ylength,xlengthreal*8 rk2,dy2,rky,rkx,h,rk,dx2,tpinteger np,nr,ns,nsx(2),nsy(2)integer i, nx,ny,myid,nxm,nymdouble precision seed(2)CHARACTER*79 discrpif (myid.eq.0) thenOPEN(unit=9,file='defaults',+status='old')REWIND 9READ (9,25) discrp 30

READ (9,*) rkREAD (9,25) discrpREAD (9,*) hREAD (9,25) discrpREAD (9,*) tpREAD (9,25) discrpREAD (9,*) xlengthREAD (9,25) discrpREAD (9,*) ylengthREAD (9,25) discrpREAD (9,*) npREAD (9,25) discrpREAD (9,*) nrREAD (9,25) discrpREAD (9,*) cflREAD (9,25) discrpREAD (9,*) nsdo i=1,nsREAD (9,25) discrpREAD (9,*) nsx(i),nsy(i),seed(i)end doCLOSE(9)25 FORMAT(A72)dx = xlength/(nx-2)dy = ylength/(ny-2)dxy=dx*dydx2 = dx*dxdy2 = dy*dyrk2=rk*rkrkx=rk*dxrky=rk*dydt0=rk*cfl/max(1./dx2/rk2+1./dy2/rk2+(h*xlength)**2,+ 1./dx2+1./dy2+1.)nxm=nx-1nym=ny-1endifC scatter the datacall PIbcastSrc(np,isz,0,all,msg_int)call PIbcastSrc(nr,isz,0,all,msg_int)call PIbcastSrc(ns,isz,0,all,msg_int)call PIbcastSrc(nxm,isz,0,all,msg_int)call PIbcastSrc(nym,isz,0,all,msg_int)call PIbcastSrc(h,dsz,0,all,msg_dbl)call PIbcastSrc(dt0,dsz,0,all,msg_dbl)call PIbcastSrc(tp,dsz,0,all,msg_dbl)call PIbcastSrc(dx,dsz,0,all,msg_dbl)call PIbcastSrc(dy,dsz,0,all,msg_dbl)call PIbcastSrc(dx2,dsz,0,all,msg_int)call PIbcastSrc(dy2,dsz,0,all,msg_int)call PIbcastSrc(rk,dsz,0,all,msg_int)call PIbcastSrc(rkx,dsz,0,all,msg_dbl)call PIbcastSrc(rky,dsz,0,all,msg_dbl)call PIbcastSrc(rk2,dsz,0,all,msg_dbl)call PIbcastSrc(dxy,dsz,0,all,msg_dbl)do i=1,nscall PIbcastSrc(nsx(i),isz,0,all,msg_int)call PIbcastSrc(nsy(i),isz,0,all,msg_int)call PIbcastSrc(seed(i),dsz,0,all,msg_dbl)enddoRETURNEND 31

SUBROUTINE initialize(p1,p2,a,b,h,dx,+sx,ex,sxgp,exgp,sy,ey,sygp,eygp,+nsx,nsy,seed,ns,myid,nx,ny)INTEGER sx,ex,sy,ey,sxgp,exgp,sygp,eygp,nsINTEGER nsx(ns),nsy(ns)double precision seed(ns),dx,hdouble precision p1(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision p2(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision a(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision b(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)INTEGER ix,iy,myid,nx,nyDO iy = sy-sygp, ey+eygpDO ix = sx-sxgp, ex+exgpp1(ix,iy)=0p2(ix,iy)=0a(ix,iy)=0b(ix,iy)=(ix-1)*dx*hEND DOEND DOCALL reinit(p1,sx,ex,sy,ey,sxgp,exgp,sygp,eygp,+nsx,nsy,seed,ns,myid)RETURNENDSUBROUTINE reinit(p1,sx,ex,sy,ey,sxgp,exgp,+ sygp,eygp,nsx,nsy,seed,ns,myid)INTEGER ns,myidINTEGER sx,ex,sy,ey,sxgp,eygp,exgp,sygpdouble precision p1(sx-sxgp:ex+exgp,sy-sygp:ey+eygp),seed(ns)INTEGER nsx(ns),nsy(ns),i,ix,iyDO i = 1,nsDO ix = sx,exIF ((nsx(i) .ge. sx) .and. (nsx(i) .le. ex)) thenDO iy = sy,eyIF ((nsy(i) .ge. sy) .and. (nsy(i) .le. ey)) thenp1(nsx(i),nsy(i))=seed(i)ENDIFENDDOENDIFENDDOENDDORETURNENDSUBROUTINE bound(p1,p2,a,b,h,k,nx,ny,dx,dy,nxm,nym,+ sx,ex,sxgp,exgp,sy,ey,sygp,eygp,kx,ky)INTEGER nx, ny,i,nym,j,nxmINTEGER sx, ex, sy, eyINTEGER ssx,ssy,eex,eeyINTEGER sxgp, exgp, sygp, eygpdouble precision p1(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision p2(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision a(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision b(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision dx, dy, kx, ky,h,kssx=sxssy=syeex=exeey=eyif (ex.eq. nx) eex=nxmif (ey .eq .ny)eey=nym 32

c Bottom (sy=1)if (sy .eq. 1) thendo i=ssx,eexp1(i,1)=p1(i,2)*cos(b(i,1)*ky)/ +p2(i,2)*sin(b(i,1)*ky)p2(i,1)=p2(i,2)*cos(b(i,1)*ky)/ -p1(i,2)*sin(b(i,1)*ky)a(i,1)=a(i,2)+(h-(b(i+1,1)-b(i,1))/dx)*dyenddoendifc Top (sy=ny)if(sy .eq. ny) thendo i=ssx,eexp1(i,ny)=p1(i,nym)*cos(b(i,nym)*ky)/ -p2(i,nym)*sin(b(i,nym)*ky)p2(i,ny)=p2(i,nym)*cos(b(i,nym)*ky)/ +p1(i,nym)*sin(b(i,nym)*ky)a(i,ny)=a(i,nym)-(h-(b(i+1,nym)-b(i,nym))/dx)*dyenddoendifc left (sx=1)if (sx .eq. 1) thendo j=ssy,eeyp1(1,j)=p1(2,j)*cos(a(1,j)*kx)/ +p2(2,j)*sin(a(1,j)*kx)p2(1,j)=p2(2,j)*cos(a(1,j)*kx)/ -p1(2,j)*sin(a(1,j)*kx)b(1,j)=b(2,j)-(h+(a(1,j+1)-a(1,j))/dy)*dxenddoendifc right (ex=nx)if (ex .eq. nx) thendo j=ssy,eeyp1(nx,j)=p1(nxm,j)*cos(a(nxm,j)*kx)/ -p2(nxm,j)*sin(a(nxm,j)*kx)p2(nx,j)=p2(nxm,j)*cos(a(nxm,j)*kx)/ +p1(nxm,j)*sin(a(nxm,j)*kx)b(nx,j)=b(nxm,j)+(h+(a(nxm,j+1)/ -a(nxm,j))/dy)*dxenddoendifRETURNENDSUBROUTINE compf(ph1,ph2,a1,a2,fg1,fg2,hg1,hg2,dxy,+nx,ny,dx,dy,nxm,nym,dx2,dy2,rkx,rky,rk2,rk,h,dt,count,+sx,ex,sxgp,exgp,sy,ey,sygp,eygp,pgm)INTEGER sx,ex,sy,ey,ssy,ssx,eey,eexINTEGER sxgp,exgp,sygp,eygp,pgmINTEGER nx, ny,count,i,j,nxm,nymdouble precision ph1(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision ph2 (sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision a1(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision a2(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision fg1(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision fg2(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)33

double precision hg1(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision hg2(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision wm(60,60)double precision rk,h,dt,c21,s21double precision dx,dy,dx2,dy2,c10,s10,c20,s20,c11,s11double precision rk2,rkx,rky,dxyssy=syssx=sxeex=exeey=eycall BCexec(pgm,ph1,ph1)call BCexec(pgm,ph2,ph2)call BCexec(pgm,a1,a1)call BCexec(pgm,a2,a2)if (sy .eq. 1) ssy=2if (sx .eq. 1) ssx=2if (ey .eq. ny) eey=nymif (ex .eq. nx) eex=nxmdo j=ssy,eeydo i=ssx,eexc10 = cos(a1(i-1,j)*rkx)s10 = sin(a1(i-1,j)*rkx)c20 = cos(a2(i,j-1)*rky)s20 = sin(a2(i,j-1)*rky)c11 = cos(a1(i,j)*rkx)s11 = sin(a1(i,j)*rkx)c21 = cos(a2(i,j)*rky)s21 = sin(a2(i,j)*rky)wm(i,j)=ph1(i,j)**2+ph2(i,j)**2hg1(i,j)=ph1(i,j)*(1.-wm(i,j))/ +((c10*ph1(i-1,j) -s10*ph2(i-1,j) - 2*ph1(i,j)/ +c11*ph1(i+1,j) +s11*ph2(i+1,j))/dx2/ +(c20*ph1(i,j-1) -s20*ph2(i,j-1) - 2*ph1(i,j)/ +c21*ph1(i,j+1) +s21*ph2(i,j+1))/dy2)/rk2hg2(i,j)=ph2(i,j)*(1.-wm(i,j))/ +((c10*ph2(i-1,j) +s10*ph1(i-1,j) - 2*ph2(i,j)/ +c11*ph2(i+1,j) -s11*ph1(i+1,j))/dx2/ +(c20*ph2(i,j-1) +s20*ph1(i,j-1) - 2*ph2(i,j)/ +c21*ph2(i,j+1) -s21*ph1(i,j+1))/dy2)/rk2if (j.eq.2) thenfg1(i,j)= (a1(i,j+1)-a1(i,j))/dy2 + h/dy/ +(a2(i,j)-a2(i+1,j))/(dxy)/ +((ph1(i,j)*ph2(i+1,j)-ph2(i,j)*ph1(i+1,j))*c11/ -(ph1(i,j)*ph1(i+1,j)+ph2(i,j)*ph2(i+1,j))*s11)/rkxelse if (j.eq.nym) thenfg1(i,j)= (-a1(i,j)+a1(i,j-1))/dy2 - h/dy/ +(-a2(i,j-1)+a2(i+1,j-1))/(dxy)/ +((ph1(i,j)*ph2(i+1,j)-ph2(i,j)*ph1(i+1,j))*c11/ -(ph1(i,j)*ph1(i+1,j)+ph2(i,j)*ph2(i+1,j))*s11)/rkxelsefg1(i,j)= (a1(i,j+1)-2.*a1(i,j)+a1(i,j-1))/dy2/ +(a2(i,j)-a2(i+1,j)-a2(i,j-1)+a2(i+1,j-1))/(dxy)/ +((ph1(i,j)*ph2(i+1,j)-ph2(i,j)*ph1(i+1,j))*c11/ -(ph1(i,j)*ph1(i+1,j)+ph2(i,j)*ph2(i+1,j))*s11)/rkxend ifif (i.eq.2) thenfg2(i,j)= (a2(i+1,j)-a2(i,j))/dx2 - h/dx/ +(a1(i,j)-a1(i,j+1))/(dxy)/ +((ph1(i,j)*ph2(i,j+1)-ph2(i,j)*ph1(i,j+1))*c2134

/ -(ph1(i,j)*ph1(i,j+1)+ph2(i,j)*ph2(i,j+1))*s21)/rkyelse if (i.eq.nxm) thenfg2(i,j)= (-a2(i,j)+a2(i-1,j))/dx2 + h/dx/ +(-a1(i-1,j)+a1(i-1,j+1))/(dxy)/ +((ph1(i,j)*ph2(i,j+1)-ph2(i,j)*ph1(i,j+1))*c21/ -(ph1(i,j)*ph1(i,j+1)+ph2(i,j)*ph2(i,j+1))*s21)/rkyelsefg2(i,j)= (a2(i+1,j)-2.*a2(i,j)+a2(i-1,j))/dx2/ +(a1(i,j)-a1(i,j+1)-a1(i-1,j)+a1(i-1,j+1))/(dxy)/ +((ph1(i,j)*ph2(i,j+1)-ph2(i,j)*ph1(i,j+1))*c21/ -(ph1(i,j)*ph1(i,j+1)+ph2(i,j)*ph2(i,j+1))*s21)/rkyend ifenddoenddodo j=ssy,eeydo i=ssx,eexph1(i,j)=ph1(i,j)+dt*hg1(i,j)ph2(i,j)=ph2(i,j)+dt*hg2(i,j)if (i.lt.nxm) a1(i,j)=a1(i,j)+dt*fg1(i,j)*dxif (j.lt.nym) a2(i,j)=a2(i,j)+dt*fg2(i,j)*dyenddoenddoRETURNENDSUBROUTINE compsum(p1,p2,a,b,hh,myid,count,pgm,+ dx,dx2,dy,dy2,kx,ky,k2,nx,ny,nxm,nym,h,k,t,+ sx,ex,sxgp,exgp,sy,ey,sygp,eygp)INTEGER sx, ex, sy, ey,i ,j,pgmINTEGER sxgp, exgp, sygp, eygp,nym,nxmINTEGER myid,count,nx,ny,ssx,ssy,eex,eeydouble precision p1 (sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision p2 (sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision a (sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision b (sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision hh(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)double precision h,k,tdouble precision sum,p2max,workdouble precision dx, dy, dx2, dy2,k2, kx, ky,p2mdouble precision c1,s1,c2,s2,sssy=syssx=sxeex=exeey=eycall BCexec(pgm,p1,p1)call BCexec(pgm,p2,p2)call BCexec(pgm,a,a)call BCexec(pgm,b,b)if (sy .eq. 1) ssy=2if (sx .eq. 1) ssx=2if (ey .eq. ny) eey=nymif (ex .eq. nx) eex=nxmsum=0p2max=0do j=ssy,eeydo i=ssx,eexp2m=p1(i,j)**2+p2(i,j)**2p2max=max(p2max,p2m)hh(i,j)=(b(i+1,j)-b(i,j))/(dx) 35

/ -(a(i,j+1)-a(i,j))/(dy)c1 = cos(a(i,j)*kx)s1 = sin(a(i,j)*kx)c2 = cos(b(i,j)*ky)s2 = sin(b(i,j)*ky)s=(((p1(i+1,j)-(c1*p1(i,j)-s1*p2(i,j)))**2/ +(p2(i+1,j)-(c1*p2(i,j)+s1*p1(i,j)))**2)/dx2/ +((p1(i,j+1)-(c2*p1(i,j)-s2*p2(i,j)))**2/ +(p2(i,j+1)-(c2*p2(i,j)+s2*p1(i,j)))**2)/dy2)/k2/ - p2m + 0.5*p2m**2sum= sum+s+(hh(i,j)-h)**2end doend dosum=sum*dx*dyp2max=sqrt(p2max)call PIgdsum(sum,1,work,0)call PIgdmax(p2max,1,work,0)if (myid .eq. 0) thenwrite(6,991) t,p2max,sum991 format('t = ',f10.6,', max(phi) = ',f12.8,/ ', energy =',f16.10)endifRETURNEND

36

References[1] R. G. Babb II, Programming Parallel Processors, Addison-Wesley Publishing Company,New York, 1988.[2] K. M. Chandy and Stephen Taylor, An Introduction to Parallel Programming, Jones andBarlett Publishers, Boston, 1992.[3] Erhan Coskun, Numerical Analysis of Ginzburg-Landau Models for Superconductivity,Ph.D. dissertation, 1994, Northern Illinois University, DeKalb, Ill.[4] I. Foster and S. Tuecke, Parallel Programming with PCN, Technical Report ANL-91/32,Revision 1, Argonne National Laboratory, 1991.[5] N. Galbreath, W. Gropp, D. Gunter, G. Leaf, and D. Levine, Parallel Solution ofthe Three-Dimensional, Time-Dependent Ginzburg-Landau Equation, Proceedings of theSIAM Parallel Processing for Scienti�c Computing Conference, 1993, 160{164.[6] J. Garner, M. Spanbauer, R. Benedek, K. Strandburg, S. Wright, and P. Plassmann,Critical Fields of Josephson-coupled Superconducting Multilayers, Physical Review B, 45(1992), 7973{7983.[7] W. D. Gropp, Unpublished information, Argonne National Laboratory, Argonne, Ill.(1993).[8] W. Gropp and E. Lusk, Users Guide for the ANL IBM SP, Mathematics and ComputerScience Division, Argonne National Laboratory, Technical Report ANL/MCS-TM-199.See also http://www.mcs.anl.gov/Projects/sp/index.html.[9] William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI, MIT Press, 1995.See also http://www.mcs.anl.gov/Projects/mpi/index.html.[10] W. D. Gropp, H. Kaper, G. Leaf, D. Levine, M. Palumbo, and V. Vinokur, NumericalSimulation of Vortex Dynamics in Type-II Superconductors, Preprint MCS-P476-1094,Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,Ill., 1994.[11] W. D. Gropp and B. Smith, Chameleon Parallel Programming Tools User Manual, Tech-nical Report ANL-93/23, Argonne National Laboratory, Argonne, Ill., 1993.See also ftp://info.mcs.anl.gov/pub/tech_reports/reports/ANL9323.ps.Z.[12] R. W. Hockey, Parallel Computers, Adam Hilger Ltd., Bristol, 1981.[13] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing,B. C. Publishing Company, New York, 1994.[14] Man K. Kwong, Sweeping Algorithm for Inverting the Discrete Ginzburg-Landau Operator,Applied Math. and Computations, 53 (1993), 129{150.[15] Man K. Kwong, Numerical Experiments on the G-L Equations, Proceedings of the FirstWorld Congress of Nonlinear Analysts, Tampa, Florida, Aug. 1992 (to appear). AlsoMathematics and Computer Science Division Preprint MCS-P371-0793, Argonne NationalLaboratory, Argonne, Ill., July 1993. 37

[16] D. Levine, Unpublished information, Argonne National Laboratory, 1995.[17] T. G. Lewis and H. El-Rewini, Introduction to Parallel Computing, Prentice Hall, Engle-wood Cli�s, New Jersey, 1992.[18] P. Messina and A. Murli, Parallel Computing: Problems, Methods and Applications, El-sevier, New York, 1988.[19] J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, PlenumPress, New York, 1988.[20] M. J. Quinn, Designing E�cient Algorithms for Parallel Computers, McGraw-Hill BookCompany, New York, 1987.[21] G. Sewell, The Numerical Solution of Ordinary and Partial Di�erential Equations, Aca-demic Press, CA, 1988.

38

