
Chapter 26 in Grid Computing – Making the Global Infrastructure a Reality, Wiley, 2003

Editors Fran Berman, Geoffrey Fox, and Tony Hey

Commodity Grid Kits - Middleware for Building Grid Computing
Environments

Gregor von Laszewski,1 Jarek Gawor,1 Sriram Krishnan,1,3 and Keith Jackson2

1Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, U.S.A.
2Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, U.S.A.

3Indiana University, 150 S. Woodlawn Ave., Bloomington, IN 47405, U.S.A.
gregor@mcs.anl.gov

Abstract

Recent Grid projects, such as the Globus Project, provide a set of useful services such as authentication and
remote access to resources, and information services to discover and query such remote resources. Unfortunately,
these services may not be compatible with the commodity technologies used for application development by the
software engineers and scientists. Instead, users may prefer accessing the Grid from a higher level of abstraction than
what such toolkits provide. To bridge this gap, Commodity Grid (CoG) Kits provide the middleware for accessing
the functionality of the Grid from a variety of commodity technologies, frameworks, and languages. It is important to
recognize that these Commodity Grid Kits not only provide an interface to existing Grid technologies, but also bring
Grid programming to a new level by leveraging the methodologies of the chosen commodity technology, thus helping
the development of the next generation of Grid services. Based on these Commodity Grid Toolkits, a variety of higher
level Grid services are far easier to design, maintain, and deploy. Several projects have successfully demonstrated the
use of Commodity Grid Kits for the design of advanced Grid Services and Grid Computing Environments.

1 INTRODUCTION

Over the past few years, various international groups have initiated research in the area of parallel and distributed
computing in order to provide scientists with new programming methodologies that are required by state-of-the-art
scientific application domains. These methodologies target collaborative, multi-disciplinary, interactive, and large-
scale applications that access a variety of high-end resources shared with others. This research has resulted in the
creation of computational Grids.
The term “Grid” has been popularized during the past decade and denotes an integrated distributed computing infras-
tructure for advanced science and engineering applications. The concept of the Grid is based on coordinated resource
sharing and problem solving in dynamic multi-institutional virtual organizations [31]. In addition to providing access
to a diverse set of remote resources located at different organizations, Grid computing is required to accommodate
numerous computing paradigms, ranging from client-server to peer-to-peer computing. High-end applications us-
ing such computational Grids include data-, compute-, and network-intensive applications. Application examples
range from nanomaterials [33], structural biology [63], and chemical engineering [62], to high-energy physics and
astrophysics [48]. Many of these applications require the coordinated use of real-time large-scale instrument and ex-
periment handling, distributed data sharing among hundreds or even thousands of scientists [24], petabyte distributed
storage-facilities, and teraflops of compute power. Common to all these applications is a complex infrastructure that
is difficult to manage [61]. Researchers therefore have been developing basic and advanced services, and portals for
these services, to facilitate the realization of such complex environments and to hide the complexity of the underlying
infrastructure. The Globus Project [13] provides a set of basic Grid services, including authentication and remote

1

access to resources, and information services to discover and query such remote resource. However, these services
may not be available to the end user at a level of abstraction provided by the commodity technologies that they use for
their software development.
To overcome these difficulties, the Commodity Grid project is creating as a community effort what we call Commodity
Grid Toolkits (CoG Kits) that define mappings and interfaces between Grid services and particular commodity frame-
works. Technologies and frameworks of interest currently include Java [59, 46], Python [41], CORBA [56], Perl [55],
and Web Services.
In the following sections we elaborate on our motivation for the design of Commodity Grid Kits. First, we define what
we understand by terms such as Grid Computing Environments (GCEs) and Portals. We then illustrate the creation of
a GCE with the help of commodity technologies provided through the Java framework. Next, we outline differences
from other CoG Kits and provide an overview of ongoing research in the Java CoG Kit Project, which is part of the
Globus Project.

2 GRID COMPUTING ENVIRONMENTS AND PORTALS

Grid Computing Environments [2] are aimed at providing scientists and other Grid users with an environment that
accesses the Grid by using a coherent and interoperable set of frameworks that include Portals, Problem Solving
Environments, and Grid and Commodity Services. This goal is achieved by developing Grid and commodity standards,
protocols, APIs, SDKs, and methodologies, while reusing existing ones.
We define the term “Grid Computing Environment” as follows.

Definition: Grid Computing Environment
An integrated set of tools that extend the user’s computing environment in order to provide access to Grid
Services.

Grid Computing Environments include portals, shells, and collaborative and immersive environments running on the
user’s desktop on common operating systems such as Windows and Linux or on specialized devices ranging from
Personal Digital Assistants (PDAs) to virtual reality environments such as stereographic devices or even CAVEs.
The architecture of a GCE can be represented as a multi-tier model. The components of this architecture are shown in
Figure 1. Clients access the services through a portal or communicate with them directly. The user is oblivious of the
fact that a service may engage other services on his or her behalf.
The term “Portal” is not defined uniformly within the computer science community. Sometimes it represents integrated
desktops, electronic market places, or information hubs [34, 51, 35]. We use the term here in the more general sense
of a community access point to information and services. Hence, we define the term as follows.

Definition: Portal
A community service with a single point of entry to an integrated system providing access to information, data,
applications, and services.

In general, a portal is most useful when designed for a particular community in mind. Today, mostWeb Portals
build on the current generation of Web-based commodity technologies, based on the HTTP protocol for accessing the
information through a browser.

Definition: Web Portal
A portal providing users ubiquitous access, with the help of Web-based commodity technologies, to information,
data, applications, and services.

A Grid portal is a specialized portal useful for users of computational Grids. A Grid portal provides information about
the status of the Grid resources and services. Commonly this information includes the status of batch queuing systems,
load, and network performance between the resources. Furthermore, the Grid portal may provide a targeted access
point to useful high-end services, such as a compute and data intensive parameter study for climate change. Grid
portals provide communities another advantage: they hide much of the complex logic to drive Grid-related services
with simple interaction through the portal interface. Furthermore, they reduce the effort needed to deploy software for
accessing resources on computational Grids.

2

Grid Computing EnvironmentGrid Computing Environment

ClientsClients

PortalPortal

ServicesServices

GridGrid CommodityCommodity

Figure 1: A Grid Computing Environment hides many of the complex interactions between the accessible services.

Definition: Grid portal
A specialized portal providing an entry point to the Grid to access applications, services, information, and data
available within a Grid.

In contrast to Web portals, Grid portals may not be restricted to simple browser technologies but may use specialized
plug-ins or executables to handle the data visualization requirements of, for example, macromolecular displays or
three-dimensional high-resolution weather data displays. These custom-designed visual components are frequently
installed outside a browser, similar to the installation of MP3 players, PDF browsers, and videoconferencing tools.
Figure 2 presents a more elaborate architecture [60, 61] for representing a GCE that integrates many necessary Grid
Services and can be viewed as a basis for many Grid portal activities. We emphasize that special attention must be
placed on deployment and administrative services, which are almost always ignored in common portal activities [57].
As shown in the Figure 2, users are interested in services that deal with advanced job management to interface with
existing batch queuing systems, to execute jobs in a fault-tolerant and reliable way, and to initiate workflows. Another
useful service is reliable data management that transfers files between machines even if a user may not be logged in.
Problem session management allows the users to initiate services, checkpoint them, and check on their status at a later
time. All of these services are examples of the many possible services in a GCE and are based on the most elementary
Grid services. The availability of commodity solutions for installation and rapid prototyping is of utmost importance
for acceptance within the demanding user communities.
A Grid portal may deal with different user communities, such as developers, application scientists, administrators,
and users. In each case, the portal must support a personal view that remembers the preferred interaction with the
portal at the time of entry. To meet the needs of this diverse community, sophisticated Grid portals (currently under
development) are providing commodity collaborative tools such as newsreaders, e-mail, chat, video conferencing, and
event scheduling. Additionally, some Grid portal developers are exploiting commodity technologies such as JavaBeans
and JSP, which are already popular in Web portal environments.
Researchers interested in Grid Computing Environments and Portals can participate in the GCE working group [2]
which is part of the Global Grid Forum [1]. The origins of this working group can be traced back to the Desktop
Access to Remote Resources organization that was later renamed to ComputingPortals.org and are spin-offs from the
Java Grande Forum efforts [5].

3

Application User PortalApplication User Portal
Administration

Portal
Administration

Portal

Infrastructure
Monitoring

Infrastructure
Monitoring

Administration
Service

Administration
Service

Compute
Services

Data
Services

Network
Services

Installation
Job

SubmissionAuthentication

Discovery Reservation

Job
Management

Submission

Scheduling

Grid
Services . . .

...
CoG Toolkit
Mapping &
Interfaces

to existing
and new

Grid
Services

Advanced
Components &

Services

Application
Portal

PSE Design
Portal

PSE Design
Portal

Design
Environment

Design
Environment

Caching

File TransferAuthorization

QoS

Repository

Information
Services

Data
Management

Problem
Session

Management

Collaborative
Session

Management

Figure 2: An example of a Grid Computing Environment that integrates basic and advanced Grid and commodity
services.

3 COMMODITY TECHNOLOGIES

GCEs are usually developed by reusing a number of commodity technologies that are an integral part of the target
environment. For example, a GCE implementing a Web Portal may require the use of protocols such as HTTPS and
TCP/IP. It may make use of APIs such as CGI, SDKs such as JDK1.4, and commercial products such as Integrated
Development Environments (IDEs) to simplify the development of such an environment. The Grid community has so
far focused mostly on the development of protocols and development kits with the goal of defining a standard. This
effort has made progress with the introduction of the Global Grid Forum and pioneering projects such as the Globus
Project. So far the activities have mostly concentrated on the definition of middleware that is intended to be reused in
the design of Grid applications. We believe that it is important to learn from these early experiences and to derive a
middleware toolkit for the development of Grid Computing Environments. This is where Commodity Grid Kits come
into the picture.
Commodity Grid Kits play the important role of enabling access to the Grid functionality from within the commodity
technology chosen to build a Grid Computing Environment. Because of the use of different commodity technologies
as part of different application requirements, a variety of CoG Kits must be supported. In Table 1 we list a subset of
commodity technologies that we have found useful to developing GCEs.
The availability of such CoG Kits is extremely helpful for the Grid application developers as they do not have to worry
about the tedious details of interfacing the complex Grid services into the desired commodity technology. As good
examples, we present the Java and the Python CoG Kits for the Globus Toolkit, known as Java CoG and pyGlobus,
respectively. Both have been used in several GCE developments. However, it is important to recognize the different
approaches the Java and the Python CoG Kit pursue.
While the Python CoG Kit interfaces with the Globus Toolkit on an API-based level, the Java CoG Kit interfaces with
Globus services on a protocol level. The Python CoG Kit assumes the availability of precompiled Globus Toolkit
libraries on the current hosting system, while the Java CoG Kit is implemented in pure Java and does not rely on the
C-based Globus Toolkit. Both approaches provide a legitimate approach to achieve Globus Toolkit compliance. Each
approach has advantages and disadvantages that are independent from the language chosen. Since the Python interface

4

Table 1: A subset of commodity technologies used to develop Grid Computing Environments

Languages APIs SDKs Protocols Hosting Methodologies
Environments

Web Portals Java, JDK1.4 HTTPS, JVM, OO and
Perl, CGI TCP/IP, Linux, Procedural
Python SOAP Windows

Desktops C, C++, KParts,GTK KDE, GNOME CORBA Linux, OO and
VisualBasic, C# .NET DCOM Windows Procedural

Immersive C++ CaveLib Viz5D TCP/IP Linux OO
Environments

is generated by using the Simplified Wrapper and Interface Generator (SWIG) [23], it is far easier and faster to provide
adaptations to a possibly changing toolkit such as the Globus Toolkit. Nevertheless, the price is that the Globus Toolkit
libraries must be tightly integrated in the hosting environment in which the Python interpreter is executed. The first
version of the Java CoG Kit was based on Java Native Interface (JNI) wrappers for the Globus Toolkit APIs. This
approach, however, severely restricted the usage of the Java CoG Kit for developing pure Java clients and portals that
are to be executed as part of browser applets. Hence, we implemented the protocols and some major functionality in
pure Java in order to provide compliance with the Globus Toolkit. The availability of the functionality of the Globus
Toolkit in another language has proved valuable in providing portability and assurance of code quality through protocol
compliance.
Both the Python and Java CoG Kits provide additional value to Grids over and above a simple implementation of
the Globus Toolkit APIs. The use of the commodity technologies such as object orientation, stream management,
sophisticated exception, and event handling enhances the ability to provide the next generation of Grid services.
Moreover, in many cases we find it inappropriate to develop such advanced services from scratch if other commodity
technologies can be effectively used. A good example is the abstraction found in Java that hides access to databases
or directories in general class libraries such as Java Database Connector (JDBC) and Java Naming and Directory
Interface (JNDI); the absence of such abstractions in other languages might make it more complicated to implement
the requisite functionality in such languages.
The availability of a variety of CoG Kits targeting different commodity technologies provides a great deal of flexibility
in developing complicated services. We now focus on the Java CoG Kit as an example Commodity Grid Kit, and
illustrate how it can be used to effectively build components that can be reused in the implementation of a GCE.

4 OVERVIEW OF THE JAVA COG KIT

Several factors make Java a good choice for Grid Computing Environments. Java is a modern, object-oriented pro-
gramming language that makes software engineering of large-scale distributed systems much easier. Thus, it is well
suited as a basis for an interoperability framework and for exposing the Grid functionality at a higher level of ab-
straction than is possible with the C Globus Toolkit. Numerous factors such as platform independence, a rich set of
class libraries, and related frameworks make Grid programming easier. Such libraries and frameworks include JAAS
[52], JINI [29], JXTA [39], JNDI [47], JSP [43], EJBs [44], and CORBA/IIOP [50]. We have depicted in Figure 3 a
small subset of the Java technology that can be used to support various levels of the Grid architecture [31]. The Java
CoG Kit builds a bridge between existing Grid technologies and the Java framework while enabling each to use the
other’s services to develop Grid services based on Java technology and to expose higher-level frameworks to the Grid
community while providing interoperability [59]. The Java CoG Kit provides convenient access to the functionality of
the Grid through client-side and a limited set of server-side classes and components.
Furthermore, Java is well suited as a development framework for Web applications. Accessing technologies such
as XML [49], XML schema [15], SOAP [25], and WSDL [26] will become increasingly important for the Grid
community. We are currently investigating these and other technologies for Grid computing as part of the Commodity
Grid projects to prototype a new generation of Grid services.
Because of these advantages, Java has received considerable attention by the Grid community in the area of application

5

ApplicationApplication

CollectiveCollective

ResourceResource

ConnectivityConnectivity

FabricFabric

ApplicationApplication

Jini, RMI, JaCORBJini, RMI, JaCORB

Runtime.execRuntime.exec

JMS, JSSE, JXTAJMS, JSSE, JXTA

FabricFabric

G
rid

 S
er

vi
ce

s
Fr

am
ew

or
k

Ja
va

 C
oG

 K
it

O
bj

ec
ts

Ja
va

 F
ra

m
ew

or
k

Accessing existing Grid Services

Developing new Grid Services

Figure 3: The Java CoG Kit allows users to access Grid Services from the Java framework and enables application and
Grid developers to use a higher level of abstraction for developing new Grid services and GCEs

integration and portal development. For example, the EU DataGrid effort recently defined Java, in addition to C, as
one of their target implementation languages. Additional motivation for choosing Java for Grid computing can be
found in [38].
The Java CoG Kit is general enough to be used in the design of a variety of advanced Grid applications with different
user requirements. The Java CoG Kit integrates Java and Grid components and services within one toolkit, as a bag
of services and components. In general, each developer chooses the components, services, and classes that ultimately
support his or her development requirements. The goal of the Java CoG Kit is to enable Grid developers to use much
of the Globus Toolkit functionality and to have access to the numerous additional libraries and frameworks developed
by the Java community, allowing network, internet, enterprise, and peer-to-peer computing. Since the Java CoG Kit
strives to be only protocol compliant, it does not provide a simple one-to-one mapping between the C Globus Toolkit
and Java CoG Kit API. Instead, it uses the more advanced features of Java, such as the sophisticated Java events and
exception handling, rather than using the archaic C-based functions. It provides client side access to the following
Grid services :

• An information service compatible with the Globus Toolkit Metacomputing Directory Service (MDS) [58] im-
plemented using JNDI.

• A security infrastructure compatible with the Globus Toolkit Grid Security Infrastructure (GSI) implemented
with the IAIK security library [4].

• A data transfer compatible with a subset of the Globus Toolkit GridFTP [19] and/or GSIFTP [20].

• Resource management and job submission to the Globus Resource Access Manager (GRAM) [27].

• A certificate store based on the MyProxy server [45].

Additionally, the Java CoG Kit contains a set of command-line scripts that provide convenient access to Globus
Toolkit-enabled production Grids from the client. This set includes support for MS Windows batch files, which are

6

not supported by the C Globus Toolkit. Furthermore, we provide an enhanced version of “globusrun” which allows
the submission of multiple GRAM jobs. Other useful services include the ability to access Java smart card or iButton
technology [8] to perform secure authentication with a possible multiple credential store on a smart card or an iButton.
Besides these elementary Grid services and tools, several other features and services currently not provided by the C
Globus Toolkit are included explicitly or implicitly within the Java CoG Kit.
The Java Webstart [10] and signed applet technologies provide developers with an advanced service to simplify code
startup, code distribution, and code update. Java Webstart allows the easy distribution of the code as part of down-
loadable jar files that are installed locally on a machine through a browser or an application interface. We have
demonstrated the use of Webstart within the Java CoG Kit by installing sophisticated Graphical User Interface (GUI)
applications on client machines. Component frameworks, such as JavaBeans, and the availability of commercial in-
tegrated development environments (IDEs) enable the Grid developer to use IDEs as part of rapid Grid prototyping
while enabling code reuse in the attempt to reduce development costs.
Thus, our goal of developing collaborative scientific problem solving environments and portals, based on the combined
strength of the Java and the Grid technologies, is well substantiated by the Java CoG Kit. In the past, we had proposed
portal architectures similar to the one depicted in Figure 2, in which the Java CoG Kit is used as an elementary
middleware to integrate Grid services within portals and applications. We expect that advanced services will be
integrated in future releases within the Java CoG Kit or as extension packages. Additionally, it is possible to implement
several core Grid services, currently provided as part of the C Globus Toolkit, in pure Java while exposing the service
through the Web Services Framework proposed recently by W3C. This possibility has been demonstrated for file
transfer and for job execution. The availability of these services and protocol handlers in pure Java will make future
portal development and the integration with existing production Grid far easier. We have provided example programs
using advanced GUI components in Java as part of the Java CoG Kit. These examples include a setup component for
the Java CoG Kit, a form-based job submission component, a drag-and-drop-based submission component similar to
a Windows desktop, an information service browser, and search queries. We hope that the community will contribute
more components so that the usefulness of the Java CoG Kit will increase.

5 CURRENT WORK

Our current work is focused on the creation of an extended execution service and the integration of Web services in
our CoG Kit efforts. Although these are currently prototyped in Java, it is easily possible to provide implementations
in other languages like C and C++.

5.1 InfoGram

An important result from this prototyping has been the development of the “InfoGram” service, which integrates a job
submission service and an information service into a single service while reducing the development complexity. This
InfoGram service has been described in more detail in [64] outlining extensions to the Globus Resources Specification
Language (RSL) [22] and the integration of checkpointing. Currently, we are also exploring the use of the InfoGram
Service as part of “Sporadic Grids”, which are computational Grids dealing with sporadically available resources such
as a computer at a beamline or a computer donated for a short period of time to a compute cluster. The InfoGram
service can enable a SETI@home type of service, which can be used to integrate machines running on a cluster of MS
Windows machines. Besides executing processes outside of the JVM, we have enhanced the security model for Grid
computing while reusing Java’s security model to, for example, restrict access to machine resource and prevent Trojan
programs.

5.2 Web Services

The Web services approach is quickly gaining popularity in the industry. Web services are designed to provide appli-
cation integration via the use of standard mechanisms to describe, publish, discover, invoke, and compose themselves.
Moreover, Web services are platform and implementation independent. In other words, Web services written in a

7

<implMap>
<mapping>

<source portName="CMCSPortType" operation="qEngine" />
<target command="/bin/QEngine" />

</mapping>
<mapping>

<source portName="CMCSPortType" operation="polyFit" />
<target command="/bin/PolyFit" />

</mapping>
</implMap>

Figure 4: XML mapping file for the command to Web services converter

certain language can be accessed and invoked by clients written in other languages, executing under different envi-
ronments. This capability is highly appealing to the scientific community, as it enables a high level of collaboration
between various pieces of software written by different organizations in different languages. Despite all the advantages
of the Web Service technology, currently there are only limited Web service development environments, especially in
languages other than Java. In such a scenario, it would be very convenient if there existed a tool that would be able
to wrap an existing scientific application and expose it as a Web service. We are exploring the viability of this idea,
using a prototypical implementation of a command to Web service converter. This converter is built by using Apache
Axis [16] as the development environment. The converter takes as input the service description in the form of a
WSDL document as well as an XML-encoded mapping between the operations exported in the WSDL and the target
executables that they map to. The converter generates client- and server-side code for the target Web service using the
standard Axis WSDL2Java converter, as well as the code for the actual implementation of the Web service using the
XML based mapping that has been provided.
An example of the mapping, which has been used as part of the CMCS project [62], is shown in the Figure 4.
The qEngine operation maps to the executable “/bin/QEngine”, while the polyFit operation maps to the executable
“/bin/PolyFit”. The scientific codes can then be converted into Web services by automatic generation of wrapper code
using the information defined in XML format. These Web services can then be deployed, so that remote clients can
have access to these codes over the network. We are currently analyzing patterns that would be appropriate for code
generation. Such patterns have to be suitably captured in the XML mapfile and understood by the code generator so
as to generate appropriate glue code.

6 ADVANCED CoG Kit COMPONENTS

Now that we have illustrated the usefulness of CoG Kits, using the example of the Java CoG Kit, we demonstrate
how we use it to provide clients with access to advanced services to clients. As we have seen in Figure 2, we desire
to implement services related to job, data, and workflow management. We have developed prototypes of advanced
services and client interfaces that address these issues. Together these components can be used as part of a GCE. Other
suggestions for components and services are listed in [60] and [62].

6.1 Sample Components

The first component models a desktop in which the user can create job specifications and machine representations
through simple icons. Dragging a job onto a machine will automatically start the execution of this job on the remote
machine. The user is able to monitor all jobs submitted to a particular machine by double-clicking on the machine
icon. The associated output of the remote job can be downloaded by clicking on the appropriate file descriptor in the
monitoring component. The specification of the icons and the associations to jobs and machines are represented in
XML format. Figure 5 shows a screenshot of this component.

8

Figure 5: A prototypical GUI component performing job management for the GCE using the Java CoG Kit.

The second component is an interface to file transfers based on various protocols such as ftp [18], gsiftp [20], gridftp
[19], and Reliable File Transfer (RFT) [21]. It is a drag-and-drop component allowing the user to conveniently use
third-party file transfers between different Globus ftp servers by using either the gridftp or the gsiftp protocols. While
using the RFT protocol, the user can also monitor the progress of reliable file transfers which are executing in parallel.
Figure 6 shows the snapshot for this component.
The third component is a workflow component that is currently used to define the workflow of an application in a
graphical fashion, with the possibility to define dependencies between tasks as a hypergraph while using a graph data
structure in recursive fashion. This feature allows the user to conveniently define large graphs hierarchically, thus
increasing the readability. Such a tool could also be modified to create graph representations used by other projects
such as Condor-G [36] and OGSA [6] while specifying dependencies between Grid Services. Therefore, the usefulness
of such a component goes beyond the simple use as part of a dependency graph creation for simple job executions.
Figure 7 shows how a workflow can be defined using this component.

6.2 Community Use

The user community served by the Java CoG Kit is quite diverse. The Java CoG Kit allows

• middleware developersto create new middleware components that depend on the Java CoG Kit;

• portal developersto create portals that expose transparently the Grid functionality as part of a portal service;
and

• application developersto use of Grid services within the application portal.

A subset of projects currently using the Java CoG Kit for accessing Grid functionality includes the following:

• CoGBox [54] provides a simple GUI for much of the client-side functionality such as file transfer and job
submission.

9

Figure 6: A prototypical GUI performing data management for the GCE using the Java CoG Kit.

Figure 7: A prototypical component using the Java CoG Kit to perform workflow for the GCE

10

• CCAT [9] and XCAT [40] provide an implementation of a standardsuggested bythe Common Component Ar-
chitecture Forum,defining a minimal set of standard features that a high-performance component framework has
to provide, or can expect, in order to be able to use components developed within different frameworks.

• Grid Portal Development Kit (GPDK) [7] provides access to Grid services by using Java Server Pages (JSP) and
JavaBeans using Tomcat, a Web application server.

• JiPANG (Jini-based Portal AugmeNting Grids) [53] is a computing portal system that provides uniform access
layer to a large variety of Grid services including other Problem Solving Environments, libraries, and applica-
tions.

• The NASA IPG LaunchPad [11] uses the Grid Portal Development Kit based on the Java CoG Kit. The tool
consists of easy-to-use windows for users to input job information, such as the amount of memory and number
of processors needed.

• The NCSA Science Portal [42] provides a personal Web server that the user runs on a workstation. This server
has been extended in several ways to allow the user to access Grid resources from a Web browser or from
desktop applications.

• The Astrophysics Simulation Code Portal (ASC Portal) [12] is building a computational collaboratory to bring
the numerical treatment of the Einstein Theory of General Relativity to astrophysical problems.

• TENT [37] is a distributed simulation and integration system used, for example, for airplane design in commer-
cial settings.

• ProActive [28] is a Java library for parallel, distributed, and concurrent computing and programming. The
library is based on a reduced set of rather simple primitives and supports an active object model. It is based on
the standard Java RMI library. The CoG Kit provides access to the Grid.

• DISCOVER [30] is developing a generic framework for interactive steering of scientific applications and col-
laborative visualization of data sets generated by such simulations. Access to the Grid will be enabled through
the CORBA and Java Commodity Grid Kits.

• The Java CORBA CoG Kit [17] provides a simple Grid domain that can be accessed from CORBA clients.
Future implementations in C++ are possible.

• The UNICORE [14] project as part of the Grid Interoperability Project (GRIP) [3] uses the Java CoG Kit to
interface with Globus.

Additionally, work is currently performed as part of the Globus Project to provide a reference implementation of the
Open Grid Service Architecture (OGSA) proposed through the Global Grid Forum. The current technology preview
uses the Java CoG Kit’s GSI security implementation and a modified version of the Java CoG Kit’s GRAM gatekeeper.
The role of the Java CoG Kit for some of these projects is depicted in Figure 8.
A regularly updated list of such projects can be found at http://www.cogkits.org. We encourage the users to notify us
of additional projects using CoG Kits, so that we can receive feedback about the requirements of the community. We
like also to document the use and existence of other CoG Kits. In Table 2 we list a number of successfully used CoG
Kits.

7 CONCLUSION

Commodity distributed-computing technologies enable the rapid construction of sophisticated client-server applica-
tions. Grid technologies provide advanced network services for large-scale, wide area, multi-institutional environ-
ments and for applications that require the coordinated use of multiple resources. In the Commodity Grid project, we
bridge these two worlds so as to enable advanced applications that can benefit from both Grid services and sophisti-
cated commodity technologies and development environments. Various Commodity Grid projects are creating such

11

Globus
Toolkit

Java,HTML Portals and Applications

JSP
CoG

Toolkit

Apache
Web

Server

iButton
CoG

Toolkit

HTML
CoG

Toolkit

CORBA
CoG

Toolkit

Commodity
Java

Tools and
Services

Structural
Biology
Portal

High
Energy
Physics
Portal

JiPang/
Netsolve/

Ninf

CCAT
Toolkit

NCSA
Alliance

Chemistry
Portal

CERN
Data
Grid

Earth
Science

Grid

Global
Climate

PSE
Portal

Java
IDE

Java Distributed Programming
Framework

Java
GRAM
Service

…

Java CoG Kit

Java
GASS
Service

…

TENT

Figure 8: The Java CoG Kit builds a solid foundation for developing Grid applications based on the ability to combine
Grid and Web technologies.

Table 2: Examples of Community CoG Kits
Globus

Language Name Compatibility Web Link
Perl Perl CoG API based gridport.npaci.edu/cog/
Python pyGlobus API based www-itg.lbl.gov/gtg/projects/pyGlobus/
Java Java CoG Kit protocol based www.globus.org/cog
JSP GPDK through Java CoG Kit doesciencegrid.org/projects/GPDK/
CORBA CORBA CoG through Java CoG Kit www.caip.rutgers.edu/TASSL/Projects/CorbaCoG/

12

Collective Services

Resource and
Connectivity

Layer

Fabric

User Applications

H
igh End Technologies

C
om

m
od

ity
 T

ec
hn

ol
og

ie
s

Secure Access
to

Resources and
Services

Distributed Information Services,
Brokering, and Monitoring

Application Services and
Development Tools

Physical Devices and
Resources such as

Computers, Storage,
Networks, and Sensors

Figure 9: Commodity and high-end technologies bring enhanced value to the core Grid architecture.

a bridge for different commodity technologies. As part of the Java and Python Commodity Grid project we provide
an elementary set of classes that allow the Java and Python programmers to access basic Grid services, as well as
enhanced services suitable for the definition of desktop problem solving environments. Additionally, we provided the
Globus Toolkit with an independent set of client tools that was able to increase the code quality of the C Globus Toolkit
and the productivity of the end user.
Our future work will involve the integration of more advanced services into the Java CoG Kit and the creation of other
CoG Kits and the integration of Web services technologies. We hope to gain a better understanding of where changes
to commodity or Grid technologies can facilitate interoperability and how commodity technologies can be exploited in
Grid environments. We believe that it is important to develop middleware for creating Grid Computing Environments.
We emphasize that a CoG Kit provides more than just an API to existing Grid services. Indeed, it brings the modalities
and the unique strength of the appropriate commodity technology to the Grid as the Grid brings its unique strengths
to the commodity users. This relationship is summarized in Figure 9, the modified the Grid architecture [32] which
is introduced in [61] with the explicit vertical support for a variety of commodity and high-end technologies into the
Grid architecture.

8 AVAILABILITY

The Java CoG Kit closely monitors the development within the Globus Project to ensure that interoperability is main-
tained. The CoG Kit development team continues to keep track of projects that use the Java CoG Kit and documents
the requirements of the community, in order to feed this information back to the Globus development team and to
develop new features within the Java CoG Kit. For up-to-date release notes, readers should refer to the Web page
at http://www.globus.org/cog, where the Java CoG kit is available for download. New releases are announced to the
mailing list at cog-news@globus.org. Information about other CoG Kits such as Python, Perl, and CORBA can also
be obtained from this Web page. We welcome contributions and feedback from the community.

13

9 ACKNOWLEDGEMENTS

This work is supported by the Mathematical, Information, and Computational Science Division subprogram of the
Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.
DARPA, DOE, and NSF supported Globus Toolkit research and development. We thank Ian Foster, Keith Jackson,
Geoffrey C. Fox, Dennis Gannon, Shawn Hampton, Manish Parashar, Snigdha Verma, Mary Thomas, and Jay Alameda
for the valuable discussions during the course of the ongoing CoG Kit development. We thank Nell Rehn, Peter Lane,
Pawel Plaszczak, Mike Russell, Jason Novotny, Ravi Madduri, Benjamin Temko, Shamsuddin Ladha, Beulah Alunkal,
and all others who have contributed to the Java CoG Kit. We thank Gail Pieper for her valuable comments. This work
would not have been possible without the help of the Globus Project team. The Java CoG Kit is developed at Argonne
National Laboratory as part of the Globus Project. Globus Toolkit and Globus Project are trademarks held by the
University of Chicago.

References

[1] Global Grid Forum. www.gridforum.org.

[2] Global Grid Forum Grid Computing Environments Working Group. www.computingportals.org.

[3] Grid Interoperability Project. http://www.grid-interoperability.org/.

[4] Grid Security Infrastructure. http://www.globus.org/security.

[5] Java Grande Forum. www.javagrande.org.

[6] The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration.
http://www.globus.org/research/papers/ogsa.pdf.

[7] The Grid Portal Development Kit, 2000. http://dast.nlanr.net/Projects/GridPortal/.

[8] iButton Web Page, 2001. http://www.ibutton.com/.

[9] Indiana CCAT Home Page, 2001. http://www.extreme.indiana.edu/ccat/.

[10] Java Web Start, Version 1.0.1 Edition, 2001. http://www.sun.com/products/javawebstart/.

[11] Launching into Grid Space with the NASA IPG Launchpad, 2001.
http://www.nas.nasa.gov/Main/Features/2001/Winter/launchpad.html.

[12] The Astrophysics Simulation Collaboratory: A Laboratory for Large Scale Simulation of Relativistic Astro-
physics, 2001. http://www.ascportal.org/.

[13] The Globus Project WWW Page, 2001. http://www.globus.org/.

[14] UNICORE. 2001. http://www.unicore.de/.

[15] XML Schema, Primer 0 - 3, 2001. http://www.w3.org/XML/Schema.

[16] Apache Axis, 2002. http://xml.apache.org/axis/.

[17] CORBA CoG Kits, 2002. http://www.globus.org/cog/corba/index.html/.

[18] File Transfer Protocol, 2002. http://www.w3.org/Protocols/rfc959/Overview.html.

[19] Grid FTP, 2002. http://www.globus.org/datagrid/gridftp.html.

[20] GSI Enabled FTP, 2002. http://www.globus.org/datagrid/deliverables/gsiftp-tools.html.

14

[21] Reliable File Transfer Service, 2002. http://www-unix.mcs.anl.gov/ madduri/RFT.html.

[22] Resource Specification Language, 2002. http://www.globus.org/gram/gramrsl parameters.html.

[23] SWIG Simple Wrapper Interface Generator, 2002. http://www.swig.org/.

[24] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data grid: Towards an
architecture for the distributed management and analysis of large scientific datasets.Journal of Network and
Computer Applications, 23:187–200, 2001.

[25] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte, and D. Winer. Simple
Object Access Protocol (SOAP) 1.1, 2000. http://www.w3.org/TR/SOAP.

[26] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language (WSDL) 1.1,
2001. http://www.w3.org/TR/wsdl.

[27] K. Czajkowski, I. Foster, and C. Kesselman. Resource co-allocation in Computational Grids, 1999.

[28] D. Caromel. ProActive Java Library for Parallel, Distributed and Concurrent Programming, 2001. http://www-
sop.inria.fr/oasis/ProActive/.

[29] W. Edwards.Core JINI, 2nd edition. Prentice Hall, 2000.

[30] M. Parashar et al. DISCOVER, 2001. http://www.discoverportal.org/.

[31] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of Supercomputer Applications, 15(3):200–222, 2001.
http://www.globus.org/research/papers/anatomy.pdf.

[32] Ian Foster. The Grid: A New Infrastructure for 21st Century Science.Physics Today, 55(22):42, 2002.
http://www.aip.org/pt/vol-55/iss-2/p42.html.

[33] Ian Foster, Joeseph Insleay, Gregor von Laszewski, Carl Kesselman, and Marcus Thiebaux. Data Visualization:
Data Exploration on the Grid.IEEE Computer, 14:36–41, Dec. 1999.

[34] Geoffrey C Fox. Portals for Web Based Education and Computational Science, 2000.

[35] Geoffrey C. Fox and Wojtek Furmanski. High Performance Commodity Computing. In Ian Foster and Carl
Kesselman, editors,The Grid: Bluepirnt for a new computing infrastructure. Morgam Kaufman, 1999.

[36] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke. Condor-G: A Computation Man-
agement Agent for Multi-Institutional Grids. InProceedings of the Tenth IEEE Symposium on High Performance
Distributed Computing (HPDC10), San Francisco, 2001. IEEE Press.

[37] German Air and Space Agency (DLR). TENT Home Page, 2001. http://www.sistec.dlr.de/tent/.

[38] Vladimir Getov, Gregor von Laszewski, Michael Philippsen, and Ian Foster. Multi-Paradigm Com-
munications in Java for Grid Computing. Communications of ACM, 44(10):119–125, October 2001.
http://www.globus.org/cog/documentataion/papers/.

[39] Li Gong. Get connected with Jxta. Sun MicroSystems, Java One, June 2001.

[40] M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon, and R. Bramley. XCAT 2.0 : A Component
Based Programming Model for Grid Web Services. InSubmitted to Grid 2002, 3rd International Workshop on
Grid Computing, 2002.

[41] Keith Jackson. pyGlobus - A CoG Kit for Python.to be published, 2002.

15

[42] S. Krishnan, R. Bramley, D. Gannon, M. Govindaraju, R. Indurkar, A. Slominski, B. Temko, R. Alkire, T. Drews,
E. Webb, and J. Alameda. The XCAT Science Portal. InProceedings of SC2001, 2001.

[43] M. Hall. Core Servlets and JavaServer Pages (JSP), 1st Edition. Prentice Hall / Sun Microsystems Press, 2000.

[44] Richard Monson-Haefel.Enterprise JavaBeans. O’Reilly, 3rd edition, October 2001.

[45] J. Novotny, S. Tuecke, and V. Welch. An Online Credential Repository for the Grid: MyProxy . InProceedings
of the Tenth International Symposium on High Performance Distributed Computing (HPDC-10), San Francisco,
August 2001. IEEE Press.

[46] Jason Novotny. The Grid Portal Development Kit. to be published, 2001.
http://dast.nlanr.net/Features/GridPortal/.

[47] R. Lee. JNDI API Tutorial and Reference: Building Directory-Enabled Java Applications, 2000. Addison-
Wesley.

[48] Michael Russell, Gabrielle Allen, Ian Foster, Ed Seidel, Jason Novotny, John Shalf, Gregor von Laszewski,
and Greg Daues. The Astrophysics Simulation Collaboratory: A Science Portal Enabling Community Software
Development.Journal on Cluster Computing, 5(3):297–304, July 2002.

[49] S. Holzner.Inside XML, 1st Edition. New Riders Publishing, 2000.

[50] J. Siegel.Corba 3 : Fundamentals and Programming, 2nd ed. John Wiley and Sons, 2000.

[51] Larry Smarr. Infrastructures for Science Portals, 2001. http://www.computer.org/internet/v4n1/smarr.htm.

[52] Sun Microsystems. Java Authentication and Authorization Service (JAAS), 2001.
http://java.sun.com/products/jaas/.

[53] T. Suzumura, S. Matsuoka, and H. Nakada. A Jini-based Computing Portal System, 2001. http://matsu-
www.is.titech.ac.jp/ suzumura/jipang/.

[54] B. Temko. The CoGBox Home Page. http://www.extreme.indiana.edu/ btemko/cogbox/.

[55] Mary Thomas, Steve Mock, and Gregor von Laszewski. A Perl Commodity Grid Kit.Concurrency and Compu-
tation: Practice and Experience, accepted.

[56] Snighda Verma, Manish Parashar, Jarek Gawor, and Gregor von Laszewski. Design and Implementation of a
CORBA Commodity Grid Kit. In Craig A. Lee, editor,Second International Workshop on Grid Computing
- GRID 2001, number 2241 in Lecture Notes in Computer Science, pages 2–12, Denver, November 2001. In
conjunction with SC’01, Springer. http://www.caip.rutgers.edu/TASSL/CorbaCoG/CORBACog.htm.

[57] Gregor von Laszewski, Eric Blau, Michael Bletzinger, Jarek Gawor, Peter Lane, Stuart Martin, and Michael
Russell. Software, Component, and Service Deployment in Computational Grids. In Judith Bishop, editor,
IFIP/ACM Working Conference on Component Deployment, volume 2370 ofLecture Notes in Computer Science,
pages 244–256, Berlin, Germany, June 20-21 2002. Springer. http://www.globus.org/cog.

[58] Gregor von Laszewski, S. Fitzgerald, I. Foster, C. Kesselman, W. Smith, and S. Tuecke. A Directory Service
for Configuring High-Performance Distributed Computations. InProceedings of the 6th IEEE Symposium on
High-Performance Distributed Computing, pages 365–375, August 5-8 1997.

[59] Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane. A Java Commodity
Grid Kit. Concurrency and Computation: Practice and Experience, 13(8-9):643–662, 2001.
http://www.globus.org/cog/documentation/papers/cog-cpe-final.pdf.

16

[60] Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane, Nell Rehn, and Mike Russell. Designing
Grid-based Problem Solving Environments and Portals. In34th Hawaiian International Conference on Sys-
tem Science, Maui, Hawaii, January 3-6 2001. http://www.mcs.anl.gov/ laszewsk/papers/cog-pse-final.pdf,
http://computer.org/Proceedings/hicss/0981/volume

[61] Gregor von Laszewski, Gail Pieper, and Patrick Wagstrom.Performance Evaluation and Characterization of
Parallel and Distributed Computing Tools, chapter Gestalt of the Grid. Wiley Book Series on Parallel and
Distributed Computing. to be published.

[62] Gregor von Laszewski, Branko Ruscic, Patrick Wagstrom, Sriram Krishnan, Kaizar Amin, Reinhardt Pinzon,
Melita L. Morton, Sandra Bittner, Mike Minkoff, Al Wagner, and John C. Hewson. A Grid Service Based Active
Thermochemical Table Framework. InPreprint ANL/MCS-P972-0702, Argonne National Laboratory, 9700 S.
Cass Avenue, Argonne, IL 60439, U.S.A., 2002.

[63] Gregor von Laszewski, Mary Westbrook, Ian Foster, Edwin Westbrook, and Craig Barnes. Using Computa-
tional Grid Capabilities to Enhance the Ability of an X-Ray Source for Structural Biology.Cluster Computing,
3(3):187–199, 2000. ftp://info.mcs.anl.gov/pub/techreports/P785.ps.Z.

[64] Gregor von Laszewski Jarek Gawor Carlos J. Peña and Ian Foster. InfoGram: A Peer-to-Peer Information and
Job Submission Service. InProceedings of the 11th Symposium on High Performance Distributed Computing,
Edinburgh, Scotland, July 24-26 2002. http://www.globus.org/cog.

17

