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Abstract: We propose a model for QoS-based composition of high-mesftze numerical
components. We define an architecture that relies orkfiyeapabilities and services including
component characterization, component proxy services, compapatement, a decision
module, and archival run information processing. We desquality metrics that are important
for high-performance numerical simulations, including compomal cost, accuracy, and rates of
convergence and failure. We discuss the use of the architaciicuality metrics in the context
of a driven cavity flow simulation, which has been showvhédnefit from adaptive solution
technigues that could be derived from a QoS architecture.

Introduction

Recent years have seen much research and developnieatarea of component-based
software engineering (CBSE). CBSE enables programmeeptesent independent
pieces of functionality as entities that can be gosed, configured, and installed to
create applications both rapidly and robustly. This appréaattractive because it
shields the application development process from coditigle such as platform and
language heterogeneity and resource location. By defingag titerfaces, it promotes
reusability and interoperability among different projeantd thereby helps accelerate and
generally improve the process of software developmashsharing. Examples of
component models include the CORBA Component Model (CQN2),[COM [3], and
more recently the Common Component Architecture (Cl@p)which specifically
targets high-performance scientific applications.

The relative maturity of component-based software stiftectures encourages users to
look beyond syntactically connecting components to usingehilgtvel information about
component properties to compose applications. Such piexpirtiude accuracy of
results, reliability with which results can be delivtrand the costs associated with
providing them. ldeally, a software infrastructure, anfework, should enable the
developer to construct applications using components ttisflysa given set of properties
without knowing the intrinsic merits and performanceléaifs of the underlying
algorithms and implementations. To meet this requiréntlee framework must allow
component developers to both provide and@sality-of-Service (QoS) component
descriptions If such descriptions can be clearly specified, thas can automate the
selection of the most appropriate component to soperticular subproblem.
Furthermore, such automation can take the form of adagtjorithms that can deliver
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improved performance by using QoS data collected during theeofithe application's
life-span and through multiple invocations of a givenglafiscomponents.

Previous work has examined the role of higher-level semanritirmation in component
assembly [5—12]. Raje et al. [7] describe a QoS framefoordistributed,
heterogeneous components and provide a catalog of QoSanfiiridc-urmento et al.
discuss performance models and their use in overall coemp@pplication assembly at
run time [11,12]. In this paper, we present an approaciptbaides a QoS infrastructure
suitable for high-performance numerical componentsi@e2 describes a motivating
scenario. In Section 3, we propose an architectureetnaff facilities for combining
components while providing the desired QoS over an emplcation. In Section 4, we
define component-level QoS metrics relevant to high-pedoce numerical
applications. In Section 5, we illustrate how our detfiure addresses the needs of
numerical applications.

2 Scenarios and Infrastructure Requirements

In this section we motivate our approach with an exarnpfa the solution of a
nonlinear partial differential equation and describe thagtfucture requirements for
solving this problem using a QoS approach.

2.1 A Motivating Scenario

For simulations in areas such as fusion, astrophyasmtscomputational fluid dynamics,
application scientists typically compose multiple 8rig numerical components for
different facets of the computation: for examplesmmanagement, discretization,
derivative computation, and the solution of linear andineat systems of equations.
Each component can have multiple implementationsrédmesent different approaches
to solving the same problem and that differ in qualities sisafobustness, time to
solution, and solution accuracy. Moreover, the optichalice of a specific algorithm or
implementation for a given task may change during thefithe simulation as the data
changes. Current practice typically involves manusdligcting particular components
and running experiments to determine which algorithms and ingpixtions are most
effective for a given scenario; changing algorithms tibyanvolves stopping the
simulation and replacing existing components with others.

As a particular example, consider a driven cavity femwlation. This problem
incorporates numerical features that are common in faagg-scale scientific
applications, and a detailed problem description, includingakerning differential
equations, boundary conditions, and discretizationyvismgin [13]. It has been found
that some form of continuation is often required tosdhese problems when certain
parameters are even moderately nonlinear [14]. Comnosely pseudo-transient
continuation methods introduce into the model a falee-8tepping term and the need to
solve a nonlinear system of equations at each time sirggpNewton’s method. This
time step transitions from small to large and therebyrotathe conditioning of the
linearized Newton systems [14]. The linear systemsnitially well conditioned and
relatively easy to solve when the pseudo time stemadl salthough they transition to
being much more challenging as the pseudo time step gralitbenonlinear function
approaches that of the true model. Previous work has sti@athis problem benefits
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from the use of adaptive numerical strategies in thetble solves [15], and it is
therefore a natural candidate for motivating and evalg&@ioS infrastructure.

Newton’s method solves a nonlinear system of equatibtiedormf(u) = 0, where
f: R"—R", through the following two-phase iterative process:
1. (Approximately) solve f(u"™") ou' = —f(u™)
2. Update u=u?+a-d,
wherea is determined by a line search such thata < 1, f(u) is the nonlinear function
or residugland f'(u) is the corresponding Jacobian matrix of derivatives.

The iterative nature of Newton’s method can be modeled) @sdirected graph as shown
in Figure 1. Vertices in the graph denote componentsatleanvoked, and the edges
denote the direction of information flow. The graphasted at the application, with the
first level containing a Newton component (denoted NS)ttieapplication invokes,
followed by a second level containing components thatiat@khe nonlinear function
(FE) and Jacobian (JE), solve the resulting linearizetbin system using a
preconditioned Krylov method (PKS), and apply a line searethod (LS).

The edges of the directed graph may have annotatiohe fiotm of both static and
dynamic QoS requirements, capabilities, and performaRoe example, the forward
edge between the nonlinear and linear solver may reqnbesymmetric linear solver
that returns a solution with a relative linear residuaim reduction of 16, The
corresponding backward edge may also be annotated to staypehof solver that was
actually used, a detailed convergence history, and so forétaldition, some graph layers
may reflect transitions among particular componentemgntations during an ongoing
simulation. For example, a preconditioned Krylov compmbmaplementation that
matches the original QoS metrics may be used initiallpsequently the dynamic QoS
metrics may be adjusted, and this implementation magplaced by another
preconditioned Krylov solver as part of an adaptive algoiit scheme. We note that
Furmento et al. [11] use directed graphs in a similar fashio
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Figure 1. Directed graph for an application using a Newton-based nonlinear solver, showing the
structure at the top level for several nonlinear iterations. Vertices at each iteration denote the
componentsinvoked. The nonlinear solver component exports both static and dynamic descriptions
of QoS measuresthat it wantsthe smulation to satisfy.
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2.2 Problem Definition and Infrastructure Requirements

In an ideal scenario, the application scientist woelddlieved of managing much of the
complexity discussed above by a component frameworkribatporates QoS
information into the component composition and managem®cess. This could be
achieved by defining descriptions representing both the ragtarements for numerical
components and the potential of particular numericalpmmant implementations, based
on historical data, algorithmic convergence theory, andrgb.fTo produce such
descriptions would require transcribing intuitive knowledge, dhasewhich many
scientists currently formulate their simulationgpimore qualitative and quantitative
terms and then managing those descriptions. Where sogflddye is not easily
captured in terms of absolute quality measures, it wouldd@napanied by a “measure
of confidence” attached to a particular component implaation. In addition, a
scientist would be able to specify the quality of simafatmeasures that could be
adjusted at runtime.

As discussed in the preceding section, we are facedavatbblem where we have
substitution setsf numerical components that implement the sametifumality (as
expressed by the component interface) but are chamstidry different semantic
gualities, such as accuracy, robustness, and speed ofgemse. We want to use the
information of those semantic qualities in two wasisst, we want to use it to obtain the
most optimal composition of components. Second, ardld arises during application
execution, we want to seamlessly replace certain coems by others chosen from their
substitution set. Such adaptivity is an important themeigmithe development of our
QoS framework. In broad terms, we use the vemiaptivityto denote improved

selection of methods (both algorithms and implemema}jovith the goal of decreasing
execution time for the application while delivering tequired quality of solution. This
“learning” could occur within the application’s life-spare(, using information acquired
during a single simulation), but also could represent épez combined across multiple
past simulations. We introduce the tetymamic componenb describe a component that
can adapt its behavior in these ways. In additiorh@ektent possible, we want the
substitution to take place not only dynamically but alsormatically, with suitable
component selection and provisioning being performed by infictste services, rather
than by the programmer.

3 Architecture

In the design of our QoS infrastructure we assume g@onent model as described by
CORBA [1,2] and the CCA [4]. In the CCA model, a compdrexports two kinds of
ports:providesports, which describe what functionality a componemléments, and
usesports, which describe what functionality a component requWe further assume
that the data descriptions used will allow a componentake its data available for
interaction with other components.

As shown in Figure 2, our architecture relies on five ¢agyabilities: (1) component
characterizations, which describe component behavior andariag at runtime; (2)
component proxies, which enable dynamic substitution; €®n@onent replacement
service, which locates and deploys new components atejr{d) a decision module,
which decides which components need to be replaced; and\{Eesehat process
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archival and run information. To provide these capabilitiesextend the CCA model by
annotating theisesandprovidesports with metadata. In addition, we designed several
services that deliver the required functionality for adaptilynamic component
substitution.
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Figure 2: Interaction of an application with a dynamic component. User-provided components are
mar ked in gray, whileinfrastructure servicesarein white.

Figure 2 shows how a component-based application inteséttt®ne of its composite
components in this architecture. Direct interactiorhwliis component is replaced by
interactions with a component proxy, which representBe@pplication one of the
component implementations from the substitution set.ifiitial choice of a particular
component implementation is typically based on stagtadata specified as application
requirements and the offering of a concrete algorithm.

Also based on information contained in the static metadlae proxy chooses a
monitoring component suitable for monitoring the run-tpeeformance of that particular
numerical component. This monitoring information maydgged at runtime to provide
input on its performance as well as to enable furthdysisdater. In addition to
monitoring the performance of the numerical componéetperformance of the whole
application is being monitored, also potentially loggingetsults.

Moreover, the component proxy keeps track of how themenisesmetadata of an
application relates tprovidesmetadata of the actual component implementation.
Whenever a particular component is found to be underpeirigr a replacement action
can be triggered either by an application scientist mongdhe execution or by a
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decision service. Replacement decisions are made anthef each iteration and are
executed before the next iteration begins. In the tmaanthe replacement service
performs actions leading to provisioning and deploying the neJdeimgntation
component. We now discuss the five key components iil.deta

M etadata Component Characterizations. We extended the CCM/CCA model bges
andprovidesmetadata associated with a given port. ifesmetadata describes the QoS
that a giverusesport requires, while thprovidesmetadata describes the QoS that a
given port can provide. We also distinguish static metadatl dynamic metadata. Static
metadata represents the knowledge that we have abauethed implemented by a
given port before it starts executing. It may be basedistorical data (for example,
previous component runs) as well as analytical data axpetcted performance
scalability. Its main purpose is to provide initial seletiuidance to the numerical
scientist. The static metadata also includes informatiohow to monitor dynamic
metadata. The dynamic metadata is updated after eaatioireand indicates how well
the selected method is performing in terms of qualitiseMable only at runtime. The
updates are based on information obtained from a momtoamponent invoked by the
component proxy and logged in databases. Section 4 gives lesamfiguch metadata for
numerical applications. In addition to metadata astetiaith ports, we also define
static component metadata describing implementatiorecelaformation (for example,
deployment information).

Component Proxy. The component proxy implements the notion of a dynamic
component by substituting at runtime components with bpégormance promise. To
have a basis for this substitution, the proxy monitoregonent execution, compares the
usesmetadata of the calling application and pinevidesmetadata of the component,
potentially raises exceptions, and works with the apyidioascientist or uses a
replacement module to determine the right replacerSerustitution itself is performed
by using the Dynamic Invocation Interface (DIl) [1,2] thanism. In addition to
providing substitution for optimization, a component prprgvides a level of indirection
allowing it to provide reliability in a manner transparenttte client [15,16].

Replacement Service. The dynamic replacement service arranges for the ssaml
between-iterations replacement of one module by anatiplementing the same
functionality but exporting different metadata and potaiyta different interface. It
provisions and deploys the new component. The repladesaernce can be invoked by
the proxy either on the programmer’s behest or triggleyetie substitution decision
service. As part of provisioning decisions, this service @dsudes whether to keep the
old component choice cached in memory and when to regpletecomponents.

Substitution Decision Service. The substitution decision service automates decisions
about component replacement by applying heuristics supplieithiey an application
scientist or a “learning module”. These heuristicsvarg simple and have the form: “If
the ratio of the residual norm reduction to the nunabéerations isx, then substitute a
more powerful method.” As shown in Figure 2 the replasm@ndecision will typically be
based on the component’s as well as overall applitation monitoring data (run
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management data as well as historical data). It couléx@mple, happen that after a
particular iteration a decision to replace multiple poments will be made.

Data and Data Processing Modules. In our implementation we rely on three databases:
(1) the historical data database that archives data omhastonultiple runs, (2) the run-
management database that contains information aboutemtrun, and (3) the assertion
database that contains substitution rules and heuriBticseasons of efficiency, run-
management logging is optional on any given run. Theiddtstorical and run-
management databases may be used by a learning systeontonend heuristics on
when and how to substitute component implementationksgdavelop meta-data for
similar or related components. This service closesote between generating execution
data and steering the execution; its objective is to iiyeithniques for processing data
about a run to improve policies and to formalize knowlealg®ut how to steer a run to
obtain the best possible performance.

4. Metrics for Numerical QoS

Our framework must provide a set of numerical QoS mefwicspecifying component
requirements and capabilities. These metrics carbalssed to provide stopping criteria
for iterative algorithms and to provide a measure of perforendfar each metric, our
framework must accommodate multiple sources of infoonggmpirical, analytic) and
varying levels of precision (qualitative, relative, quatiie). Furthermore, some
metrics are static properties of a component, wheréas otetrics, are dynamic
properties that cannot be determined until run time. pyépose computational cost,
accuracy, failure rate, convergence rate, and preconelitguality as metrics for
numerical QoS. The first three can be mapped to tineanarund time (also called “end-
to-end delay”), quality of result, and error rate metrientified by Brahnmath et al. in
their quality of service catalog [8]; we have chosenltati&t more closely match the
nomenclature of the computational science community.

Computational cost can be measured in a variety of ways, including wadkctome,

CPU time, number of floating-point operations, or numidenajor/minor iterations of

the numerical algorithm. On parallel platforms, compatel cost is often a function of
algorithmic scalability. In some cases, the expectefdpeance degradation with
number of processors can be accurately captured by nmagisas BSP or LogP [17,18].
Often, however, it is difficult to capture the impa€tdegradation in the numerical
method; for example, additive Schwarz preconditiohgrigally become less effective as
the local problem size decreases, and Newton-Krylohoast may require more
iterations as the global problem size increases.tifese and other reasons, accurate
forecasts of computational costs are often diffitmlbbtain. Thus, this metric will often
be used as a stopping criterion or measure of performashaeetheless, our framework
must accommodate whatever models are available (ge€18,20]), so that an accurate
prediction can be created using information, such asgmobize or number of
processors, that cannot be determined until runtime.

Accuracy can be measured in terms of residual norms or thepstimbehavior of an
approximation. Residuals provide a measure of how cloap@moximate solution is to
the true solution, which has a residual of zero. Foreat system of the ford(u)h = f,
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the residual i$ —J(u)h. For a nonlinear system, the residual is simply tdimear
function,f(u).The residual may be reduced to a scalar value by compugingaitimum
value (infinity norm), the sum of its values; (horm), or the square root of the sum of
squares (knorm). Furthermore, the residual norm of the final apipnation may be
measured in absolute terms or relative to the resihrah of the initial guess. Residual
norms are often used as stopping criteria for iterativeerical algorithms. The
asymptotic discretization error, expressed in@igetation, provides a measure of the
accuracy of a discretization by indicating how the redecreases as a function of the
resolution. For example, doubling the resolution (haltimegmesh “spacing”) would
double the accuracy (halve the error) of a discretizatitimO(h) accuracy but double
thenumber of digitof accuracy (take the square root of the error) of aatigation with
O(H) accuracy. The truncation error in a finite differempproximation to derivatives
can also be described in terms of its asymptotic behavior.

Failurerate is a measure of how frequently a component has failédda solution,
either for previous iterations of the current problermooraf representative set of
problems. Because failure rate is very data dependean ibe difficult to predict. The
asymptoticconvergence rate measures the rate at which a given numerical algorithm
approaches the solution; for example, near the solit@awton’s algorithm is
guadratically convergent, meaning that the number of diizecuracy doubles with
each Newton iteration. Other algorithms are linearlguperlinearly convergent.
Several metrics fopreconditioner quality are possible. For incomplete factorizations,
one possible metric is the amount of fill relativeatoomplete factorization, given a
particular ordering. Other possible numerical QoS is®tnclude mesh quality, function
smoothness, and stability.

5 Example of Architecture and Metric Use

We now show how the QoS architecture and metricsdotred in Sections 3 and 4 can
be applied to manage the complexity of the Newton sdbwethe driven cavity
simulation described in Section 2.

We first describe how a computational scientist coulgleynstatic metadata in a QoS
historical performance database to aid in selectingtapiar linear solver. The metrics
of most interest in this case ar@mputational costmeasured by wall clock time and
number of nonlinear/linear iterations) aamccuracy(measured by relative residual norm
reduction). For example, the application driver spegiéi nonlinear convergence
criterion to the Newton solver (relative nonlinearidaal reduction of ||f||/4lf <6=107),
and the Newton solver specifies a fixed linear convergeniaion to the linear solver
component proxy (relative linear residual reduction of |j||4k=10"in a maximum of
kmax Krylov iterations). Then, the static metadatarfreimulations represented in the
historical database captures the performance of a vaffiblgse methods that used these
metrics and indicates that a particular linear sgbaxforms best for a set of relevant test
problems. The computational scientist then conjecthagiiis method would also be a
good choice for the current simulation, which usesef@ample, the same nonlinearity
parameters as the initial simulations but a more reéfinesh.

We next demonstrate how a computational scientist @stdemploy dynamic metadata
within the run monitoring database to adapt solutionesgr@s during a given simulation.
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Based on the analysis of static metadata discussed,dheacientist initiates a run on a
driven cavity simulation using a particular method adittear solver. During this
simulation, he increases the model’'s nonlinearity patara significantly and thus also
incorporates pseudo-transient continuation to help hahileglated but more difficult
problem. As the simulation progresses, the run mongataiabase incorporates data
both from an application-based monitor of the nonlineaidual norm and pseudo time
step and from a component-based monitor of the lindeers® performance. As the time
step grows, the linear systems become less well ¢onéi and more difficult to solve,
as evidenced by increases in the actual achieved metriedlafiock time and Krylov
iterations needed to reduce the linear residual norm kgphafied amount. The
analysis and optimization service deduces that the d¢uimear solver is not sufficiently
powerful anymore and thus recommends its dynamic replatamthe midst of the
nonlinear simulation by another method, which has beenrsirothe historical database
to converge more rapidly.

6 Conclusions

In this paper we described an architecture for a QoS-basthsfor composition of
numerical applications. We first described the appbeathat motivate this design and
their features, and from them derived the requirementslyimgeour design. We then
presented the design of an infrastructure fulfilling thresglirements: allowing for QoS-
based composition and monitoring of application componants incorporating
mechanisms necessary for their run-time replacerdntgrove QoS of any particular
run. We also described mechanisms that could perform sbshtstion automatically,
based on a combination of component and application nmowgtdata as well as
mechanisms that could guide substitutions based on reaipdst runs. To make the
operation of this infrastructure possible, we defined Qo&sures specifically targeting
the performance of numerical applications. Finally, ha@xed how our design could be
used in the context of a real application.

We believe that this architecture could simplify and draoally improve the efficiency
of multi-component numerical applications. Where previpadl hoc methods for
composition were used, primarily based on knowledge and ergerof individual
scientists, we now propose a methodical and autompf@dach to such compositions.
We further believe that our solution is generic enoudbetapplied to other application
domains with similar benefits.
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