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Abstract 

 
Realizing the enormous scientific potential of exponentially growing biological information 
requires the development of high-throughput automated computational environments that 
integrate large amounts of genomic and experimental data, and powerful tools for knowledge 
discovery and data mining. To assist high-throughput analysis of the genomes, we have 
developed the Genome Analysis and Databases Update system. GADU efficiently automates 
major steps of genome analysis: data acquisition and data analysis by a variety of tools and 
algorithms, as well as data storage and annotation. We are developing a TeraGrid technology-
based backend for large-scale computations using GADU. GADU can function in either an 
automated or interactive mode via a Web-based user interface. Programs monitor every operation 
in GADU and report the status of the process. This architecture ensures GADU’s robust 
performance and allows simultaneous processing of a large number of sequenced genomes 
regardless of their size. 

 
 
 
Introduction 

 
During the past decade, the scientific community has witnessed an unprecedented 
accumulation of gene sequence data and data related to the physiology and biochemistry of 
organisms. To date, more than 120 genomes have been sequenced and genomes of 587 
organisms are at various levels of completion [GOLD 
http://wit.integratedgenomics.com/GOLD/]. In order to exploit the enormous scientific 
value of this information for understanding biological systems, the information should be 
integrated, analyzed, graphically displayed, and ultimately modeled computationally (1). 
The emerging systems biology approach requires the development of high-throughput 
computational environments that integrate (i) large amounts of genomic and experimental 
data and (ii) powerful tools and algorithms for knowledge discovery and data mining.  Most 
of these tools and algorithms are very CPU-intensive and require substantial computational 
resources that are not always available to the researchers. The large-scale, distributed 
computational and storage infrastructure of the TeraGrid offers an ideal platform for 
mining such large volumes of biological information. Indeed, targeted performance of NSF 
Distributed Terascale Facility and DOE Science Grid amounts to trillions of floating-point 
operations per second (teraflops) and storage of hundreds terabytes of data (2). 

 
The first and most crucial step in genome analysis is the assignment of function to genes. 
Efficiency and accuracy of such predictions are achieved by the use of a variety of state-of-

 1

http://wit.integratedgenomics.com/GOLD/


the-art bioinformatics tools and approaches (e.g., analysis of global similarities (3) (4) (5), 
domain and motif analysis (6) (7) (8), and analysis of the relevant structural (9) (10) and 
functional information). Manual acquisition of diverse data inputs, data submission to 
bioinformatics tools, and collection and processing of the results of analyses required for 
such high-throughput genome annotations is an extremely tedious and time-consuming 
effort and is prone to human error.  

 
To address this problem, we have developed the Genome Analysis and Databases Update 
(GADU), which is an automated, high-performance, scalable computational pipeline for 
data acquisition and analysis of newly sequenced genomes.  GADU allows efficient 
automation of major steps of genome analysis: data acquisition and data analysis by variety 
of tools and algorithms, as well as data storage and annotation. GADU can be used as a 
stand-alone server, or it can be incorporated into established frameworks of other systems 
for analysis of large volumes of sequence data (e.g., WIT (11) in our case). GADU consists 
of three conceptual modules: data acquisition module, data analysis, and data storage 
modules (Figure 1). We are developing a TeraGrid technology-based backend for large-
scale computations using GADU. Programs monitor every operation in GADU and report 
the status of the process and possible errors. This architecture ensures GADU’s 
performance and allows simultaneous processing of a large number of sequenced genomes 
regardless of their size. 

 
 Methods 
 
1. Implementation 
 
Our goal for GADU was to design a flexible architecture that allows modifying and adjusting the 
genome analysis process according to the needs and requirements of a particular user.  The 
advantage of this system is that it can function both in automated mode and interactively, via a 
Web-based interface. This feature is especially important for users who are analyzing genomes or 
using datasets and data libraries that are not found in public databases.   
 
2. Acquisition Module 

Information relevant to life sciences has been accumulated in specialized data repositories (e.g., 
GenBank (12), SwissProt (13), PDB (14), EMBL (15)). These repositories have developed query-
processing capabilities and sophisticated data formats enable efficient navigation of specific 
classes of biological information.  In many cases, data from one source often must be combined 
with data from other sources and warehoused locally, in order to give users information required 
for efficient analysis of the genomes.   

In this section we explain what types of data are acquired and updated by GADU, and we 
describe the steps of the data acquisition process (Figure 2). 

The GADU data acquisition module executes periodic updates of the local server with 
genome data and annotations stored in the public databases such as the NCBI 
(http://www.ncbi.nlm.nih.gov)], JGI (http://www.jgi.doe.gov), TIGR (http://www.tigr.org)], 
PDB, and SwissProt.  The frequency of the update search is specified by the user).   
GADU compares the content of public databases’ directories with local genome storage 
directories, creates a list of the new and updated genomes found in the databases’ ftp 
directories, notifies the user via e-mail. Upon notification, the user may select, via Web 
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interface, the data to be downloaded and stored locally (Figure 3).  Flat files containing 
DNA and amino acid sequence data in Fasta format, as well as annotations relevant to 
particular genome, are automatically downloaded to the local directories using the ftp 
protocol. The sizes of the files vary from genome to genome. The average file size 
downloaded per genome is 30 MB. Files containing sequences in Fasta format are passed 
to the data analysis module (see below) for submission to bioinformatics tools. 
Information from the files containing sequence annotations (e.g., NCBI’s GenBank .gbk 
files or SwissProt releases) is extracted by the parsers of the data storage module and 
automatically deposited in the  local Oracle database.  

 
A number of bioinformatics tools (e.g., Blast and InterPro) require use of database files or 
particular libraries for their performance.  GADU periodically updates these files as well and 
notifies the user, via e-mail, regarding performed updates.  

 
GADU can be also used to download data manually. For manual download the user specifies the 
location of the data to be incorporated into GADU (figure 3) from the Web interface. A user log 
is generated containing the latest uploads to the local directory. Protocols of downloads by 
GADU are automatically submitted to GADU management tables in a database.  Use of GADU 
via the Web interface requires user authentication. 

 
3. Analysis Module  
 
Downloading of the sequences in appropriate format via the data acquisition module triggers the 
data analysis module, and the process of submission of the sequence data to bioinformatics tools 
begins. Currently, GADU allows sequence analysis by three bioinformatics tools: Blast, Blocks, 
and Pfam.  We plan to expand GADU by adding other tools of interest to scientific community 
(e.g., InterPro, TMHMM (16), and Psort (17)).  The user can choose a set of tools for analysis. 
Every time a new or updated genome is downloaded to the local directory, GADU creates a small 
file containing information required for automated submission of the genome to the tools (e.g., 
taxonomic name of the organism, location of the genome’s fasta file in the local directory, 
quantity of sequences in the genome) and informs the user regarding the content of the data 
(Figure 4),  
 
Once the user chooses the genomes to analyze and the tools to be used for the analysis, the 
selected data is deposited to a queue for further submission in parallel to the high-performance 
computing (HPC) resources via PBS jobs. Currently GADU uses two computational resources: 
 

• Chiba City cluster – a 512-CPU Linux cluster with 500 MHz and 512 MB of 
RAM at Argonne National Laboratory 

• Condor pools – 18 Condor pools at the University of Wisconsin-Madison 
 
To increase the scalability of the system, we are implementing a GADU TeraGrid technology-
based backend.  
  
For each job that GADU submits to the HPC clusters, GADU creates a working space specific to 
that job.  The working space contains the input sequences to be submitted to the tools and, upon 
completion of analysis, output from the tools. A number of checkpoints throughout the process 
ensure that each step of analysis is completed successfully.  One critical checkpoint is the point 
of submission of the batch job to the HPC cluster.  At this point, GADU expects to receive a job 
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identification number from the cluster.  If the expected number is not received, the process is 
terminated, and GADU automatically restarts the submission process.  Another checkpoint is 
triggered once GADU receives a signal that the job has been submitted.  GADU must make sure 
that the job is successfully completed. Depending on the job status received from the checker 
(active, idle, blocked or completed), GADU performs different functions.  If the job is in “active” 
status, the cluster is still processing the job, and GADU takes no further action at that moment.  If 
the job’s state is “idle,” the cluster is searching for the necessary quantity of nodes for the job to 
be processed, and once again GADU takes no further action.  If the job is found to be in the 
“blocked” status, something has gone wrong with the job processing, and GADU terminates the 
job. An e-mail message will notify the GADU administrator that a job was blocked and 
terminated, so the administrator can correct the error.  Finally, if the status of the job is 
“completed,” the job ID number cannot be found in the cluster’s queue of jobs, and thus GADU 
assumes that the job has been successfully completed.  To ensure that this is the case, GADU 
checks the working directory that contained the input data files and output of the tools.  First, it 
checks that all expected output files were generated and that there are no empty files.  If this 
check fails, GADU deletes the complete working directory and resubmits the job to the clusters.  
Once the check is successful, GADU is ready to move on to the storage module.  
  

 
4. Storage Module 
 
Storage processes in GADU are triggered automatically by completion of the processes by data 
acquisition module or by the data analysis module. For example, successful download of a new 
annotated genome from NCBI triggers parsing of related information into the Oracle database. In 
other cases, successful completion of the Blast analysis of particular genome invokes output-
parsing scripts in storage module.  
 
The storage module in GADU is represented by the following three entities:  
 
a. Permanent storage contains sequence data and annotations acquired by GADU from public 
databases. We have developed an entity relationships model (ERM) that allows integrating and 
warehousing of various types of annotations in one searchable environment. We have also 
developed parsers that extract information from the database files and loader programs that 
deposit the extracted information in the local Oracle database. Parsers for the outputs of the 
bioinformatics tools (e.g., Blast and Blocks) have also been developed. The information 
extracted from the output files is further used for analyses by additional algorithms or 
visualization programs.  
 
b. Data archive stores flat files containing different releases of genomes and annotations in the 
form of tape archives. Currently GADU has deposited 110 GB of data in our local archive. This 
information might be especially useful during analyses of incomplete genomes for maintaining 
continuity between releases and for future use by additional algorithms.   
 
c. Temporary storage contains acquired data and intermediate outputs of the parsers and analysis 
tools. We are exploring the possibility of using the TeraGrid resources for storing space-
consuming files and archives. 
 
The data storage module also accumulates “bookkeeping” information regarding GADU 
functionality, such as data acquisition protocols and records regarding data processing and 
analysis. 
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Results 
 
We present some examples demonstrating the usefulness of GADU’s automated system for 
genome analysis.  From our experience, the manual process of analyzing a complete prokaryotic 
genome (average number of ORFs equals 4,000) from the time of genome acquisition, through 
analysis by select tools (Blast, Blocks, and Pfam), to depositing of the results into a relational 
database takes anywhere from 6 to 8 working hours by a qualified staff member.  Automation of 
these processes in GADU minimizes the amount of user intervention (Table 1). Thus, the 
processes can be run back to back over a 24-hour period without interruption. Automated 
dataflow in GADU is reliable and stable because of its multiple checking programs, and the user 
can be assured that the process will be reinitiated in case of an error. This increase in throughput 
and robustness of the processes of genome analysis is important, in view of the exponential 
growth of the unannotated sequence data coming from the sequencing projects. Another 
important application of GADU is periodic updates and reanalysis of data using new information 
available in the databases.  
 
Using GADU and the Blast, Blocks, and Pfam tools, we have analyzed and deposited in our local 
(Oracle) database 106 genomes from NCBI. These results will be used for automated 
assignments of functions to genes and further annotations of these genomes 
[http://compbio.mcs.anl.gov] in WIT3 [http://compbio.mcs.anl.gov/wit3].  
 

Conclusions and Future Plans 
 
As shown above, the use of the automated GADU system can substantially decrease the time and 
the amount of user interaction required for genome analysis. Its modular architecture permits 
performing different steps of genome analysis efficiently.  This feature is especially useful for 
simultaneous analysis of multiple genomes. For example, the results of one completed genome 
analysis may enter the data storage process while data analysis module analyzes other genomes. 
 
Availability of new experimental results concerning functions of proteins, previously annotated 
as hypothetical, as well as improvements in sensitivity and accuracy of bioinformatics tools, 
requires periodic revisiting of previously annotated genomes and reassignment of function using 
this newly acquired knowledge. The increased efficiency of genome analysis offered by the 
GADU system considerably simplifies the analysis of newly sequenced genomes as well as the 
previously annotated genomes. 
 
We plan to further develop GADU so it will become a high-throughput, batch genome analysis 
server to be used by the scientific community. Such a server should have a flexible Web-based 
user interface that will allow users to analyze sequence data of interest in the best way that meets 
their scientific goals. For this purpose, we are working on the following improvements to the 
GADU architecture: 
 
Scalability. Addition of the computational resources to the GADU pipeline can substantially 
increase its performance (Figure 5).  
 
In collaboration with the Globus Project (19) we are working on an implementation of GADU 
based on distributed computing technology as a computational backend for genome analysis. We 
plan to use the following TeraGrid  resources: DOE Science  Grid. We plan to use a variety of 
distributed computational resources. As the first step we will adopt the GADU system for 
Argonne’s Data Grid Cluster (20 dual-processor PIII 850 MHz nodes with  512 MB RAM, 2 TB 
of storage, and 2.4.19-rc3-dg kernel). The next step will be to transfer the most computationally 
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intensive parts of the GADU pipeline (Blast) into the TeraGrid architecture (which is IA64). The 
use of 64-bit architecture with its native compiler should produce a tenfold speedup of our 
computations.  We have already started preliminary testing on the 64-bit cluster at Pacific 
Northwest National Laboratory. 
 
Automation and Rrobustness. We are also working on running GADU under the Chimera 
[20] system. Much of bioinformatics data is derived from other data by the application of 
computational procedures (such as Blast and Pfam). The explicit representation of these 
procedures can enable documentation of data provenance, discovery of available 
methods, and on-demand data generation (so-called virtual data). The Chimera virtual 
data system (VDS) combines a virtual data catalog, for representing data derivation 
procedures and derived data, and a virtual data language interpreter that translates user 
requests into data definitions and query operations on the database. The Chimera system 
is coupled with distributed data Grid services to enable on-demand execution of 
computation schedules constructed from database queries. The Chimera VDS provides a 
catalog that can be used by application environments to describe a set of application 
programs ("transformations") and then track all the data files produced by executing 
those applications ("derivations"). Chimera contains a mechanism to locate the "recipe" 
to produce a given logical file, in the form of an abstract program execution graph. These 
abstract graphs are then turned into an executable DAG for the Condor DAGman 
metascheduler by the Pegasus plannerwhich is bundled into the VDS code release.  
Preliminary testing of the Chimera system was conducted on the Argonne’s Data Grid 
cluster, and the testing of  Blast under Condor was done at University of Wisconsin-
Madison. 
 
Expansion of Bioinformatics Tools and Services. Numerous excellent bioinformatics tools and 
algorithms have been developed in the past years. We plan to augment the GADU analysis 
module by adding a number of publicly available tools for sequence genome analysis: tools for 
domain and motif analysis (e.g., InterPro, Psort, and TMHMM), sequence analysis (e.g., FastA 
and ClustalW), and tools for analysis of structural information. 
 
User Interface. We are working on further development of the GADU Web-based user interface, 
so it will allow users to personalize their GADU workspace. Users will be able to upload and 
store genome sequences, process them via an user-selected array of tools, and obtain the results 
of the analyses in various formats (e.g., XML, relational tables, and raw format). 
 
We expect to have a first release of the GADU public server with a TeraGrid backend in May 
2003. 
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 Figure Legends 
Figure 1. The data flow on GADU. The system consists of three separate modules. The first, data 
acquisition module, contains a number of programs that periodically search for data specified by 
user in public databases and notify the user via email if new data of interest have been found and 
downloaded locally. The second, data analysis module, submits the acquired data to specified 
bioinformatics tools and algorithms for analysis.  Because of the need to process massive 
amounts by this module, we are developing the GADU computational backend based on scalable 
TeraGrid technology.  Finally, once the outputs from the algorithms and tools have been 
successfully acquired, they are parsed by the third, data storage module, and deposited to a local 
relational database (Oracle, in our case) for user navigation or for future use by additional 
algorithms and visualization programs.   
 
Figure 2. Acquisition module flow. 
 
Figure 3.  Acquisition module user interface. 
 
Figure 4. Small file containing information required for automated submission of the genome to 
the tools. 
 
Figure 5. Addition of computational resources to the GADU pipeline can substantially increase its 
performance. 
 
 
 
 
 Table 
 
Table 1. Total Time for Completion of One Prokaryotic Genome (4,000 sequences) in GADU.  
Average time listed is based on 18-node usage. 
 

Data acquisition 1 minute 
Data analysis 4 hours 
Data storage 1 hour 
    Total Time 5 hours 
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Figure 1. The data flow on GADU. 
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Figure 4. Small file containing information required for automated submission of the genome to 
the tools. 
 

 11



 
Figure 5. Addition of computational resources to the GADU pipeline can substantially increase its 
performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 12


	Abstract
	Introduction

