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Abstract

In a time when computational and data resources are distributed around the
globe, users need to interact with these resources and each other easily and efficient.
The Grid, by definition, represents a connection of distributed resources that can
be used regardless of the user’s location. We have built a prototype visualization
system using the Globus Toolkit, MPICH-G2, and the Access Grid in order to
explore how future scientific collaborations may occur over the Grid. We describe
our experience in demonstrating our system at ¢Grid2002, where the United States
and the Netherlands were connected via a high-latency, high-bandwidth network.
In particular, we focus on issues related to a grid-based application that couples
a collaboration component (including a user interface to the Access Grid) with a
high-resolution remote rendering component.
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1 Introduction

Today’s typical simulation involves complex structures and phenomena. To
fully visualize all the detail is a challenging task, often as computationally de-
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manding as the simulation itself. Scientists often find that standard desktop
displays do not have enough resolution to visualize the data at the resolution
that is representative of the calculation. Moreover, simulations today are rarely
the result of a sole investigator and are more likely the result of a collaboration
that may span multiple geographically distributed sites. In response to these
needs, we have developed a prototype system that uses the Access Grid to con-
nect remote users across the campus, across the country, or across the world,
in a virtual space. The Access Grid is augmented with a shared user-interface
for controlling the remote real-time rendering of a low-resolution version of
the datasets. Using the Access Grid to view the low-resolution images, the
collaborative team decides on views, variables, time-steps, and isovalues, the
team also can create a high-resolution rendering of the image for near-real-time
viewing or later use.

This paper discusses our experiences in developing the prototype system and in
using the system both during the :Grid2002 conference and in the weeks after
the conference. In Section 2 we give an overview of the system, in Section 3
we describe application, and in Section 4 our performance results. In Section
5 we draw conclusions based our :Grid2002 experience, and we outline our
plans for enhancing the system.

2 Infrastructure

The prototype system described in this paper uses a wide variety of tools
and technology from small software libraries such as XML-RPC,! to large
software systems such as the Globus Toolkit® 2 and MPICH-G2,? to physical
infrastructure built from a collection of software and hardware components
such as the Access Grid*. In the following subsections we present an overview

of these resources while using GridF'TPwhile using GridF'TP.
2.1 Access Grid

The Access Grid is an ensemble of resources that supports group-to-group
interaction at a distance (see Figure 1). It consists of large-format multime-
dia displays, presentation and interactive software environments, interfaces to
Grid middleware, and interfaces to remote visualization environments. The

L xmlrpc-c.sourceforge.net

2 www.globus.org. The Globus Toolkit is a registered trademark held by the Uni-
versity of Chicago.

3 www.globus.org/mpi/

1 www.accessgrid.org



Fig. 1. Photograph of one of Argonne National Laboratory’s Access Grid nodes,
running the ¢Grid2002 collaborative application. Users are seated on a couch in
front of the display and are able to view remote users through video windows and
speak to them in a natural manner. Users at each site are able to interact with the
low-resolution visualization in order to determine the proper view and values for
the generation of a high-resolution version.

Access Grid enables distributed meetings, collaborative teamwork sessions,
seminars, lectures, tutorials, and training. The Access Grid design point is
small (3 - 20 people per site) but promotes group-to-group collaboration and
communication [2]. Large-format displays integrated with intelligent or ac-
tive meeting rooms are a central feature of Access Grid nodes. Access Grid
nodes are designed spaces that explicitly support the high-end audio and vi-
sual technology needed to provide a high-quality compelling and productive
user experience. Access Grid nodes are connected via the high-speed Internet,
typically using multicast video and audio streams.

2.2 The Globus Toolkit

The Globus Toolkit is a collection of software components designed to support
the development of applications for high-performance distributed computing
environments, or “Grids” [4,5]. Core components typically define a protocol
for interacting with a remote resource, plus an application program interface



(API) used to invoke that protocol. Higher-level libraries, services, tools, and
applications use core services to implement more complex global functionality.
The various Globus Toolkit components are reviewed in [6] and described in
detail in online documentation and in technical papers.

We briefly describe one component of the Globus Toolkit, GridFTP [1]. GridFTP
is the preferred protocol for transferring data on the Grid. GridF'TP starts with
RFC 959 (FTP), leveraging the ubiquity of the standard FTP protocol, and
then makes backward-compatible extensions to allow for such functions as re-
liable restarts, performance monitoring, and coordinated multi-host transfersy
necessary for successful data transfer over the Grid.

As RFC 959 describes, FTP is a two-channel protocol comprised of a control
channel and a data channel. The control channel is responsible for coordinat-
ing the transfer, and the data channel is responsible for shipping the data from
starting point to endpoint. An important extension to the RFC 959 provided
by GridFTP is the new data channel protocol MODE E. MODE E is a reli-
able, ordered, parallel-stream, multihost, TCP-based protocol. Whose goal is
to provide a fast end-to-end transfer protocol across wide area networks. It
delivers this goal by allowing many-to-many multihost transfers and by pro-
viding many TCP streams to be used when sending from one host to another.

2.8 MPICH-G2: A Grid-Fnabled MPI

MPICH-G2 [9] is a complete implementation of the MPI-1 standard that uses
Globus Toolkit services to support efficient and transparent execution in het-
erogeneous Grid environments, while also allowing for application management

of heterogeneity. We briefly describe how MPICH-G2 uses GridFTP.

Once an application has started, MPICH-G2 selects the most efficient com-
munication method possible between any two processes, using vendor-supplied
MPI (vMPI) if available, or Globus communication (Globus 10) with the op-
tion to utilize parallel sockets via Globus” GridFTP, with Globus Data Con-
version (Globus DC) for TCP, otherwise.

MPICH-G2 applications that transfer large blocks of data in single messages
from one process to another over a high-bandwidth network (e.g., visualiza-
tion data over an optical network) may optionally instruct MPICH-G2 to
use a set of parallel sockets between a pair of designated processes to bet-
ter use the available bandwidth. MPICH-G2 delivers this option to its ap-
plications through the use of existing MPI idioms. As an illustration, Fig-
ure 2 depicts an excerpt from an MPICH-G2 application in which 64 parallel
sockets are established between MPI_COMM_WORLD ranks 0 and 1. In that ex-
ample both processes start by setting values that (a) designate each other



#include <mpi.h>

int main(int argc, char *xargv)
{
int numprocs, my_id;
struct gridftp_params gfp; /+* MPICH-G2 structure in mpi.h */

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_id);

if (my_id == 0 || my_id == 1) {
/* must set these three fields */
gfp.partner_rank = (my_id 7 0 : 1);
gfp.nsocket_pairs = 64;
gfp.tcp_buffsize 256%1024;

MPI_Attr_put(MPI_COMM_WORLD, MPICHX_PARALLELSOCKETS_PARAMETERS, &gfp);
} /* endif x/

/*

*

from this point all messages exchanged between
MPI_COMM_WORLD ranks O and 1 will be automatically
partitioned and transported over parallel sockets

*  *

*/

MPI_Finalize();

} /* end main() */

Fig. 2. An excerpt from an MPICH-G2 application that establishes 64 parallel sock-
ets each with a 256 KB TCP buffer between processes ranked 0 and 1.

as partners, (b) request 64 parallel sockets, and (c¢) request a 256 KB TCP
buffer size. After setting these values, the processes place their request for
MPICH-G2 by assigning their specified values to the communicator attribute
MPICHX_PARALLELSOCKETS_PARAMETERS. This technique of using communica-
tor caches to influence MPICH-G2’s behavior was used successfully in a similar
situation in which putting data into an MPICH-G2 communicator triggered
a quality-of-service-enabled line [10]. Once the processes “put” their values
into their communicators, MPICH-G2 automatically partitions all messages
between them and sends them, using GridF'TP’s MODE E data channel pro-

tocol, over parallel sockets.



3 Application Overview

The application we developed as our prototype system connects two com-
ponents: a collaborative component and a high-resolution remote rendering
component, the two components that can either operate independently or
as a coupled pair. The two pieces form an end-to-end prototype for interac-
tively exploring large datasets and the production of high-resolution images
in collaboration with colleagues who can be geographically distributed. Our
application uses data produced by the University of Chicago’s Center fo Astro-
physical Thermonuclear Flashes Center®. The data is stored in well-defined
HDF5 files that represent a multiresolution block structure composed of mul-
tiple cells. Blocks tend to be constructed of either 8° cells if the data is cell
centered or 9% cells if the data is vertex centered. Block sizes vary in spatial
dimension depending on level of refinement but always contain the same num-
ber of cells. This fact can be exploited to produce low-resolution renderings
from the same dataset used in the high-resolution cases. Using only the corner
data of the blocks for the low-resolution case, one can significantly reduce the
amount of data needed for isosurface generation and hence the time to render.
For high-resolution isosurfacing and rendering all the data available is used.
The following two subsections describe each of these components.

3.1 Collaboration Component

The collaboration component (see figure 3) is constructed to work in the Access
Grid environment described earlier and make use of a low-resolution remote
rendering server to produce the images for the collaborative environment.
Interacting with an interface that sends mesages to the remote visualization
server, users can manipulate the viewpoint, number of isosurfaces, isosurface
values, datasets, and dataset variables viewed. The user interface uses XML-
RPC commands issued from any one of the user-interfaces participating in the
session. Once a set of instructions is received by the remote rendering server,
the appropriate files and variables are loaded. The low-resolution visualization
server, built with the Visualization Toolkit (vtk) [11], is currently capable of
generating up to 20 different isosurfaces for a given variable. The resulting
isosurface(s) are then rendered by using a sort-last parallel renderering scheme
with the scene decomposed as if the final image were divided into an n x m set
of tiles. This decomposition is done by using the Chromium library [8], which
sorts the polygonal data for rendering on the appropriate tile. Chromium is
coupled with an Argonne-developed Chromium stream processing unit that
creates a set of H261-encoded video streams. These video streams are then

> www.flash.uchicago.edu
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Fig. 3. The collaboration component of the prototype. Access Grid nodes interact
via a user interface to select data stored on the network. The selected data is then
visualized by using the low-resolution visualization server to generate video output,
which is then multicast back to all interested Access Grid nodes.

multicast across the Internet to all participants. The participants then run a
video client developed in conjunction with the stream generation to reassemble
the multiple video streams into what looks like a single source at the Access
Grid node. Both the video generation and video reassembling components can
be tiled in any n x m combination, although they must match. When used
in conjunction with an Access Grid meeting, a typical configuration is 3 x 2
yielding an overall resolution of 1056 x 576.

3.2  High-Resolution Remote Rendering Component

The high-resolution rendering server is a parallel visualization server prototype
that facilitates the generation of isosurface(s) using the full dataset and the
generation of images from the surface(s) (see Figure 4). These images can be
saved to a file for later viewing or streamed in near-realtime to a tiled display to
be viewed when the image is ready. Both of these modes were used, during the
1Grid2002 conference. The pieces of the final image were sent to Amsterdam
along with zbuffer for compositing on the cluster there. As new pieces arrived
they were merged with pieces already in place. This strategy gave viewers a
progressive final image displayed on a four- tile LCD wall. Subsequent tests
have used the “image saved to a file” mode, since the tiled display is no longer
in place.

The remote server receives its input of camera values and visualization pa-
rameters either from the command line in stand-alone mode or from the col-
laboration application in coupled mode. Once this information is received, the
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Fig. 4. Diagram of high-resolution component of the application. After users have
finished interacting with the low-resolution version of the data, they are able to
send a message from the GUI to the waiting high-resolution application in order
to initiate the generation of a new image. The new images during ¢Grid2002 were
2048 x 1536. The distributed /parallel visualization server receives data in parallel
from the same data location as the low-resolution component. The data was then
processed and sent by using MPICH-G2 enabled with GridETP over the wide-area
connection to Amsterdam for compositing and display on EVL’s tiled LCD display.

data is loaded and isosurfaced in parallel, then the rendered subpieces and
zbuffer sent are to the compositing component. The compositing component
can either be collocated with the visualization/rendering component or dis-
tributed across the network as done in this case. The compositing component
is responsible for merging multiple framebuffers together by looking at the
contents of the zbuffer. The prototype does not use the alpha component and
therefore does not need to be concerned with render order.

4 Bandwidth Results

The ¢Grid2002 conference provided unique access to a high-bandwidth, high-
latency network. We took this opportunity to investigate one strategy to effi-
ciently utilize as much of the available bandwidth as possible. Based on the en-
couraging results achieved by Allcock et al. [1], we adopted their same general
strategy in using GridFTP. Briefly, this strategy involves (1) simultaneously
sending many large messages and (2) partitioning each message and send-
ing the pieces over multiple connections each using the Transmission Control

Protocol (TCP).

Allcock et al. ran their application over an OC-12 network having a lower
latency (40 ms) and lower bandwidth (655 Mb/s) than the network available
at 1Grid2002. Nevertheless, we did not achieve the same relative bandwidth
utilization as Allcock et al. instead, at the :Grid2002 conference we were able



to achieve only 160 Mb/s with 24 renders talking to 4 compositors and not
using the GridFTP infrastructure.® After the iGrid2002 conference, we were
able to achieve approximately 316 Mb/s using same configuration described
above but this time using GridF'TP. This bandwidth was achieved with 32
parallel sockets per message, a 2 MB TCP buffer, and an individual message
length of 21 MB transmitted over 192 messages for a total transfer of 4 GB.

The direct explanation of our poor bandwidth utilization can be found in the
network interface card (NIC), the implementation of TCP in our version of
Linux, and the TCP protocol itself. High-latency, high-bandwidth networks
(“long fat pipes”) like the one at ¢Grid2002 induce very large congestion win-
dows for optimal bandwidth utilization. The TCP protocol starts by expo-
nentially increasing the sender-side congestion window until it encounters its
first congestion event, which it uses as a trigger to cut the size of the current
congestion window in half. It then enters congestion avoidance mode, where
it increases the window only linearly (by only 1,500 bytes for a standard TCP
connection) per round-trip message. After 1Grid2002 we discovered that the
Linux implementation of TCP encountered a congestion event triggered by a
depletion of network NIC buffers. While the depletion of NIC buffers is not a
congestion event as defined by TCP (i.e, dropped packet), it is reasonable for
Linux to treat the case as such.

Nevertheless, the poor bandwidth utilization we experienced cannot be en-
tirely blamed on the NIC or the Linux TCP implementation. At some level
TCP itself, specifically its congestion avoidance strategy, makes it unsuitable
for high-latency, high-bandwidth networks. In [3] Floyd addresses this funda-
mental limitation of TCP by proposing a modification to TCP’s congestion
control mechanism for use with TCP connections with large congestion win-
dows.

5 Conclusion

Multiple lessons can be learned from the experience of building this prototype.
MPICH-G2, with its recent extension of GridF'TP support, has demonstrated
its improvement in the utilization of a network pipe in a wide-area environ-
ment. Along with this lesson is a more subtle lesson of the need to support a
mechanism for transparent characterization of the network that can be done
automatically based on current network conditions and can adjust the appli-
cation without user intervention.

6 During the week of 1Grid2002 we were unable to use the GridFTP infrastructure
because of a bug in the application code.



Perhaps the most important lesson is that the congestion avoidance mechanism
in TCP makes it a poor choice for high-latency, high-bandwidth networks be-
cause of the large congestion windows required for efficient bandwidth utiliza-
tion induced by such networks. However, the basic strategy used by GridFTP
of partitioning large messages and simultaneously sending pieces over multi-
ple streams is still worthy of investigation. This same general technique has
proved successful when using the User Datagram Protocol (UDP) [7,12]. We
plan to modify MPICH-G2 so that it too sends large messages over multiple
UDP streams; we will deliver that capability to applications in the same con-
venient manner as we did with GridFTP, that is, by setting values of a few
fields in a structure and then using existing MPI idioms (i.e., communicator
cache and MPI_Attr_put) to configure a point-to-point link.
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