Simulated Annealing for Optimal Pivot Selection
in Jacobian Accumulation

Uwe Naumann® and Peter Gottschling?

! Mathematics and Computer Science Division, Argonne National Laboratory
naumann@mcs.anl.gov,
? Department of Computer Science, University of Hertfordshire, College Lane,
Hatfield, UK
P.1.Gottschling@herts.ac.uk

Abstract. We report on new results in logarithmic simulated annealing
applied to the optimal Jacobian accumulation problem. This is a conti-
nuation of work that was presented at the SAGA’01 conference in Berlin,
Germany [16]. We discuss the optimal edge elimination problem in line-
arized computational graphs [15] in the context of linear algebra. We
introduce row and column pivoting on the extended Jacobian as analogs
to front and back edge elimination in linearized computational graphs.
Neighborhood relations for simulated annealing are defined on a meta-
graph that is derived from the computational graph. All prerequisites for
logarithmic simulated annealing are fulfilled for dyadic pivoting, which
is equivalent to vertex elimination in linearized computational graphs
[7]. For row and column pivoting we cannot yet give a proof that the
corresponding elimination sequences are polynomial in size. In practice,
however, the likelihood for an exponential elimination sequence to oc-
cur is negligible. Numerical results are presented for algorithms based
on both homogeneous and inhomogeneous Markov chains for all pivo-
ting techniques. The superiority of row and column pivoting over dyadic
pivoting can be observed when applying these techniques to Roe’s nu-
merical flux [17].

Keywords. Jacobian matrices, dyadic pivoting, row and column pivoting, (lo-
garithmic) simulated annealing

1 Background

Derivatives of vector functions that represent mathematical models of scientific,
engineering, or economic problems play an increasingly important role in modern
numerical computing. They can be regarded as the enabling key factor allowing
for a transition from the pure simulation of the real world process to the opti-
mization of some specific objective with respect to a set of model parameters.
For a given computer program that implements an underlying numerical model
automatic differentiation (AD) [3—6] provides a set of techniques for transform-
ing the program into one that computes not only the function value for a set of
inputs but also the corresponding first and higher derivatives.



2 Uwe Naumann and Peter Gottschling

A large portion of the ongoing research in this field is aimed towards the
improvement of the efficiency of the derivative code that is generated. Success-
ful methods are often built on a combination of classical compiler algorithms
and the exploitation of mathematical properties of the code. In this paper we
consider the problem of minimizing the number of floating point operations per-
formed by those parts of the derivative code that do not depend on the flow of
control, for example, basic blocks [1]. Approximate solutions of the corresponding
combinatorial optimization problem are obtained by exploiting the associativity
of the chain rule. Before stating the problem formally as an elimination method
in a system of linear equations we present a brief introduction to the principles
of AD. We provide background information that we consider essential for the
further understanding of the material covered by subsequent sections.

Consider the following Fortran subroutine:

SUBROUTINE EX (n,x)
INTEGER :: n
REAL, DIMENSION(n), INTENT(INOUT) :: x

DO i=1,n-1
x(i)=x(i)*sin(x(i)*x(i+1))
x(i+1)=x(i)*x(i+1)
x(i)=cos(x(i))

END DO

END SUBROUTINE EX

The final value of x = (x(1),...,x(n))T is computed from its start value by
n-1 executions of the statements that form the body of the loop. The code
implements a vector function F' : IR™ — IR™ of the form y = F'(x). After running
the example code the values of y happen to be stored in x in our case. An example
similar to the body of the loop was used in [16] to introduce vertex elimination
techniques in linearized computational graphs and the resulting combinatorial
optimization problem.

Suppose that one is interested in the Jacobian matrix F' of F, that is the
matrix of the partial derivatives of the outputs with respect to the inputs. It is

defined as 5
F'= F'(x) = <ﬂ>
0zi ) iz,

where z; denotes the input value of x(1) and y; the corresponding output value.
The forward mode of AD [6][Chapter 3] transforms the code semantically such
that in addition to the function value the product of the Jacobian with some
direction x in the input space is computed. The result of this transformation is
an implementation of the function

sLn

(y,¥) = F(x,%) = (F(x),F'(x) - %)

Given such a program the Jacobian itself can be computed by letting the direc-
tions x range over the Cartesian basis vectors in IR™ since, obviously, F' = F'-1,,,



Simulated Annealing for Optimal Pivot Selection in Jacobian Accumulation 3

where I, denotes the identity matrix in IR"™. How is this transformation per-
formed?

The statements of the loop body can be decomposed into a sequence of scalar
assignments of the results of all elemental arithmetic operators and intrinsic
functions to locally unique intermediate variables z1, z2, z3. This code list
can be augmented by statements that compute for all elemental assignments
the local partial derivatives a,...,h of the left-hand side with respect to the
arguments on the right-hand side.

DO i=1,n-1
a=x(i+1); b=x(i)
z1=x (i) *x(i+1)
c=cos(z1)
z2=sin(z1)
d=z2; e=x(i)
2z3=x (1) *z2
f=x(i+1); g==z3
x(i+1)=z3*x(i+1)
h=-sin(z3)
x(i)=cos(z3)
END DO

The resulting code is often referred to as the linearized code list. The next trans-
formation step associates directional derivative components with all input, in-
termediate, and output variables, and it combines the well-know differentiation
rules with the chain rule to generate a tangent-linear version of the code.

SUBROUTINE D_EX (n,x,1,d_x)
INTEGER :: n,l
REAL, DIMENSION(n), INTENT(INOUT) :: x
REAL, DIMENSION(n,1), INTENT(INOUT) :: d_x
REAL :: z1,z2,z3,a,b,c,d,e,f,g,h
REAL, DIMENSION(1) :: d_zl, d_z2, d_z3

DO i=1,n-1
a=x(i+1); b=x(i)
d_zl=a*d_x(i,:)+bxd_x(i+1,:)
z1=x (i) *x(i+1)
c=cos(z1)
d_z2=c*d_zl1
z2=sin(z1)
d=z2; e=x(i)
d_z3=d*d_x(i,:)+exd_z2

! Software tools for AD usually avoid the generation of trivial assignments of the form
a=x(i+1). We decided to leave them in the code to facilitate an easier understanding
of the concepts that forward mode AD is built on.



4 Uwe Naumann and Peter Gottschling

z3=x(1) *z2
f=x(i+1); g==z3
d_x(i+1l,:)=f*d_z3+gxd_x(i+l,:)
x(i+1)=z3*x(i+1)
h=-sin(z3)
d_x(i,:)=h*d_z3
x(i)=cos(z3)
END DO

END SUBROUTINE D_EX

The directional derivative components are denoted by the d_ prefix. They are
vectors in IR™ as in the forward vector mode of AD [6][Chapter 3]. All derivative
propagation statements must be interpreted as vector operations of the form
Zz=a-Xx+0b-y where z,x,y € IR" and a,b € IR. The above code uses Fortran
array operation syntax. Our measure of complexity of the tangent-linear code is
the number of scalar floating-point multiplications performed in addition to the
arithmetic operations that are required to built the linearized code list. Hence,
we count, only multiplications that are performed during the propagation of the
directional derivatives. It is straight-forward to verify that the corresponding
value for our example is equal to 8n(n — 1). The derivative propagation part
of a single execution of the loop body performs 8n multiplications, n per local
partial derivative a,...,h. The number of iterations is n — 1.

Preaccumulation techniques are based on the observation that the local par-
tial derivatives can be combined according to the chain rule [7] which may result
in a decreased number of potential factors in the directional derivative propaga-
tion part of the corresponding tangent-linear code. This transformation is equiv-
alent to a transformation of the linearized computational graph into a bipartite
form as shown, for example, in [16]. For our example the preaccumulation of the
local Jacobian reduces the number of multiplications in the directional derivative
propagation to four. 2

SUBROUTINE D_EX_BB (n,x,1,d_x)

INTEGER :: n,1l

REAL, DIMENSION(n), INTENT(INOUT) :: x

REAL, DIMENSION(n,1), INTENT(INOUT) :: d_x

REAL :: z1,z2,z3,a,b,c,d,e,f,g,h,ec,eca,ecb,jl1,j12,j21,j22
REAL, DIMENSION(1) :: d_tmp

DO i=1,n-1
a=x(i+1); b=x(i)
z1=x(i)*x(i+1)
2 There are two inputs and two outputs, and the local Jacobian is dense. By inspection,

we know that x (i) and x(i+1) are always distinct. In general, this information needs
to be provided by alias / array section analysis [1].



Simulated Annealing for Optimal Pivot Selection in Jacobian Accumulation 5

c=cos(z1)
z2=sin(z1)
d=z2; e=x(i)
z3=x(1) *z2
f=x(i+1); g=z3
x(i+1)=z3*x(i+1)
h=-sin(z3)
x(i)=cos(z3)
ec=e*c
eca=d+ecxa; ecb=ecxb
jll=hx*eca
jl2=h*ecb
j21=f*eca
j22=g+f*xecb
d_tmp=j11*d_x(i,:)+j12%d_x(i+1,:)
d_x(i+1,:)=j21*d_x(i,:)+j22*d_x(i+1,:)
d_x(i,:)=d_tmp
END DO

END SUBROUTINE D_EX_BB

The preaccumulation of the Jacobian entries j11, j12, j21, j22 can be performed
using vertex elimination techniques at a cost of seven multiplications as shown
in [16]. The corresponding code computes intermediate local partial derivatives
ec,eca, and ecb. The following derivative propagation requires 4n multiplica-
tions. 2 Consequently, the number of multiplications performed by the tangent-
linear code that uses preaccumulation is (74+4n)(n—1). For large n this represents
an improvement by a factor that is close to two. Moreover, the preaccumulation
itself can be done in different ways by exploiting the associativity of the chain
rule. The improvements are not very large for small codes. However, they can
become more signifcant if large parts of the program are subject to preaccumu-
lation. An example is discussed in Section 5.2.

The paper is structured as follows: In Section 2 we state the preaccumulation
problem as a combinatorial optimization problem on the tangent-linear system
of equations. The elimination techniques that are used to solve this system are
introduced in Section 3 together with an example. The elimination problem is
discussed in the context of simulated annealing in Section 4. Numerical test are
presented in Section 5. The paper resumes with conclusions drawn in Section 6.

2 Problem Description

The optimal preaccumulation of local Jacobians of basic blocks in tangent-linear
and adjoint models of numerical simulation programs is a highly desirable feature

® The assignment to d_tmp is required to assure correctness of the derivative code.
This is due to x being both input and output of the basic block that represents the
loop body



6 Uwe Naumann and Peter Gottschling

of modern software tools for automatic differentiation [6]. Hard combinatorial
optimization problems must be solved to determine near-optimal elimination se-
quences on the underlying linearized computational graphs [14] or, equivalently,
on the extended Jacobian matrix (see below). Local heuristics have been de-
veloped to obtain good approximations to the solutions of these problems [2,
7,12]. If the resulting derivative code is to be used extensively over a long pe-
riod of time, then more expensive techniques, such as simulated annealing, can
be employed to, possibly, achieve further improvements for crucial parts of the
computation, for example, for CFD-kernels [17].

We consider numerical simulation programs that implement non-linear vector
functions

F:R"DD—-R™:x+—y=F(x)

The Jacobian matrix of F' is denoted by

F' = F'(xq) = <3yi (x0)>“""’m

amj j=1,...n

AD provides a set of techniques for generating derivative code for F, such that,
for example, F' can be computed with machine accuracy.

The code list of F' ensures that each assignment creates a different variable
name. A given input x determines the flow of control uniquely and the corre-
sponding code list becomes a sequences of, in general, non-linear assignments

vj = @i (Vi)i<j

where 7 = 1,...,¢9 and ¢ = p + m. The number of intermediate variables is
denoted by p. Following the notation in [6], the set of arguments of ¢; is denoted
as {v; : 4 < j}, that is ¢ < j if v; is an argument of ;. In AD the elemental
functions ¢; are assumed to be the elementary arithmetic operators and intrinsic
functions provided by the programming language that is used to implement
F. Furthermore, we set x; = vi—pn, ¢t = 1,....n, 2 = vk, k = 1,...,p, and
Yj = Uptj, J = 1,...,m. For clarity of the following argument we assume that
the dependent variables are mutually independent. Obviously, this must be the
case for all independent variables too.

Source transformation tools for AD can be used to generate tangent-linear
and adjoint models automatically for a given program for F. As before, a given
argument x of F' determines the flow of control uniquely. Tangent-linear models
associate directional derivatives v; with every code list variable fori = 1—n,...,q

and they compute
0= ciitti
i<
for j =1,...,q and where

- _ Ogj(vi)ij
=T g0



Simulated Annealing for Optimal Pivot Selection in Jacobian Accumulation 7

For the purpose of this paper it is sufficient to introduce the formalism for
tangent-linear models. Analogous results hold for adjoint models. Both tangent-
linear and adjoint models rely on the existence of jointly continuous partial
derivatives for all elemental functions ¢;, j =1,...,¢q, on open neighborhoods
D; ¢ RWE=3} of their respective domains.

A tangent-linear model represents a system of linear equations that can be
written in matrix form as follows.

B ()

where C' € R?*("*P) ig the extended Jacobian that is defined as

i=1,...,

¢ = (cjyi)Z=1fn,?..,p (2)
with local partial derivatives c¢;;. The computation of y = F' - % can be inter-
preted as the solution of Equation (1) for y in terms of x. To do so we consider
elimination techniques on C. Following the notation in [6] the extended Jacobian
C can be partitioned as follows.

- (35)

where B € IRP*", L € IRP*P, R € IR™*", and T' € IR™*P. Since the structure of
C is induced by a code list the matrix L = (I ;);,i=1,...,, must be strictly lower
diagonal, that is [;; = 0 if i > j. Solving Equation (1) for y in terms of x is
regarded as the elimination of all non-zero elements in B, L, and T

3 Elimination Techniques

3.1 Dyadic Pivoting

Dyadic pivoting (DP) is equivalent to vertex elimination in linearized compu-
tational graphs as introduced in [7]. In C some j € {1,...,p} is picked and
the outer product of the jth row with the jth column is added to the corre-
sponding submatrix of C' that is spanned by the (j 4+ 1)th, ..., ¢th rows and by
the (1 —n)th,...,(j — 1)th columns. All elements in both the jth row and the
jth column are set to zero. This simultaneous row and column elimination is
expressed by the following equation.

Cj =C +Célje] C - Celj — Cej (4)

where e; is the jth Cartesian basis vector in IR? and e is the (n+ j)th Cartesian
basis vector in IR"*?. The proof for the correctness of Equation (4) can be found
in [7]. It comes as an immediate consequence of the chain rule.

The problem of finding an order of the pivots that minimizes the fill-in has
been shown to be NP-complete in [9]. The closely related optimal Jacobian



8 Uwe Naumann and Peter Gottschling

accumulation problem (OJA) for vertex elimination in linearized computational
graphs is also conjectured to be intractable. If this conjecture is true, then the
same applies to the dyadic pivoting problem in extended Jacobians.

The two special orderings that pick j accordingto j =1,...,pand j =p,...,1
are essentially equivalent to the sparse forward and reverse mode of AD, respec-
tively, as pointed out in [6].

Logarithmic simulated annealing has been applied successfully to the vertex
elimination problem in linearized computational graphs in [16]. The two pivo-
ting techniques to be introduced next represent refinements of dyadic pivoting.
Their use in simulated annealing algorithms and the definition of appropriate
neighborhood relations are discussed in Section 4.

3.2 Row Pivoting

Row pivoting is equivalent to front edge elimination in linearized computational
graphs as introduced in [14]. The name is motivated by the choice of a particular
element inside a given row. In C a pair of pivots (j,7), such that j € {1,...,p},
i €{l—mn,...,p}, j >i,is picked, that is the ith element in the jth row of C,
and the product of ¢;; and the jth column is added to the ith column of C. The
entry c;; is set to zero. If the elimination of ¢;; results in the jth row becoming
equal to the zero vector in JR", then the entire jth column is also set to zero.
This procedure is expressed by the following equation.

Cijiy =C +e] CeiCel —el Cel . (5)

In addition,
Clii) = Ciy = Ciie; if €] Ciay =0

The latter is required to avoid unnecessary floating-point operations during the
elimination procedure. Otherwise, the solution of Equation (1) for y would also
give a solution for z in terms of x. Although this might be useful derivative in-
formation in some cases we are not interested in its computation in the current
context. The proof for the correctness of Equation (5) is an immediate con-
sequence of a front edge elimination sequence being a special face elimination
sequence as described in detail in [15]. The proof is based on the ideas presented
in [7].

3.3 Column Pivoting

In column pivoting we choose an element inside a given column. This technique
is equivalent to back edge elimination in linearized computational graphs [14].
In C a pair of pivots (,7) such that i € {1,...,p}, 7€ {1,...,q}, and j > i, is
picked, that is the jth element in the ith column of C, and the product of ¢; ;
and the ith row is added to the jth row of C. The entry c;; is set to zero. If the
elimination of ¢;; results in the ¢th column becoming equal to the zero vector in
IRY, then the entire ith row is also set to zero. Formally,

Cujy=C+ ejTCe;elTC’ — e;‘.r’C’e; , (6)



Simulated Annealing for Optimal Pivot Selection in Jacobian Accumulation 9

where the notation is the same as in Section 3.2. Again,
Cli) = Cigy — € Clig) i Clijyei =0

Remark 1 Dyadic pivoting is a special case of both row and column pivoting.
Picking j as a dyadic pivot is equivalent to choosing row pivots (j,i) such that
i1=1-—mn,...,7—1. Similarly, the elimination resulting from making j the pivot
can be performed by choosing column pivots (j,i) such thati=j+1,...,q.

Notation 1 Mized sequences of row and column pivots are denoted by RCP. The
extended Jacobian that is obtained by applying some RCP [(i1,j1),- .-, (ik,Jk)]
to C' is denoted by Ci(;, j1),....(ix.jn)]- An RC-pivot (i, j) is a row pivot if i > j,
and it is a column pivot if i < j. The application of some dyadic pivot sequence
(DP) li1, ... ,ix] to C is denoted by Criy, ..., ix]. RCP’s and DP’s can be mized.
For example, C(; j),:, where i < j is the extended Jacobian that is derived from
C by choosing (i,7) as a column pivot followed by the elimination resulting from
making © the dyadic pivot.

Remark 2 The elemental arithmetic operations in Equation ({)-(6) are fused
multiply adds (fma) of the form cy; = ck,; + ci jcji- Our objective is to compute
a sequence of pivots that minimizes the number of fma’s required to compute
the Jacobian starting from a given extended Jacobian. For DP’s this problem is
equivalent to the optimal vertex elimination problem in linearized computational
graphs [7]. When considering RCP’s one is solving the optimal edge elimination
problem in linearized computational graphs [14].

3.4 Example

We consider the extended Jacobian C of the lion graph [14] representing the
linearized computational graph of a vector function F : IR> — IR*. C'is given as

C1,—-1 C1,0 0 O

0 0 C21 0

_ 0 0 0 C3,2
=190 0 o i
0 0 0 C5,2

0 0 cs106,2

The Jacobian F' can be accumulated based on the dyadic pivot sequence [1,2]
by applying Equation (4) to get

0 0 00
C2,—1 C2,0 00

Crio = €3,2C2,—1 cgc20 00 ’
' C4,2C2,—1 capc2o 00
C5,2C2, 1 cs2c20 00

C6,—1 + C6,2C2,—1 C6,0 + C6,2C2,0 00



10 Uwe Naumann and Peter Gottschling

where ¢2, 1 = ¢2,1€1, 1, €20 = C2,1C1,0, C6,—1 = C6,1C1, 1, and cg,0 = cg,1¢1,0. The
Jacobian F' appears as the (4 x 2)-matrix in the lower left corner of Cfy o). Its
accumulation based on the given dyadic pivot sequence requires twelve fma’s.
Alternatively, F" can be computed as Cf, 17 at exactly the same cost.*

Choosing (j,7) = (1,0) as a row pivot and performing the corresponding
elimination transforms C' into

C1,—1 0 0 0
0 e21c10c21 O

0 0 0 C3,2
G =] 0 0 0 cre

0 0 0 C5,2
0 c6,1€1,0 C6,1 C6,2

at the cost of two fma’s. With (4,7) = (2,6) as a column pivot we get

C1,—1 C1,0 0 0

0 0 C2.1 0
0 0 0 €3,2
Cleon=| o o 0 1
0 O 0 Cs5,2

0 0 Ce,1 + C6,2C2,1 0

by performing one fma. While any of the two possible dyadic pivoting sequences
results in an overall cost of twelve fma’s the accumulation of F' as Cj(,¢),1,2] Te-
quires only eleven fma’s. This example was used in [14] to prove the superiority
of mixed row and column pivoting over dyadic pivoting. Little is known about
the theoretical discrepancy that may result from a comparison of the optimal
RCP sequence with the optimal DP sequence. Practical tests suggest that this
discrepancy is likely to be small. One of the motivations for the research pre-
sented in this paper is the desired ability to compare RCP and DP strategies for
various test problems.

4 Simulated Annealing

Simulated annealing has been applied to the computation of optimal dyadic pivot
sequences first in [13]. In [16] we proposed new ideas on how to make logarithmic
cooling schedules for inhomogeneous Markov chains work on this problem.

4 Note that the number of non-zero entries in both C and in C1,2] is equal to eight.
The preaccumulation of this local Jacobian would therefore not lead to a decrease
in the number of fma’s performed by the directional derivative propagation. Con-
sequently, preaccumulation would not be a good idea if the lion graph represented
some basic block in a larger program. The accumulation of the local Jacobian itself
is, of cause, cheaper when using elimination techniques. Classical AD requires at
least 16 fma’s to compute F' as F' - I in forward mode. The advantages of elimina-
tion techniques result from the implicit exploitation of the structural sparsity of the
extended Jacobian and the ability to exploit the associativity of the chain rule.



Simulated Annealing for Optimal Pivot Selection in Jacobian Accumulation 11

As in [16] neighborhood relations on the configuration space V are defined
by rearrangements transforming a sequence of pivots o € V into o' € N, C V
where N, denotes the neighborhood of o. These transitions are denoted by [0, ']
Acceptance probabilities are associated with all feasible transitions [0, o']. They
are defined by

_cle')—c(o) . (7)
e T , otherwise,

1 if C(d') <C(o
A[U’U,]:{, (') < Co)
where C(o) denotes the cost, that is the number of fma’s, associated with the
sequence of pivots o. The control parameter T' can be interpreted as the temper-
ature in the annealing process [10, 11].
We consider two neighborhoods, one for DP and RCP, respectively.

Neighborhood 1 Let [j1,...,jk] be a DP. Do one of the following with proba-
bility 0.5 -

1. Choose a feasible ji and remove it from the sequence. Feasibility of jr with
respect to this backward step is guaranteed if [jr+1,- .- ,Jk] can be applied to

Cljrii 11"
2. Select the next dyadic pivot jri1 in Cpj,. . ;.1 at random (forward step).

Formally,

[jl ]k]'_) [jl,---;jk’—l;jkurl;---;jk]
’ ’ [jl:"':jk:jk-i-l]

The neighborhood for RCP is defined analogous.
Neighborhood 2

i . [(G1,01), oy (=15 Jr 1), (B2, Jr41)s - -+ (Bk, k)]
(g gl {[(il,m,...,<ik,jk>,<z'k+1,jk+1>1

The cooling schedule is defined by

—m, for k?:O,].,...,ﬁ ,
in Equation (7) for a maximal number of @ cooling steps. The choice of I is
based on experimental results. It is discussed in Section 5.2.

For Neighborhood 1 the conditions for asymptotic convergence of the loga-
rithmic simulated annealing algorithm [8] can be proven by taking an approach
similar to the one in [16]. For RCP the necessary polynomiality of the compu-
tation of the objective function could not be verified so far. Restrictions on the
feasibility of RC-pivot choices that preserve overall optimality are the subject of
ongoing research. In practice, the design of the simulated annealing algorithm
based on the logarithmic cooling schedule makes the occurrence of exponential
sequences of pivots highly unlikely.



12 Uwe Naumann and Peter Gottschling

Elimination costs

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
terations

Fig. 1. Evolution of Cost function for Lion Graph

5 Computational Experiments

The tests results presented in this section were obtained using our template
library ANGEL (angellib.sourceforge.net). It provides various strategies for
computing DP’s and RCP’s, including heuristics and several simulated annealing
algorithms.

5.1 Lion

The lion graph is used in [14] to prove the superiority of RC-pivoting over dyadic
pivoting. As shown in Section 3.4 both sequences of dyadic pivots result in an
overall cost of twelve fma’s. The use of RCP’s can reduce this cost to eleven fma’s.
Although being an academic example, the lion graph and its extended Jacobian
represent an obvious test case for methods that claim to compute Jacobians at
an optimal or near-optimal cost.

So far, no technique, besides exhaustive search, is known that automatically
finds an optimal RC-pivot sequence. Moreover, there is not a lot of experience
in algorithms for computing near-optimal RC-pivot sequences. The extension
of Markowitz-type heuristics for DP to RCP in [2] resulted in an observable
superiority of RCP over DP in only a few examples.

To find an optimal pivot sequence, simulated annealing combined with a
logarithmic cooling schedule (I" = 5) is applied. Figure 1 shows the development
of the objective function. Optimal RCP’s are found repeatedly even in the high
temperature phase. Obviously, straight-forward random search would probably
have found the minimum too. Nevertheless, any method for optimizing RCP
sequences must be able to solve the lion problem as a basic feasibility test.

5.2 Roe’s Flux

In this application from computational fluid dynamics fluxes between two cells
of a finite-volume flow solver are calculated using Roe’s flux difference scheme



Simulated Annealing for Optimal Pivot Selection in Jacobian Accumulation 13

[17]. The extended Jacobian is derived from the computational graph that was
generated by the software tool ELiAD [18]. The best known sequence of pivots so
far results in an overall cost of 962 fma’s for accumulating the (10 x 5)-Jacobian.

FT SA
T/ DP RCP DP RCP
0.1 904 885 899 881
0.2 904 887 904 887
0.5 908 887 908 887
1 894 886 879 885
2 897 984 880 878
5 936 1204 888 882
10 1039 1258 887 902
20 1148 1286 912 993

Table 1. Values of the objective function for different I" (simulated annealing — SA)
and T (fixed temperature Metropolis — FT)

Elimination

Elimination ct

1350

1300

1250

1200

1150

1100 -

1050 [

1000 [

1350

1300

1250 H

1200 [

1150 [

1100 -

1050 -

1000 -

950 -

900 -

850

T T T
FT for dyadic pivoting

Elimination costs.

1350

1300

1250

1200

1150

1100 H

1050 -

1000

LSA for dyadic pivoting

2000

4000 6000 8000 10000 12000 14000 16000 18000 20000

terations.

1350

2000 4000

6000 8000 10000 12000 14000 16000 18000 20000

Iterations

"FT for RC-pivoting

Elimination costs

1300

1250

1200 -

1150

1100 -

1050 -

1000

LsA for RC-pivoting’

L
2000

L L L L L L L L
4000 6000 8000 10000 12000 14000 16000 18000 20000

lterations

L L
2000 4000

L L L L L L L
6000 8000 10000 12000 14000 16000 18000 20000

Iterations

Fig. 2. Evolution of Cost Function for Roe’s flux



14 Uwe Naumann and Peter Gottschling

Table 1 compares the values of the objective function for a Metropolis algorithm
with fixed temperature (value in left column should be interpreted as T') and
simulated annealing (value in left column should be interpreted as I'). Both
algorithms were applied to DP and RCP, and 10,000 iterations were performed.
Both algorithms are strongly influenced by the choice of I"/T. Low values reduce
the ability to escape from local minima. High values lead to a random-search-like
behavior. Values for I'/T in the range between 1 and 2 yield the lowest costs.

The evolution of the objective function over 20,000 iterations is displayed
in Figure 2. Further asymptotic improvements can be observed for the logarith-
mic cooling schedule. DP’s converge faster initially and their cost varies stronger
during the runtime of the algorithm. This is the result of one dyadic pivot consti-
tuting multiple row or column pivots. After 1,000,000 iterations of our simulated
annealing algorithm with logarithmic cooling (I" = 5) the best RCP was able to
compute the Jacobian by using 861 fma’s which represents an improvement by
over ten per cent.

6 Conclusion

The use of RCP in simulated annealing results in a considerably widened search
space compared to DP. Hence, even for graphs where the optimal RCP has a
lower cost than the optimal DP it is not clear whether the result of running a
simulated annealing algorithm for RCP results in an improvement of the best
elimination sequence know so far. Furthermore, switching from DP to RCP may
increase the runtime of the simulated annealing algorithm significantly. Never-
theless the use of such algorithms is justified if the corresponding Jacobian code
is likely to account for a large portion of the computational effort of a given
numerical algorithm. Moreover, the generation of optimal Jacobian code is ex-
pected to be a trade-off between a low number of arithmetic operations and the
efficiency of the corresponding memory access pattern. Further investigations
are required to built the optimal Jacobian code in general.

From the theoretical point of view, the difficulty to reduce accumulation costs
by switching from DP to RCP can be interpreted as an indication for the cost
discrepancy between optimal DP and optimal RCP not being very large. This
conjecture is supported by our numerical results.

Acknowledgments

This work was supported by U.K. Engineering and Physical Sciences Research
Council under Grant GR/R38101/01.

This work was also supported by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under Con-
tract W-31-109-ENG-38.



Simulated Annealing for Optimal Pivot Selection in Jacobian Accumulation 15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

A. Albrecht, P. Gottschling, and U. Naumann. Markowitz-type heuristics for com-
puting Jacobian matrices efficiently. In Proceedings of International Conference on
Computational Science. Springer, LNCS, 2003. To appear.

M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differ-
entiation: Techniques, Applications, and Tools, Proceedings Series, Philadelphia,
1996. STAM.

G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors. Auto-
matic Differentiation of Algorithms — From Simulation to Optimization, New York,
2002. Springer.

G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Imple-
mentation, and Application, Proceedings Series, Philadelphia, 1991. STAM.

A. Griewank. Fwvaluating Derivatives. Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Applied Mathematics. STAM, Philadel-
phia, 2000.

A. Griewank and S. Reese. On the calculation of Jacobian matrices by the
Markovitz rule. In [5], pages 126-135, 1991.

B. Hajek. Cooling schedules for optimal annealing. Mathem. of Operations Re-
search, 13:311-329, 1988.

K. Herley. A note on the NP-completeness of optimum Jacobian accumulation by
vertex elimination. Presentation at: Theory Institute on Combinatorial Challenges
in Computational Differentiation, 1993.

P. Van Laarhoven and E. Aarts. Simulated Annealing: Theory and Applications.
Reidel, 1988.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of
state calculations by fast computing machines. J. Chem. Phys., 21:1087-92, 1953.
U. Naumann. An enhanced Markowitz rule for accumulating Jacobians efficiently.
In K. Mikula, editor, ALGORITHMY’2000 Conference on Scientific Computing,
pages 320-329. Slovak University of Technology, Bratislava, Slovakia, September
2000.

U. Naumann. Cheaper Jacobians by Simulated Annealing. SIAM J. Opt.,
13(3):660-674, 2002.

U. Naumann. Elimination techniques for cheap Jacobians. In [/], pages 247-253,
2002.

U. Naumann. Optimal accumulation of Jacobian matrices by elimination methods
on the dual computational graph. Mathematical Programming, 2003. To appear.
U. Naumann and P. Gottschling. Prospects for Simulated Annealing in Automatic
Differentiation. In K. Steinhofel, editor, SAGA 2002 - Stochastic Algorithms, Foun-
dations and Applications, volume 2264 of LNCS. Springer, Berlin, 2001.

P.L. Roe. Approximate Riemann solvers, parameter vectors, and difference
schemes. Journnal of Computational Physics, 43:357-372, 1981.

M. Tadjouddine, S. Forth, J. Pryce, and J. Reid. Performance issues for vertex
elimination methods in computing Jacobians using Automatic Differentiation. In
Proceedings of the ICCS 2000 Conference, volume 2330 of Springer LNCS, pages
1077-1086, 2002.



16

Uwe Naumann and Peter Gottschling

The submitted manuscript has been created by
the University of Chicago as Operator of Argonne
National Laboratory (” Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said ar-
ticle to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.




