Encapsulation for Practical Simplification Procedures®
Olga Shumsky Matlin and William McCune

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

April 1, 2003

Abstract

ACL2 was used to prove properties of two simplification procedures. The procedures differ in complexity but
solve the same programming problem that arises in the context of a resolution/paramodulation theorem proving
system. Term rewriting is at the core of the two procedures, but details of the rewriting procedureitself areirrelevant.
The ACL2 encapsulateonstruct was used to assert the existence of the rewriting function and to state some of its
properties. Termination, irreducibility, and soundnesspropertieswere established for each procedure. The availability
of the encapsulation mechanism in ACL2 is considered essential to rapid and efficient verification of this kind of
algorithm.

1 Introduction and Problem Description

We examine simplification procedures that arise in resolution, paramodulation, and rewriting systems. We have
a programming problem, and at an abstract level we have a straightforward procedure to solve it. However, our
theorem provers (e.g., Otter [3]) are written in C, with lots of hacksand optimizations that impose constraints that do
not fit with our abstract solution. We have devised a two-stage procedure intended to have properties similar to those
of the straightforward procedure. The two-stage procedure obeys the constraints, but its correctnessis not obvious,
sowe have called on ACL2[2] for assistance.

The following simplification problem is faced by many resolution/paramodulation style theorem-proving pro-
grams. Suppose we have a set Sof clauses with the irreducibility property that no clause in S simplifies any other
clausein S We wish to add anew set | of clausesto Sand have the resulting set be equivalent to SU | and also satisfy
the irreducibility property. The problem is interesting because, in addition to members of Ssimplifying members of
I, membersof | can also simplify members of S, and those simplified members can simplify other members of S and
so on. Consider the following procedure, which we call direct incorporation

Q=1;
Wile (Q do
C = dequeue(Q;
C=simlify(C 9S);
if (C!= TRUE)
for each Din Ssinplifiable by C
nmove DfromSto Q
append Cto S

In the terminology of our theorem prover Otter, the statement “C = simplify(C, S)” correspondsto both forward
rewriting and forward subsumption, and the loop “for each D ..." correspondsto back subsumptionand back rewriting.
Thelist | represents a set of clausesderived by someinferencerule.

*This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

The direct incorporation procedure does not suit our purposes, however. The set | can be too large to generate
in full before incorporating it into S Members of | will typically simplify many other members of |, so we wish to
incorporate | into Sas| is being generated. Furthermore, the set | is generated by making inferences from members
of S and our algorithms and data structures do not alow usto remove clausesfrom Swhileit is being used to make
inferences.

Therefore, we use a two-stage procedure, which we call limbo incorporation The first stage simplifies members
of | and, if they are not simplified to TRUE putsthem into aqueueL (called thelimbo list). The set Sis not modified
by the first stage. The second stage processesL until it is empty. For each member B of L, al clausesin Sthat can
be simplified by B are removed from S, simplified by SuU L, then appended to L. The second stageis similar to the
direct incorporation procedure except that in the second stage, members of the queue being processed have already
been simplified with respect to S In Otter terminology, the first stage does forward simplification, and the second
stage does back simplification.

Thedirect incorporation procedure and thelimbo incorporation procedure do not necessarily producethe samere-
sults because the simplification operations can happenin different orders and the simplifierswe use do not necessarily
produce unique canonical forms.

Our goals are to show, for each incorporation procedure, that (1) it terminates, (2) it produces a set in which no
member can simplify any other member, and (3) the fina set Sis equivalent to the conjunction of | and theinitial set
S

2 ACL2 Solution

The reasoning we need to do is primarily about the order in which simplification operations occur and the sets of
simplifiers that are applied. The details of the basic simplification procedure and of the evaluation procedure for
proving equivalence properties are irrelevant. Therefore we have used an ACL 2 encapsulation mechanism to assert
the existence and relevant properties of the simplification and evaluation functions.

An dternative to using the encapsul ation mechanismisto fully define the simplification and eval uation functions
and then prove the required properties based on these formalizations. Term rewriting, which is at the core of the
simplification procedure, is not a simple algorithm [1], however, and considerable effort would have been required
to establish its termination and necessary properties. Formalizing an evaluation function would have necessitated
formalization of first-order logic in ACL2, as was done in the |vy [4] project. Our experiences in that project
highlighted the difficulties in implementing a general first-order evaluation function in ACL2 and reasoning about it.
Had wetaken this route here, the mgjority of effort would have been spent on these underlying concepts, precluding us
from examining the proceduresof interest quickly and efficiently. For thesereasons, we believethat the encapsulation
mechanismwasinvaluablein our current work.

2.1 Constrained Functionsand Their Properties

We constrain four functions using the encapsulateonstruct. The function simplify (x y)is for simplification of an
element x by aset y. The function true-symbolp (x)s arecognizer for the true symbol (for example, T or 'true or 1)
inaparticular logic. The function ceval (x i)isfor evaluation of aclause xin interpretation i. The function scount (x)
isfor computing the size of the argument.

Given witnesses for these four functions, the following constraints are stated and proved. Constraints fall into
three categories depending on which of the three main goals — termination, irredicibility, and logical equivalence
— they enable us to establish. To ensure termination of simplification procedures, in practice we typicaly use
the lexicographic path ordering or the recursive path ordering [1]. Simplification with these orderings can increase
the number of symbols, so acl2-countdoes not produce an accurate termination function. Instead, the constrained
function scountis used to determine the size of a clause. The main property of the function isthat it returns anatural
number.

(def t hm scount - nat ur al
(and (integerp (scount X))
(<= 0 (scount x))))

Termination proofs depend on the constraint that for formulas that are indeed changed by simplification, the result of
the simplification is somehow smaller than the original expression.

(defthm scount-sinplify
(or (equal (sinmplify x vy) x)
(< (scount (sinplify x y))
(scount x))))

Proof of theirreducibility property dependson the following properties of the basic simplification procedure. An
idempotence property states that once a formulais simplified by a set, attempting to simplify the result again by the
same set will have no effect. Another property requires that if a set simplifies aformula, then a superset of that set
doesso aswell. A third property states that two sets that do not simplify a formula individually do not do so when
considered collectively.

(defthm sinplify-idenpot ent
(equal (sinplify (simplify x vy) y)
(simplify xy)))

(defthm sinmplify-subset
(implies (and (not (equal (sinplify a x) a))
(subset p-equal x y))
(not (equal (sinplify ay) a))))

(defthm sinplify-append
(inmplies (and (equal (sinplify a x) a)
(equal (simplify ay) a))
(equal (sinplify a (append x y)) a)))

We formalized the notion of rewritability to improve the readability of the formalizations of both the direct and
limbo incorporation procedures and to ease management of proofs. If aset simplifies an element, we say that theele-
ment is rewritable by the set. The new function rewritableis defined outside the encapsulation. Once the termination
and irreducibility constraints are restated in terms of rewritable, the function is disabled.

(defun rewitable (x vy)
(not (equal (sinmplify x y) x)))

Finally, the proofs of the logical equivalence property of our incorporation procedures depend on the following
properties of the constrained evaluation function and its relationship with simplify and true-symbolp The eval uation
function is Boolean, and the true symbol of the logic is evaluated to true. We define a function to evaluate a set of
elements as a conjunction. The main soundness property of constrained simplification states that if the conjunction
of simplifiersis true, the evaluations of the original and simplified expressionsare equal.

(deft hm ceval - bool ean
(or (equal (ceval x i) t) (equal (ceval x i) nil)))

(defthm t rue-synbol p- ceval
(inmplies (true-synmbolp x) (ceval x i)))

(defun ceval -list (x i)
(if (endp x)
t
(and (ceval (car x) i) (ceval-list (cdr x) i))))

(defthm sinplify-sound
(implies (ceval-list y i)
(equal (ceval (sinplify x y) i) (ceval x i))))

2.2 Formalization and Termination of I ncorporation Procedures

Three supporting functions are used to formalize the direct and limbo incorporation procedures. Rather than present
the ACL 2 implementation of the functions, we simply describethem. The function extract-rewritables (x sfomputes
asubset of elements of Sthat are rewritable by X. The function extract-n-simplify-rewritables (x groduces a set of

elements of Sthat are rewritable by X and have been simplified by it. The function remove-rewritables (x groduces
the set of elements of Sthat are not rewritable by X. The direct incorporation procedure is formalized by using the
last two functions as follows.

(defun direct-incorporation (q s)
(cond ((or (not (true-listp q)) (not (true-listp s))) 'INPUT- ERROR)
((endp q) s)
((true-synbolp (sinplify (car q) s)) (direct-incorporation (cdr q) s))
(t (direct-incorporation
(append (cdr Q)
(extract-n-sinplify-rewritables (sinplify (car q) s) s))
(cons (sinplify (car q) s)
(remove-rewritables (sinplify (car q) s) s))))))

The limbo incorporation procedure relies on computation of the initia limbo list and subsequent integration of
the list into the original database. As stated above, the second step of the incorporation procedure may place new
elementson thelimbo list. Before any element is added to the limbo list, however, it is simplified asmuch as possible
by the members of the original database and the elements already on the limbo list. We note, therefore, that in the
recursive call of the function preprocess-listin addition to the the members of original database and limbo list, the
set of simplifiersincludes elements processed by the function in the previous calls.

(defun preprocess (x s I)
(if (true-synbolp (sinmplify x (append s 1)))
|

(append | (list (sinplify x (append s 1))))))

(defun initial-linmbo (q s 1)
(if (endp Q)
|

(initial-linmbo (cdr q) s (preprocess (car q) s 1))))

(defun preprocess-list (d s r)
(if (endp d)
r
(preprocess-list (cdr d) s (preprocess (car d)
(append s (cdr d))
r))))

(defun process-linmbo (I s)
(cond ((or (not (true-listp 1)) (not (true-listp s))) 'INPUT- ERROR)
((endp 1) s)
(t (process-linbo (append (cdr 1)
(preprocess-1ist
(extract-rewitables (car 1) s)
(append (renove-rewritables (car |) s) I)
nil))
(cons (car 1I)
(renove-rewritables (car 1) s))))))

(defun Iinbo-incorporation (q s)
(process-linmbo (initial-linmbo g s nil) s))

Termination proofs for the functions direct-incorporationand process-limbaely on the simplification properties
stated in the encapsulation. The proofs are not entirely trivial; in order to achieve them, the conjectures must be split
into two cases: a case when the set of elements produced by the extractfunctionsis empty, and a casewhen it is not.
We define an additional counting function lcountwhose behavior on lists is similar to that of acl2-count except that
the size of list elementsis computed by using the constrained function scount

(defun Icount (x)
(if (endp x)
0
(+ 1 (scount (car x)) (lcount (cdr x)))))

The measure function, based on Icount, is

(cons (+ 1 (lcount qg) (lcount s))
(+ 1 (lcount q))).

We note that the formalization on the direct incorporation procedureis slightly different from the algorithm presented
in Section 1. In the algorithm elements D that are rewritable by C are moved from the set S onto Q. In the formaliza-
tion, these elements are simplified by C before being placed onto Q. This extra simplification step alows us to show
that the direct incorporation a gorithm terminates. Yet this addition to the original a gorithm does not affect the main
correctness properties of the procedure.

2.3 Irreducibility Property

We formulate the irreducibility property as follows. We first define a function mutually-irreducible-el-list (x sjhat
checksthat the element X neither rewrites nor is rewritable by anything in S. The main irreducibility check function
relies on the element wise irreducibility check.

(defun mutual ly-irreducible-el-list (x s)
(cond ((endp s) t)
((or (rewitable x (list (car s)))
(rewitable (car s) (list x))) nil)
(t (mutually-irreducible-el-list x (cdr s)))))

(defun irreducible-list (s)
(cond ((endp s) t)

((rmutual ly-irreducible-el-list (car s) (cdr s))
(irreducible-list (cdr s)))
(t nil)))

We accomplished the second of the stated goals by proving that if the original databaseof clausesisirreducible, both
incorporation procedures produce sets with that property.

(defthm direct-incorporation-is-irreducible
(inmplies (irreducible-list s)
(irreducible-list (direct-incorporation q s))))

(defthm Ii nmbo-incorporation-is-irreducible
(inmplies (irreducible-list s)
(irreducible-list (linbo-incorporation q s))))

2.4 Soundness

Soundnessproofs rely on the properties of ceval given in the encapsulateonstruct and were relatively easy to estab-
lish. We showed that both incorporation procedures produce a conjunction of clauses whose evaluation is equivalent
to the evaluation of the conjunctionsof clausesin the two input sets.

(defthm direct-incorporation-is-sound
(implies (and (true-listp q)
(true-listp s))
(equal (ceval-list (direct-incorporation q s) i)
(and (ceval-list g i) (ceval-list s i))))

(defthm Ii mbo-i ncor poration-is-sound
(implies (true-listp s)
(equal (ceval-list (linmbo-incorporation q s) i)
(and (ceval-list g i) (ceval-list s i))))

3 Related Work and Conclusions

Our earlier project vy [4] dealt with checking the proofs produced by Otter. The checker codewaswritten in ACL2
and proved sound. Although both efforts concern the same software, the errors they help eliminate do not overlap.
Ivy was designed to catch errorsin Otter-produced proofs. Thiswork focuses on irreducibility and termination, and
errors in the ssimplification procedure described here would likely not lead to soundness problems in the resulting
proofs, but would prevent Otter from finding some or al proofsfor a particular problem.

Also related is the large and ongoing ACL 2 effort on abstract reduction systems and term rewriting in [5]. The
effort concentrateson formalizing basic reduction and rewriting proceduresin ACL 2 and establishing their properties.
The work includes formalization of first-order logic and reasoning about termination of rewriting. Both are aspects
that our effort takesfor granted to concentrate on a practical application that relies on arewriting procedure.

The Otter codeis based on an algorithm similar to limbo incorporation. Correctnessof this algorithm is therefore
important to us but is not obvious because of the complexity of the algorithm. While the algorithm depends on
term rewriting and clause subsumption procedures, we were able, thanks to encapsulation mechanism in ACL2, to
concentrate on only afew relevant properties of these basic procedures and to devote all effort to understanding and
verifying the limbo incorporation, the actual procedureof interest.

References

[1] F Baader and T. Nipkow. Term Rewriting and All ThatCambridge University Press, Cambridge, United King-
dom, 1998.

[2] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An Approadiluwer Academic
Publishers, 2000.

[3] W. McCune. Otter 3.0 Reference Manual and Guide. Tech. Report ANL-94/6, Argonne National Laboratory,
Argonne, IL, 1994. See also URL http://www.mcs.anl.gov/AR/otter/.

[4] W. McCune and O. Shumsky. 1VY: A preprocessor and proof checker for first-order logic. In M. Kaufmann,
P. Manalios, and J Moore, editors, Computer-Aided Reasoning: ACL2 Case Stuydikapter 16. Kluwer Aca-
demic, 2000.

[5] J L. Ruiz Reing, J. A. Alonso, M. J. Hidalgo, and F. J. Martin. Formal proofs about rewriting using ACL2.
Annals of Mathematics and Artificial Intelligen&s(3):239-262, 2002.

The submitted manuscript has been created by the University
of Chicago as Operator of ArgonneNational Laboratory (" Ar-
gonne”) under Contract No. W-31-109-ENG-38with the U.S.
Department of Energy. The U.S. Governmentretainsfor itself,
and others acting on its behalf, a paid-up, nonexclusive, irre-
vocableworldwidelicensein said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Govern-
ment.

