
#543

An O(n logn) solution algorithm for spectral element methods

I. Lee a, P. Raghavan a, S. Schofield b, P. Fischer b,∗
a Department of Computer Science and Engineering, The Pennsylvania State University, 220 Pond Lab,

University Park, PA 16802-6106, USA
b Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Ave.,

Argonne, IL 60439-4844, USA

Abstract

To leverage significant software development effort, general purpose unstructured codes are often used in structured
or semi-structured applications. We show that O(n log n) computational complexities, competitive with classic Fourier
methods, are achievable for some classes of semi-structured spectral element applications.

Keywords: PLEASE PROVIDE KEYWORDS

1. Introduction
?#1

Many three-dimensional flow problems in science and
engineering feature geometries that are homogeneous in at
least one flow direction. Two examples are the high-aspect-
ratio domains in Fig. 1, which shows spectral element (SE)
meshes currently being used for simulations of Rayleigh–
Bénard convection (a) and reactor core cooling (b). In
these cases, the numerical simulation costs can often be
reduced by recasting the original problem (or subproblem)
in terms of eigenvectors of the (discrete) one-dimensional
operators to yield a set of decoupled problems of lower
dimension. Here, we consider application of this approach
to reduce three-dimensional problems to independent two-
dimensional subproblems. The costs of performing the
transformations and solving the subproblems is addressed,
and we show that it is possible to achieve O(n logn)
complexity for n-gridpoint problems in R

3.

2. Problem formulation

We consider the Poisson equation, which is represen-
tative of the pressure solve, the stiffest substep in our
Navier–Stokes solver [1]. Let the domain of interest be
� := [0, Lz] ×�2D, with �2D invariant with respect to z.
The SE method is based on the weak formulation: Find
u ∈ X N such that (∇v,∇u) = (v, f) ∀ v ∈ X N , where X N

* Corresponding author. Tel.: +1 630 252 6018; Fax: +1 630
252 5649; E-mail: fischer@mcs.anl.gov

is the finite-dimensional set of SE basis functions that
vanish on the boundary ∂�. Let

f (x , y, z) =
nz∑

j=1

nx y∑
i=1

fi jφi (x , y)ψj (z),

(f , g) =
Lz∫

0

dz
∫

�2D

f g dx dy,

denote respectively the functional form of elements in
X N and the L2 inner-product on �. Inserting these into
the weak formulation gives rise to the matrix problem
Au = B f , where u is the vector of n = nznxy unknown
basis coefficients, A = Bz ⊗ A2D + Az ⊗ B2D, B = Bz ⊗ B2D,
and

(Az)i j :=
Lz∫

0

dψi

dz

dψj

dz
dz, (Bz)i j :=

Lz∫

0

ψi ψj dz,

(A2D)i j :=
∫

�2D

∂φi

∂x

∂φj

∂x
+ ∂φi

∂y

∂φj

∂y
dx dy,

(B2D)i j :=
∫

�2D

φi φj dx dy.

(We recall that the tensor, or Kronecker, product C = A⊗ B
denotes the block matrix with entries ai j B.)

Under the tensor-product assumptions, the discrete prob-
lem can be cast as

Au = (ST ⊗ I)−1(I ⊗ A2D +�z ⊗ B2D)(S ⊗ I)−1u

= B f =: g, (1)

 2003 Elsevier Science Ltd. All rights reserved.
Computational Fluid and Solid Mechanics 2003
K.J. Bathe (Editor)

GALAYAA B.V./MIT2_543: pp. 1-4

2 I. Lee et al. / Second MIT Conference on Computational Fluid and Solid Mechanics

Fig. 1. Tensor-product mesh examples for Rayleigh–Bénard convection (a) and reactor core cooling (b).

where S = (s1, s2, . . . , snz
) and �z = diag(λk) contain the

eigenpairs satisfying Azsk = λk Bzsk and sT
i Bzs j = δi j . The

advantage of (1) is that the matrix I ⊗ A2D +�z ⊗ B2D is
block diagonal and thus represents nz independent two-
dimensional subproblems of size nxy .

Solution of (1) involves three steps: w = (ST ⊗ I)g;
solution of (A2D + λk B2D)vk = wk , for k = 1, . . . ,nz ; and
u = (S ⊗ I)v. If we view the basis coefficients as matrices,
then the transformation from physical to wave space,

wik = [(ST ⊗ I)g]ik =
nz∑

j=1

ST
kj gi j =

nz∑
j=1

gi j Sjk = (GS)ik , (2)

and the inverse transform, U = V ST , are simply matrix–
matrix products, which are very efficient on all archi-
tectures. If nz
 nxy (Fig. 1a), then the cost of apply-
ing S or ST is subdominant to that of solving the two-
dimensional subproblems. However, if nz is relatively
large compared with nxy (Fig. 1b), then the cost of this
step can become prohibitive, especially in the multipro-
cessor case, where it is desirable to store the nz × nz

matrix S on each processor. One can significantly re-
duce this cost if the one-dimensional problem in the z
direction has periodic boundary conditions and is dis-
cretized with Kz spectral elements of uniform size and
order Nz . Under these conditions, Az has the block-
circulant form Az = I ⊗ Ã +�⊗ � +�T ⊗ �T , where
� = (êKz

, ê1, . . . , êKz−1) is a cyclic permutation of the
columns of the identity, êj , and Ã and � are Nz × Nz blocks.
Because � and �T are diagonalized by the Fourier matrix
[2], it is possible to evaluate (2) in only O(nNz log Kz)
operations. Most important, the storage for S is reduced by
a factor of Kz .

3. Two-dimensional solves

The reduced SE problems are solved by using conjugate
gradient iteration. As originally proposed by Deville and
Mund [3], we precondition these problems with a system
AFE that is based on a finite-element discretization hav-
ing nodes coincident with the SE nodes. Finite-element

preconditioning gives bounded iteration counts, so the ap-
proach is scalable provided that the preconditioner cost is
low. Fortunately, for the two-dimensional case, the sparse
matrix problems arising from the low-order discretization
can be solved in O(nxy lognxy) time using nested-dissection
orderings [4].

Consider the solution of AFEx = b using a direct method
when AFE is sparse and symmetric positive definite. A
sparse Cholesky factorization AFE = L LT is computed and
the solution obtained by using forward and backward sparse
triangular solutions L y = b and LT x = y. The major diffi-
culty with sparse Cholesky factorization is fill-in, namely,
zeros in the original matrix that become nonzeros in the
factors. Fill-in is controlled by computing a suitable per-
mutation using graph-theoretic methods in a first ordering
step; ‘nested dissection’ orderings result in optimal fill-in
(to within a constant factor) for sparse matrices associated
with finite-difference and finite-element grids [4]. Order-
ing is followed by a symbolic factorization to determine
the nonzero structure of L . Both these steps are relatively
inexpensive and are followed by the numeric factorization
step, which dominates the cost. The cost of triangular so-
lution using the factor is of lower order, and on serial
machines it is quite negligible compared with the cost of
factorization.

Parallel sparse numeric factorization can be performed
effectively on multiprocessors using either multifrontal or
column-block methods [5,7,9], which leave the factors dis-
tributed across the processors, ready for the next solution
step. Parallel triangular solution involves tree-structured
computation; task parallelism is exploited by allocating
disjoint subtrees to each processor for local phase compu-
tations. Computations at a vertex i involve all processors
assigned local phase subtrees rooted at descendants of i .
Columns of L associated with vertex i are stored as a small
dense matrix Li which can be partitioned into the triangular
part L̃ i and an update part Ũi . The system used for forward
solution has the form L̃ i y

i
= bi , where bi contains the cor-

responding components of the right-hand side vector. The
vector y

i
is then used to compute zi = Ũi y

i
, an update to

the right-hand side vector components associated with the
system at the parent of node i . The backward solution step

GALAYAA B.V./MIT2_543: pp. 1-4

I. Lee et al. / Second MIT Conference on Computational Fluid and Solid Mechanics 3

Fig. 2. Structure of L + LT associated with the matrix of a 7×7 five-point finite-difference grid ordered using nested dissection (left).
Forward triangular solution is shown using 4 processors 0, · · · , 3 (right). Shaded triangular submatrices are inverted once to replace
distributed substitution by matrix-vector multiplication in subsequent triangular solutions.

is a direct analog with the computation proceeding down
from the root to the leaves of the compute tree.

On multiprocessors, the columns of the matrix Li are
mapped to processors to share the arithmetic work and
memory requirements. When the latency of communication
is relatively large, distributed dense substitution for solving
L̃ i y

i
= bi becomes a performance bottleneck. Even with

the use of sophisticated pipelining techniques very large
matrices are required to achieve good efficiency [6]. For
sparse matrices from finite-difference and finite-element
schemes in two space dimensions, however, the size of
largest dense submatrix is relatively small (proportional
to the square root of the matrix dimension). Thus, on
parallel multiprocessors, if the triangular solution is not
performed efficiently, a few solutions can easily require
more time than factorization. To address this problem,
we developed latency-tolerant selective inversion (SI) in
which the inverse of L̃ i is computed and stored explic-
itly at each vertex i in the compute tree [8,10–12]. Since
y

i
is given by L̃ i

−1
bi , we therefore replaced substitution

with matrix-vector multiplication, which is highly paral-
lel. For this application, we use SI-2, the SI scheme with
a two-way data mapping [12] implemented in our solver
package [9]. Fig. 2 relates a tree-structured four-processor
SI-based scheme to the Cholesky factors of a sparse
matrix associated with a 7 × 7 five-point finite-difference
grid.

We next provide some complexity results for our SI
implementation. We assume that the multiprocessor has
the following model of communication costs. The cost of
sending m words in a single message is α+βm, where α
is the startup (or latency) and β is the per word transfer
cost (α is typically orders of magnitude larger than β).
We also assume that a global reduction operation with
P processors can be implemented with log2 P messages

using a multidimensional hypercube type algorithm. We
now state the following results adapted from [11,12].

Lemma 1 Consider the sparse linear system of dimension
nxy associated with the model five-point, finite-difference
two-dimensional

√
nxy ×√

nxy grid. Assume that a nested
dissection ordering is used for fill-reduction and that the
triangular solution is performed by using P processors
with the SI-2 scheme. The communication costs at a pro-
cessor are

α

2
{(log2 P)2 + log2 P}+3β

√
nxy(log2 P).

The results in Lemma 1 also hold for sparse matrices
associated with two-dimensional finite-element schemes.
The number of messages and hence the latency cost remain
unchanged. The communication volume is of the form
c
√

nxy(log2 P), where c is a constant that depends on the
type of elements used and the order of the method. Observe
that for SI-2, the latency cost of α

2 {(log2 P)2 + log2 P} is
independent of the matrix dimension (nxy). Consequently,
the performance of SI-2 is significantly better than that of
a traditional substitution-based scheme with latency costs
that grow as O(

√
nxy/P).

4. Conclusions

We have presented an approach for achieving O(n logn)
solution complexity for three-dimensional problems dis-
cretized with the spectral element method or other tensor-
product bases. Initial numerical tests indicate that this
theoretical complexity estimate can be realized in practice.

GALAYAA B.V./MIT2_543: pp. 1-4

4 I. Lee et al. / Second MIT Conference on Computational Fluid and Solid Mechanics

Acknowledgments

This work was supported by the Mathematical, Infor-
mation, and Computational Sciences Division subprogram
of the Office of Advanced Scientific Computing Research,
U.S. Dept. of Energy, under Contract W-31-109-Eng-38;
by the Computational Sciences Graduate Fellowship Pro-
gram and Maria Goeppert Mayer Award from the U. S.
Department of Energy and Argonne National Laboratory;
and by the National Science Foundation through grants
ACI-0102537, DMR-0205232, and EIA-0221916.

References

[1] Fischer PF. An overlapping Schwarz method for spectral
element solution of the incompressible Navier–Stokes equa-
tions. J Comp Phys 1997;133:84–101.

[2] Davis PJ. Circulant Matrices. Chelsea Publishing, New
York, 1994.

[3] Deville MO, Mund EH. Chebyshev pseudospectral solu-
tion of second-order elliptic equations with finite element
preconditioning. J Comp Phys 1985;60:517–533.

[4] George JA, Liu JWH. Computer Solution of Large Sparse
Positive Definite Systems. Prentice-Hall, Englewood Cliffs,
NJ, 1981.

[5] Gupta A, Kumar V. A scalable parallel algorithm for sparse
matrix factorization. TR 94-19, Dept. of Comp. Sci., Uni-
versity of Minnesota, Minneapolis, 1994.

[6] Heath MT, Romine CH. Parallel solution of triangular sys-
tems on distributed-memory multiprocessors. SIAM J Sci
Stat Comput 1988;9:558–587.

[7] Heath MT, Ng E, Peyton BW. Parallel algorithms for sparse
linear systems. SIAM Rev 1991;33:420–460.

[8] Heath MT, Raghavan P. Parallel sparse triangular solution.
In: Gulliver R, Heath M, Schreiber R, Bjorstad P (Eds),
IMA Volumes in Mathematics and Its Applications (105).
Springer-Verlag, Berlin, 1998.

[9] Raghavan P. DSCPACK: A domain-separator code for the
parallel solution of sparse liner systems. TR CSE-02-004,
Dept. of Comp. Sci. and Eng, The Pennsylvania State
University, 2002.

[10] Raghavan P. Efficient parallel sparse triangular solu-
tion using selective inversion. Parallel Processing Lett
1998;8(1):29–40.

[11] Raghavan P, Teranishi K, Ng E. Towards scalable precon-
ditioning using incomplete factorization. Proc. of 2001 Int.
Conf. on Preconditioning Techniques for Large Sparse Ma-
trix Problems in Industrial Applications, Tahoe City, CA,
April 29–May 1, 2001.

[12] Teranishi K, Raghavan P, Ng E. A new data-mapping
scheme for latency-tolerant distributed sparse triangular
solution. Proc. of Supercomputing 2002, Baltimore, Nov.
2002.

GALAYAA B.V./MIT2_543: pp. 1-4

