
1 

Improving the Performance of MPI Derived Datatypes by 
Optimizing Memory-Access Cost 

 
Surendra Byna† William Gropp‡ 
 

Xian-He Sun†  Rajeev Thakur‡

†Department of Computer Science 
Illinois Institute of Technology 

Chicago, IL 60616 
{ renbyna, sun} @iit.edu 

 

‡Math. and Comp. Science Division 
Argonne National Laboratory 

Argonne, IL 60439 
{ gropp, thakur} @mcs.anl.gov 

 
Abstract 

 
The MPI Standard supports derived datatypes, which allow users to describe noncontiguous 
memory layout and communicate noncontiguous data with a single communication function. This 
feature enables an MPI implementation to optimize the transfer of noncontiguous data. In 
practice, however, few MPI implementations implement derived datatypes in a way that performs 
better than what the user can achieve by manually packing data into a contiguous buffer and then 
calling an MPI function. In this paper, we present a technique for improving the performance of 
derived datatypes by automatically using packing algorithms that are optimized for memory-
access cost. The packing algorithms use memory-optimization techniques that the user cannot 
apply easily without advanced knowledge of the memory architecture. We present performance 
results for a matrix-transpose example that demonstrate that our implementation of derived 
datatypes significantly outperforms both manual packing by the user and the existing derived-
datatype code in the MPI implementation (MPICH). 

1. Introduction 
 
The MPI (Message Passing Interface) Standard is widely used in parallel computing for 

writing distributed-memory parallel programs [1,2]. MPI has a number of features that provide 
both convenience and high performance. One of the important features is the concept of derived 
datatypes. Derived datatypes enable users to describe noncontiguous memory layouts compactly 
and to use this compact representation in MPI communication functions. Derived datatypes also 
enable an MPI implementation to optimize the transfer of noncontiguous data. For example, if the 
underlying communication mechanism supports noncontiguous data transfers, the MPI 
implementation can communicate the data directly without packing it into a contiguous buffer. 
On the other hand, if packing into a contiguous buffer is necessary, the MPI implementation can 
pack the data and send it contiguously. In practice, however, many MPI implementations perform 
poorly with derived datatypes—to the extent that users often resort to packing the data manually 
into a contiguous buffer and then calling MPI. Such usage clearly defeats the purpose of having 
derived datatypes in the MPI Standard. Since noncontiguous communication occurs commonly in 
many applications (for example, fast Fourier transform, array redistribution, and finite-element 
codes), improving the performance of derived datatypes has significant value. 

 
The performance of derived datatypes can be improved in two ways. One way is to improve 

the data structures used to store derived datatypes internally in the MPI implementation, so that, 
in an MPI communication call, the implementation can quickly decode the information 
represented by the datatype. Research has already been done in this area, mainly in using data 
structures that allow a stack-based approach to parsing a datatype, rather than making recursive 



2 

function calls, which are expensive [3,4]. Another area for improvement is to use optimized 
algorithms for packing noncontiguous data into a contiguous buffer in a way that the user could 
not do easily without advanced knowledge of the memory architecture. This latter area is the 
focus of this paper. To our knowledge, no other MPI implementations use memory-optimization 
techniques for packing noncontiguous data in their derived-datatype code (for example, see the 
results with IBM’s MPI in Figure 8).  

 
Interprocess communication can be considered as a combination of memory communication 

and network communication as defined in [5]. Memory communication (or memory copying) is 
the transfer of data from the user’s buffer to the local network buffer (or shared-memory buffer) 
and vice versa. Network communication is the movement of data between source and destination 
network buffers. Much research has been devoted to improving the performance of networks with 
the assumption that network communication is the main contribution to communication cost. But 
with the rapid improvements in network technology, the proportion of these overheads has 
changed, and memory communication has become a significant factor in the overall 
communication. Therefore, limiting the cost of memory accesses can significantly improve the 
overall communication time, as we demonstrate in this paper. The key to improving the memory-
access performance is to exploit advanced memory hierarchies in modern computer architectures. 
Doing so directly is difficult for users because they are often unaware of architectural details, and 
these details vary from machine to machine. We do the memory optimizations automatically at 
the library level in our memory-conscious implementation of derived datatypes.  

 
The rest of this paper is organized as follows. Section 2 describes related work in this area. 

Section 3 presents a motivating example that illustrates the performance improvements possible 
with memory optimization. In Section 4, we quantify memory-communication costs by using the 
Memory-LogP model. Section 5 describes how we use memory-optimized algorithms to improve 
the performance of derived datatypes. Performance results are presented in Section 6, followed by 
conclusions and a discussion of future work in Section 7. 

  
All the experiments reported in this paper, except for the results in Figure 8 with IBM’s MPI, 

were performed on an SGI Origin2000 at the National Center for Supercomputing Applications. 
This machine has a cc-NUMA architecture and runs IRIX 6.5.14 as the operating system. Each 
node of the machine has two MIPS R10000 processors [6] running at 195 MHz. Each processor 
has a 32 KB two-way set-associative and two-way interleaved primary (L1) cache and a 4 MB 
off-chip secondary cache. The MIPS R10000 processor has two on-chip 32-bit registers to count 
30 distinct hardware events. In our experiments, we measured the events related to total cycles 
(event 0), graduated instructions (event 17), memory data loads graduated (event 18), memory 
data stores graduated (event 19), L1 cache misses (event 25), and L2 cache misses (event 26). 
The MPI implementation we used is MPICH-1.2.5 with the shared-memory device. 

 

2. Related Work 
 

Prior research related to this paper falls into two main categories: improving the performance 
of MPI derived datatypes and improving the memory performance of algorithms.  

 
Träff et al. describe a technique, called flattening on the fly, for improving the performance 

of derived datatypes [3]. This method aims to minimize the use of expensive recursive function 
calls to parse a derived datatype in the MPI implementation by using a stack-based approach. 
Gropp et al. [4] provide a taxonomy of MPI derived datatypes based on their memory-access 



3 

patterns and describe how to implement those patterns efficiently, also using a stack-based 
approach. Neither of these efforts uses advanced memory-optimization techniques for packing 
derived datatypes as we do.  

 
Much research has been performed by the compiler and algorithms community on improving 

memory-hierarchy performance by using techniques such as loop transformation, array padding, 
and cache blocking [7,8,9], and we use some of these optimizations in our optimized packing 
algorithms. Many compilers use some of these optimizations to improve code performance. 
However, longer compile times and dynamic behavior of data accesses limit the performance 
improvement that a compiler can obtain. Many software libraries have been developed, 
particularly for numerical software, that use advanced memory-optimization techniques, for 
example, the portable LAPACK library [10] and the ESSL and PESSL libraries on IBM machines 
[11]. ATLAS (Automatically Tuned Linear Algebra Software) is an approach for automatically 
generating optimized numerical software on machines with deep memory hierarchies [12].  
 

3. Motivating Example 
 

We use a matrix-transpose example to demonstrate the benefits of memory optimization and 
to demonstrate that a compiler by itself cannot perform all these optimizations; in other words, 
the code must be optimized in the first place. We compare the performance of two programs that 
perform matrix transpose (MT): an MPI program with derived datatypes in which the MPI 
implementation does its usual unoptimized packing of transferred data (leaving all optimizations 
to the compiler) and another MPI program in which we manually pack data in a memory-
optimized fashion before communication, without using derived datatypes. For both programs, 
we isolate and measure the memory-communication cost by running the programs as a single-
process application, and we measure the performance with different compiler optimizations. 

 
The SGI MIPSpro compiler [13] offers a gamut of general-purpose and architecture-specific 

optimizations to improve performance, including loop-nest optimization, software pipelining, and 
interprocedural analysis. The O2 optimization flag turns on all global optimizations, such as 
dead-code elimination, loop normalization, and memory-alias analysis. The Ofast flag turns on 
all optimizations related to loop nesting, such as loop unrolling, loop interchange, loop blocking, 
and memory prefetch. 

 
The manual-packing program uses external array padding and cache blocking. In array 

padding, an array is extended in size to reduce the number of memory-system conflicts by adding 
a new column to the original array. Cache blocking aims to reuse as much as possible the data 
elements already loaded into the cache before they are replaced by new elements. We chose a 
blocking size such that the whole block fits into the cache. We chose five sizes of matrices: 
512*512, 1024*1024, 2048*2048, 4096*4096, and 8192*8192, where each element of the array 
is an 8-byte word. We measured performance for the following scenarios: 

• Simple MPI implementation of MT using derived datatypes 
a. compilation of MT using –O2 optimizations (default) 

i. –O2 compilation of MPICH derived datatype source code [sO2/mpiO2] 
b. compilation of MT using –Ofast optimizations 

i. –O2 compilation of MPICH derived datatype source code [sO2/mpiOfast] 
ii. –Ofast compilation of MPICH derived datatype source code [sOfast/mpiOfast] 

•  MT with manually optimized pack and unpack (default –O2 MPICH compilation) 
a. compilation of MT using –O2 optimizations (default) [mO2] 



4 

b. compilation of MT using –O2 optimizations + cache blocking [mO2cb] 
c. compilation of MT using –Ofast optimizations [mOfast] 
d. compilation of MT using –Ofast optimizations + cache blocking [mOfastcb] 

 
Figure 1 shows the overall cost in cycles per memory reference (the lower the better) for both 

programs with various combinations of options of the SGI MIPSpro compiler. Predictably, the 
manual implementation of the packing algorithm outperforms the compiler-generated code for 
derived datatypes in MPICH. Code compiled with the default optimizations (-O2) performs the 
worst for all data sizes; code compiled with –Ofast performs better in most cases. Memory-
optimized programming with cache blocking and array padding provides a speedup ranging from 
380% to 550% for various data sizes versus the MPICH derived-datatypes version. 

 

4. Quantifying Memory-Communication Cost 
 

Parallel communication models such as LogP [14] focus on network communication, with 
limited consideration of memory communication. Recently, the LogP model was extended to 
incorporate memory-communication cost [5]. The Memory-LogP model formally characterizes 
the memory-communication cost under four parameters: l: the effective latency, defined as the 
length of time the processor is engaged in transmission or reception of a message due to the 
influence of data size (s) and distribution (d), l=f(s,d); o: the overhead, defined as the length of 
time the processor is engaged in transmission or reception of an ideally distributed (contiguous) 
message (during this time, the processor cannot perform other operations); g: the gap, defined as 
the minimum time interval between consecutive message receptions at the processor (the 
reciprocal of g corresponds to the available per processor); and P: the number of 
processor/memory modules (point-to-point communication in the memory hierarchy implies 
P=1). Detailed information about the Memory-LogP model can be found in [5].  

 
The memory-communication cost for sending a data segment depends on architectural 

parameters, such as cache capacity, and code characteristics, such as data distribution, as 

Comparison of performance for various implementations of 
Matrix Transpose

0

20

40

60

80

100

120

512*512 1024*1024 2048*2048 4096*4096 8192*8192

data size (dimension of 2-d array of doubles)

cy
cl

es
 p

er
 r

ef
er

en
ce

sO2/mpiO2 sO2/mpiOfast sOfast/mpiOfast mO2 mO2cb mOfast mOfastcb

Figure 1. Performance gain with memory-conscious programming. The transpose 
operation with the use of manual array padding and cache blocking provides a 
speedup of 380% to 550% versus the original MPICH derived-datatypes version. 



5 

explained in the Memory-LogP model. In general, the overall communication cost includes data-
collection overhead, the cost of data copying to the network buffer, the cost of data forwarding to 
the receiver (network-communication cost), and other costs added by the middleware 
implementation. When data distribution in memory is noncontiguous, the data is typically 
collected into a contiguous buffer before being copied to the network buffer. This process adds 
extra buffering overhead to the overall communication cost and is implementation dependent.  

 
We can quantify the memory-communication overhead as follows. According to Memory-

LogP (for P=1), we divide the overall communication cost into three parts: basic contiguous data-
copying cost (o), memory-communication cost (l), and the network-communication cost (L). The 
memory-communication cost is further classified as data-packing overhead (lp) and middleware- 
induced overhead (lm). The middleware-induced overhead includes all other costs, such as extra 
buffer-copying cost, handshaking overhead between source and destination processes (if there is 
any), and load-imbalance costs. 

LllooverheadionCommunicat mp +++=_  

We measured each of these costs as follows. The basic data-copying cost (o) is the cost of 
copying a contiguous data between two buffers. The network-communication cost (L) is 
calculated by subtracting (o) from the cost of communicating a contiguous message between two 
processes. The cost of reading data noncontiguously from a buffer and writing it into a contiguous 
buffer includes data-packing cost (lp) and the basic overhead (o). Subtracting (o) from this cost 
gives the data-packing cost (lp). The middleware-induced cost (lm) is calculated by subtracting the 
sum of other costs )( Llo p ++  from the overall communication cost. The results for a matrix-

transpose algorithm with derived datatypes are shown in Figure 2. It shows that the basic-copying 
cost (o) and network-communication cost (L) are relatively constant per data reference. In 
contrast, data-packing and middleware-induced costs grow significantly with data size. In this 
paper, we aim to reduce the data-packing cost of the overall memory-communication cost. 

Quantification of communication overhead

0

50

100

150

200

250

32K 128K 512K 2M 8M 32M 128M 512M

data size (bytes)

cy
cl

es
 p

er
 r

ef
er

en
ce

contiguous overhead data-packing overhead

middleware-induced overhead network-communication overhead

 
Figure 2. Memory-communication cost for a matrix-transpose algorithm is classified into 
basic contiguous overhead, data-packing cost, and middleware-induced cost. The 
network-communication cost is also shown. 



6 

 
 

 

5. Optimizing MPI Derived Datatypes 
 
In this section we describe how we automatically use memory-optimized packing algorithms 

to implement MPI derived datatypes. 

5.1.  Overview of Optimization Technique 
 
Figure 3 illustrates the procedure for optimizing sends with derived datatypes. The profiling 

interface in MPI [1] provides a convenient way for us to insert our code in an implementation-
independent fashion as follows. Every function in MPI is available under two names, MPI_ and 
PMPI_. User programs use the MPI_ version of the function, for example, MPI_Send. We 
intercept the user’s call to MPI_Send by implementing our own MPI_Send function in which 
we do the datatype packing (if necessary) and then call PMPI_Send to do the data 
communication. As a result, application programs don’ t need to be recompiled; they need only to 
be relinked with our version of the MPI functions appearing before the MPI library in the link 
command line. We currently interpret derived datatypes by accessing the internal data structures 
used by MPICH. However, we plan to adopt an implementation-independent way by using the 
datatype-decoder functions from MPI-2, namely, MPI_Type_get_envelope and 
MPI_Type_get_contents. In our implementation of MPI_Send, we first determine 

   

���   

�����   

�����   

���   

�
	��������������������������������� �!���"�   

��#%$&���'���)(+*-,  */.0,1$2,3������,+$&4    

56,3�'.7��,982,6$&���:���;��,1#0#<*/���!�:,1.9�    

= �;��*/,1.��0�".��������,�>/,
 

���?*/.��'8<,1$24
  

@ ,3A�,1 �/# �2�B����>2A),�*/�� C ����D  ������ �!���"�    

= ��A3 ��A)���:,E��*&�!���F��G����!���"�  */��.0�;�H,9�:,1.9#    

	��; CI$2���0�J�����:�?��"���!�BD;���'�-#  >2�&�!�0,1.    

K�L�MON1P Q�RBL   S�Q�T9U+V W;X  YBZ W;T9RBV [+W;\    

]?#0,6�".7�BD;������A;�
	��  �!���� �����"�    

^_,9� `a�".�C?>2�&�!�0,+.    

b&c T9d;V RBL�T9R Z c Q�P  V W Y [ c M�Q�RBV [+W   e T9Q�T�d�L�Q�W;f  K"g;h?V W Y [+i   

 
 

Figure 3. Overview of memory-conscious optimization for communication at a sender 



7 

whether the datatype passed is a basic (predefined) datatype or a derived datatype. If it is a basic 
datatype, we simply call PMPI_Send as no packing is needed.  For a derived datatype, we first 
determine whether any performance improvement is possible for the access pattern represented 
by the datatype as described below.  

5.2 Is Per formance Improvement Possible? 

 
Memory performance degrades significantly when the program cannot reuse the data already 

loaded in various levels of the memory hierarchy. We observe in Figure 2 that the data-packing 
overhead (lp) increases after data size 2 MB. Cache reuse degrades when the number of cache 
lines required to be loaded for the working set of data is more than the available number of cache 
lines. Reuse of the Translation Look-aside Buffer (TLB) degrades when the number of page 
entries required is more than the number of entries the TLB can hold. The TLB typically contains 
a small number of entries (128 on the Origin2000), which result in more misses when the number 
of pages required is higher than this number. Therefore, to determine whether any performance 
improvement is possible, we use the metric of determining whether there will be any TLB misses 
for a naïve (unoptimized) data-packing algorithm for the given data size. For this purpose, we 
need to know the number of page entries that will be required to be loaded into the TLB. For a 
noncontiguous access with fixed block size and fixed stride, this number can be determined as 
follows.  

 
Let W be the size in bytes of each contiguous block, S be the stride in bytes between the start 

of two consecutive contiguous blocks of data, n be the number of references to contiguous blocks 
of data in the innermost loop, Ps be the page size in bytes, and Tp be the maximum number of 

entries the TLB can hold. If SPs ≥ , each page contains 
��

S

Ps  references. The number of pages 

required pR  can be calculated as follows: 

��=

S

P
n

R
s

p
 if SPs ≥ , and ��

����=
s

p P
WnR  if SPs < . 

If pp TR < , the entire data to be accessed, including the stride, can be mapped by TLB; that is, 

there are no TLB misses. In this case, we assume that no performance optimization is possible, 
and we simply call PMPI_Send. But if pp TR ≥  and if the access pattern represented by the 

datatype includes out-of-order accesses, some of the pages mapped would be replaced before they 
are completely used. In this case, we use our optimized packing algorithm that uses cache 
blocking to ensure better reuse of mapped pages.  
 
5.3 Choosing a Block Size 
 

After determining that performance improvement is achievable, performance-optimization 
parameters (such as block size for cache blocking) are calculated. Lam et al. [7] have shown that 
the block size has a significant effect on blocking algorithms. Choosing the optimal block size, 
however, is difficult. Temam et al. [15] propose an analytical approach to calculate block size by 
taking into consideration all three types of cache misses: compulsory, capacity, and conflict 
misses. This method has significant overhead in estimating the parameters accurately.  

 
Instead of trying to find the optimal block size, we simply aim to choose a block size that 

avoids the worst performance. Specifically, because of the high cost of TLB misses [16] and the 



8 

relatively small size of the TLB, we decided to choose a block size that minimizes TLB misses. 
In our implementation, we choose a block size that accommodates TLB mapping, noncontiguous 
array accesses, and the other variables in the program. We use half the TLB entries ( 2/pT ) to 

map the block and the other half to accommodate the contiguous buffer and other loop variables. 
In other words, we use a block size that will consume half the entries in the TLB. We determine 
the TLB size for a given system by running a microbenchmark developed by Saavedra et al. [17]. 
The page size is determined by using the system command getpagesize. 

 
5.4 Choosing a Packing Function 

 
Based on the data-access pattern represented by a datatype, we choose a predefined packing 

function and plug in the memory-optimization parameters. To select a function, we classify 
access patterns into combinations defined by contiguous or noncontiguous accesses with fixed or 
variable block sizes and fixed or variable strides. For each of these combinations we use a 
predetermined packing function with architecture-dependent parameters. The data is packed into 
a contiguous buffer with the selected packing function, and we then call PMPI_Send with the 
contiguous buffer. Figure 4 shows the current implementation of MPI_Send in MPICH, and 
Figure 5 shows our implementation with the packing optimizations. 

 

6. Per formance Evaluation 
 

This section presents performance results for the matrix-transpose example. We compare the 
performance of three cases: original MPICH with derived datatypes, original MPICH with 
manual (unoptimized) packing by the user (no derived datatypes), and derived datatypes with our 
optimized packing algorithm. To describe the transpose operation with a derived datatype, we use 
a datatype that is a vector of vectors (vectors of columns in an array). We use a ping-pong 
operation to measure performance. A process sends a message with a derived datatype 
representing the transpose, and the destination process receives it contiguously. The destination 
process then sends back the data with the same derived datatype to the first process, which 
receives it contiguously. The time is measured at the first process and halved to find the 
communication cost for one complete data transfer. We run a few iterations of the program and 
find the minimum time. 

MPI_Send (data, datatype, dest) 
{ 
 if (datatype is basic datatype) 
 { 
  Send (data) to the network buffer. 
 } 
 else (datatype is derived datatype) 
 { 
  /* MPI_Pack () cost is staggeringly high for large 
               data sets and powers-of-2 dimension arrays */ 
   
            MPI_Pack (data, datatype, buffer); 
  Send (buffer) to the network buffer. 
 } 
} 

Figure 4. Current implementation of MPI_Send in MPICH 



9 

In the optimized packing algorithm, cache blocking is used only if the number of pages 
required to be loaded in the TLB is more than the available TLB entries. For the MIPS R10000 
processor on the Origin2000, the number of TLB entries is 128, and the page size is 16 KB. For 
matrix transpose, the number of pages required is more than the available TLB entries for arrays 
of size larger than 512*512 double-precision numbers (data size is 2 MB).  

 
Figure 6 shows the performance of the three cases in terms of the number of clock cycles per 

memory reference. For small data sizes, where we do not use cache blocking, the performance of 
the three methods is almost the same. But once the data size is 8 MB or larger, where cache 
blocking comes into effect, our optimized implementation significantly outperforms both original 
MPICH and manual packing, and the performance improvement is greater as the data size 
increases. 

 

MPI_Send (data, datatype, dest) 
{ 
 if (datatype is basic datatype) 
 { 
  PMPI_Send (data, datatype, source, dest); 
 } 
 else (datatype is derived datatpe) 
 { 

packing_algorithm = Select_best_packing_algorithm (data, 
datatype); 

  pack (packing_algorithm, data, datatype, buffer) ; 
  PMPI_Send (data, datatype, dest); 
 } 
} 
 
Select_best_packing_algorithm (data, datatype) 
{ 
 if (data fits into cache/TLB) 
 { 
  packing_algorithm = PMPI_Pack (data, datatype); 
 } 
 else  
 { 
  calculate_optimization_params (datatype, system_info, &params); 

choose_packing_algorithm (params, data, datatype, 
&packing_algorithm); 

 } 
 return (packing_algorithm); 
} 
 
pack (packing_algorithm, data, datatype, buffer) 
{ 
 if (packing_algorithm == PMPI_Pack) 
 { 
  PMPI_Pack (data, datatype, buffer); 
 } 
 else 
 { 
  /* Here come the template implementations for various  
     data-access patterns with optimized parameters */ 
 } 
} 
 

Figure 5. Memory-conscious implementation of MPI_Send 



10 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 shows the overall communication bandwidth achieved for the same example with 

original MPICH and the memory-optimized version. For higher data sizes, the bandwidth 
achieved by original MPICH decreases considerably, whereas the bandwidth with the memory-
optimized version decreases only slightly and is as much as 85% higher than the original MPICH 
bandwidth.  

 

To see how memory-optimized packing performs compared with derived datatypes in a vendor 
MPI implementation, we ran some experiments on the IBM SP at the San Diego Supercomputer 
Center. We used IBM’s MPI to run three versions of the matrix-transpose program: derived 
datatypes, manual unoptimized packing, and manual memory-optimized packing. The results are 

Optimized MPICH performance

0

50

100

150

200

250

128K 512K 2M 8M 32M 128M 512M

data size (bytes)

cy
cl

es
 p

er
 r

ef
er

en
ce

original MPICH manual packing optimized MPICH

 
Figure 6. Performance improvement with optimized implementation of derived 
datatypes  

Communication bandwidth

0

5

10

15

20

128K 512K 2M 8M 32M 128M 512M

data size (bytes)

b
an

d
w

id
th

 (
M

B
/s

)

original MPICH manual packing optimized MPICH

Figure 7. Bandwidth improvement with the optimized implementation 



11 

shown in Figure 8. For large data sizes, the program that uses manual memory-optimized packing 
takes significantly lower time than both the derived-datatypes version and the one with manual 
unoptimized packing. These results demonstrate that vendor MPI implementations also stand to 
gain by using memory-optimized packing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Conclusions and Future Work  
  

We have described a technique for improving the performance of MPI derived datatypes by 
using packing algorithms that are optimized for advanced hierarchical memory systems on 
modern machines. The optimized algorithms are selected automatically in the implementation of 
derived datatypes. The algorithms are parameterized with various architecture-specific parameters 
(for example, block size and TLB size), which are determined separately for different systems. 
By using these optimized algorithms, we obtained significantly higher performance than both the 
MPI implementation and manual packing by the user. This result is significant because it will 
improve the communication performance of many applications that perform noncontiguous 
communication. 

We plan to extend this work in a number of areas. We will extend the optimizations to 
include loop optimizations, such as loop interchange and loop unrolling, as well as specific 
optimizations to reduce L1 and L2 cache misses. We will incorporate this datatype-optimization 
scheme in MPICH2, which is an all-new implementation of MPI that will eventually replace 
MPICH-1. MPICH2 uses more efficient data structures and a stack-based method for 
implementing derived datatypes, compared with the recursive-function-call approach used in 
MPICH-1. The new scheme is an extension of the work described in [4]. We believe that the new 
stack-based data structures combined with the memory-optimized data packing described in this 
paper will result in a very high performance implementation of derived datatypes. 

We also plan to study the performance on other systems and with other applications, such as 
FFT, unstructured mesh codes, 3D nearest-neighbor communication, and array redistribution. 

Performance with IBM's MPI

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

4.5M 8M 18M 32M 72M
data size (bytes)

ti
m

e 
(s

ec
)

derived datatypes unoptimized manual packing
optimized manual packing

 
Figure 8. Performance of matrix transpose with IBM’s MPI 



12 

Acknowledgments 
This work was supported by the Mathematical, Information, and Computational Sciences Division 
subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department 
of Energy, under Contract W-31-109-ENG-38, and in part by a grant from the Office of Advanced 
Simulation and Computing, National Nuclear Security Administration, U.S. Department of Energy. The 
U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable 
worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and 
perform publicly and display publicly, by or on behalf of the Government. 
 

References 
[1] Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard, Version 1.1,”  

http://www.mpi-forum.org/docs/docs.html, June 1995. 
[2] William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI: Portable Parallel 

Programming with the Message-Passing Interface, MIT Press, 2nd edition, 1999. 
[3] Jesper Larsson Träff, Rolf Hempel, Hubert Ritzdorf, and Falk Zimmermann, “Flattening on the 

Fly: Efficient Handling of MPI Derived Datatypes,”  in Proceedings of the 6th European 
PVM/MPI Users' Group Meeting, Lecture Notes in Computer Science, Vol. 1697, Springer, pp. 
109–116, 1999.  

[4] William Gropp, Ewing Lusk, and Deborah Swider, “ Improving the Performance of MPI 
Derived Datatypes” , in Proceedings of the Third MPI Developer's and User's Conference, MPI 
Software Technology Press, pp. 25–30, March 1999. 

[5] Kirk W. Cameron, Xian-He Sun, “Quantifying Locality Effect in Data Access Delay: Memory 
logP,”  to appear in Proceedings of the 17th International Parallel and Distributed Processing 
Symposium (IPDPS '03), April 2003. 

[6] National Center for Supercomputing Applications, “Understanding Performance on the SGI 
Origin 2000,”  
http://archive.ncsa.uiuc.edu/SCD/Perf/Tuning/Tips/Tuning.html. 

[7] Monica Lam, Edward E. Rothberg, and Michael E. Wolf, “The Cache Performance of Blocked 
Algorithms,” in Proceedings of the Fourth International Conference on Architectural Support 
for Programming Languages and Operating Systems, pp. 63–74, April 1991. 

[8] M. Kandemir, J. Ramanujam and A. Choudhary, “Cache Locality by a Combination of Loop 
and Data Transformations,”  IEEE Transactions on Computers (TC) 48(2): 159–167, February 
1999. 

[9] Gabriel Rivera and Chau-Wen Tseng, “Locality optimizations for multi-level caches,”  in 
Proceedings of  SC99: High-Performance Networking and Computing, November 1999. 

[10] LAPACK – Linear Algebra Package, http://www.netlib.org/lapack. 
[11] IBM Corp. Engineering Scientific Subroutine Library (ESSL), http://www-

1.ibm.com/servers/eserver/pseries/library/sp_books/essl.html. 
[12] R. Clint Whaley, Antoine Petitet, and Jack Dongarra, “Automated Empirical Optimizations of 

Software and the ATLAS Project,”  Parallel Computing, 27(1–2):3–25, 2001. 
[13] SGI MIPSpro family compilers,  
 http://www.sgi.com/developers/devtools/languages/mipspro.html. 
[14] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice 

Santos, Ramesh Subramonian, and Thorsten von Eicken, “LogP: Towards a Realistic Model of 
Parallel Computation,”  in Proceedings of Fourth ACM SIGPLAN Symposium on Principles and 
Practice of Parallel Programming, pp. 1–12, May 1993. 

[15] O. Temam, C. Fricker, and W. Jalby, “Cache Awareness in Blocking Techniques,”  Journal of 
Programming Languages, 1998 

[16] Ashley Saulsbury, Fredrik Dahlgren, and Per Stenström, “Recency-based TLB Preloading,”  in 
Proceedings of the 27th Annual International Symposium on Computer Architecture, pp. 117–
127, June 2000. 

 [17] R. H. Saavedra , R. S. Gaines, and M. J. Carlton, Micro Benchmark Analysis of the KSR1, in 
Proceedings of Supercomputing ‘93, pp. 202–213, December 1993. 


