
Parallel netCDF: A Scientific High-Performance I/O Interface

Jianwei Li Wei-keng Liao Alok Choudhary
ECE Department, Northwestern University

{jianwei, wkliao, choudhar}@ece.northwestern.edu

Robert Ross Rajeev Thakur William Gropp Rob Latham
MCS Division, Argonne National Laboratory
{rross, thakur, gropp, robl}@mcs.anl.gov

Abstract

Dataset storage, exchange, and access play a critical
role in scientific applications. For such purposes netCDF
serves as a portable and efficient file format and program-
ming interface, which is popular in numerous scientific ap-
plication domains. However, the original interface does not
provide a efficient mechanism for parallel data storage and
access.

In this work, we present a new parallel interface for writ-
ing and reading netCDF datasets. This interface is de-
rived with minimal changes from the serial netCDF inter-
face but defines semantics for parallel access and is tai-
lored for high performance. The underlying parallel I/O
is achieved through MPI-IO, allowing for dramatic perfor-
mance gains through the use of collective I/O optimizations.
We compare the implementation strategies with HDF5 and
analyze both. Our tests indicate programming convenience
and significant I/O performance improvement with this par-
allel netCDF interface.

1. Introduction

Scientists have recognized the importance of portable
and efficient mechanisms for storing large datasets created
and used by their applications. The Network Common Data
Form (netCDF) [9, 8] is one such mechanism used by a
number of applications.

NetCDF intends to provide a common data access
method for atmospheric science applications to deal with
a variety of data types that encompass single-point obser-
vations, time series, regularly spaced grids, and satellite or
radar images [8]. Today several organizations have adopted
netCDF as a data access standard [19].

The netCDF design consists of both a portable file for-

mat and an easy-to-use application programming interface
(API) for storing and retrieving netCDF files across multi-
ple platforms. More and more scientific applications choose
netCDF as their output file format. While these applica-
tions become computational and data intensive, they tend to
be parallelized on high-performance computers. Hence, it
is highly desirable to have an efficient parallel programming
interface to the netCDF files. Unfortunately, the original de-
sign of the netCDF interface is proving inadequate for paral-
lel applications because of its lack of a parallel access mech-
anism. In particular, there is no support for concurrently
writing to a netCDF file. Therefore, parallel applications
operating on netCDF files must serialize access. Tradition-
ally, parallel applications write to netCDF files through one
of the allocated processes which easily becomes a perfor-
mance bottleneck. The serial I/O access is both slow and
cumbersome to the application programmer.

To facilitate parallel I/O operations, we have defined a
parallel API for concurrently accessing netCDF files. With
minimal changes to the names and argument lists, this in-
terface maintains the look and feel of the serial netCDF in-
terface while the implementation underneath incorporates
well-known parallel I/O techniques such as collective I/O
to allow high-performance data access. We implement this
work on top of MPI-IO, which is specified by the MPI-2
standard [3, 7, 2] and is freely available on most platforms.
MPI has become the de facto parallel mechanism for com-
munication and I/O on most parallel environments, making
this approach portable across different platforms.

Hierarchical Data Format version 5 (HDF5) [5] also pro-
vides a portable file format and programming interfaces for
storing multidimensional arrays together with ancillary data
in a single file. It supports parallel I/O and its implementa-
tion is also built on top of MPI-IO. Similar to HDF5, our
goal on designing the parallel netCDF is to make the pro-
gramming interface a data access standard for parallel sci-
entific applications and provide more optimization opportu-

1

nities for I/O performance enhancement.
We ran a set of benchmarks using regular data access

patterns commonly seen in scientific applications as well as
the ones from a production astrophysics application called
FLASH [1]. We study the scalability of our parallel netCDF
implementation and compare the performance results be-
tween using parallel netCDF and parallel HDF5 in the
FLASH I/O benchmark [18]. In this benchmark, our ex-
periments show significant I/O performance improvement
when using parallel netCDF.

The rest of this paper is organized as follows. Section2
reviews some related work. Section3 presents the design
background of netCDF and points out its potential usage in
parallel scientific applications. The design and implementa-
tion of our parallel netCDF is described in Section4. Exper-
imental performance results are given in Section5. Section
6 concludes the paper.

2. Related Work

Considerable research has been done on data access
for scientific applications. The work has focused on data
I/O performance and data management convenience. Two
projects, MPI-IO and HDF, are most closely related to our
research.

MPI-IO is a parallel I/O interface specified in the MPI-2
standard. It is implemented and used on a wide range of
platforms. The most popular implementation, ROMIO [17]
is implemented portably on top of an abstract I/O device
layer [14, 16] that enables portability to new underlying I/O
systems. One of the most important features in ROMIO
is collective I/O operations, which adopt a two-phase I/O
strategy [11, 12, 13, 15] and improve the parallel I/O perfor-
mance by significantly reducing the number of I/O requests
that would otherwise result in many small, noncontiguous
I/O requests. However, MPI-IO reads and writes data in
a raw format without providing any functionality to effec-
tively manage the associated metadata. Nor does it guar-
antee data portability, thereby making it inconvenient for
scientists to organize, transfer, and share their application
data.

HDF is a file format and software, developed at NCSA,
for storing, retrieving, analyzing, visualizing, and convert-
ing scientific data. The most popular versions of HDF
are HDF4 [4] and HDF5 [5]. The design goal of HDF4
is mainly to deal with sequential data access and its API
is consistent with its earlier versions. On the other hand,
HDF5 is a major revision in which its API is completely
re-designed. Both versions store multidimensional arrays
together with ancillary data in portable, self-describing file
formats. The support for parallel data access in HDF5 is
built on top of MPI-IO, which ensures its portability since
MPI-IO has become a de facto standard for parallel I/O.

However, the fact that HDF5 file format is not compati-
ble with HDF4 can be inconvenient for existing HDF4 pro-
grammers to migrate their applications to HDF5. Further-
more, HDF5 adds several new features, such as a hierar-
chical file structure, that give the programmer more power
to describe metadata while making it more difficult for the
implementation to optimize parallel data access. And the
overhead involved may make HDF5 perform much worse
than its underlying MPI-IO. By using a number of scientific
applications, this problem is addressed in [6, 10].

3. NetCDF Background

NetCDF is an abstraction that supports a view of data
as a collection of self-describing, portable, array-oriented
objects that can be accessed through a simple interface. It
defines a file format as well as a set of programming inter-
faces for storing and retrieving data in the form of arrays
in netCDF files. We first describe the netCDF file format
and its serial API and then consider various approaches to
access netCDF files in parallel computing environments.

3.1. File Format

NetCDF stores data in an array-oriented dataset, which
contains dimensions, variables, and attributes. Physically,
the dataset file is divided into two parts: file header and ar-
ray data. The header contains all information (or metadata)
about dimensions, attributes, and variables except for the
variable data itself, while the data part contains arrays of
variable values (or raw data).

The netCDF file header first defines a number of dimen-
sions, each with a name and a length. These dimensions are
used to define the shapes of variables in the dataset. One di-
mension can be unlimited and is used as the most significant
dimension (record dimension) for growing-size variables.

Following the dimensions, a list of named attributes are
used to describe the properties of the dataset (e.g., data
range, purpose, associated applications). These are called
global attributes and are separate from attributes associated
with individual variables.

The basic units of named data in a netCDF dataset are
variables, which are multidimensional arrays. The header
part describes each variable by its name, shape, named at-
tributes, data type, array size, and data offset, while the data
part stores the array values for one variable after another, in
their defined order.

To support variable-size arrays (e.g., data growing with
time stamps), netCDF introduces record variables and uses
a special technique to store such data. All record variables
share the same unlimited dimension as their most signif-
icant dimension and are expected to grow together along
that dimension. The other, less significant dimensions all

2

ndst

nd

th

st nd th

st

va
ri

ab
le

-s
iz

e
ar

ra
ys

fi
xe

d-
si

ze
 a

rr
ay

s

Interleaved records grow in the UNLIMITED

r record variables in order

n non-record variable

nd

1 record for 1 record variable

dimension for 1 , 2 , ... , r variables

nd

th

netCDF Header

2 non-record variable

st

1 non-record variablest

1 record for 2 record variable

1 record for r record variablest

st

2 records for 1 , 2 , ... ,
th

Figure 1. NetCDF file structure: there is a file
header containing metadata of the stored ar-
rays, then the fixed-size arrays are laid out in
the following contiguous file space in a linear
order, with variable-size arrays appending at
the end of the file in an interleaved pattern.

together define the shape for one record of the variable.
For fixed-size arrays, each array is stored in a contiguous
file space starting from a given offset. For variable-size ar-
rays, netCDF first defines arecord of an array as a subar-
ray comprising all fixed dimensions and the records of all
such arrays are stored interleaved in the arrays’ defined or-
der. Figure1 illustrates the storage layouts for fixed-size
and variable-size arrays in a netCDF file.

In order to achieve network transparency (machine-
independence), both the header and data parts of the file
are represented in an well-defined format similar to XDR
(eXternal Data Representation) but extended to support ef-
ficient storage of arrays of non-byte data.

3.2. Serial NetCDF API

The original netCDF API was designed for serial codes
to perform netCDF operations through a single process. In
the serial netCDF library, a typical sequence of operations
to write a new netCDF dataset is to create the dataset; define
the dimensions, variables and attributes; write variable data;
and close the dataset. Reading an existing netCDF dataset
involves first opening the dataset; inquiring about dimen-
sions, variables, and attributes; reading variable data; and
closing the dataset.

These netCDF operations can be divided into the follow-
ing five categories. Refer to [8] for details of each function
in the netCDF library.

(1) Dataset Functions: create/open/close a dataset,
set the dataset to define/data mode, and synchro-
nize dataset changes to disk

(2) Define Mode Functions: define dataset dimen-
sions and variables

(3) Attribute Functions : manage adding, changing,
and reading attributes of datasets

(4) Inquiry Functions : return dataset metadata:
dim(id, name, len), var(name, ndims, shape, id)

(5) Data Access Functions: provide the ability to
read/write variable data in one of the five ac-
cess methods: single value, whole array, subarray,
subsampled array (strided subarray) and mapped
strided subarray

The I/O implementation of the serial netCDF API is built
on the native I/O system calls and has its own buffering
mechanism in user space. Its design and optimization tech-
niques are suitable for serial access but are not efficient
or even not possible for parallel access, nor do they allow
further performance gains provided by modern parallel I/O
techniques.

3.3. Using NetCDF in Parallel Environments

Today most scientific applications are programmed to
run in parallel environments due to the increasing require-
ments on data amount and computational resources. It is
highly desirable to develop a set of parallel APIs for access-
ing netCDF files that employs appropriate parallel I/O tech-
niques. In the meantime, programming convenience is also
important, since scientific users may desire to spend mini-
mal effort on dealing with I/O operations. Before presenting
our design on parallel netCDF, we would like to discuss cur-
rent approaches for using netCDF in parallel programs in a
message-passing environment.

The first and most straightforward approach is described
in the scenario of Figure2(a) in which one process is in
charge of collecting/distributing data and performing I/O to
a single netCDF file using the serial netCDF API. The I/O
requests from other processes are carried out by shipping all
the data through this single process. The drawback of this
approach is that collecting all I/O data on a single process
can easily cause an I/O performance bottleneck and may
overwhelm its memory capacity.

To avoid unnecessary data shipping, an alternative ap-
proach is to have all processes perform their I/O indepen-
dently using the serial netCDF API, as shown in Figure2(b).

3

netCDF

(a) (c)(b)

netCDF netCDF netCDFnetCDF

Parallel File System

P2 P3 P1P0 P2 P0 P1 P2 P3

Parallel File System Parallel File System

Parallel netCDF

P3P0 P1

Figure 2. Using netCDF in parallel programs: (a) use serial netCDF API to access single files through
a single process; (b) use serial netCDF API to access multiple files concurrently and independently;
(c) use new parallel netCDF API to access single files cooperatively or collectively.

In this case, all netCDF operations can proceed concur-
rently, but over multiple files, one for each process. How-
ever, it is more difficult to manage a netCDF dataset when
it is spread across multiple files. This approach also vio-
lates the netCDF design goal of easy data integration and
management.

A third approach introduces a new set of APIs with par-
allel access semantics and optimized parallel I/O implemen-
tation such that all processes perform I/O operations coop-
eratively or collectively through the parallel netCDF library
to access a single netCDF file. This approach, as shown in
Figure2(c), both frees the users from dealing with details of
parallel I/O and provides more opportunities for employing
various parallel I/O optimizations in order to obtain higher
performance. We discuss the details of this parallel netCDF
design and implementation in the next section.

4. Parallel NetCDF

To facilitate convenient and high-performance parallel
access to netCDF files, we define a new parallel inter-
face and provide a prototype implementation. Since a
large number of existing users are running their applica-
tions over netCDF, our parallel netCDF design retains the
original netCDF file format (version 3) and introduces min-
imal changes from the original interface. We distinguish the
parallel API from the original serial API by prefixing the C
function calls with “ncmpi” and the Fortran function calls
with “nfmpi ”.

4.1. Interface Design

Our parallel netCDF API is built on top of MPI-IO. The
parallel netCDF built on MPI-IO can benefit from several
well-known optimizations already used in existing MPI-IO
implementations, such as data sieving and two-phase I/O

strategies [11, 12, 13, 15] in ROMIO. Figure3 describes
the overall architecture for our design.

In parallel netCDF, a file is opened, operated, and closed
by the participating processes in a communication group. In
order for these processes to operate on the same file space,
especially upon the structural information contained in the
file header, a number of changes have been made to the orig-
inal serial netCDF API.

For the function calls that create/open a netCDF file, an
MPI communicator is added in the argument list to define
the participating I/O processes within the file’s open and
close scope. An MPIInfo object is also added to pass user
access hints to the MPI-IO for further optimizations. By
describing the collection of processes with a communicator,
we provide the underlying implementation with information
that can be used to ensure file consistency. The MPIInfo
hint provides users the ability to deliver the high level ac-
cess information to netCDF and MPI-IO libraries, such as
file access patterns and file system specifics to direct opti-
mization.

We keep the same syntax and semantics for the parallel
netCDF define mode functions, attribute functions, and in-
quiry functions as the original ones. These functions are
also made collective to guarantee consistency of dataset
structure among the participating processes in the same MPI
communication group. For instance, all processes must call
the define mode functions with the same values.

The major effort of this work is the parallelization of
the data access functions. We provide two sets of data ac-
cess APIs: ahigh-level APIthat mimics the serial netCDF
data access functions and serves an easy path for original
netCDF users to migrate to the parallel interface, and a
flexible APIthat provides a more MPI-like style of access.
Specifically, the flexible API uses more MPI functionality in
order to provide better handling of internal data representa-
tions and to more fully expose the capabilities of MPI-IO
to the application programmer. The major difference be-

4

Parallel netCDF
User Space

Space

Communication Network

File System

Server
I/O

Server
I/O

Server
I/O

Node
Compute

Node
Compute

Node
Compute

Node
Compute

MPI-IO

Figure 3. Design of parallel netCDF on a par-
allel I/O architecture. Parallel netCDF runs as
a library between user space and file system
space. It processes parallel netCDF requests
from user compute nodes and, after optimiza-
tion, passes the parallel I/O requests down to
MPI-IO library, and then the I/O servers re-
ceive the MPI-IO requests and perform I/O
over the end storage on behalf of the user.

tween the two is the use of MPI derived data types. We
believe using MPI derived datatypes can better illustrate the
access patterns than the subarray mapping methods used in
the original API.

The most important change from the original netCDF
interface with respect to data access functions is the split
of data mode into two distinct modes: collective and non-
collective data modes. To make it obvious the functions
involve all processes, collective function names end with
“ all”. Similar to MPI-IO, the collective functions are syn-
chronous across the processes in the communicator asso-
ciated to the opened netCDF file, while the non-collective
functions are not. Using collective operations can provide
the underlying parallel netCDF implementation an opportu-
nity to further optimize access to the netCDF file. These
optimizations are performed without further intervention
by the application programmer and have been proven to
provide dramatic performance improvement in multidimen-
sional dataset access [15]. Figure4 shows example code of
using our parallel netCDF API to write and read a dataset
using collective I/O.

4.2. Parallel Implementation

The parallel API implementation is discussed in two
parts: header I/O and parallel data I/O. We first describe

1 &file_id);ncmpi_create(mpi_comm, filename, 0, mpi_info,
ncmpi_def_var(file_id, ...);
ncmpi_enddef(file_id);

2

ncmpi_put_vara_all(file_id, var_id,
start[], count[],
buffer, bufcount,
mpi_datatype);

3

ncmpi_close(file_id);4

1 ncmpi_open(mpi_comm, filename, 0, mpi_info, &file_id);
(b) READ:

2 ncmpi_inq(file_id, ...);

3 ncmpi_get_vars_all(file_id, var_id,

4

buffer, bufcount,
start[], count[], stride[],

ncmpi_close(file_id);
mpi_datatype);

(a) WRITE:

Figure 4. Example of using parallel netCDF.
Typically there are 4 main steps: 1. col-
lectively create/open the dataset; 2. collec-
tively define the dataset by adding dimen-
sions, variables and attributes in WRITE, or
inquiry about the dataset to get metadata as-
sociated with the dataset in READ; 3. access
the data arrays (collective or non-collective);
4. collectively close the dataset.

our implementation strategies for dataset functions, define
mode functions, attribute functions, and inquiry functions
that access the netCDF file header.

4.2.1. Access to File Header

Internally, the header is read/written only by a single
process, although a copy is cached in local memory on
each process. The define mode functions, attribute func-
tions, and inquiry functions all work on the local copy of
the file header. Since they are all in-memory operations not
involved in any file I/O, they bear few changes from the
serial netCDF API. They are made collective, but this fea-
ture does not necessarily imply inter-process synchroniza-
tion. In some cases, however, when the header definition is
changed synchronization is needed to verify that the values
passed in by all processes match. In all possible cases we
allow inter-process communications.

The dataset functions, unlike the other functions cited,
need to be completely reimplemented because they are in
charge of collectively opening/creating datasets, perform-
ing header I/O and file synchronization for all processes,
and managing inter-process communication. We build these
functions over MPI-IO so that they have better portabil-
ity and provide more optimization opportunities. The ba-
sic idea is to let the ROOT process fetch the file header,

5

broadcast it to all processes when opening a file, and write
the file header at the end of define mode if any modifica-
tion occurs in the header part. Since all define mode and
attribute functions are collective and require all processes
in the communicator to provide the same arguments when
adding/removing/changing definitions, the local copies of
the file header shall be the same across all processes once
the file is collectively opened and until it is closed.

4.2.2. Parallel I/O for Array Data

Since the majority of time spent accessing a netCDF file
is in data access, the data I/O must be efficient. By imple-
menting the data access functions above MPI-IO, we enable
a number of advantages and optimizations.

For each of the five data access methods in the flexible
data access functions, we represent the data access pattern
as an MPI file view (a set of data visible and accessible
from an open file [7]), which is constructed from the vari-
able metadata (shape, size, offset, etc.) in the netCDF file
header and start[], count[], stride[], imap[], mpidatatype ar-
guments provided by users. For parallel access, particularly
for collective access, each process has a different file view.
All processes in combination can make a single MPI-IO re-
quest to transfer large contiguous data as a whole, thereby
preserving useful semantic information that would other-
wise be lost if the transfer were expressed as per process
noncontiguous requests.

The high-level data access functions are implemented
in terms of the flexible data access functions, so that ex-
isting users migrating from serial netCDF can also bene-
fit from the MPI-IO optimizations. However, the flexible
data access functions are closer to MPI-IO and hence incur
less overhead. They accept a user-specified MPI derived
datatype and pass it directly to MPI-IO for optimal handling
of in-memory data access patterns.

In some cases (for instance, in record variable access)
the data is stored interleaved by record and the contiguity
information is lost, so the existing MPI-IO collective I/O
optimization may not help. In that case, we need more opti-
mization information from users, such as the number, order,
and record indices of the record variables they will access
consecutively. With such information we can collect multi-
ple I/O requests over a number of record variables and opti-
mize the file I/O over a large pool of data transfers, thereby
producing more contiguous and larger transfers. This kind
of information is passed in as an MPIInfo hint when a user
opens or creates a netCDF dataset. We implement our user
hints in parallel netCDF for all such specific optimization
points, while a number of standard hints are passed down
for MPI-IO to take control of optimal parallel I/O behav-
iors. Thus experienced users have the opportunity to tune
their applications for further performance gains.

4.3. Advantages and Disadvantages

There are a number of advantages within the design
and implementation of our parallel netCDF, as compared
to other related work, like HDF5.

First, the parallel netCDF design and implementation is
optimized for the netCDF file format so that the data I/O
performance is as good as the underlying MPI-IO imple-
mentation. The NetCDF file chooses linear data layout, in
which the data arrays are either stored in contiguous space
and in a predefined order or interleaved in a regular pat-
tern. This regular and highly predictable data layout en-
ables the parallel netCDF data I/O implementation to sim-
ply pass the data buffer, metadata (fileview, mpidatatype,
etc.), and other optimization information to MPI-IO, and
all parallel I/O operations are carried out in the same man-
ner as when MPI-IO alone is used. Thus, there is very lit-
tle overhead, and the parallel netCDF performance should
be nearly the same as MPI-IO if only raw data I/O perfor-
mance is compared. On the other hand, parallel HDF5 uses
tree-like file structure that are similar to the UNIX file sys-
tem and the data is irregularly laid out using super block,
header blocks, data blocks, extended header blocks and ex-
tended data blocks. This irregular layout pattern may make
it difficult to pass user access patterns directly to MPI-IO
especially for the case of variable-size arrays. Instead, par-
allel HDF5 uses dataspace and hyperslabs to define the data
organization, map and transfer data between memory space
and the file space and does buffer packing/unpacking in a
recursive way, while these can otherwise be directly han-
dled by MPI-IO in a more efficient and optimized way.

Secondly, the parallel netCDF implementation manages
to keep the overhead involved in header I/O as low as pos-
sible. In the netCDF file, there is only one header that con-
tains all necessary information for direct access of each data
array and each array is associated with a predefined, numer-
ical ID that can be efficiently inquired when it is needed to
access the array. By maintaining a local copy of the header
on each process, our implementation saves a lot of inter-
process synchronization as well as avoids repeated access of
the file header each time the header information is needed
to access a single array. All header information can be ac-
cessed directly in local memory and inter-process synchro-
nization is needed only during the definition of the dataset.
Once the definition of the dataset is created, each array can
be identified by its permanent ID and accessed at any time
by any process, without any collective open/close opera-
tion. On the other hand, in HDF5 the header metadata is
dispersed in separate header blocks for each object and, in
order to operate on an object, it has to iterate through the
entire namespace to get the header information of that ob-
ject and then open, access and close it. This kind of ac-
cess method may be inefficient for parallel access, since the

6

parallel HDF5 designs the open/close of each object as col-
lective operations, which forces all participating processes
to communicate when accessing one single object, not to
mention the cost of file access to locate and fetch the header
information of that object.

Finally, the programming interface of the parallel
netCDF is concise and designed for easy usage, and the file
format is fully compatible with serial netCDF. Porting ex-
isting serial netCDF application to parallel netCDF should
be straightforward because the parallel API contains nearly
all functions of the serial API with parallel semantics but
with minimal change of function names and argument lists.

However, there are also limitations in parallel netCDF.
Unlike HDF5, netCDF does not support hierarchical group
based organization of data objects. Since it lays out the data
in a linear order, adding fixed-size array or extending the
file header may be very costly once the file is created and
has existing data stored, though moving the existing data to
the extended area is performed in parallel. Also, parallel
netCDF does not provide functionality to combine two or
more files in memory through software mounting, as HDF5
does. Nor does netCDF support data compression within its
file format. Fortunately, these features can all be achieved
by external software, sacrificing some manageability of the
files.

5. Performance Evaluation

To evaluate the performance and scalability of our par-
allel netCDF with that of serial netCDF, we ran some ex-
periments and compared the results. We also compared the
performance of parallel netCDF with that of parallel HDF5,
using the FLASH I/O benchmark.

The experiments were run on an IBM SP-2 machine.
This system is a teraflop-scale clustered SMP with 144 com-
pute nodes. Each compute node has 4 GB of memory shared
among its eight 375 MHz Power3 processors. All the com-
pute nodes are interconnected by switches and also con-
nected via switches to the multiple I/O nodes running the
GPFS parallel file system. There are 12 I/O nodes, each
with dual 222 MHz processes. The aggregate disk space is
5 TB and the peak I/O bandwidth is 1.5 GB/s.

5.1. Scalability Analysis

We wrote a test code (in C) to evaluate the performance
of the current implementation of parallel netCDF. This test
code was originally developed in Fortran by Woo-sun Yang
and Chris Ding at Lawrence Berkeley National Labora-
tory (LBL). Basically it reads/writes a three-dimensional
array field tt(Z,Y,X) from/into a single netCDF file, where
Z=level is the most significant dimension and X=longitude
is the least significant dimension. The test code partitions

Z

Y

ZYX Partition

Processor 0

Y PartitionZ Partition X Partition

YX PartitionZY Partition ZX Partition

Processor 7

Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

X

Figure 5. Various 3-D array partitions on 8 pro-
cessors

the three dimensional array along Z, Y, X, ZY, ZX, YX, and
ZYX axes, respectively, as illustrated in Figure5. All data
I/O operations in these tests used collective I/O. For com-
parison purpose, we prepared the same test using the origi-
nal serial netCDF API and ran it in serial mode, in which a
single processor reads/writes the whole array.

Figure6 shows the performance results for reading and
writing 64 MB and 1 GB netCDF datasets. Generally, the
parallel netCDF performance scales with the number of pro-
cesses. Because of collective I/O optimization, the perfor-
mance difference made by various access patterns is small,
although partitioning in the Z dimension generally performs
better than in the X dimension because of the different
access contiguity. The overhead involved is inter-process
communication, which is negligible compared to the disk
I/O when using a large file size. The I/O bandwidth does
not scale in direct proportion because the number of I/O
nodes (and disks) is fixed so that the dominating disk ac-
cess time at I/O nodes is almost fixed. As expected, the par-
allel netCDF outperforms the original serial netCDF as the
number of processes increases. The difference between the
serial netCDF performance and the parallel netCDF perfor-
mance with one processor is because of their different I/O
implementations and different I/O caching/buffering strate-
gies. In the serial netCDF case, if, as in Figure2(a), multi-
processors were used and the ROOT processor needed to

7

Parallel netCDF

Parallel netCDFParallel netCDF

Parallel netCDF

XZ
Y ZY

ZX
YX

YX
ZX

ZYY
Z X ZYX

netCDF
Serial

netCDF
Serial

netCDF
Serial

YX
ZX

ZYY
Z X ZYX

YX
ZX

ZYY
Z X ZYX

ZYX

Read 1 GB

Write 64 MBRead 64 MB

Number of processors Number of processors

Number of processorsNumber of processors
B

an
dw

id
th

 (
M

B
/s

ec
)

B
an

dw
id

th
 (

M
B

/s
ec

)

B
an

dw
id

th
 (

M
B

/s
ec

)

B
an

dw
id

th
 (

M
B

/s
ec

)

Write 1 GB

Serial
netCDF

2

700

32
0

50

164

200

600

500

400

300

200

8

100

150

250

100

4

1 1642

300

250

200

150

100

50

0

1

16

0

8421

200

150

100

0

1

16

50

821

8 321

1 1

Figure 6. Serial and parallel netCDF performance for 64 MB and 1 GB datasets. The first column of
each chart shows the I/O performance of reading/writing the whole array through a single processor
using serial netCDF; the rest of the columns show the results using parallel netCDF.

collect partitioned data and then perform the serial netCDF
I/O, the performance would be much worse and decrease
with the number of processors because of the additional
communication cost and division of a single large I/O re-
quest into a series of small requests.

5.2. FLASH I/O Performance

The FLASH I/O benchmark simulates the I/O pattern of
an important scientific application called FLASH [1]. It
recreates the primary data structures in the FLASH code
and produces a checkpoint file, a plotfile with centered data,
and a plotfile with corner data, using parallel HDF5. Basi-
cally, these three output files contains a series of multidi-
mensional arrays, and the access pattern is simple (Block,
*, ...), which is similar to the Z partition in Figure5. In
each of the files, the benchmark writes the related arrays
in a fixed order from contiguous user buffers, respectively.
The I/O routines in the benchmark are identical to the rou-
tines used by FLASH, so any performance improvements
made to the benchmark program will be shared by FLASH.
In our experiments, in order to focus on the data I/O per-
formance, we modified this benchmark, removed the part
of code writing attributes, ported it to parallel netCDF, and
observed the effect of our new parallel I/O approach.

Figure7 shows the performance results of the FLASH
I/O benchmark using parallel netCDF and parallel HDF5.
We tested both small data size and large data size. The pa-
rameters used in these two experiments are: (a) nxb = nyb =
nzb = 8, nguard = 4, number of blocks = 80, and nvar = 24;
(b) nxb = nyb = nzb = 16, nguard = 8, number of blocks =
80, and nvar = 24. Although both I/O libraries are built
above MPI-IO, the parallel netCDF has much less over-
head and outperforms parallel HDF5 by almost doubling
the overall I/O rate. The extra overhead involved in paral-
lel HDF5 includes inter-process synchronizations and file
header access performed internally in parallel open/close
of every dataset (analogous to a netCDF variable) and re-
cursive handling of the hyperslab used for parallel access,
which makes the packing of the hyperslabs into contiguous
buffers take a relatively long time.

6. Conclusion and Future Work

In this work, we extend the serial netCDF interface to
facilitate parallel access, and we provide an implementation
for a subset of this new parallel netCDF interface. By build-
ing on top of MPI-IO, we gain a number of interface advan-
tages and performance optimizations users can benefit from
by using this parallel netCDF package, as shown by our test

8

W
ri

te
 B

an
dw

id
th

 (
M

B
/s

)

W
ri

te
 B

an
dw

id
th

 (
M

B
/s

)

8 16 32 646432168

(a) Small Data Size

Number of Processors

Parallel HDF5Parallel HDF5

Number of Processors

(b) Large Data Size

Prallel netCDFPrallel netCDF

0

140

120

100

80

35

5

60

40

20

0

10

30

40

15

20

25

Figure 7. Performance of FLASH I/O benchmark using parallel HDF5 and parallel netCDF. The two
experiments use different parameters so that the file sizes are different. Also the file sizes are varies
with the number of processors. The I/O amount is 3MB * Number of Processors in (a), and 24MB *
Number of Processors in (b).

results. So far, we have released our parallel netCDF library
at the websitehttp://www.mcs.anl.gov/parallel-netcdf/, and
a number of users from LBL, ORNL, and University of
Chicago are using our parallel netCDF library.

Future work involves developing a production-quality
parallel netCDF API (for C, C++, Fortran, and other pro-
gramming languages) and making it freely available to the
high-performance computing community. Moreover, we
need to develop a mechanism for matching the file organi-
zation to access patterns, and we need to develop cross-file
optimizations for addressing common data access patterns.

Acknowledgements

This work is sponsored by Scientific Data Management
Center of DOE SciDAC ISICs program and jointly con-
ducted at Northwestern University and Argonne National
Laboratory. This research was also supported in part by
NSF cooperative agreement ACI-9619020 through comput-
ing resources provided by the National Partnership for Ad-
vanced Computational Infrastructure at the San Diego Su-
percomputer Center.

We thank Woo-Sun Yang from LBL for providing us the
test code for performance evaluation and Nagiza F. Sama-
tova and David Bauer at ORNL for using our library and for
giving us feedback and valuable suggestions.

References

[1] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,
D. Q. Lamb, P. MacNeice, R. Rosner, and H. Tufo. “FLASH:
An adaptive mesh hydrodynamics code for modelling astro-

physical thermonuclear flashes,”Astrophysical Journal Sup-
pliment, 2000, pp. 131-273.

[2] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. “A high-
performance, portable implementation of the MPI Message-
Passing Interface standard,”Parallel Computing, 22(6):789-
828, 1996.

[3] W. Gropp, E. Lusk, and R. Thakur.Using MPI-2: Advanced
Features of the Message Passing Interface, MIT Press, Cam-
bridge, MA, 1999.

[4] HDF4 Home Page. The National Center for Supercomputing
Applications.http:// hdf.ncsa.uiuc.edu/hdf4.html.

[5] HDF5 Home Page. The National Center for Supercomputing
Applications.http:// hdf.ncsa.uiuc.edu/HDF5/.

[6] J. Li, W. Liao, A. Choudhary, and V. Taylor. “I/O Analy-
sis and Optimization for an AMR Cosmology Application,”
in Proceedings of IEEE Cluster 2002, Chicago, September
2002.

[7] Message Passing Interface Forum. “MPI-2: Extensions to
the Message-Passing Interface”, July 1997.http://www.mpi-
forum.org/docs/docs.html.

[8] R. Rew, G. Davis, S. Emmerson, and H. Davies, “NetCDF
User’s Guide for C,” Unidata Program Center, June 1997.
http://www.unidata.ucar.edu/packages/netcdf/guidec/.

[9] R. Rew and G. Davis, “The Unidata netCDF: Software
for Scientific Data Access,”Sixth International Conference
on Interactive Information and Processing Systems for Me-
teorology, Oceanography and Hydrology, Anaheim, CA,
February 1990.

[10] R. Ross, D. Nurmi, A. Cheng, and M. Zingale, “A Case
Study in Application I/O on Linux Clusters”, inProceedings
of SC2001, Denver, November 2001.

[11] J.M. Rosario, R. Bordawekar, and A. Choudhary. “Improved
Parallel I/O via a Two-Phase Run-time Access Strategy,”
IPPS ’93 Parallel I/O Workshop, February 9, 1993.

9

[12] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy,
and T. Singh. “PASSION Runtime Library for Parallel I/O”,
Scalable Parallel Libraries Conference, Oct. 1994.

[13] R. Thakur and A. Choudhary. “An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays,”Sci-
entific Programming, 5(4):301-317, Winter 1996.

[14] R. Thakur, W. Gropp, and E. Lusk. “An Abstract-Device
interface for Implementing Portable Parallel-I/O Inter-
faces”(ADIO), inProceedings of the 6th Symposium on the
Frontiers of Massively Parallel Computation, October 1996,
pp. 180-187.

[15] R. Thakur, W. Gropp, and E. Lusk. “Data Sieving and Col-
lective I/O in ROMIO,” inProceeding of the 7th Symposium
on the Frontiers of Massively Parallel Computation, Febru-
ary 1999, pp. 182-189.

[16] R. Thakur, W. Gropp, and E. Lusk. “On implementing MPI-
IO portably and with high performance,” inProceedings of
the Sixth Workshop on Input/Output in Parallel and Dis-
tributed Systems, May 1999, pp. 23-32.

[17] R. Thakur, R. Ross, E. Lusk, and W. Gropp, “Users Guide
for ROMIO: A High-Performance, Portable MPI-IO Imple-
mentation,” Technical Memorandum No. 234, Mathematics
and Computer Science Division, Argonne National Labora-
tory, Revised January 2002.

[18] M. Zingale. FLASH I/O benchmark.http://flash.uchicago.
edu/̃ zingale/flashbenchmarkio/.

[19] Where is NetCDF Used? Unidata Program Center.http://
www.unidata.ucar.edu/packages/netcdf/usage.html.

10

The submitted manuscript has been created by the University
of Chicago as Operator of Argonne National Laboratory (”Ar-
gonne”) under Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonexclusive, irre-
vocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Govern-
ment.

11

	. Introduction
	. Related Work
	. NetCDF Background
	. File Format
	. Serial NetCDF API
	. Using NetCDF in Parallel Environments

	. Parallel NetCDF
	. Interface Design
	. Parallel Implementation
	. Access to File Header
	. Parallel I/O for Array Data

	. Advantages and Disadvantages

	. Performance Evaluation
	. Scalability Analysis
	. FLASH I/O Performance

	. Conclusion and Future Work

