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Abstract

We study the performance of the multigrid method applied to spectral element

�SE� discretizations of the Poisson equation� Smoothers based on �nite element �FE�

discretizations� overlapping Schwarz methods� and point�Jacobi are considered in con�

junction with conjugate gradient and GMRES acceleration techniques� It is found that

Schwarz methods based on restrictions of the originating SE matrices converge faster

than FE�based methods and that weighting the Schwarz matrices by the inverse of the

diagonal counting matrix is essential to e�ective Schwarz smoothing� Several of the

methods considered achieve convergence rates comparable to those attained by classic

multigrid on regular grids�

� Introduction

The availability of fast elliptic solvers is essential to many areas of scienti�c computing�

For unstructured discretizations in three dimensions� iterative solvers are generally optimal

from both a work and storage standpoint� Ideally� one would like to have computational

complexity that scales as O�n� for an n�point grid problem in lRd� implying that the it�

eration count should be bounded as the mesh is re�ned� Modern iterative methods such

as multigrid and Schwarz�based domain decomposition achieve bounded iteration counts

through the introduction of multiple representations of the solution �or the residual� that

allow e�cient elimination of the error at each scale� The theory for these methods is well

established for classical �nite di�erence �FD� and �nite element �FE� discretizations� and

order�independent convergence rates are often attained in practice�

For spectral element �SE� methods� there has been signi�cant work on the development

of Schwarz�based methods that employ a combination of local subdomain solves and sparse

global solves to precondition conjugate gradient iteration� Theoretical work� due to Pavarino

and Widlund 	
��� Mandel 	

�� Casarin 	
� 
� ��� and others� and practical experience

	�
� ��� ��� 
�� 
�� indicate that these methods achieve order�independent convergence� or at

least convergence rates that are independent of the number of subdomains �elements�� The

iteration counts� however� are generally not as low as observed for classical FD� or FE�based

multigrid schemes� It is natural to consider exploiting the nested spaces that are intrinsic to
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the spectral element method� constructed through successive reductions in polynomial order�

to develop an e�cient spectral element multigrid �SEMG� procedure� Early work in this

direction was undertaken by R�nquist and Patera 	
��� who employed Jacobi smoothing

in an intra�element SEMG implementation� Extensive numerical experiments with this

approach are presented in the thesis of R�nquist 	

�� and theoretical analysis is presented

by Maday and Mu�noz 	
�� and Maday et al� 	

�� They showed that a multigrid convergence

factor of � � ���� was attained for d � �� independent of the number of elements E and

polynomial degree N � For d � 
� however� they found � � ��c�N for standard Jacobi�based

smoothing and � � � � c�
p
N when Jacobi�based smoothing is coupled with Chebyshev

acceleration� Several authors have attributed the performance degradation for d � � to the

high�aspect�ratio cells that are present in the SE grids� which are based on tensor�products

of Gauss�Lobatto nodal bases� Spectral multigrid schemes incorporating semi�coarsening

and�or line relaxation have been proposed to address this problem in 	��� ��� 
�� ��� �High�

aspect�ratio subdomains in the Schwarz context have been addressed in 	
�� �
� �����

An alternative approach to preconditioning the spectral element method is to exploit

the equivalence between the spectral operators and FD or FE discretizations based on the

same set of Gauss�Lobatto nodal points� as �rst suggested by Orszag 	
��� If As is the SE

sti�ness matrix and Af is the FE sti�ness matrix� then A��
f
As has a bounded condition

number �typically � � ���� 	�� ��� 
���� and conjugate gradient iteration will converge in

a �xed number of iterations� This equivalence e�ectively reduces the SE problem to an

FE problem� ostensibly solvable by classical multigrid� As we will demonstrate� however�

the FE problem inherits the high�aspect ratio di�culties associated with the originating

SE problem� and one must resort to more powerful techniques� such as semi�coarsening

or line relaxation� to achieve order�independent convergence� A pioneering e�ort in this

direction is the work of Zang et al� 	��� �
�� who tackled the FE preconditioning step with

multigrid that employed incomplete Cholesky�conjugate gradient smoothing� Drawbacks

of this approach in the SE context are the lack of parallelism and the need to establish a

global ordering for the ICCG sweeps� which moves away from the element�centric paradigm

that characterizes the SE method� The SE�FE equivalence has also played a signi�cant role

in advancing the development of domain decomposition approaches to solving the spectral

element problem� Pahl 	
�� showed that the FE discretizations provide an excellent basis for

Schwarz preconditioning of the SE problem� a result borne out in the theory developed by

Casarin 	
� and in numerous Navier�Stokes applications 	�
� ��� ���� Casarin 	
� also shows

that the local problems in the overlapping Schwarz method can be based on restrictions of

the original SE matrix� a point that we revisit in this paper� We note that Pavarino and

Warburton have shown that the FE�Schwarz�based preconditioning strategy also works well

in the context of triangular elements using high�order nodal bases 	
���

An important development in SE�domain decomposition strategies� originally due to

Couzy and Deville 	��� is to exploit the local tensor�product structure within each �quadrilat�

eral or hexahedral� spectral element by employing the fast�diagonalization method �FDM�

of Lynch et al� 	
�� for the solution of the local problems� The storage and work com�

plexities of the FDM are O�ENd��� and O�ENd�� respectively� with constants essentially

identical to those for matrix�vector products in As� Thus� more sophisticated local�solve






strategies �e�g�� multigrid� would reduce the global solution time by at most a factor of two

in comparison with the FDM approach� In fact� because the O�ENd��� work term arises

from cache�e�cient matrix�matrix products� the FDM is faster than any other approach for

the moderate values of N typically used in practice� any iterative approach would need to

converge in fewer than two iterations to compete� The FDM�Schwarz approach has been

successfully applied in two� and three�dimensional incompressible Navier�Stokes simulations

	�� ��� and in the solution of the shallow�water equations on the sphere 	����

In this paper� we combine the intra�element SEMG technique of R�nquist and Patera

	
�� and Maday et al� 	

� with the more recent developments in spectral element�Schwarz

methods� The main idea is to employ the Schwarz overlapping method 	��� �
�� coupled

with subdomain solves based on the FDM� to provide a multigrid smoothing step� Because

the subdomain problems are solved exactly �and e�ciently�� the ill�conditioning attributed

to high�aspect ratio cells within the subdomains is avoided� For completeness� we present

several competitive methods and compare with performance results presented elsewhere�

when available�

In the next section� we introduce the SE discretization for a model Poisson prob�

lem� The basic elements of the iterative procedures are described in Section 
 and� several

smoothing strategies are presented in Section �� The error and smoothing behavior for a

few of the methods is discussed in Section �� Numerical experiments demonstrating the

convergence behavior of the methods are presented in Section �� Additional discussion and

concluding remarks are given in Section ��

� Discretization

We take as our model problem the Poisson equation in the square � �� 	��� ����

�r�u � f in �� u � � on ��� ���

where �� �� ��n�� To begin� however� we consider the one�dimensional problem� �uxx � f �

u���� � ��

��� One�Dimensional Case

The starting point for the spectral element discretization is the weak formulation of the

one�dimensional model problem� which reads� Find u � H�
��	� such that

�ux� vx� � �f� v� � v � H�
��	�� �
�

where

� u� v � L�� �u� v� �

Z
�

vu dx� �
�

Here� 	 �� 	��� ��� L� � fv �
R
�
v� dx 
 �g� H� � fv � v � L��	�� vx � L��	�g� and

H�
� � fv � v���� � �� v � H��	�g�

The spectral element discretization is based on a restriction of u and v to a �nite�

dimensional subspace� We introduce XN �� Y N �H� and XN
� �� Y N �H�

� � where Y N is
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Figure �� Local �top� and global �bottom� SE node numbering for �Ex� N���
����

the space of piecewise discontinuous polynomials de�ned on elements� or subdomains� whose

union constitutes a nonoverlapping partition of 	� For simplicity� we consider a uniform

partition consisting of Ex elements� 	e �� 	xe��� xe�� e � �� � � � � Ex� with xe �� eLx � � and

Lx �� 
�Ex� Functions in Y N are represented in terms of Lagrange polynomials on each

element

u�x�j�e �
NX
j
�

uejhj�r
e�� ���

where uej are the nodal basis coe�cients associated with 	e and re � � � 
�x� xe��Lx is

an a�ne mapping from 	e to the reference element �	 �� 	��� ��� The Lagrangian basis

functions satisfy hj�r� � lPN��	�� hj��i� � �ij � where lPN ��	� is the set of all polynomials of

degree � N � �i � 	��� ��� i � �� � � � � N � correspond to the Gauss�Lobatto�Legendre �GLL�

quadrature points� and �ij is the Kronecker delta� Derivatives in this basis are given by

du

dx

����
xe
i

�



Lx

NX
j
�

Diju
e
j � ���

where

Dij �
dhj
dr

����
�i

���

de�nes the elemental derivative matrix for �i � �	�

In addition to the choice of bases for XN � the spectral element method is characterized

by the substitution of quadrature for the inner products ��� �� in �
�� For any u� v � Y N �

we de�ne

�u� v�N ��
Lx




ExX
e
�

NX
j
�

�ju
e
jv

e
j � ���

where �j is the GLL quadrature weight� With these de�nitions� the spectral element dis�

cretization of �
� reads� Find u � XN
� such that

�ux� vx�N � �f� v�N � v � XN
� � ���

�



To generate the matrix form of ���� we introduce the local and global node numberings

shown in Fig� �� Sets of variables with both sub� and superscripts indicate local variables

and are denoted by vectors with subscript L� Every function in XN has an equivalent global

node numbering� denoted by vector elements with a single subscript� For example� uL �

�u��� u
�
�� � � � � u

Ex

N
�T is the locally indexed set of nodal values� while u � �u�� u�� � � � � unx�T is

the globally indexed set� For the one�dimensional domain� the local to global mapping is

given by

uq�i�e� � uei � q�i� e� � � � i� N�e� ��� i � �� � � � � N� e � �� � � � � Ex� ���

Note that� because of function continuity �u � XN�� global indices have two local rep�

resentations on the interfaces� that is� q�N� e� � q��� e � ��� We introduce the Boolean

matrix

QT
x �� ��eq�i�e��� i � �� � � � � N� e � �� � � � � Ex� ����

where �ej is the jth column of the nx	nx identity matrix� Then the local to global mapping

can be expressed in matrix form as uL � Qxu� Boundary conditions �u � XN
� � are enforced

by introducing a restriction operator Rx� with RT
x �� ��ej�� j � 
� � � � � nx � �� For any

u � lRnx��� there is a corresponding function u � XN
� with local basis coe�cients given by

uL � QxR
T
xu� With these de�nitions� the matrix form of ��� reads� Find u � lRnx�� such

that

vTRxQ
T
xAx�LQxR

T
x u � vTRxQ

T
xBx�LfL� �v � lRnx��� ����

Here� the block�diagonal matrices Ax�L � diag�Ae� and Bx�L � diag�Be� are respectively

the unassembled sti�ness and mass matrices� with entries

Ae
ij �




Lx

NX
p
�

DT
ip�pDpj � Be

ij �
Lx



�i�ij � i� j � 	�� � � � � N ��� e � �� � � � � Ex� ��
�

We de�ne the respective assembled sti�ness and mass matrices as

Ax �� RxQ
T
xAx�LQxR

T
x � Bx �� RxQ

T
xBx�LQxR

T
x � ��
�

Since Ax is symmetric positive de�nite �SPD�� ��
� is equivalent to solving the system

Axu � g�

where g �� RxQ
T
xBx�LfL�

In addition to the spectral element matrices ��
�� we construct �nite element matrices

based upon the space of piecewise linear Lagrangian basis functions� 
i�x� � H�
� �


i�x� �

������
�����

x� xi��
xi � xi��

xi�� � x 
 xi

x� xi��
xi � xi��

xi � x 
 xi��

� otherwise�

i � f�� � � � � nx � �g ����

The corresponding �tridiagonal� sti�ness and �diagonal� mass matrices for the homogeneous

Dirichlet problem are given by

�Aij �

Z �

��

d
i
dx

d
j
dx

dx� �Bij � �ij

Z �

��

j�x�dx� i� j � f�� � � � � nx � �g� � ����

�



��� Two�Dimensional Case

The usual approach to generation of the governing SE system matrices in multiple space

dimensions is to decompose the domain � into nonoverlapping quadrilateral or hexahedral

elements and perform the necessary quadrature and di�erentiation on an element by element

basis to yield a block�diagonal matrix comprising the element sti�ness matrices� which are

then assembled through application of a Boolean matrix Q de�ned by function continuity

requirements� as in the preceding section� �See� e�g�� 	�� �
��� Here� we take a di�erent

approach in order to illustrate key features concerning the fast diagonalization method and

the construction of tensor�product�based subdomain operators that are also applicable in

more general situations �i�e�� to problems that are not based on tensor�product arrays of

elements��

Construction of the one�dimensional problem is extended to lRd by taking the tensor

product of the bases and operators described in Section 
��� If the nodes are numbered

lexicographically� then the sti�ness matrix for the two�dimensional Laplacian on � �� 	x 	
	y can be written as the Kronecker product�

As � By 
 Ax � Ay 
 Bx � ����

Here� the subscript y indicates a discretization on Ey elements in the y�direction similar to

that derived for the x�direction� The �nite element discretization has a similar form

Af � �By 
 �Ax � �Ay 
 �Bx � ����

It was observed in 	�
� that� because As is based on diagonal mass matrices� Af must be

similarly constructed in order to be an e�ective preconditioner of As� As a result� Af has

a ��point� rather than ��point� stencil�

Matrices of the form ���� and ���� have a particularly simple inverse based upon the

fast diagonalization method �FDM�� For any m	m matrices A� and B�� with A� symmetric

and B� SPD� the following similarity transformation holds�

ST
� A�S� � ��� ST

� B�S� � I� ����

where �� � diag���� � � � � �m� is the matrix of eigenvalues and S� � �s�� � � � � sm� is the

matrix of eigenvectors associated with the generalized eigenvalue problem A�s � �B�s� As

a result� As is readily diagonalized by taking � � x and y in ����� and its inverse is given

by

A��s � �Sy 
 Sx� �I 
 �x � �y 
 I��� �ST
y 
 ST

x � � ����

The �nite element form is similar� and the extension to three dimensions is straightforward�

�See� e�g�� 	���� This solution method was introduced by Lynch� Rice� and Thomas 	
�� and

used in spectral element preconditioning applications by Couzy and Deville 	��� Couzy 	���

and Fischer et al� 	����

We make a few comments regarding the tensor product forms ���� and ����� Here�

and in the sequel� we assume that A � lRn�n represents either As or Af � Let RT
i�x be a

rectangular matrix comprising a contiguous subset of the columns of the �nx� 
�	 �nx� 
�

�



identity matrix� and let RT
j�y be de�ned similarly in the y�direction� Let Rk � Rj�y 
 Ri�x�

Then uk � RT
kRku de�nes a vector consisting of the nodal values of u in the rectangular

region ��k de�ned by the restriction matrices �Ri�x� Rj�y�� and zero elsewhere� Moreover�

Ak �� RkAR
T
k is SPD because A is� By construction� Ak can be inverted by the FDM� and

uk � RT
kA

��
k Rkg corresponds to the solution of the discretized Poisson problem� constrained

to have zero nodal values outside of ��k �

We note that the use of tensor�product forms allows matrix�vector products to be

recast as matrix�matrix products� which are particularly e�cient on modern vector and

cache�based processors� For example� if u � uij � is the vector of nodal basis coe�cients on

�� then

�ST
y 
 ST

x �u � ST
x USy �

where U is simply u viewed as the matrix having entries uij � For large systems� one might

want to consider discretizations that allow fast �i�e�� O�n logn�� application of Sx and Sy � as

considered by Shen 	
��� However� for spectral�element�based subdomain problems� which

typically range in size from �	 � to ��	 ��� matrix�matrix approaches are usually optimal�

In general� the FDM cannot be used for arbitrarily deformed subdomains because the

discrete Laplacian cannot always be expressed in the tensor product form ����� For the

purposes of a preconditioner� however� all one requires is an approximation to A �or Ak��

As suggested by Couzy 	��� a reasonable approach is to base the FDM on a discretiza�

tion of Poisson s equation de�ned on a rectangle having the correct average dimensions in

each coordinate direction in the reference domain� This approach was employed in three�

dimensional Navier�Stokes applications in 	���� A similar preconditioning strategy for the

case of spectral methods with nonconstant coe�cients is discussed by Shen 	
���

� Iterative Solution Methods

We are interested in methods to solve the linear equation Au � g� To introduce notation�

we consider the Richardson iteration

uk�� � uk � �M �g� Auk�� �
��

with preconditioner M and relaxation parameter �� The iteration �
�� can be combined

with multigrid� in which case it serves the role of a smoother� or accelerated by Krylov�based

projection methods such as conjugate gradients �if M is SPD� or GMRES 	
��� One also

can use multigrid as the preconditioner for conjugate gradients �CG� or GMRES� Several

combinations of these approaches are considered in Section �� In this section� we brie!y

describe our multigrid scheme� as well as the de!ation method considered in 	�
� 

�� and a

new Schwarz method based on local� coarse� and strip solves�

�



��� Multigrid

The two�level multigrid method is de�ned as follows�

i� uk�� � uk � �uMd�g �Auk�� k � �� � � � � md � � �
��

ii� r � g �Aumd

iii� �e � JA��C JT r

iv� �u� � umd � �e

v� �uk�� � �uk � �uMu�g �A�uk�� k � �� � � � � mu � �

vi� If jjA�umu � gjj 
 tol� set u �� �umu � quit�

Else� u� �� �umu � go to �i��

The smoothing steps �i and v� are designed to eliminate high�frequency error components

that cannot be represented on the coarse grid� The idea is that the error after �ii�� e �� A��r�

should be well approximated by �e� which lies in the coarse�grid space represented by the

columns of J � Here� md and mu are the number of smoothing steps on the downward and

upward legs of the "V# cycle� In our study� we take md � mu � �� unless otherwise noted�

Also� we take Md � Mu � M and �d � �u � �� except in the local�coarse�strip �LCS�

algorithm described below� We de�ne � to be either unity or� following R�nquist and Patera

	
��� the inverse of the maximum eigenvalue of MA �corresponding to maximum damping

of the highest wavenumber�� which is readily found by a power iteration� The coarse grid

correction �Step iii� is characterized by the prolongation and restriction operators J and

JT � as well as the coarse�grid solve A��
C

� which are de�ned below�

For select cases� we have also considered replacing A��
C

with a call to a multigrid V�

cycle on the coarser grid� to verify that the algorithms of interest can be nested� This

approach is essential to the e�ciency of the multigrid method as it ensures that the work

on the coarse grid is bounded by the work on the �ne grid�

��� De�ation

The de!ation method was introduced by Nicolaides 	
�� and also studied by Mans�eld 	
�� in

the context of FE discretizations� Spectral element implementations of the de!ation method

in Navier�Stokes applications are presented in R�nquist 	

� and Fischer 	�
�� De!ation

employs an explicit projection of the solution onto coarse and �ne subspaces� denoted by

subscript C and F � respectively� The system Au � g is split into the two equations�

AFuF �
�
I � AJA��C JT

�
g �

�

ACuC � JT
�
g �AuF

�
� �

�

such that u � uC �uF � where AF � A�AJA��
C
JTA� The column space of the prolongation

operator J is intended to approximate the span of the low eigenmodes of the A system

and is readily formed through intra�element interpolation as in the case of SEMG� The

�ne�space matrix AF has a null space corresponding to the coarse space� so one has the

additional constraint JTuF � �� which is readily enforced through local operations provided

J is based on intra�element interpolation 	�
�� The �ne�space equation is solved by using

�



preconditioned CG� Every calculation of a matrix�vector product involving AF �one per

CG iteration� requires two matrix�vector products in A and a coarse grid solve� Once uF
is known� an additional coarse grid problem �

� is solved to compute uC � Because of

the reliance on an exact decomposition of the coarse and �ne spaces� it is imperative that

AC � JTAJ and that A��
C

be computed exactly� De!ation is the only method in which we

use this form of the coarse�grid operator� In all other cases AC is built by constructing a

�FE or SE� discretization on the mesh of order NC 
 N �

��� Local�Coarse�Strip Algorithm

The main di�culty of the methods presented thus far is in addressing the error on and

near the interfaces� In the multigrid schemes� for instance� the high�aspect ratios of the

cells near the element interfaces prevent the smoothers from being e�ective near and at

the interfaces� The result� which is seen� in fact� in all methods� is that the error near the

interfaces decays slowly� The local�coarse�strip �LCS� method was speci�cally devised to

combat this problem� This method is a multiplicative combination of the preconditioners

ML� MC � and WMstrip� which correspond to the execution of local solves� a coarse grid

solve� and �weighted� strip solves� respectively� These will be discussed in detail later� The

LCS scheme corresponds to the multigrid method �
�� with Md � ML� Mu � WMstrip� and

md � mu � �� In a more compact form� the LCS sweep can be written as

MLCS � ML � 	MC � WMstrip�I �AMC���I �AML�� �
��

Although ML� MC � and WMstrip are themselves symmetric �at least for W � I�� MLCS is

not and therefore cannot be used as a preconditioner for the conjugate gradient method� It

can be used� however� in a scheme such as GMRES�

� Preconditioners�Smoothers

In this section� we present several multigrid smoothing strategies that are used in the

numerical tests of Section �� Our original intent was to base the multigrid smoother� M � on

the additive overlapping Schwarz method of Dryja and Widlund 	���� with local subdomain

problems discretized by �nite elements having nodes coincident with the GLL nodes� as

considered in 	
� �
� 
��� Following Couzy and Deville 	�� and Fischer et al� 	���� the

subdomain problems can be solved by using a fast diagonalization method similar to �����

guaranteeing that the cost of M is essentially equivalent to the cost of applying A� However�

the use of the FDM frees one from the constraint of using FE�based preconditioners� since

the FDM solution cost is dependent only on the use of the tensor�product form and not on

the sparsity of the originating operator� Hence� one also can consider subdomain problems

derived as restrictions of the original SE matrix� As� as �rst suggested by Casarin 	
��

To establish a means for comparing the computational complexities� we estimate the

cost of each step in terms of the cost of a matrix�vector products in As on the �ne grid�

which we de�ne to have unit cost� For example� for the element�based Schwarz methods� we

associate a cost of unity for M � whereas we attribute zero to the Jacobi�based preconditioner�

Note that these costs do not account for communication overhead and would need to be

�



reevaluated in a parallel computing context� The storage complexity of the methods is

essentially a small multiple of the number of grid points� so we assume parity in this measure�

Below� we brie!y describe the preconditioning strategies considered in the next section�

Each de�nition is based on a generic matrix A� which denotes either Af or As� both of which

are considered�

Jacobi

The Jacobi preconditioner is simply the diagonal matrix

�MJ�ij � �ij
�

Aij

� �
��

Cost� ��

GSRB

We de�ne the Gauss�Seidel red�black preconditioner as follows�

Mr � RT
r �RrAfR

T
r ���Rr� �
�a�

Mb � RT
b �RbAfR

T
b ���Rb� �
�b�

MGSRB � Mr � Mb�I �AMr�� �
�c�

where Rr and Rb restrict to red and black nodes� respectively� Nodes are designated as

red or black in a checkerboard pattern� No red node is the neighbor of another red node�

MGSRB has the same sparsity pattern as Af � Note that this preconditioner is used only in

the FE case� Cost� ��

��




a� Local solves 
b� Schwarz solve� l � 



c� Strip solve� l � 
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d� Overlap count for strip solves�

l � 


Figure 
� Illustration of the local� Schwarz� and strip solves� Open nodes are the unknowns

that are solved for and updated� Filled nodes are used as Dirichlet boundary conditions and

are not updated� In �b� and �c� one particular Schwarz and one strip solve are illustrated�

In �d�� the nonzero elements of the diagonal counting matrix C are shown at the position

of their respective nodes� Note that the element interior values� where Cii � �� have been

omitted for clarity�

Local

We de�ne the local smoother as

Mlocal �
EX
e
�

RT
e �ReAR

T
e ���Re� �
��

where Re restricts to nodes interior to element e� as illustrated in Fig� 
�a�� Because it

updates only the element interior nodes� this smoother does not have full rank and must

��



be used in conjunction with some other step� such as Mstrip� which updates the interface

nodes� Cost� ��

Coarse

The coarse�solve system is given as

MC � JA��C JT � �
��

For all cases except de!ation� AC is computed as a spectral or �nite element discretization�

following ���� or ����� but using GLL points of order NC � � or NC � N�
� J interpolates

from the coarse to the �ne space� using either spectral or piecewise bilinear interpolation�

depending on whether AC is based on the spectral or �nite element discretization� For

de!ation� we take AC � JTAJ � Cost� � for NC � N�
� � for NC � ��

Schwarz

The additive Schwarz preconditioner due to Dryja and Widlund 	��� is

MSchwarz �
EX
e
�

�RT
e � �ReA �RT

e ��� �Re� �
��

Here� �Re is a tensor�product�based restriction operator that restricts to those nodes that

are less than l nodes away from element e� as illustrated in Fig� 
�b� for the case l � 
�

For the case of many elements� it is important to augment �
�� with a coarse�grid

problem 	
��� This can be done either in an additive way� in which case one obtains the two�

level additive Schwarz preconditioner �which we refer to as the additive Schwarz method�

MA
Schwarz � MC � MSchwarz�

or in a multiplicative way� in which case one obtains a hybrid Schwarz method given by the

multigrid algorithm of Section 
��� with M � MSchwarz� md � � and mu � � or �� Cost of

MSchwarz� ��

Strip

We de�ne the strip smoother as

Mstrip �
X
i

�RT
i � �RiA �RT

i ��� �Ri �
��

where �Ri restricts to the nodes of strip i� We let a strip be the collection of nodes on an

interface together with nodes in either direction of the interface such that the strip width

is 
l� � nodes� as illustrated in Fig� 
�c�� Cost� ��

�
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Table 
� Per iteration work estimate�

Method Total Mat�vec Smoother Coarse grid

work products apps grid work

MG� 
 smoothings � 
 
 �

MG� � smoothing � 
 � �

PCG� NC � �� � 
 � � �

PCG� NC � N�
 
 � � �

De!ation � 
 � �

MGCG � 
 
 �

LCS � 
 
 �

LCS�GMRES � 
 
 �

Diagonal weight matrix W

Both the strip and Schwarz preconditioners involve a sum of overlapping local solves� The

diagonal counting matrix C given by

C �
X
i

RT
i Ri �
��

indicates the number of subdomains sharing a given vertex� In several cases considered� the

additive overlapping solves are weighted with the diagonal weight matrix given by

Wii �

�
� if Cii � �
�
Cii

otherwise�
�

�

For CG applications� where M must be symmetric� we pre� and postmultiply M by
p
W �

The distribution of the weights �for either Mstrip or MSchwarz� is illustrated in Fig� 
�d��

Table � summarizes the combinations of iterative methods and smoothers considered in

Section �� Additive coupling of the local and coarse solves is denoted by "�#� Multiplicative

coupling is denoted by "�#� Table 
 gives the work�per�iteration estimates used in evaluating

each of the methods� The estimates provided in the table are roughly the number of matrix�

vector products in As that would correspond to an equivalent amount of work�

� Error Behavior for Hybrid Schwarz and LCS

Figure 
 illustrates the error behavior for three variants of the hybrid Schwarz scheme for

a 
	 
 array of elements with N � ���

Figure 
�a� shows the error after a single application of the smoothing step �
�� with the

�additive� Schwarz preconditioner �
�� with minimal overlap as depicted in Fig� 
�b�� While

the error is clearly smooth in the element interiors� it is not smooth along the interfaces�

and there is a de�nite spike at the cross�point� As seen in Fig� 
�b�� subsequent application

of the coarse�grid solve does little to remove the error along the interface$the rapid decay

of the error in the interface�normal direction prevents it from being e�ectively represented

on the coarse grid� and the overall convergence is slow�

��
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a� Application of MSchwarz
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b� Coarse solve after 
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c� Application of �MSchwarz� � � ���
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d� Coarse solve after 
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e� Application of WMSchwarz
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f� Coarse solve after 
e�

Figure 
� Error plots for the hybrid Schwarz preconditioner and coarse solve� with NC �

N�
 and �E�N� � ��� ���� applied to a random initial guess�

��



Figures 
�c� and �d� show the error when the relaxation parameter � � ��� is intro�

duced� �The maximum eigenvalue of

MSchwarzA �
EX
e
�

�RT
e � �ReA

�RT
e ��� �ReA ��

EX
e
�

Pe

is bounded by E� since each Pe �� �RT
e � �ReA

�RT
e ��� �ReA is the A�orthogonal projector onto

R� �RT
e � and thus has eigenvalues of � and �� By grouping the subdomains into sets such

that no two subdomains within a given set overlap� the bound estimate can be improved

to C� where C is the minimum number of disjoint subdomains required to cover all of ��

In the present case� C � �� implying � � ����� After the smoothing step� the error in the

element interiors �Fig� 
�c�� is not as smooth as in Fig� 
�a�� It is� however� improved on

the whole� and the coarse�grid step is able to make a more signi�cant reduction� as seen in

Fig� 
�d��

Figures 
�e� and �f� show the error when the Schwarz smoother is weighted by W �

��

This weighting eliminates much of the high�frequency error on the interface observed in Fig�


�a� and makes the coarse�grid correction much more e�ective� Comparing the magnitudes

in Figs� 
�b� and 
�f� one sees� for this particular case� a tenfold reduction in the error

through the introduction of W �

Figure � shows how each step of the LCS scheme a�ects the error� Starting with

random error in a 
 	 
 element grid of order N � ��� applying ML� the local solves�

immediately smoothes the error in the interiors of the elements� as seen in Fig� ��a�� The

coarse solve� MC � then e�ectively eliminates the interior error� leaving the high�frequency

modes on the interfaces� as Fig� ��b� shows� These modes are signi�cantly reduced by

WMS � the strip solves� as shown by Fig� ��c�� The tenfold reduction in the high�frequency

components of the error near the interfaces depends on the presence of W in the strip�solve

update� Without it� the strip solves would have to be damped by a relaxation factor �u
and the error would be at most reduced by a factor of two� or less� This factor would then

determine the overall convergence rate�

� Results

We performed numerical experiments to test the described methods on the model problem

using MATLAB version ���� The results are tabulated in Tables 
%�� For all runs� the

domain was decomposed into E � Ex 	 Ey � �	 � elements� which was found to be su��

ciently large to exhibit asymptotic behavior� The source function was 
�� sin�x� sin�y�� and

the initial guess was chosen at random with values con�ned to the interval 	�� ��� Iterations

continued until the norm of the error� determined by an initial exact solve� dropped below

� 	 ������ Total work estimates� based on the per iteration estimates of Table 
� are re�

ported for the N � �� case� Table 
 lists iteration counts for multigrid applied to the FE

discretized model problem� Tables �%� list iteration and work counts for algorithms that

solve the SE discretized model problem� The methods of Table � use FE�based precondi�

tioners� those of Tables �%� use SE�based preconditioners� In all the tables� the Schwarz

methods use a minimal overlap� l � 
 �� node beyond the element interfaces�� while the

��
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b� Coarse solve
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c� Strip solves

Figure �� Error after the various stages of the LCS algorithm for �E�N� � ��� ����
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Table 
� MG method on FE problem�

FE Spacing � Smoother
 Coarse Iterations

Preconditioner Space N � � N � � N � �	 N � ��

Uniform a Jacobi N�	 
� 
� 
� 
�

b GSRB N�	 � � � �

c GSRB Strip N�	 �� �� �� ��

d H Schwarz N�	 �� �� �	 �	

e H Schwarz �W � N�	 � � � �

SE f Jacobi N�	 �� �� ��� 	��

g GSRB N�	 �� 	� �� ��

h GSRB Strip N�	 
� 	
 	� 	�

i H Schwarz N�	 �� �
 �� �	

j H Schwarz �W � N�	 � � � �

strip solves use l � 
� The strip solves are weighted with � � ��
 relative to the GSRB

solves� In each table� the "weighted# designation indicates the use of W �

� or
p
W � as

indicated in Table �� The unweighted cases imply W is the identity matrix� For clarity� the

table and cases throughout the discussion below are identi�ed in parentheses�

The �rst set of experiments was designed to test the e�ect of grid spacing on the multi�

grid method� Table 
 shows the results of various smoothing strategies applied to the FE

problem� Afu � g� with a uniform grid spacing and with the spacing given by a tensor prod�

uct of the nodal spacing depicted in Fig� �� For the uniform spacing� the GSRB algorithm

�
b� produces the classic multigrid convergence rate$more than one digit per iteration�

This rate is not attained for any of the other smoothers except for the weighted hybrid

Schwarz scheme �
e�� However� all the methods exhibit mesh resolution independence� For

the nonuniform spacing based upon the SE nodal points� only the weighted hybrid Schwarz

scheme �
j� is comparable to the best case for the uniform spacing� A slight degradation in

performance is observable with increasing N � None of the methods attains mesh resolution

independence�

Table � shows results for the problem Asu � g with preconditioners M and MC derived

from FE discretizations based on the SE nodal points� All of the results in this table are

accelerated by CG� as straight multigrid did not converge for the parameters considered�

One point of comparison with Table 
 is the weighted hybrid Schwarz method ��w�� which

has iteration counts ranging from �� to 

 as N ranges from � to ��� in contrast to the

values � to � given in �
j�� This increase in iteration count is consistent with a condition

number of ���� for A��f As� which would require approximately �� CG iterations 	����

Another point of interest in Table � is additive Schwarz with bilinear coarse�grid space

��j�� which corresponds to the state of the art as employed in 	�
� ��� 
�� 
��� These results

are in close agreement with those reported by Pahl 	
�� �Table ����� Comparing ��j� with

the equivalent weighted method ��l�� which employs
p
W as a pre� and post�multiplier of

MSchwarz� shows that a simple weighting provides roughly a 
� percent reduction in iteration

count and work� Enriching the coarse grid to NC � N�
 ��m� reduces the N dependence

in the iteration count and yields an additional �� percent reduction in work for the case

N � ��� resulting in the lowest overall work for the FE�based preconditioning strategy�

��



Table �� FE preconditioners for SE problem�
Method � Smoother
 Coarse Iterations Work

Preconditioner Space N � � N � � N � �	 N � �� N � ��

PCG a Jacobi � �
	 � 
�� � 
�� � 
�� � ���

b GSRB � ��	 		� � 
�� � 
�� � ���

c GSRB Strip � ��� ��� 	�� � 
�� � ���

d Jacobi � �	 ��� ��� 	�� �	�

e GSRB � 
� �
 ��� ��� 
��

f GSRB Strip � 

 �� �� ��� 	
�

g Jacobi N�	 	� �� �� �� ��


h GSRB N�	 	� 	� 
	 
� ���

i GSRB Strip N�	 	� 	
 	� 
� ��

j A Schwarz � 	� 
� �� �� ���

k A Schwarz N�	 	� 	� 
� 
	 ��

l A Schwarz �W � � 	� 	� 
� �� �	

m A Schwarz �W � N�	 	� 	� 	� 	� ��

De�ation n Jacobi N�	 	
 
� �� �� 		�

o GSRB N�	 	� 	� 
	 
� ���

p GSRB Strip N�	 �� 		 	� 
� �	�

q A Schwarz N�	 	
 	� 	� 	� ���

r A Schwarz �W � N�	 	� 		 		 		 ��

MGCG s Jacobi N�	 	� 	� 
� �� 	��

t GSRB N�	 �� 	� 	� 	� ���

u GSRB Strip N�	 	
 	
 	
 	� ���

v H Schwarz N�	 �� �� �� 	� �	�

w H Schwarz �W � N�	 �� �� 	� 		 �
	

��



Table �� SE preconditioners for SE problem�

Method � Smoother
 Coarse Iterations Work

Preconditioner Space N � � N � � N � �	 N � �� N � ��

MG a Jacobi N�	 �� ��� ��
 	�� ����

b H Schwarz N�	 �� �	 �� �� 	��

c H Schwarz �W � N�	 � �� �� �� ���

PCG d Jacobi � �
� � 
�� � 
�� � 
�� � ���

e Jacobi � �
 ��� ��	 	�� ���

f Jacobi N�	 
	 �� �� �� 	��

g A Schwarz � 	� 	� 
� �
 ��

h A Schwarz N�	 	� 	� 	� 	� ��

i A Schwarz �W � � �� 	� 

 �
 ��

j A Schwarz �W � N�	 �� 	� 		 	� �	

De�ation k Jacobi N�	 	
 
� �� �� 		�

l A Schwarz N�	 	� 		 		 	
 �	

m A Schwarz �W � N�	 �	 �	 �
 �� ��

MGCG n Jacobi N�	 �� 	� 

 �� 	��

o H Schwarz N�	 �� �� �� �� ��	

p H Schwarz �W � N�	 �� �� �� �� ��

LCS q Local
Strip N�	 �� �� �� �� ��

LCS
GMRES r Local
Strip N�	 � � � � ��

The weighted hybrid Schwarz ��w� and de!ation ��r� schemes also have low iteration

counts� It is not realistic to consider NC � N�
 for de!ation� however� since this enriched

coarse�grid problem must be solved exactly and cannot be nested as would be the case for

multigrid � � hybrid Schwarz�� Surprising� the unweighted hybrid Schwarz scheme ��v�

has slightly lower iteration counts than its weighted counterpart ��w�� This is the only

occurrence of this phenomenon in the tests considered�

Table � presents results for the spectral element problem with M and MC based upon

spectral element discretizations� The case ��a� corresponds to the Jacobi�based SEMG

method of Maday et al� 	

� and R�nquist 	

�� who found comparable work estimates�

The Schwarz� and LCS�based smoothers are constructed by restricting the As matrix� as

suggested by Casarin 	
�� In every case� the iteration count is lower than the corresponding

FE�preconditioned case in Table �� By virtue of the FDM� the costs per iteration are

equivalent� so it is clearly preferable to base the local Schwarz problems on the originating

SE operators� It is also clear that using the diagonal weight matrix is bene�cial� particularly

in the unaccelerated multigrid scheme ��c��

The best method in Table � is the LCS�GMRES scheme ��r�� with a work count of

�� for N � ��� Again� the de!ation method ��m� has to be discounted because of the

requirement for an exact coarse�grid solve of order NC � N�
� Somewhat surprising� the

simple additive Schwarz method with a bilinear coarse space ��g�i� is a strong contender�

because of its low cost per iteration� In fact� for N � �� the weighted SE�based variant ��i�

has the lowest work estimate of all methods considered� �� versus �� for the next lowest

scheme� The iteration count for N � � ���� was reduced reduced from 
� ���� for the state�

of�the�art unweighted FE�based Schwarz method ��j� to 
� ��
� for the weighted SE�based


�



local problems ��i��

Table � presents two�level multigrid results for the case of only one smoothing per

iteration �md � �� mu � ��� This yields a nonsymmetric preconditioner� so one must switch

from CG to GMRES� The best method� weighted hybrid Schwarz ��e�� has a slightly higher

iteration count than the LCS�GMRES method ��r�� but the work estimates are comparable�

Table � illustrates the impact of the coarse�grid space on the performance of the hybrid

Schwarz and LCS methods� The standard approach with Schwarz methods is to have the

coarse�grid mesh size to be roughly the same as the size of the subdomains� corresponding

to NC � � in the present case� Using NC � N�
 clearly improves the methods and yields

nearly order�independent convergence rates� To verify that it is realistic to consider an

enriched coarse space for these methods� we have also tested the fully nested multigrid V�

cycle� For N � 
� the exact coarse�grid solve is replaced by a recursive call to the multigrid

algorithm with N �� NC � N�
� For N � 
� the coarse grid problem with NC � � is

solved exactly� The results are reported in Table �� In all cases except the unaccelerated

hybrid Schwarz method ��a�� the iteration count increases by � over the corresponding case

in Table �� where exact coarse�grid solves are employed�

� Conclusions

We have studied several combinations of FE�� Schwarz�� and MG�based preconditioning

strategies for spectral element solution of the Poisson equation in lR�� All of the methods

involved two or more levels of discretization� with the coarser approximation spaces based

on the original E � Ex 	 Ey spectral element decomposition of �� such that intra�element

prolongation�restriction could be employed� All methods demonstrated E independent

convergence rates for Ex � Ey 
 �� so only this case was considered� Values of N ranged

from � to ���

The fastest schemes were found to be the LCS ��q�� LCS�GMRES ��r�� de!ation ��m��

and weighted hybrid Schwarz ��e�� Practical implementation of de!ation is limited because

of its need for an exact coarse�grid solve� which is very expensive in the case of NC � N�
�

As constructed in this study� the Schwarz scheme ��e� requires a global tensor�product mesh

topology because construction of the overlap assumed that elements were �locally� arrayed

in a tensor�product fashion� Strategies to circumvent this constraint have been proposed in

	���� The local solves in the LCS scheme involve no overlap and can be done very quickly�

particularly in a parallel context where no communication is required� The strip solves do

Table �� SE preconditioners for SE problem� MG with � smoothing�

Method � Smoother
 Coarse Iterations Work

Preconditioner Space N � � N � � N � �	 N � �� N � ��

MG a Jacobi N�	 ��� 	�� � 
�� � 
�� � �	��

b H Schwarz N�	 �� �
 �� �� 
��

c H Schwarz �W � N�	 �� �� �� �� ��

MG
GMRES d H Schwarz N�	 	� 	
 	� 	� ���

e H Schwarz �W � N�	 �
 �	 �	 �
 �	


�



Table �� SE preconditioners for SE problem� MG with � smoothing�

Method � Smoother
 Coarse Iterations Work

Preconditioner Space N � � N � � N � �	 N � �� N � ��

MG a H Schwarz �W � � �� �� 	�� � 
�� � ���

b H Schwarz �W � N�	 �� �� �� �� ��

MG
GMRES c H Schwarz �W � � �� 	� 	� 
� ���

d H Schwarz �W � N�	 �
 �	 �	 �
 �	

LCS e Local
Strip � 	� 	� �� �	 ���

f Local
Strip N�	 �� �� �� �� ��

LCS
GMRES g Local
Strip � �
 �� �� 	� �	�

h Local
Strip N�	 � � � � ��

require overlap� The important advantage of the strip solves over the overlapping solves of

the Schwarz method is that there is no complication with geometries where three or �ve or

more elements� instead of four� join at a vertex� Strip solves rely only on the condition of

conformity that two elements join at an interface� The straightforward extension to three

dimensions� however� is less clear� For example� one may need an edge solve in addition to

the local� coarse� and face solves� One additional feature of the LCS scheme is that it is

the only method that proved e�ective in the straight multigrid V�cycle ��c�� without the

need for GMRES acceleration� This feature is particularly attractive in large�scale parallel

settings because it avoids the communication overhead associated with the inner�product

computations required for CG and GMRES�

The additive Schwarz PCG methods had work counts in the range �
%��� With a

rich coarse space of N�
� the work count was �
� for a coarse space of order �� the count

was ��� Here� one should consider that the gain in going to a richer coarse space is o�set

by the added complexity and that the iteration count of the rich coarse�space method will

degrade� to at least some degree� when the coarse solve is replaced by nesting the method�

The improvement in using a richer coarse space may not be dramatic enough to warrant its

implementation�

In general� basing the Schwarz operators on restrictions of the originating SE matrices�

as suggested by Casarin 	
�� was found to be superior to using FE�based discretizations� This

is made possible through the use of the fast diagonalization method� which can be applied

to tensor�product subdomains at a cost that is independent of the sparsity of the governing

subdomain system and that is essentially equal to the cost of matrix�vector products in As�

We found that weighting the overlapping Schwarz updates by the inverse of the count�

Table �� Fully nested SE preconditioners for SE problem� MG with � smoothing�

Method � Smoother
 Coarse Iterations Work

Preconditioner Space N � �� N � ��

MG a H Schwarz �W � N�	 
	 �	�

MG
GMRES b H Schwarz �W � N�	 �� ��

LCS c Local
Strip N�	 �� ��

LCS
GMRES d Local
Strip N�	 �� ��







ing matrix C �
�� plays a crucial role in obtaining multigrid�like iteration counts�

Finally� extensions to high�aspect�ratio subdomains� three dimensions� and more com�

plex systems� such as the consistent Poisson operator that governs the pressure in the

lPN � lPN�� SE discretization of the Navier�Stokes equations 	�
� ���� have yet to be con�

sidered� We hope that this study provides a useful starting point and some guiding principles

for the development of algorithms that address these practical issues�
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