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Summary. Recently, it has been shown that mathematical programs with comple-
mentarity constraints (MPCCs) can be solved efficiently and reliably as nonlinear
programs. This paper examines various nonlinear formulations of the complemen-
tarity constraints. Several nonlinear complementarity functions are considered for
use in MPCC. Unlike standard smoothing techniques, however, the reformulations
do not require the control of a smoothing parameter. Thus they have the advan-
tage that the smoothing is exact in the sense that Karush-Kuhn-Tucker points of
the reformulation correspond to strongly stationary points of the MPCC. A new
exact smoothing of the well-known min function is also introduced and shown to
possess desirable theoretical properties. It is shown how the new formulations can
be integrated into a sequential quadratic programming solver, and their practical
performance is compared on a range of test problems.
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1 Introduction

Equilibrium constraints in the form of complementarity conditions often ap-
pear as constraints in optimization problems, giving rise to mathematical
programs with complementarity constraints (MPCCs). Problems of this type
arise in many engineering and economic applications; see the survey by Ferris
and Pang [FP97] and the monographs by Luo et al. [LPR96] and Outrata et
al. [OKZ98]. The growing collections of test problems by Dirkse [Dir01], and
our MacMPEC [Ley00] indicate that this an important area. MPCCs can be
expressed in general as
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minimize f(x) (1a)

subject to cE(x) = 0 (1b)

cI(x) ≥ 0 (1c)

0 ≤ x1 ⊥ x2 ≥ 0, (1d)

where x = (x0, x1, x2) is a decomposition of the problem variables into controls
x0 ∈ IRn and states x1, x2 ∈ IRp. The equality constraints ci(x) = 0, i ∈ E are
abbreviated as cE(x) = 0, and similarly cI(x) ≥ 0 represents the inequality
constraints. The notation ⊥ represents complementarity and means that either
a component x1i = 0 or the corresponding component x2i = 0.

Clearly, more general complementarity constraints can be included in (1)
by adding slack variables. Adding slacks does not destroy any properties of
the MPCC such as constraint qualification or second-order condition. One
convenient way of solving (1) is to replace the complementarity conditions
(1d) by

x1, x2 ≥ 0, and X1x2 ≤ 0, (2)

where X1 is a diagonal matrix with x1 along its diagonal. This transforms the
MPCC into an equivalent nonlinear program (NLP) and is appealing because
it appears to allow standard large-scale NLP solvers to be used to solve (1).

Unfortunately, Chen and Florian [CF95] have shown that (2) violates
the Mangasarian-Fromovitz constraint qualification (MFCQ) at any feasible
point. This failure of MFCQ has a number of unpleasant consequences: The
multiplier set is unbounded, the central path fails to exist, the active con-
straint normals are linearly dependent, and linearizations of the NLP can be
inconsistent arbitrarily close to a solution. In addition, early numerical expe-
rience with (2) has been disappointing; see Bard [Bar88]. As a consequence,
solving MPCCs as NLPs has been commonly regarded as numerically unsafe.

Recently, exciting new developments have demonstrated that the gloomy
prognosis about the use of (2) may have been premature. We have used stan-
dard sequential quadratic programming (SQP) solvers to solve a large class
of MPCCs, written as NLPs, reliably and efficiently [FL04]. This numerical
success has motivated a closer investigation of the (local) convergence proper-
ties of SQP methods for MPCCs. Fletcher et al. [FLRS02] show that an SQP
method converges locally to strongly stationary points. Anitescu [Ani05] es-
tablishes that an SQP method with elastic mode converges locally for MPCCs
with (2). The key idea is to penalize X1x2 ≤ 0 and consider the resulting NLP,
which satisfies MFCQ. Near a strongly stationary point, a sufficiently large
penalty parameter can be found, and standard SQP methods converge.

The convergence properties of interior point methods (IPMs) have also re-
ceived renewed attention. Numerical experiments by Benson et al. [BSSV03]
and by Raghunathan and Biegler [RB05] have shown that IPMs with minor
modifications can be applied successfully to solve MPCCs. This practical suc-
cess has encouraged theoretical studies of the convergence properties of IPMs
for MPCCs. Raghunathan and Biegler [RB05] relax xT

1 x2 ≤ 0 by a quan-
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tity proportional to the barrier parameter, which is driven to zero. Liu and
Sun [LS04] propose a primal-dual IPM that also relaxes the complementarity
constraint.

In this paper, we extend our results of [FLRS02] by considering NLP for-
mulations of (1) in which the complementarity constraint (1d) is replaced by
an nonlinear complementarity problem (NCP) function. This gives rise to the
following NLP:

minimize f(x) (3a)

subject to cE(x) = 0 (3b)

cI(x) ≥ 0 (3c)

x1, x2 ≥ 0, Φ(x1i, x2i) ≤ 0, (3d)

where Φ(x1, x2) is the vector of NCP functions, Φ(x1, x2) = (φ(x11, x21), . . . ,

φ(x1p, x2p))
T
, and φ is any NCP function introduced in the next section.

Problem (3) is in general nonsmooth because the NCP functions used in (3d)
are nonsmooth at the origin. We will show that this nonsmoothness does not
affect the local convergence properties of the SQP method.

The use of NCP functions for the solution of MPCCs has been considered
by Dirkse et al. [DFM02] and by Facchinei et al. [FJQ99], where a sequence of
smoothed NCP reformulations is solved. Our contribution is to show that this
smoothing is not required. Thus we avoid the need to control the smoothing
parameter that may be problematic in practice. Moreover, the direct use of
NCP functions makes our approach exact, in the sense that first-order points
of the resulting NLP coincide with strongly stationary points of the MPCC.
As a consequence we can prove superlinear convergence under reasonable as-
sumptions.

The paper is organized as follows. The next section reviews the NCP func-
tions that will be used in (3d) and their pertinent properties. We also introduce
new NCP functions shown to possess certain desirable properties. Section 3
shows the equivalence of first-order points of (1) and (3). Section 4 formally
introduces the SQP algorithm for solving MPCCs. The equivalence of the
first-order conditions forms the basis of the convergence proof of the SQP
method, presented in Section 5. In Section 6, we examine the practical per-
formance of the different NCP functions on the MacMPEC test set [Ley00].
In Section 7 we summarize our work and briefly discuss open questions.

2 NCP Functions for MPCCs

An NCP function is a function φ : IR2 → IR such that φ(a, b) = 0 if and only if
a, b ≥ 0, and ab ≤ 0. Several NCP functions can be used in the reformulation
(3). Here, we review some existing NCP functions and introduce new ones
that have certain desirable properties.
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1. The Fischer-Burmeister function [Fis95] is given by

φFB(a, b) = a + b −
√

a2 + b2. (4)

It is nondifferentiable at the origin, and its Hessian is unbounded at the
origin.

2. The min-function due to Chen and Harker [CH97] is the nonsmooth func-
tion

φmin(a, b) = min(a, b). (5)

It can be written equivalently in terms of the natural residual function
[CH97]:

φNR(a, b) =
1

2

(
a + b −

√
(a − b)2

)
. (6)

This function is again nondifferentiable at the origin and along the line
a = b.

3. The Chen-Chen-Kanzow function [CCK00] is a convex combination of
the Fischer-Burmeister function and the bilinear function. For a fixed
parameter λ ∈ (0, 1), it is defined as

φCCK(a, b) = λφFB(a, b) + (1 − λ)a+b+,

where a+ = max(0, a). Note that for a ≥ 0, a+ = a; hence, for any method
that remains feasible with respect to the simple bounds,

φCCK(a, b) = λφFB(a, b) + (1 − λ)φBL(a, b) (7)

holds.

In addition, we consider the bilinear form

φBL(a, b) = ab, (8)

which is analytic and has the appealing property that its gradient vanishes at
the origin (this makes it consistent with strong stationarity, as will be shown
later). We observe, however, that it is not an NCP function, since φBL(a, b) = 0
does not imply nonnegativity of a, b.

We note that all functions (except for (8)) are nondifferentiable at the ori-
gin. In addition, the Hessian of the Fischer-Burmeister function is unbounded
at the origin. This has to be taken into account in the design of robust SQP
methods for MPCCs.

The min-function has the appealing property that linearizations of the
resulting NLP (3) are consistent sufficiently close to a strongly stationary
point (see Proposition 3.6). This property motivates the derivation of smooth
approximations of the min-function. The first approximation is obtained by
smoothing the equivalent natural residual function (6) by adding a term to
the square root (which causes the discontinuity along a = b). For a fixed
parameter σNR > 1/2, let
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φNRs(a, b) =
1

2

(
a + b −

√
(a − b)2 +

ab

σNR

)
. (9)

This smoothing is similar to [CH97, FJQ99], where a positive parameter 4µ2 >
0 is added to the discriminant. This has the effect that complementarity is
satisfied only up to µ2 at the solution. In contrast, adding the term ab/σNR,
implies that the NCP function remains exact in the sense that φNRs(a, b) = 0 if
and only if a, b ≥ 0 and ab = 0 for any σNR > 1/2. Figure 2 shows the contours
of φNRs(a, b) for σNR = 32 and for the min-function (σNR = ∞). An interesting
observation is that as σNR → 1

2 , the smoothed min-function φNRs(a, b) becomes
the Fischer-Burmeister function (up to a scaling factor).

x 1

(i)

(ii)

(iii)

x 2

σ

1

Fig. 1. Piecewise regions for smoothing the min-function

An alternative way to smooth the natural residual function is to work
directly on smoothing the contours of the min-function, which are parallel to
either the x1, or the x2 axis. The contours can be smoothed by dividing the
positive orthant into (for example) three regions as shown in Figure 1. The
dashed lines separate the three regions (i) to (iii), and their slope is σ > 1
and σ−1, respectively. In regions (i) and (iii), the contours are identical to the
min-function. This feature ensures consistency of the linearization. In region
(ii), different degrees of smoothing can be applied.

The first smoothed min-function is based on a piecewise linear approxi-
mation, given by

φlin(a, b) =






b b ≤ a/σl

(a + b)/(1 + σl) a/σl < b < σla
a b ≥ σla,

(10)

where σ = σl > 1 is the parameter that defines the three regions in Figure 1.
The idea is that close to the axis, the min-function is used, while for values of
a, b that are in the center, the decision as to which should be zero is delayed.
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Fig. 2. Contours of the min-function, the smoothed natural residual function, the
piecewise linear min-function, and the piecewise quadratic with σl = σq = 3

The second smoothed min-function is based on the idea of joining the
linear parts in sectors (i) and (iii) with circle segments. This gives rise to the
following function,

φqua(a, b) =






b b ≤ a/σq√
(a − θ)2 + (b − θ)2

(σq − 1)2
a/σq < b < σqa

a b ≥ σqa,

(11)

where θ is the center of the circle, depending on a, b, and σq and is given by

θ =
a + b

2 − (σq−1)2

σ2
q

+

√√√√√



 a + b

2 − (σq−1)2

σ2
q




2

− a2 + b2

2 − (σq−1)2

σ2
q

.
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The contours of both smoothing functions are given in Figure 2. Note that
the contours are parallel to the axis in regions (i) and (iii). This fact will be
exploited to show that linearizations of the min-function and its two variants
remain consistent arbitrarily close to a strongly stationary point. This obser-
vation, in effect, establishes a constraint qualification for the equivalent NLP
(3).

The smoothing also avoids another undesirable property of the min-
function: It projects iterates that are far from complementary onto the nearest
axis. Close to the axis a = b, this projection results in an arbitrary step. Con-
sider, for example, a point a = 99, b = 101. Linearizing the min-function
about this point results in a first-order approximation in which a = 0, b ≥ 0.
In contrast, other NCP functions “delay” this decision and can be viewed as
smoothing methods.

3 Equivalence of First-Order Conditions

This section shows that there exists a one-to-one correspondence between
strongly stationary points of the MPCC (1) and the first-order stationary
points of the equivalent NLP (3). We start by reviewing MPCC stationarity
concepts. Next, we derive some properties of the linearizations of (3d) that
play a crucial role in the equivalence of first-order conditions.

3.1 Strong Stationarity for MPCCs

The pertinent condition for stationarity for analyzing NLP solvers applied to
(3) is strong stationarity. The reason is that there exists a relationship between
strong stationarity defined by Scheel and Scholtes [SS00] and the Karush-
Kuhn-Tucker (KKT) points of (3). This relationship has been exploited in
[FLRS02] to establish convergence of SQP methods for MPCCs formulated as
NLPs. Strong stationarity is defined as follows.

Definition 3.1 A point x is called strongly stationary if and only if there
exist multipliers λ, ν̂1, and ν̂2 such that

∇f(x) −∇cT (x)λ −




0
ν̂1

ν̂2



 = 0

cE(x) = 0
cI(x) ≥ 0

x1, x2 ≥ 0
x1j = 0 or x2j = 0

λI ≥ 0
ciλi = x1j ν̂1j = x2j ν̂2j = 0

if x1j = x2j = 0 then ν̂1j ≥ 0 and ν̂2j ≥ 0.

(12)
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Strong stationarity can be interpreted as the KKT conditions of the relaxed
NLP (13) at a feasible point x. Given two index sets X1, X2 ⊂ {1, . . . , p} with

X1 ∪ X2 = {1, . . . , p} ,

denote their respective complements in {1, . . . , p} by X⊥
1 and X⊥

2 . For any
such pair of index sets, define the relaxed NLP corresponding to the MPCC
(1) as

minimize
x

f(x)

subject to cE(x) = 0
cI(x) ≥ 0
x1j = 0 ∀j ∈ X⊥

2 and x1j ≥ 0 ∀j ∈ X2

x2j = 0 ∀j ∈ X⊥
1 and x2j ≥ 0 ∀j ∈ X1.

(13)

Concepts such as MPCC constraint qualifications (CQs) and second-order
conditions are defined in terms of this relaxed NLP (see, e.g., [FLRS02]).
Formally, the linear independence constraint qualification (LICQ) is extended
to MPCCs as follows:

Definition 3.2 The MPCC (1) is said to satisfy an MPCC-LICQ at x if the
corresponding relaxed NLP (13) satisfies an LICQ.

Next, a second-order sufficient condition (SOSC) for MPCCs is given. Like
strong stationarity, it is related to the relaxed NLP (13). Let A∗ denote the
set of active constraints of (13) and A∗

+ ⊂ A∗ the set of active constraints
with nonzero multipliers (some could be negative). Let A denote the matrix
of active constraint normals, that is,

A =



A∗
E : A∗

I∩A∗ :
0
I∗1
0

:
0
0
I∗2



 =: [a∗
i ]i∈A∗ ,

where A∗
I∩A∗ are the active inequality constraint normals and

I∗1 := [ei]i∈X∗

1
and I∗2 := [ei]i∈X∗

2

are parts of the p×p identity matrices corresponding to active bounds. Define
the set of feasible directions of zero slope of the relaxed NLP (13) as

S∗ =
{

s | s 6= 0 , g∗
T

s = 0 , a∗T

i s = 0 , i ∈ A∗
+ , a∗T

i s ≥ 0 , i ∈ A∗\A∗
+

}
.

The MPCC-SOSC is defined as follows.
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Definition 3.3 A strongly stationary point z∗ with multipliers (λ∗, ν̂∗
1 , ν̂∗

2 )
satisfies the MPCC-SOSC if for every direction s ∈ S∗ it follows that
sT∇2L∗s > 0, where ∇2L∗ is the Hessian of the Lagrangian of (13) eval-
uated at (z∗, λ∗, ν̂∗

1 , ν̂∗
2 ).

3.2 Linearizations of the NCP Functions

All NCP functions with the exception of the bilinear form are nonsmooth at
the origin. In addition, the min-function is also nonsmooth along a = b, and
the linearized min-function is nonsmooth along a = σ−1b and a = σb. Luckily,
SQP methods converge for a simple choice of subgradient.

We start by summarizing some well-known properties of the gradients of
the Fischer-Burmeister function (4) for (a, b) 6= (0, 0):

∇φFB(a, b) =




1 − a√

a2 + b2

1 − b√
a2 + b2



 .

It can be shown that 0 < 1 − a√
a2+b2

< 2 for all (a, b) 6= (0, 0). In addition, if

a > 0 and b > 0, it can be shown that

∇φFB(a, 0) =

(
0
1

)
and ∇φFB(0, b) =

(
1
0

)
.

Similarly, the gradient of the smoothed natural residual function is

∇φNRs(a, b) =
1

2





1 − a − b + b
2σ√

(a − b)2 + ab
σ

1 − b − a + a
2σ√

(a − b)2 + ab
σ




.

For a > 0 and b > 0, it follows that

∇φNRs(a, 0) =

(
0

1 − 1
4σ

)
and ∇φNRs(0, b) =

(
1 − 1

4σ

0

)
.

Despite the fact that the NCP functions are not differentiable everywhere, it
turns out that a particular choice of subgradient gives fast convergence for
SQP methods. To show equivalence of the first-order conditions in [FLRS02],
we exploit the fact that ∇φBL(0, 0) = 0. Fortunately, 0 is a generalized gradi-
ent of the other NCP functions, that is, 0 ∈ ∂φ(0, 0). Similarly, we will choose
a suitable subgradient for the min-function along a = b. With a slight abuse
of notation, we summarize the subgradient convention:
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Convention 3.4 The following convention is used for subgradients of the
nonsmooth NCP functions:

1. ∇φ(0, 0) = 0 for any NCP function.
2. ∇φmin(a, a) = (1

2 , 1
2 )T for the min-function for a > 0.

3. ∇φlin(a, σa) = (0, 1) and ∇φlin(a, σ−1a) = (1, 0) for the linearized min-
function, for a > 0.

This convention is consistent with the subgradients of the NCP functions
and is readily implemented. The most important convention is to ensure that
∇φ(0, 0) = 0 because, otherwise, we would not be able to establish equiva-
lence of first-order conditions. The other conventions could be relaxed to allow
other subgradients. The convention on the subgradients also has an impor-
tant practical implication. We have observed convergence to M-stationary, or
even C-stationary points that are not strongly stationary for other choices
of 0 6= v ∈ ∂φ(0, 0). Setting v = 0 ∈ ∂φ(0, 0) prevents convergence to such
spurious stationary points.

It turns out that a straightforward application of SQP to (3) is not very
efficient in practice. The reason is that the linearization of the complemen-
tarity constraint (2) together with the lower bounds has no strict interior.
Therefore, we relax the linearization of (2). Let 0 < δ < 1, and 0 < κ ≤ 1 be
constants, and consider

a ≥ 0, b ≥ 0, φ(â, b̂) + ∇φ(â, b̂)T

(
a − â

b − b̂

)
≤ δ

(
min(1, φ(â, b̂))

)1+κ

. (14)

Clearly, this is a relaxation of the linearization of (2). The following propo-
sition summarizes some useful properties of the linearizations of the NCP
functions.

Proposition 3.5 Let φ(a, b) be one of the functions (8)–(11). Then it follows
that

1. a, b ≥ 0 and φ(a, b) ≤ 0 is equivalent to 0 ≤ a ⊥ b ≥ 0.

2. If â, b̂ ≥ 0 and â + b̂ > 0, then it follows that the perturbed system of
inequalities (14) is consistent for any 0 ≤ δ < 1, and 0 < κ ≤ 1. In

addition, if δ > 0 and â, b̂ > 0, then (14) has a nonempty interior for
the Fischer-Burmeister function, the bilinear function, and the smoothed
natural residual function.

Proof. Part 1 is obvious. For Part 2, consider each NCP function in turn.
For the bilinear function (8), it readily follows that (a, b) = (0, 0) is feasible

in (14) because for â, b̂ ≥ 0, we get
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âb̂ + ∇φT
BL

(−â

−b̂

)
= −âb̂ ≤ 0,

and clearly, if δ > 0, there exists a nonempty interior.
Next consider the Fischer-Burmeister function (4), for which (14) with

δ = 0 becomes
(

1 − â√
â2 + b̂2

)
a +

(
1 − b̂√

â2 + b̂2

)
b ≤ 0.

Since the terms in the parentheses are positive, it follows that (a, b) = 0 is
the only point satisfying a, b ≥ 0 and (14). On the other hand, if δ > 0, then
the right-hand side of (14) is positive, and there exists a nonempty interior of
a, b ≥ 0 and (14).

For (5) and (6), it follows for â < b̂ that (14) becomes a = 0, b ≥ 0. The

conclusion for â > b̂ follows similarly. If â = b̂, then (14) becomes 1
2a + 1

2b ≤
δ
(
min(1, φ(â, b̂))

)1+κ

, and the results follow.

The result for (7) follows from the fact that (7) is a linear combination of
the Fischer-Burmeister function and (8).

To show the result for the smoothed min functions, we observe that for
b ≤ a/σ and b ≥ σa the functions are identical to the min-function and the
result follows. For a/σ < b < σa, we consider (10) and (11) in turn. The
linearization of (10) is equivalent to a + b ≤ 0, which implies feasibility. It
can also be shown that linearization of (11) about any point is feasible at the
origin (a, b) = (0, 0).

The smoothed natural residual function also has feasible linearizations.
For (9), (14) is equivalent to (using σ = σNR to simplify the notation)

φNRs(â, b̂)+



1 − â − b̂ + b̂
2σ√

(â − b̂)2 + âb̂
σ



 (a−â)+



1 − b̂ − â + â
2σ√

(â − b̂)2 + âb̂
σ



 (b−b̂) ≤ 0.

Rearranging, we have

−φNRs(â, b̂) +



1 − â − b̂ + b̂
2σ√

(â − b̂)2 + âb̂
σ



 a +



1 − b̂ − â + â
2σ√

(â − b̂)2 + âb̂
σ



 b ≤ 0.

The first term is clearly nonpositive, and it can be shown that the terms mul-
tiplying a and b are nonnegative, thus implying consistency and a nonempty
interior, even when δ = 0. ¤

A disadvantage of the functions (8), (7), and (9) is that arbitrarily close to
a strongly stationary point, the linearizations may be inconsistent [FLRS02].
The next proposition shows that the min-function and its smoothed versions
(10) and (11) do not have this disadvantage.
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Proposition 3.6 Consider (3) using any of the min-functions, (5), (10), or
(11), and assume that the MPCC-MFCQ holds at a strongly stationary point.
Then it follows that the linearization of (3) is consistent for all x1, x2 ≥ 0
sufficiently close to this strongly stationary point.

Proof. Under MPCC-MFCQ, it follows that the linearization of the relaxed
NLP (13) is consistent in a neighborhood of a strongly stationary point. Now
consider the linearization of the min-function near a strongly stationary point,
x∗ say. For components i, such that x∗

1i = 0 < x∗
2i, it follows for any point

xk sufficiently close to x∗ that 0 ≤ xk
1i < xk

2i. Thus, the linearization of the
corresponding min-function gives d1i ≤ −xk

1i. Together with the lower bound
d1i ≥ −xk

1i, this is equivalent to d1i = −xk
1i, the linearization of the same

component in the relaxed NLP. A similar conclusion holds for components
with x∗

1i > 0 = x∗
2i.

Finally, for components i, such that x∗
1i = 0 = x∗

2i, it follows that the origin
xk+1

1i = xk+1
2i = 0 is feasible (Proposition 3.5). This point is also feasible for

the relaxed NLP.
A similar argument can be made for the smoothed min-functions (10) and

(11) by observing that for x∗
1i = 0 < x∗

2i, there exists a neighborhood where
these functions agree with the min-function and for x∗

1i = 0 = x∗
2i, feasibility

follows from Proposition 3.5. ¤

An important consequence of this proposition is that the quadratic conver-
gence proof for MPCCs in [FLRS02] can now be applied without the assump-
tion that all QP subproblems are consistent. In this sense, Proposition 3.6
implies that the equivalent NLP (3) using the min-functions satisfies a con-
straint qualification.

3.3 NCP Functions and Strong Stationarity

A consequence of the gradient convention is that the gradients of all NCP
functions have the same structure. In particular, it follows that for a, b > 0

∇φ(a, 0) =

(
0
τa

)
, ∇φ(0, b) =

(
τb

0

)
, ∇φ(a, b) =

(
τb

τa

)
, ∇φ(0, 0) =

(
0
0

)

for some parameters τa, τb > 0 that depend on a, b and the NCP function.
As a consequence, we can generalize the proof of equivalence of first-order
conditions from [FLRS02] to all NCP functions from Section 2. Let Φ(x1, x2)
denote the vector of functions φ(x1i, x2i). The KKT conditions of (3) are that
there exist multipliers µ := (λ, ν1, ν2, ξ) such that
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∇f(x) −∇c(x)T λ −




0
ν1

ν2



 +




0

∇x1
Φ(x1, x2)ξ

∇x2
Φ(x1, x2)ξ



 = 0

cE(x) = 0
cI(x) ≥ 0
x1, x2 ≥ 0

Φ(x1, x2) ≤ 0
λI ≥ 0

ν1, ν2 ≥ 0
ξ ≥ 0

ci(x)λi = x1jν1j = x2jν2j = 0 .

(15)

There is also a complementarity condition ξT Φ(x1, x2) = 0, which is implied
by feasibility of x1, x2 and has been omitted. Note that the choice ∇φ(0, 0) = 0
makes (15) consistent with strong stationarity, as will be shown next.

Theorem 3.7 (x∗, λ∗, ν̂1, ν̂2) is a strongly stationary point satisfying (12)
if and only if there exist multipliers (x∗, λ∗, ν∗

1 , ν∗
2 , ξ∗) satisfying the KKT

conditions (15) of the equivalent NLP (3). If φ is any of the NCP function of
Section 2, then

ν̂1 = ν∗
1 − τ 1ξ

∗ (16a)

ν̂2 =ν∗
2 − τ 2ξ

∗, (16b)

where τ 1 and τ 2 are diagonal matrices of with τj , j = 1, 2 along their di-
agonals. Moreover, τji = 0, if x1i = x2i = 0 and otherwise satisfies the
relationship

τ1i =






1 if x2i > 0 for (4), (5), (6), (10), (11)
1 − 1

4σ
if x2i > 0 for (9)

x2i for (8)
λ + (1 − λ)x2i if x2i > 0 for (7)

(17)

and

τ2i =






1 if x1i > 0 for (4), (5), (6), (10), (11)
1 − 1

4σ
if x1i > 0 for (9)

x1i for (8)
λ + (1 − λ)x1i if x1i > 0 for (7).

(18)

Proof. Note that gradients ∇Φ have the same structure for all NCP functions
used. Then (16) follows by comparing (15) and (12) and taking the gradients
of the NCP functions into account. ¤

The failure of MFCQ for (3) implies that the multiplier set is unbounded.
However, this unboundedness occurs in a special way. The multipliers of (3)
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form a ray, similar to [FLRS02], and there exists a multiplier of minimum
norm, given by

ν∗
1i = max(ν̂1i, 0), (19a)

ν∗
2i = max(ν̂2i, 0), (19b)

ξ∗i =−min

(
ν̂1i

τ1i

,
ν̂2i

τ2i

, 0

)
. (19c)

This implies the following complementarity conditions for the multipliers

0 ≤ ν∗
1i ⊥ ξ∗i ≥ 0 and 0 ≤ ν∗

2i ⊥ ξ∗i ≥ 0. (20)

This multiplier will be referred to as the minimal, or basic, multiplier . This
term is justified by the observation (to be proved below) that the constraint
normals corresponding to nonzero components of the basic multiplier are lin-
early independent, provided the MPCC satisfies an LICQ.

4 An SQP Algorithm for NCP Functions

This section describes an SQP algorithm for solving (3). The algorithm is an
iterative procedure that solves a quadratic programming (QP) approximation
of (3) around the iterate xk for a step d at each iteration:

(QP k)






minimize
d

gkT

d + 1
2dT W kd

subject to ck
E + AkT

E d = 0

ck
I + AkT

I d ≥ 0
xk

1 + d1 ≥ 0
xk

2 + d2 ≥ 0

Φk + ∇x1
ΦkT

d1 + ∇x2
ΦkT

d2 ≤ δ
(
min(1, Φk)

)1+κ
,

where µk = (λk, νk
1 , νk

2 , ξk) and W k = ∇2L(xk, µk) is the Hessian of the
Lagrangian of (1):

W k = ∇2L(xk, µk) = ∇2f(xk) −
∑

i∈I∪E
λi∇2ci(x

k).

Note that the Hessian W k does not include entries corresponding to ∇2Φ.
This omission is deliberate as it avoids numerical difficulties near the origin,
where ∇2φFB becomes unbounded. It will be shown that this does not affect
the convergence properties of SQP methods.

The last constraint of (QP k) is the relaxation of the linearization of the
complementarity condition (14). We will show that the perturbation does
not impede fast local convergence. Formally, the SQP algorithm is defined in
Algorithm 1.
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Let k = 0, x0 given
while not optimal do

Solve (QP k) for a step d

Set xk+1 = xk + d, and k = k + 1

Algorithm 1: Local SQP Algorithm for MPCCs

In practice, we also include a globalization scheme to stabilize SQP. In
our case, we use a filter [FL02] and a trust region to ensure convergence to
stationary points [FLT02]. The convergence theory of filter methods allows
for three possible outcomes [FLT02, Theorem 1]:

(A) The algorithm terminates at a point that is locally infeasible.
(B) The algorithm converges to a Kuhn-Tucker point.
(C) The algorithm converges to a feasible point at which MFCQ fails.

Clearly, (B) cannot happen because (3) violates MFCQ at any feasible point.
Outcome (A) is typically associated with convergence to a local minimum
of the norm of the constraint violation and cannot be avoided unless global
optimization techniques are used. Therefore, we deal mainly with outcome
(C) if we apply a filter algorithm to MPCC formulated as NLPs (3). The next
section presents a local convergence analysis of the SQP algorithm applied to
(3).

5 Local Convergence of SQP for MPCCs

This section establishes superlinear convergence of SQP methods a strongly
stationary point under mild conditions. The notation τ 1, τ 2 introduced in
Theorem 3.7 allows the convergence analysis of all NCP functions to be uni-

fied. We note that the presence of the perturbation term δ
(
min(1, Φk)

)1+κ
,

with κ < 1, implies that we cannot obtain quadratic convergence in general.
The convergence analysis is concerned with strongly stationary points. Let

x∗ be a strongly stationary point, and denote by A(x∗) the set of active general
constraints:

A(x∗) := {i|ci(x
∗) = 0} .

We also denote the set of active bounds by

Xj(x
∗) := {i|xji = 0} for j = 1, 2

and let D(x∗) := X1(x
∗) ∩ X2(x

∗) be the set of degenerate indices associated
with the complementarity constraint.

Assumptions 5.1 We make the following assumptions:



16 Sven Leyffer

[A0] The subgradients of the NCP functions are computed according to Con-
vention 3.4.

[A1] The functions f and c are twice Lipschitz continuously differentiable.
[A2] (1) satisfies an MPCC-LICQ.
[A3] x∗ is a strongly stationary point that satisfies an MPCC-SOSC.
[A4] λi 6= 0, ∀i ∈ E∗, λ∗

i > 0, ∀i ∈ A∗ ∩ I, and either ν∗
1j > 0 and ν∗

2j >
0, ∀j ∈ D∗.

[A5] The QP solver always chooses a linearly independent basis.

We note that [A0] is readily implemented and that assumption [A5] holds
for the QP solvers used within snopt due to Gill et al. [GMS02] and filter

[FL02]. The most restrictive assumptions are [A2] and [A3] because they
exclude B-stationary points that are not strongly stationary. This fact is not
surprising because it is well known that SQP methods typically converge lin-
early to such B-stationary points.

It is useful to divide the convergence proof into two parts. First, we consider
the case where complementarity holds for some iterate k, i.e. Φ(xk

1 , xk
2) = 0.

In this case, the SQP method applied to (3) is shown to be equivalent to
SQP applied to the relaxed NLP (13). In the second part, we assume that
Φ(xk

1 , xk
2) > 0 for all k. Under the additional assumption that all QP approxi-

mations remain consistent, superlinear convergence can again be established.

5.1 Local Convergence for Exact Complementarity

In this section we make the additional assumption that

[A6] Φ(xk
1 , xk

2) = 0 and (xk, µk) is sufficiently close to a strongly stationary
point.

Assumption [A6] implies that for given index sets Xj := Xj(x
k) :={

i|xk
ji = 0

}
, j = 1, 2, the following holds:

xk
1j = 0 ∀j ∈ X⊥

2

xk
2j = 0 ∀j ∈ X⊥

1

xk
1j = 0 or xk

2j = 0 ∀j ∈ D = X1 ∩ X2.

In particular, it is not necessary to assume that both xk
1i = 0 and xk

2i = 0
for i ∈ D∗. Thus it may be possible that X1 6= X ∗

1 (and similarly for X2). An
important consequence of [A6] is that X1, X2 satisfy

X ∗⊥

1 ⊂ X⊥
1 ⊂ X ∗⊥

1 ∪ D∗

X ∗⊥

2 ⊂ X⊥
2 ⊂ X ∗⊥

2 ∪ D∗

D ⊂ D∗,

(21)

that is, the indices X ∗⊥

1 and X ∗⊥

2 of the nondegenerate complementarity con-
straints have been identified correctly.
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Next, it is shown that SQP applied to (3) is equivalent to SQP applied
to the relaxed NLP (13). For a given partition (X⊥

1 ,X⊥
2 ,D), an SQP step for

the relaxed NLP (13) is obtained by solving the QP

(QPR(xk))






minimize
d

gkT

d + 1
2dT W kd

subject to ck
E + AkT

E d = 0

ck
I + AkT

I d ≥ 0
d1j = 0 ∀j ∈ X⊥

2 and xk
1j + d1j ≥ 0 ∀j ∈ X2

d2j = 0 ∀j ∈ X⊥
1 and xk

2j + d2j ≥ 0 ∀j ∈ X1.

The following proposition shows that SQP applied to the relaxed NLP con-
verges quadratically and identifies the correct index sets X ∗

1 and X ∗
2 in one

step. Its proof can be found in [FLRS02, Proposition 5.2].

Proposition 5.2 Let [A1]–[A6] hold, and let xk be sufficiently close to x∗.
Consider the relaxed NLP for any index sets X1, X2 (satisfying (21) by virtue
of [A6]). Then it follows that

1. there exists a neighborhood U of (z∗, λ∗, ν∗
1 , ν∗

2 ) and a sequence of iterates
generated by SQP applied to the relaxed NLP (13), {(xl, λl, νl

1, ν
l
2)}l>k,

that lies in U and converges Q-quadratically to (x∗, λ∗, ν∗
1 , ν∗

2 );
2. the sequence {xl}l>k converges Q-superlinearly to x∗; and
3. X l

1 = X ∗
1 and X l

2 = X ∗
2 for l > k.

Next, it is shown that the QP approximation to the relaxed NLP (QPR(xk))
and the QP approximation to the NCP formulation (QP k) generate the same
sequence of steps. The next lemma shows that the solution of (QPR(xk)) is
feasible in (QP k).

Lemma 5.3 Let Assumptions [A1]–[A6] hold. Then it follows that a step d
is feasible in (QPR(xk)) if and only if it is feasible in (QP k).

Proof. (QPR(xk)) and (QP k) differ only in the way the complementarity
constraint is treated. Hence we need only to prove the equivalence of those

constraints. Let j ∈ X⊥
2 . Then it follows that x1j = 0, and ∂Φk

∂x1j
= τ1j > 0,

and ∂Φk

∂x1j
= 0. Hence, (QP k) contains the constraints

τ1jd1j ≤ 0 and d1j ≥ 0 ⇔ d1j = 0.

Similarly, we can show that the constraints are equivalent for j ∈ X⊥
1 . Let

j ∈ D. Then it follows that (QP k) contains the constraints d2j ≥ 0 and
d1j ≥ 0, which are equivalent to the constraints of (QPR(xk)). The equivalence
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of the feasible sets follows because (X⊥
1 ,X⊥

2 ,D) is a partition of {1, . . . , p}. ¤

The next lemma shows that the solution of the two QPs are identical and
that the multipliers are related.

Lemma 5.4 Let Assumptions [A1]–[A6] hold. Let (λ, ν̂1, ν̂2) be the La-
grange multipliers of (QPR(xk,X )) (corresponding to a step d). Then it fol-
lows that the multipliers of (QP k), corresponding to the same step d are
µ = (λ, ν1, ν2, ξ), where

ν1i = ν̂1i > 0, ∀i ∈ D (22a)

ν2i = ν̂2i > 0, ∀i ∈ D (22b)

ξi = −min(
ν̂1i

τ1i

,
ν̂2i

τ2i

, 0) (22c)

ν1i = ν̂1i − ξiτ1i, ∀i ∈ X⊥
2 (22d)

ν2i =ν̂2i − ξiτ2i, ∀i ∈ X⊥
1 , (22e)

where τji is given in (17–18). Conversely, given a solution d and multipliers µ
of (QP k), (22) shows how to construct multipliers so that (d, λ, ν̂1, ν̂2) solves
(QPR(xk,X )).

Proof. We equate the first-order conditions of (QPR(xk)) and (QP k) and
obtain

gk + W kd − Akλ =




0
ν̂1

ν̂2



 =




0

ν1 −∇x1
Φξ

ν2 −∇x2
Φξ



 .

We distinguish three cases:
Case 1 (j ∈ D): It follows from (21) that j ∈ D∗, which implies that ν̂1j , ν̂2j >
0 for xk sufficiently close to x∗ by assumption [A4]. Moreover, ∂Φ

∂x1j
= ∂Φ

∂x2j
=

0, and hence, ν1j = ν̂1j > 0, ν2j = ν̂2j > 0, and ξj = 0 are valid multipliers
for (QP k).
Case 2 (j ∈ X⊥

1 ): We distinguish two further cases. If j ∈ D∗, then a similar
argument to Case 1 shows that ν1j = ν̂1j > 0, ν2j = ν̂2j > 0, and ξj = 0. On

the other hand, if j ∈ X ∗⊥

1 , then it follows that ∂Φ
∂x1j

= 0, and ∂Φ
∂x2j

= τ2j > 0

is bounded away from zero. Thus, ν1j = ν̂1j = 0, and ν2j = ν̂2j − τ2jξj , and
we can always choose ν2j , ξj ≥ 0. We will show later that the QP solver in
fact chooses either ν2j > 0, or ξj > 0.
Case 3 (j ∈ X⊥

2 ) is similar to Case 2. ¤

Next, it is shown that both QPs have the same solution in a neighborhood
of d = 0; its proof can be found in [FLRS02, Lemma 5.6].
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Lemma 5.5 The solution d of (QPR(xk)) is the only strict local minimizer
in a neighborhood of d = 0 and its corresponding multipliers (λ, ν̂1, ν̂2) are
unique. Moreover, d is also the only strict local minimizer in a neighborhood
of d = 0 of (QP k).

The next theorem summarizes the results of this section.

Theorem 5.6 If Assumptions [A1]–[A6] hold, then SQP applied to (3)
generates a sequence {(xl, λl, νl

1, ν
l
2, ξ

l)}l>k that converges Q-quadratically to
{(x∗, λ∗, ν∗

1 , ν∗
2 , ξ∗)} of (15), satisfying strong stationarity. Moreover, the se-

quence {xl}l>k converges Q-superlinearly to x∗ and Φ(xl
1, x

l
2) = 0 for all l ≥ k.

Proof. Under Assumptions [A1]–[A4], SQP converges quadratically when
applied to the relaxed NLP (13). Lemmas 5.3–5.5 show that the sequence of
iterates generated by this SQP method is equivalent to the sequence of steps
generated by SQP applied to (3). This implies Q-superlinear convergence of
{xl}l>k. Convergence of the multipliers follows by considering (22). Clearly,
the multipliers in (22a) and (22b) converge, as they are just the multipliers of
the relaxed NLP, which converge by virtue of Proposition 5.2. Now observe
that (22c) becomes

ξk+1
i = −min

(
ν̂k+1
1i

τk+1
1i

,
ν̂k+1
2i

τk+1
2i

, 0

)
.

The right-hand side of this expression converges because ν̂k+1
1i , ν̂k+1

2i converge

and the denominators τk+1
i are bounded away from zero for i ∈ X ∗⊥

1 ,X ∗⊥

2 .
Finally, (22d) and (22e) converge by a similar argument.

Φ(xl
1, x

l
2) = 0 , ∀l ≥ k, follows from the convergence of SQP for the

relaxed NLP (13) and the fact that SQP retains feasibility with respect to
linear constraints. Assumption [A4] ensures that dk

1j = dk
2j = 0,∀j ∈ D∗,

since νk
1j , ν

k
2j > 0 for biactive complementarity constraints. Thus SQP will

not move out of the corner and stay on the same face. ¤

5.2 Local Convergence for Nonzero Complementarity

This section shows that SQP converges superlinearly even if complementarity
does not hold at the starting point, that is, if Φ(xk

1 , xk
2) > 0. It is shown in

[FLRS02] that the QP approximation to (3) with x1ix2i ≤ 0 can be inconsis-
tent arbitrarily close to a strongly stationary point. Similar examples can be
constructed for the NCP functions in Section 2. Only the min-function and
its piecewise smooth variations guarantee feasibility of the QP approximation
near a strongly stationary point (see Proposition 3.6).



20 Sven Leyffer

Note that by virtue of the preceding section, any component for which
φ(xk

1i, x
k
2i) = 0 can be removed from the complementarity constraints and

instead be treated as part of the general constraints, as φ(xl
1i, x

l
2i) = 0 for all

l ≥ k. Hence, it can be assumed without loss of generality that Φ(xk
1 , xk

2) > 0
for all k.

In the remainder of the proof, it is assumed without loss of generality that

X ∗⊥

1 = ∅, that is, the solution can be partitioned as

x∗
2 =

(
x∗

21

x∗
22

)
=

(
0

x∗
22

)
, (23)

where x∗
22 > 0, and x∗

1 = 0 is partitioned in the same way. This simplifies the
notation in the proof.

SQP methods can take arbitrary steps when encountering infeasible QP
approximations. In order to avoid the issue of infeasibility, the following as-
sumption is made that often holds in practice.

[A7] All QP approximations (QP k) are consistent for xk sufficiently close to
x∗.

This is clearly an undesirable assumption because it is an assumption on the
progress of the method. However, Proposition 3.6 shows that [A7] holds for
the NCP reformulations involving the min-function. In addition, it is shown
in [FLRS02] that [A7] is satisfied for MPCCs with vertical complementarity
constraints that satisfy a mixed-P property. Moreover, the use of the pertur-
bation makes it less likely that the SQP method will encounter infeasible QP
subproblems.

The key idea behind our convergence result is to show convergence for any
“basic” active set. To this end, we introduce the set of active complementarity
constraints

C(x) := {i : φ(x1i, x2i) = 0} .

Let I(x) := I ∩ A(x), and let the basic constraints be

B(x) := E ∪ I(x) ∪ X1(x) ∪ X2(x) ∪ C(x).

The set of strictly active constraints (defined in terms of the basic multiplier,
µ, see (19)) is given by

B+(x) := {i ∈ B(x) | µi 6= 0} .

Moreover, let Bk
+ denote the matrix of strictly active constraint normals at

x = xk, namely,
Bk

+ :=
[
ak

i

]
i∈B+(xk)

,

where ak
i is the constraint normal of constraint i ∈ B+(xk).

The failure of any constraint qualification at a solution x∗ of the equiv-
alent NLP (3) implies that the active constraint normals at x∗ are linearly
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dependent. However, the constraint normals corresponding to strictly active
constraints are linearly independent, as shown in the following lemma.

Lemma 5.7 Let Assumptions [A1]–[A4] hold, and let x∗ be a solution of the
MPCC (1). Let I∗ denote the set of active inequalities cI(x), and consider
the matrix of active constraint normals at x∗,

B∗ =





0 0 0

A∗
E A∗

I∗ I 0

(
0

−∇x12
Φ2

)

0

[
I
0

] (
0
0

)




, (24)

where we have assumed without loss of generality that X⊥∗

1 = ∅. The last
column is the gradient of the complementarity constraint. Then it follows that
B is linearly dependent and that

span〈
[

0
I2

]
〉 = span〈

[
0

−∇x12
Φ2

]
〉. (25)

Moreover, any submatrix of columns of B has full rank provided that it con-
tains [A∗

E A∗
I ] and a linearly independent set from the columns in (25).

Proof. The structure of the gradient of the NCP functions and (23) show
that (25) holds. Thus B∗ is linearly dependent. MPCC-LICQ shows that B∗

without the columns corresponding to the NCP functions has full rank. By
choosing a linearly independent subset from the columns in (25), we get a
basis. ¤

Lemma 5.7 shows that the normals corresponding to the basic multiplier
are linearly independent despite the fact that the active normals are linearly
dependent. The proof shows that in order to obtain a linearly independent
basis, any column of x12 = 0 can be exchanged with the corresponding normal
of the complementarity constraint. This matches the observation that the
basic multipliers of the simple bounds and the corresponding complementarity
constraint are complementary (see (20)).

Next, it is shown that for xk sufficiently close to x∗, if both the normals
corresponding to x1i ≥ 0 and φ(x1i, x2i) ≤ 0 are active, then at the next
iteration exact complementarity holds for that component and φ(xl

1i, x
l
2i) = 0

and for all subsequent iterations by virtue of Lemma 5.3. Thus, the QP solver
cannot continue to choose a basis that is increasingly ill-conditioned.

Lemma 5.8 Let Assumptions [A1]–[A5] hold, and let xk be sufficiently close

to x∗. Partition the NCP function Φ = (Φ1, Φ2)
T

in the same way as x1, x2

in (23). Consider the matrix of active constraint normals at xk,
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B =





0 0 0 0

Ak
E Ak

I

[
I 0
0 I

] [
−∇x11

Φ1

0

] [
0

−∇x12
Φ2

]

[
I
0

] [
−∇x21

Φ1

0

] [
0

−∇x22
Φ2

]




.

Then it follows that the columns corresponding to the matrix ∇xΦ2 have the
structure (0, 0,−τ, 0,−ε)T , where τ = O(1) and ε > 0 is small. If the optimal
basis of (QP k) contains both a column i of x1i ≥ 0 and φ(x1i, x2i) ≤ 0, then
it follows that

xk
1i > 0 and xk+1

1i xk+1
2i = 0.

Moreover, there exists c > 0 such that

‖
(
xk+1, µk+1

)
− (x∗, µ∗) ‖ ≤ c ‖

(
xk, µk

)
− (x∗, µ∗) ‖. (26)

Proof. The first part follows by observing that for xk close to x∗, x12 ≥ 0
is small and x22 = O(1), which implies the form of the columns. Exchang-
ing them with the corresponding columns of x12 ≥ 0 results in a nonsingular
matrix by Lemma 5.7. The second part follows from the nonsingularity as-
sumption [A5] (if xk

1i = 0, then the basis would be singular) and the fact that
if the column corresponding to x1i ≥ 0 is basic, then xk+1

1i = xk
1i + d1i = 0

holds.
The third part follows by observing that Assumptions [A2] and [A3] imply
that the relaxed NLP satisfies an LICQ and a SOSC. Hence, the basis B
without the final column gives a feasible point close to xk. Denote this solution
by (x̂, µ̂), and let the corresponding step be denoted by d̂. Clearly, if this step
also satisfies the linearization of the complementarity constraint, that is, if

Φk + ∇x1
ΦkT

d̂1 + ∇x2
ΦkT

d̂2 ≤ 0,

then (26) follows by second-order convergence of SQP for the relaxed NLP.
If, on the other hand,

Φk + ∇x1
ΦkT

d̂1 + ∇x2
ΦkT

d̂2 > 0,

then the SQP step of the relaxed NLP is not feasible in (QP k). In this case
consider the following decomposition of the SQP step. Let

d̂n =





0

d̂1(
d̂21

0

)



 =





0
−xk

1(
−xk

21

0

)





be the normal component, and let d̂t := d̂− d̂n be the tangential component.
Then it follows that the step of (QP k) satisfies dk = d̂n + σd̂t for some
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σ ∈ [0, 1], and the desired bound on the distance follows from the convergence

of d̂. ¤

Thus, if both the normals corresponding to φ(x1i, x2i) ≤ 0 and x1i ≥ 0
are basic, then xk+1

1i xk+1
2i = 0 for a point close to x∗. This component can

then be removed from the complementarity constraint, as Lemma 5.3 shows
that xk+l

1i xk+l
2i = 0 for all l ≥ 1. In the remainder we can therefore concentrate

on the case that xk
1ix

k
2i > 0 for all iterates k. Next, it is shown that for xk

sufficiently close to x∗, the basis at xk contains the equality constraints E and
the active inequality constraints I∗.

Lemma 5.9 Let xk be sufficiently close to x∗, and let Assumptions [A1]–
[A5] and [A7] hold. Then it follows that the optimal basis B of (QP k) con-
tains the normals Ak

E and Ak
I∗ .

Proof. This follows by considering the gradient of (QP k),

0 = ∇fk + W kdk −∇ckT

λk+1 −




0

νk+1
1 − ξk+1∇x1

Φk

νk+1
2 − ξk+1∇x2

Φk



 ,

where W k is the Hessian of the Lagrangian. For xk sufficiently close to x∗, it
follows from [A4] that λk+1

i 6= 0 for all i ∈ E ∪ I∗. ¤

Thus, as long as the QP approximations remain consistent, the optimal
basis of (QP k) will be a subset of B satisfying the conditions in Lemma 5.8.
The key idea is to show that for any such basis, there exists an equality
constraint problem for which SQP converges quadratically. Since there is only
a finite number of basis, this implies convergence for SQP.

We now introduce the reduced NLP , which is an equality constraint NLP
corresponding to a basis with properties as in Lemma 5.8. Assume that x∗

can be partitioned as in (23), and define the reduced NLP as

minimize
x

f(x)

subject to cE(x) = 0
cI∗(x) = 0
x11 = 0
x21 = 0
x1i = 0 or Φ(x1i, x2i) = 0 ∀i ∈ X⊥

2 ,

where the last constraint means that either x1i = 0 or Φ(x1i, x2i) = 0 but not
both are present in the reduced NLP. Note that according to (23), X⊥

1 = ∅.
The key idea will be to relate the reduced NLP to a basis satisfying the
conditions of Lemma 5.8. Next, it is shown that any reduced NLP satisfies an
LICQ and an SOCS.
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Lemma 5.10 Let Assumptions [A1]–[A4] and [A7] hold. Then it follows
that any reduced NLP satisfies LICQ and SOSC.

Proof. Lemma 5.8 and the fact that either x1i = 0 or Φ(x1i, x2i) = 0 are
active shows that the normals of the equality constraints of each reduced
NLP are linearly independent. The SOSC follows from the MPCC-SOSC and
the observation that the MPCC and the reduced NLP have the same null-
space. ¤

Thus, applying SQP to the reduced NLP results in second-order conver-
gence. Next, we observe that any nonsingular basis B corresponds to a re-
duced NLP. Unfortunately, relaxing the complementarity constraints in (QP k)
means that second-order convergence does not follow directly. However, the
particular form of perturbation allows a superlinear convergence result to be
established.

Proposition 5.11 Let Assumptions [A1]–[A4] and [A7] hold. Then it fol-
lows that an SQP method that relaxes the complementarity as in (QP k) con-
verges superlinearly to x∗ for any reduced NLP.

Proof. Assume that δ = 0, so that no perturbation is used. Lemma 5.10
shows that the reduced NLP satisfy LICQ and SOSC and, therefore, conver-
gence of SQP follows. In particular, it follows that for a given reduced NLP
corresponding to a basis B, there exists a constant cB > 0 such that

‖
(
xk+1, µk+1

)
− (x∗, µ∗) ‖ ≤ cB ‖

(
xk, µk

)
− (x∗, µ∗) ‖2. (27)

If the right-hand side of the complementarity constraint is perturbed (i.e.,
δ > 0), then consider the Newton step corresponding to the QP approxima-
tion of the relaxed NLP about xk. In particular, this step satisfies dk

N = −xk
1 ,

and it follows that the perturbation is o(‖dN‖), where dN is the Newton step.
Hence, superlinear convergence follows using the Dennis-Moré characteriza-
tion theorem (e.g., Fletcher, [Fle87, Theorem 6.2.3]). ¤

We note that the SQP method based on (QP k) ignores the curvature
corresponding to φ(x12, x22) = 0. However, it is easy to extend the proof of
Proposition 5.11 to allow ∇2Φ to be included. The key idea is to show that
the limit of the projected Hessian of ∇Φ∗ is zero. Letting Zk be a basis of
the nullspace of (QP k), we need to show that limk→∞ Zk∇2Φ∗ = 0, which
implies superlinear convergence (see, e.g., [Fle87, Chapter 12.4]). It can be
shown that the Hessian of the NCP functions is unbounded in the nullspace
of the active constraints of (QP k).
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Summarizing the results of this section, we obtain the following theorem.

Theorem 5.12 Let Assumptions [A1]–[A5] and [A7] hold. Then it follows
that SQP applied to the NLP formulation (3) of the MPCC (1) converges
superlinearly near a solution (x∗, µ∗).

Proof. Proposition 5.11 shows that SQP converges superlinearly for any pos-
sible choice of basis B, and Assumption [A7] shows that (QP k) is consistent
and remains consistent. Therefore, there exists a basis for which superlinear
convergence follows. Thus for each basis,

lim
k→∞

‖(xk+1, µk+1) − (x∗, µ∗)‖
‖(xk, µk) − (x∗, µ∗)‖ = 0

follows. Since there are a finite number of bases, this condition holds indepen-
dent of the basis and SQP converges superlinearly. ¤

5.3 Discussion of Proofs

Several interesting observations arise from the convergence proofs of the
preceding two sections. The curvature of the complementarity constraint
Φ(x1, x2) can be ignored without losing fast local convergence. This fact is
not surprising because the complementarity constraint

0 ≤ x1 ⊥ x2 ≥ 0

has zero curvature at any feasible point with x1i + x2i > 0. At the origin, on
the other hand, the curvature is infinite. However, in this case the curvature
does not affect convergence, as the reduced Hessian is zero.

If the min-function (5) or its piecewise smooth variants (10) or (11) are
used, then the proof simplifies, as near a strongly stationary point, ∇Φx2

= 0.
In addition, the linearizations are consistent even without the perturbation
(14) and convergence follows from the convergence of the relaxed NLP. This
fact can be interpreted as a constraint qualification for the NCP formulations
using (5) or (10) or (11) at strongly stationary points.

The conclusions and proofs presented in this section also carry through
for linear complementarity constraints but not for general nonlinear comple-
mentarity constraints. The reason is that the implication

xk
1ix

k
2i = 0 ⇒ xk+1

1i xk+1
2i = 0 (28)

holds for linear complementarity problems but not for nonlinear complemen-
tarity problems because in general, an SQP method would move off a nonlinear
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constraint. This is one reason for the introduction of slacks to deal with more
general complementarity constraints. In addition, (28) can be made to hold
in inexact arithmetic by taking care of handling simple bounds appropriately.
The same is not true if one expression is a linear equation.

6 Numerical Results

This section describes our experience with an implementation of the different
NCP formulation of the MPCC (1) in our sequential quadratic programming
solver. Our SQP method promotes global convergence through the use of
a filter. The filter accepts a trial point whenever the objective or the con-
straint violation is improved compared with all previous iterates, Fletcher et
al. [FGL+02, FL02, FLT02].

6.1 Preliminaries

The solver is interfaced to the modeling language AMPL, due to Fourer et
al. [FGK03]. Our interface introduces slacks to formulate general complemen-
tarity constraints in the form (1) and handles the reformulation to the NLP
(3) automatically. The interface also computes the derivatives of the NCP
functions and relaxes the linearizations according to (14). A user can choose
between the various formulations and set parameters such as δ, κ by passing
options to the solver.

The test problems come from MacMPEC [Ley00], a collection of some 150
MPCC test problems [FL04] from a variety of backgrounds and sizes. The
numerical tests are performed on a PC with an Intel Pentium 4 processor with
2.5 GHz and 512 KB RAM running Red Hat Linux version 7.3. The AMPL
solver interface is compiled with the Intel C++ compiler version 6.0, and the
SQP/MPCC solver is compiled with the Intel Fortran Compiler version 6.0.

Not all 150 problems in MacMPEC are included in this experiment. We
have deliberately left out a number of 32× 32 discretizations of the incidence
set identification and packaging problems. These problems are similar to one
another (a small number of them are included) but take a long time to run.
This is especially true for the formulations that do not lump the complemen-
tarity constraint. In this sense, the results would have been even better for
the formulation using the scalar product form.

To determine reasonable values for the various parameters introduced in
the definition of the NCP functions, we run a small representative selection of
MPCC problems. The overall performance is not very sensitive to a particular
parameter choice. No attempt was made to “optimize” the parameter values;
rather, we were interested in determining default values that would work well.
Table 1 displays the default parameter values.

While the number of parameters may appear unreasonably large, each
formulation requires only three parameters to be set. The choice of λ = 0.7 also
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Table 1. Default parameter values for numerical experiments.

Parameter Description Default

δ relaxation of linearization in (14) 0.1
κ relaxation of linearization in (14) 1.0

σNR smoothing of natural residual (9) 32.0
λ Chen-Chen-Kanzow parameter (7) 0.7
σl slope of linearized min-function (10) 4.0
σq slope of quadratic min-function (11) 2.0

agrees with [MFF+01], where λ = 0.8 is suggested. Note that since δ = 0.1,
the Chen-Chen-Kanzow function is relaxed further.

Care has to be taken when computing the smoothed natural residual func-
tion (9); it can be affected by cancellation error, as the following example il-
lustrates. Suppose a = 104 and b = 10−4 and that single-precision arithmetic
is used. Then it follows that

2φNRs(a, b) = (104 + 10−4) −
√

(104 − 10−4)2 +
1

σNR

float' 104 −
√

108 = 0,

that is cancellation errors causes (9) to declare an infeasible point comple-
mentary. This situation can be avoided by employing the same trick used
by Munson et al. [MFF+01] in reformulating the Fischer-Burmeister function
giving rise to

φNRs(a, b) =
1

2

(
4σNR−1

σNR

)

a + b +
√

(a − b)2 + ab
σNR

. (29)

Derivative values can be computed in a similarly stable fashion.

6.2 Performance Plots and Results

Results are provided in two forms. The performance plots of Dolan and Moré
[DM00] in Figures 3 and 4 show the relative performance of each formulation
in terms of iteration count and CPU time. These plots can be interpreted as
follows. For every solver s and every problem p, the ratio of the number of
iterations (or CPU time) of solver p on problem s over the fastest solve for
problem s is computed and the base 2 logarithm is taken,

log2

(
# iter(s, p)

best iter(p)

)
.

By sorting these ratios in ascending order for every solver, the resulting plots
can be interpreted as the probability that a given solver solves a problem
within a certain multiple of the fastest solver.
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Fig. 3. Performance (iterations) plots for different NCP formulations

Failures (see next section) are handled by setting the iteration count and
the CPU time to a large number. This strategy ensures that the robustness
can also be obtained from the performance plots. The percentage of MPCC
problems solved is equivalent to the right asymptote of the performance line
for each solver.
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Fig. 4. Performance (CPU time) plots for different NCP formulations

6.3 Failures of the NCP Formulations

Solving MPCCs as NLPs is surprisingly robust. We observe very few failures,
even though many problems are known to violate the assumptions made in
this paper. Even the worst NCP formulation failed only on eight problems.
Below, we list the problems that failed together with the reason for the failure.

The NLP solver can fail in three ways. The first failure mode occurs when
the trust-region radius becomes smaller than the solver tolerance (1E-6) and
no further progress can be made. This is referred to in the table below as “TR
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too small.” Such a failure often happens at a solution where the KKT error
cannot be reduced to sufficient accuracy. The second failure mode occurs if
the QP solver detects inconsistent linearizations near a feasible point. This
is referred to as “infeasible QP.” Note that the fact that MPCCs violate
MFCQ implies that linearizations can become inconsistent arbitrarily close
to a feasible point. Third, “iter. limit” refers to failures in which the solver
reached its iteration limit (1000) without confirming optimality. The following
failures were reported:

1. Scalar product form xT
1 x2 ≤ 0 2 failures

TR too small : tollmpec1
infeasible QP : design-cent-3

2. Bilinear form x1ix2i ≤ 0 5 failures
infeasible QP : design-cent-3, incid-set1c-32, pack-rig2c-32, pack-rig2p-16
iter. limit : bem-milanc30-s

3. min-function min(x1i, x2i) ≤ 0 6 failures
TR too small : ex9.2.2
infeasible QP : pack-comp1p-8, pack-comp1p-16
iter. limit : pack-comp2p-8, pack-comp2p-16, qpec-200-2

4. Linearized min-function (10) 4 failures
TR too small : jr2, qpec-200-3
infeasible QP : bem-milanc30-s
iter. limit : qpec-200-2

5. Quadratically smoothed min-function (11) 8 failures
TR too small : jr2
infeasible QP : incid-set2c-32
iter. limit : ex9.2.2, gauvin, incid-set1c-32, qpec-100-4, qpec-200-1,

: qpec-200-3
6. Fischer-Burmeister function (4) 7 failures

infeasible QP : design-cent-3, ralphmod
¿ iter. limit : pack-comp1c-8, pack-rig1-16, pack-rig1c-16, pack-rig2-16,

: pack-rig2c-16
7. Smoothed natural residual function (9) 1 failures

TR too small : bem-milanc30-s
8. Chen-Chen-Kanzow function (7) 5 failures

infeasible QP : pack-comp1p-8, qpec-200-3, pack-comp1c-8, pack-rig2p-16
iter. limit : bem-milanc30-s

This list contains some problems known not to have strongly stationary limit
points. For instance, ex9.2.2, ralph1, and scholtes4 have B-stationary solu-
tions that are not strongly stationary. Problem gauvin has a global minimum
at a point where the lower-level problem fails a constraint violation, so the
formulation as an MPCC is not appropriate.

In the tests, two problems also gave rise to IEEE errors in the AMPL func-
tion evaluations, specifically the Chen-Chen-Kanzow function on pack-rig1-16
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and pack-rig1c-32. Since this type of error is caused not by the method but
by the model, they are not counted in the errors.

6.4 Interpretation of the Results

The results confirm that solving MPCCs as NLPs is very robust. In particular,
the scalar product and the smoothed natural residual function are very robust,
solving all but two problems and one problem, respectively.

The results for the min-function, on the other hand, are disappointing.
Recall that these functions are theoretically attractive because they do not
require an additional assumption to be made on the feasibility of QP ap-
proximations. This property makes the number of failures (6/4/8) for the
min-function and its smoothed variants disappointing.

The best results in terms of performance and robustness were obtained for
the scalar product formulation and the smoothed natural residual function.
The performance plots in Figures 3 and 4 clearly show that these formulations
are superior. In particular, the scalar product function is significantly faster
than any other approach.

The formulation using xT
1 x2 has two main advantages that may explain

its superiority. First, it introduces only a single additional constraint, which
reduces the size of the NLP to be solved. Moreover, this formulation requires
less storage for the QP basis factors. Second, by lumping the complementar-
ity conditions, the formulation allows a certain degree of nonmonotonicity in
the complementarity error of each individual x1ix2i and reduces the overall
complementarity error, xT

1 x2, only.
The worst results in terms of both robustness and efficiency are obtained

for the Fischer-Burmeister function and the quadratically smoothed min-
function. These formulations fail on seven and eight problems, respectively and
are significantly slower than the other formulations. The Chen-Chen-Kanzow
function improves on the Fischer-Burmeister function. This observation is not
surprising because φCCK is a convex combination of the Fischer-Burmeister
function and the more successful bilinear formulation. The worse behavior of
φFB might be due to the fact that its linearized feasible region is smaller than
for the bilinear form. This is also supported by the type of failures that can
be observed for the Fischer-Burmeister function, which has many infeasible
QP terminations.

Analyzing the solution characteristics of the scalar product form, we ob-
serve that only four problems have a large value of ξ. This fact shows that
the SQP method converges to strongly stationary points for the remaining
problems, as a bounded complementarity multiplier is equivalent to strong-
stationarity (Theorem 3.7). The four problems for which ξ is unbounded are
ex9.2.2, ralph1, ralphmod, and scholtes4. The last problem is known to violate
an MPCC-MFCQ at its only stationary point, and the limit is B-stationary
but not strongly stationary, and SQP converges linearly for this problem
[FLRS02].
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In addition, it can be observed that the complementarity error is exactly
zero at most solutions. The reasons for this behavior are as follows:

1. Complementarity occurs only between variables. Thus, if a lower bound is
in the active set, then the corresponding residual can be set to zero even
in inexact arithmetic.

2. Many problems in the test set have a solution where ξ = 0. This indi-
cates that the complementarity constraint xT

1 x2 ≤ 0 is locally redundant.
Hence, exact complementarity is achieved as soon as the SQP method
identifies the correct active set.

3. Our QP solver resolves degeneracy by making nearly degenerate con-
straints exactly degenerate and then employing a recursive procedure to
remove degeneracy. This process of making nearly degenerate constraints
exactly degenerate forces exact complementarity. Consider any nondegen-
erate index for which x∗

2i > 0 = x∗
1i, and assume that xk

1i > 0 is small.
The QP solver resolves the “near” degeneracy between the lower bound
x1i ≥ 0 and the complementarity constraint by perturbing x1i to zero.
Thus exact complementarity is achieved.

This behavior is reassuring and makes the NLP approach to MPCCs attractive
from a numerical standpoint.

7 Conclusions

Mathematical programs with complementarity constraints (MPCCs) are an
emerging area of nonlinear optimization. Until recently researchers had as-
sumed that the inherent degeneracy of MPCCs makes the application of stan-
dard NLP solvers unsafe. In this paper we show how MPCCs can be formu-
lated as NLPs using a range of so-called NCP functions. Two new smoothed
min-functions are introduced that exhibit desirable theoretical properties com-
parable to a constraint qualification.

In contrast to other smoothing approaches, the present formulations are
exact in the sense that KKT points of the reformulated NLP correspond to
strongly stationary points of the MPCC. Thus there is no need to control a
smoothing parameter, which may be problematic.

It is shown that SQP methods exhibit fast local convergence near strongly
stationary points under reasonable assumptions. This behavior is observed in
practice on a large range of MPCC problems. The numerical results favor a
lumped formulation in which all complementarity constraints are lumped into
a single constraint. A new smoothed version of the min-function is also shown
to be very robust and efficient. On the other hand, results for other standard
NCP functions such as the Fischer-Burmeister function are disappointing.

The use of the simple bounds in the reformulation of complementarity (2)
allows an alternative NLP formulation of the MPCC (1). This formulation
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lumps the nonlinear NCP functions into a single constraint, similar to xT
1 x2 ≤

0. Thus, an alternative NLP is given by

minimize f(x)
subject to cE(x) = 0

cI(x) ≥ 0
x1, x2 ≥ 0,
eT Φ(x1, x2) ≤ 0.

(1)

It is straightforward to see, that (1) is equivalent to (1). The convergence
proof is readily extended to this formulation. We note that (1) has several
advantages over (3). It reduces the number of constraints in the NLP. More-
over, our experience indicates that the lumped version of the bilinear form,
xT

1 x2 ≤ 0, often performs better than the separate version using x1ix2i ≤ 0.
One reason may be that the lumped version allows nonmonotone changes in
the complementarity residual in individual variable pairs as long as the overall
complementarity is reduced.

Some open questions remain. One question concerns the global conver-
gence of SQP methods from arbitrary starting points. Any approach to this
question must take into account the globalization scheme and, in addition,
provide powerful feasibility restoration. A related question is whether SQP
methods can avoid convergence to spurious stationary points. Such points
are sometimes referred to as C-stationary points even though they allow the
existence of trivial first-order descent direction. At present, we believe that
current SQP methods cannot avoid convergence to C-stationary points. Any
attempt to avoid C-stationarity is likely to require algorithmic modifications.
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A Problem Characteristics

This appendix lists the problem characteristics obtained with the scalar prod-
uct formulation. The headings of each column are explained next. n,m, and
p are the number of variables, constraints (excluding complementarity), and
complementarity constraints, respectively. nNLP is the number of variables
after slacks were added, and k is the dimension of the nullspace at the solu-
tion. The definition of the degree of degeneracy d1, d2, dm is taken from Jiang
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and Ralph [JR99] and refer to first-level degeneracy, d1, second-level degen-
eracy, d2, and mixed-degeneracy, dm. The complementarity error (xT

1 x2) is in
the column headed by compl, and ξ is the multiplier of the complementarity
constraint xT

1 x2 ≤ 0.
name n m p nNLP k d1 d2 dm compl ξ

bard1 5 4 3 8 0 3 0 0 0.00 0.762
bard1m 6 4 3 9 0 4 0 0 0.00 0.762
bard2 12 9 3 15 0 2 1 0 0.00 0.00
bard2m 12 9 3 15 0 2 1 0 0.00 0.00
bard3 6 5 1 7 0 2 0 0 0.00 0.00
bard3m 6 5 3 9 0 2 0 0 0.00 1.09
bar-truss-3 35 34 6 35 0 13 0 0 0.00 1.45
bem-milanc30-s 3436 3433 1464 3436 1 1745 1 0 0.00 954.
bilevel1 10 9 6 12 0 6 0 0 0.00 0.150
bilevel2 16 13 8 20 1 5 0 0 0.294E-10 0.00
bilevel3 11 10 3 11 0 5 0 0 0.00 1.09
bilin 8 7 6 14 0 4 0 0 0.00 22.0
dempe 3 2 1 4 0 0 0 0 0.00 0.571E-05
design-cent-1 12 11 3 15 0 6 0 0 0.00 2.17
design-cent-2 13 15 3 16 0 11 0 0 0.00 0.00
design-cent-3 15 11 3 18 0 1 0 1 0.00 0.313E-01
design-cent-4 22 20 8 30 1 12 0 0 0.00 0.845
desilva 6 4 2 8 0 2 0 2 0.00 0.00
df1 2 3 1 3 1 1 0 1 0.00 0.00
ex9.1.1 13 12 5 13 0 4 0 0 0.00 0.00
ex9.1.10 11 9 3 11 0 5 0 2 0.00 0.00
ex9.1.2 8 7 2 8 0 4 0 0 0.00 0.00
ex9.1.3 23 21 6 23 0 14 0 1 0.00 3.20
ex9.1.4 8 7 2 8 0 3 0 1 0.00 0.00
ex9.1.5 13 12 5 13 0 8 0 2 0.00 10.0
ex9.1.6 14 13 6 14 0 6 0 1 0.00 1.56
ex9.1.7 17 15 6 17 0 8 0 1 0.00 5.00
ex9.1.8 11 9 3 11 0 5 0 2 0.00 0.00
ex9.1.9 12 11 5 12 0 5 0 1 0.00 0.444
ex9.2.1 10 9 4 10 0 6 0 1 0.00 0.762
ex9.2.2 9 8 3 9 0 3 0 1 0.183E-12 0.386E+07
ex9.2.3 14 13 4 14 0 5 1 0 0.00 0.00
ex9.2.4 8 7 2 8 0 3 0 0 0.00 1.00
ex9.2.5 8 7 3 8 0 3 0 0 0.00 6.00
ex9.2.6 16 12 6 16 2 4 0 2 0.168E-10 0.500
ex9.2.7 10 9 4 10 0 6 0 1 0.00 0.762
ex9.2.8 6 5 2 6 0 3 0 1 0.00 0.500
ex9.2.9 9 8 3 9 0 7 0 0 0.100E-06 0.00
flp2 4 2 2 6 1 2 0 1 0.00 0.987
flp4-1 80 60 30 110 0 30 0 0 0.00 0.00
flp4-2 110 110 60 170 0 60 0 0 0.00 0.00
flp4-3 140 170 70 210 0 70 0 0 0.00 0.00
flp4-4 200 250 100 300 0 100 0 0 0.00 0.00
gauvin 3 2 2 5 0 1 0 0 0.00 0.250
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name n m p nNLP k d1 d2 dm compl ξ

gnash10 13 12 8 13 1 0 0 0 0.00 0.142
gnash11 13 12 8 13 1 0 0 0 0.00 0.918E-01
gnash12 13 12 8 13 1 0 0 0 0.00 0.397E-01
gnash13 13 12 8 13 1 0 0 0 0.00 0.149E-01
gnash14 13 12 8 13 1 0 0 0 0.00 0.199E-02
gnash15 13 12 8 13 0 3 0 0 0.00 7.65
gnash16 13 12 8 13 0 3 0 0 0.00 1.95
gnash17 13 12 8 13 1 4 0 0 0.00 1.67
gnash18 13 12 8 13 1 4 0 0 0.00 12.7
gnash19 13 12 8 13 0 2 0 0 0.00 2.80
hakonsen 9 8 4 9 0 2 0 0 0.00 0.390
hs044-i 20 14 10 26 0 7 0 1 0.00 5.69
incid-set1-16 485 491 225 485 0 232 0 5 0.00 0.00
incid-set1-8 117 119 49 117 0 54 0 4 0.00 0.00
incid-set1c-16 485 506 225 485 1 233 1 5 0.00 0.00
incid-set1c-32 1989 2034 961 1989 4 165 20 0 0.00 0.00
incid-set1c-8 117 126 49 117 0 59 0 4 0.00 0.00
incid-set2-16 485 491 225 710 3 212 13 0 0.00 0.00
incid-set2-8 117 119 49 166 5 42 7 0 0.00 0.00
incid-set2c-16 485 506 225 710 0 218 12 0 0.00 0.00
incid-set2c-32 1989 2034 961 2950 2 937 24 0 0.00 0.00
incid-set2c-8 117 126 49 166 2 46 6 0 0.00 0.00
jr1 2 1 1 3 1 0 0 0 0.00 0.00
jr2 2 1 1 3 0 0 0 0 0.00 2.00
kth1 2 1 1 2 0 0 1 0 0.00 0.00
kth2 2 1 1 2 1 0 0 0 0.00 0.00
kth3 2 1 1 2 0 0 0 0 0.00 1.00
liswet1-050 152 103 50 202 1 52 0 0 0.00 0.00
liswet1-100 302 203 100 402 1 102 0 0 0.00 0.00
liswet1-200 602 403 200 802 1 202 0 0 0.00 0.00
nash1 6 4 2 8 0 4 0 0 0.00 0.00
outrata31 5 4 4 9 0 0 1 0 0.00 0.164
outrata32 5 4 4 9 1 0 0 0 0.00 0.168
outrata33 5 4 4 9 1 1 0 0 0.00 0.714
outrata34 5 4 4 9 1 1 0 0 0.00 2.07
pack-comp1-16 467 511 225 692 3 268 0 2 0.00 0.00
pack-comp1-8 107 121 49 156 0 113 0 0 0.414E-06 0.00
pack-comp1c-16 467 526 225 692 1 269 0 1 0.00 0.00
pack-comp1c-32 1955 2138 961 2916 3 1108 0 2 0.00 0.00
pack-comp1c-8 107 128 49 156 0 120 0 0 0.414E-06 0.00
pack-comp1p-16 467 466 225 692 5 223 2 0 0.00 0.00
pack-comp1p-8 107 106 49 156 0 83 0 0 0.00 0.00
pack-comp2-16 467 511 225 692 5 268 0 2 0.00 0.00
pack-comp2-8 107 121 49 156 5 62 0 2 0.00 0.00
pack-comp2c-16 467 526 225 692 4 268 0 2 0.00 0.00
pack-comp2c-32 1955 2138 961 2916 16 1058 0 2 0.00 0.00
pack-comp2c-8 107 128 49 156 1 62 0 2 0.00 0.00
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name n m p nNLP k d1 d2 dm compl ξ

pack-comp2p-16 467 466 225 692 13 223 2 0 0.00 0.00
pack-comp2p-8 107 106 49 156 1 47 2 0 0.00 0.00
pack-rig1-16 380 379 158 485 7 208 0 0 0.00 0.00
pack-rig1-8 87 86 32 108 6 47 0 0 0.00 0.00
pack-rig1c-16 380 394 158 485 4 206 0 0 0.00 0.00
pack-rig1c-32 1622 1652 708 2087 2 928 0 0 0.763E-06 0.00
pack-rig1c-8 87 93 32 108 5 47 0 0 0.00 0.00
pack-rig1p-16 445 444 203 550 3 229 2 0 0.00 0.00
pack-rig1p-8 105 104 47 126 5 50 2 0 0.00 0.00
pack-rig2-16 375 374 149 480 1 203 0 0 0.622E-06 0.00
pack-rig2-8 85 84 30 106 5 43 0 0 0.00 0.00
pack-rig2c-16 375 389 149 480 1 219 0 0 0.484E-06 0.00
pack-rig2c-32 1580 1610 661 2045 0 912 0 0 0.240E-06 0.00
pack-rig2c-8 85 91 30 106 2 45 0 0 0.00 0.00
pack-rig2p-16 436 435 194 541 0 215 1 0 0.00 0.00
pack-rig2p-8 103 102 45 124 6 49 2 0 0.00 0.00
portfl1 87 25 12 87 6 6 0 0 0.00 0.897
portfl2 87 25 12 87 0 7 0 0 0.00 0.682
portfl3 87 25 12 87 13 6 0 0 0.00 31.1
portfl4 87 25 12 87 16 5 0 0 0.00 114.
portfl6 87 25 12 87 13 5 0 0 0.00 55.0
qpec1 30 20 20 40 0 10 10 0 0.00 0.00
qpec-100-1 105 102 100 205 0 74 3 0 0.00 10.1
qpec-100-2 110 102 100 210 0 58 4 0 0.00 191.
qpec-100-3 110 104 100 210 0 35 2 0 0.00 4.45
qpec-100-4 120 104 100 220 0 61 4 0 0.00 15.3
qpec2 30 20 20 40 0 0 10 0 0.00 0.667
qpec-200-1 210 204 200 410 0 153 2 0 0.00 158.
qpec-200-2 220 204 200 420 0 118 2 0 0.00 3.42
qpec-200-3 220 208 200 420 0 48 6 0 0.00 35.5
qpec-200-4 240 208 200 440 0 133 7 0 0.00 7.95
ralph1 2 1 1 3 0 0 0 0 0.471E-12 0.486E+06
ralph2 2 1 1 2 1 0 0 0 0.313E-06 2.00
ralphmod 104 100 100 204 0 79 2 0 0.00 0.357E+08
scholtes1 3 1 1 4 0 1 0 0 0.00 0.00
scholtes2 3 1 1 4 0 0 1 0 0.00 0.00
scholtes3 2 1 1 2 0 0 0 0 0.00 1.00
scholtes4 3 3 1 3 0 0 0 0 0.161E-13 0.525E+07
scholtes5 3 2 2 3 2 0 0 0 0.00 0.00
sl1 8 5 3 11 0 5 0 1 0.00 0.00
stackelberg1 3 2 1 3 1 0 0 0 0.00 0.00
tap-09 86 68 32 118 8 29 0 2 0.00 0.687E-07
tap-15 194 167 83 277 0 169 0 27 0.00 57.1
tollmpec 2403 2376 1748 4151 1 1489 1 88 0.00 2.35
tollmpec1 2403 2376 1748 4151 0 2402 0 86 0.00 0.00
water-FL 213 160 44 213 3 46 0 0 0.00 0.163E+04
water-net 66 50 14 66 2 15 0 0 0.00 0.00
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B Detailed Results: Iteration Counts

Name xT
1 x2 (8) (5) (10) (11) (4) (9) (7)

bard1 3 4 9 13 2 25 3 8
bard1m 3 4 9 13 2 4 3 7
bard2 1 1 1 1 1 1 1 1
bard2m 1 1 1 1 1 1 1 1
bard3 4 4 4 4 4 4 4 4
bard3m 4 4 4 4 4 4 4 4
bar-truss-3 10 9 9 9 9 9 9 9
bem-milanc30-s 62 1000 655 111 245 144 410 1000
bilevel1 2 3 2 3 3 4 3 4
bilevel2 7 2 1 2 5 3 1 2
bilevel3 7 6 6 6 6 6 6 6
bilin 2 6 1 3 3 3 5 3
dempe 58 58 58 58 58 94 58 58
design-cent-1 4 4 4 4 4 4 4 4
design-cent-2 31 21 37 37 29 32 32 60
design-cent-3 191 164 173 173 173 217 185 163
design-cent-4 3 4 3 3 3 4 3 4
desilva 2 2 2 2 2 2 2 2
df1 2 2 2 2 2 2 2 2
ex9.1.1 1 2 1 1 1 3 2 3
ex9.1.10 1 1 1 1 1 1 1 1
ex9.1.2 2 3 1 3 3 3 3 3
ex9.1.3 3 3 1 3 4 3 3 3
ex9.1.4 2 2 2 2 2 2 2 2
ex9.1.5 3 3 1 3 3 3 3 3
ex9.1.6 3 5 2 2 2 4 4 6
ex9.1.7 3 3 1 3 3 3 3 3
ex9.1.8 1 1 1 1 1 1 1 1
ex9.1.9 3 3 2 3 8 3 3 3
ex9.2.1 3 4 6 13 6 8 3 8
ex9.2.2 22 22 76 71 1000 238 3 180
ex9.2.3 1 1 1 1 1 1 1 1
ex9.2.4 3 2 2 2 2 2 2 2
ex9.2.5 7 7 1 17 32 35 4 7
ex9.2.6 3 2 1 1 2 2 1 2
ex9.2.7 3 4 6 13 6 8 3 8
ex9.2.8 3 3 1 1 1 4 3 3
ex9.2.9 3 3 1 3 3 3 3 3
flp2 3 3 1 1 1 3 3 1
flp4-1 3 2 2 2 2 2 2 2
flp4-2 3 2 2 2 2 2 2 2
flp4-3 3 2 2 2 2 2 2 2
flp4-4 3 2 2 2 2 2 2 2
gauvin 3 9 71 71 1000 54 7 6
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Name xT
1 x2 (8) (5) (10) (11) (4) (9) (7)

gnash10 8 8 7 7 7 8 7 8
gnash11 8 8 7 7 7 8 7 8
gnash12 9 8 8 8 8 8 8 8
gnash13 13 9 10 10 9 10 10 11
gnash14 10 10 9 9 9 13 10 11
gnash15 18 18 41 11 11 9 10 27
gnash16 16 14 26 12 10 45 11 14
gnash17 17 17 10 10 9 11 10 15
gnash18 15 19 55 73 10 184 11 128
gnash19 10 19 10 8 8 18 14 25
hakonsen 10 10 12 12 10 10 10 10
hs044-i 6 4 2 2 4 4 2 4
incid-set1-16 33 139 78 120 493 85 175 66
incid-set1-8 34 35 56 56 51 42 73 65
incid-set1c-16 34 89 89 93 168 69 109 86
incid-set1c-32 37 309 102 155 1000 127 304 161
incid-set1c-8 39 32 43 38 48 35 67 43
incid-set2-16 19 37 35 35 35 33 24 33
incid-set2-8 48 19 18 18 18 18 18 18
incid-set2c-16 37 36 40 35 305 27 71 32
incid-set2c-32 31 87 71 122 489 71 308 88
incid-set2c-8 24 20 27 23 52 29 25 27
jr1 1 1 1 1 1 1 1 1
jr2 7 7 61 66 114 22 3 18
kth1 1 1 1 1 1 1 1 1
kth2 2 2 2 2 2 2 2 2
kth3 4 5 67 67 67 3 2 4
liswet1-050 1 1 1 1 1 1 1 1
liswet1-100 1 1 1 1 1 1 1 1
liswet1-200 1 1 1 1 1 1 1 1
nash1 3 2 1 1 1 2 1 2
outrata31 8 8 7 7 7 8 7 7
outrata32 8 9 8 8 8 9 8 8
outrata33 7 8 7 7 7 8 7 8
outrata34 6 7 6 6 6 7 6 7
pack-comp1-16 20 39 751 64 37 12 68 12
pack-comp1-8 8 30 152 66 24 36 16 36
pack-comp1c-16 5 38 358 76 40 15 50 15
pack-comp1c-32 13 2 787 238 217 50 344 50
pack-comp1c-8 8 19 68 40 14 40 18 41
pack-comp1p-16 45 72 895 344 81 52 197 31
pack-comp1p-8 53 64 274 219 87 36 200 172
pack-comp2-16 43 49 442 42 38 44 81 35
pack-comp2-8 8 26 10 18 11 8 10 8
pack-comp2c-16 15 23 336 76 30 15 17 15
pack-comp2c-32 7 34 901 193 178 45 175 42
pack-comp2c-8 6 11 18 15 14 6 13 6
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Name xT
1 x2 (8) (5) (10) (11) (4) (9) (7)

pack-comp2p-16 32 64 1000 190 142 36 232 48
pack-comp2p-8 60 57 1000 104 77 34 171 58
pack-rig1-16 64 56 81 120 178 1000 90 206
pack-rig1-8 7 10 25 13 17 145 13 148
pack-rig1c-16 11 43 15 57 53 458 19 548
pack-rig1c-32 18 238 42 302 369 99 181 107
pack-rig1c-8 6 8 13 13 10 139 9 142
pack-rig1p-16 28 48 56 164 490 97 118 59
pack-rig1p-8 14 16 22 25 60 144 29 147
pack-rig2-16 7 11 21 42 119 1000 30 421
pack-rig2-8 10 16 10 36 38 254 62 253
pack-rig2c-16 6 11 13 67 96 1000 34 421
pack-rig2c-32 11 71 31 187 222 57 551 55
pack-rig2c-8 6 12 6 15 33 254 23 253
pack-rig2p-16 10 38 79 367 436 301 86 309
pack-rig2p-8 20 16 18 46 89 197 20 196
portfl1 5 7 4 21 6 76 6 84
portfl2 4 6 3 43 8 108 5 162
portfl3 4 6 3 8 5 6 10 6
portfl4 4 4 5 7 5 50 8 48
portfl6 4 6 3 4 5 68 8 66
qpec1 3 2 2 2 2 2 2 2
qpec-100-1 7 34 114 112 251 253 43 300
qpec-100-2 7 24 47 137 427 219 44 43
qpec-100-3 6 20 121 137 713 256 27 105
qpec-100-4 5 9 103 497 1000 176 42 78
qpec2 2 2 1 1 1 2 1 2
qpec-200-1 10 24 87 25 1000 363 38 343
qpec-200-2 10 33 1000 1000 888 182 114 79
qpec-200-3 11 20 160 267 1000 377 62 357
qpec-200-4 5 13 78 95 862 92 34 89
ralph1 27 27 70 70 70 368 5 181
ralph2 11 21 1 1 1 168 3 179
ralphmod 7 37 25 46 114 178 48 21
scholtes1 4 3 3 3 3 3 3 3
scholtes2 2 2 2 2 2 2 2 2
scholtes3 4 6 67 67 67 1 1 1
scholtes4 26 28 71 74 74 239 6 181
scholtes5 1 1 1 1 1 1 1 1
sl1 1 1 1 1 1 1 1 1
stackelberg1 4 4 4 4 4 4 4 4
tap-09 21 23 17 18 18 12 11 23
tap-15 28 19 18 12 18 20 19 20
tollmpec 10 36 22 24 20 79 135 128
tollmpec1 10 50 20 28 24 379 139 108
water-FL 272 237 235 279 333 256 263 356
water-net 131 114 109 125 137 126 190 114
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