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Rayleigh-Bénard convection is studied and quantitative comparisons are made, where possible,
between theory and experiment by performing numerical simulations of the Boussinesq equations
for a variety of experimentally realistic situations. Rectangular and cylindrical geometries of varying
aspect ratios for experimental boundary conditions, including fins and spatial ramps in plate sepa-
ration, are examined with particular attention paid to the role of the mean flow. A small cylindrical
convection layer bounded laterally either by a rigid wall, fin, or a ramp is investigated and our results
suggest that the mean flow plays an important role in the observed wavenumber. Analytical results
are developed quantifying the mean flow sources, generated by amplitude gradients, and its effect
on the pattern wavenumber for a large-aspect-ratio cylinder with a ramped boundary. Numerical
results are found to agree well with these analytical predictions. We gain further insight into the
role of mean flow in pattern dynamics by employing a novel method of quenching the mean flow
numerically. Simulations of a spiral defect chaos state where the mean flow is suddenly quenched is
found to remove the time dependence, increase the wavenumber and make the pattern more angular
in nature.

I. INTRODUCTION

Rayleigh-Bénard convection has played a crucial role
in guiding both theory and experiment towards an un-
derstanding of the emergence of complex dynamics from
nonequilibrium systems [1]. However, an important miss-
ing link has been the ability to make quantitative and
reliable comparisons between theory and experiment.

Nearly all previous three-dimensional convection cal-
culations have been subject to a variety of limitations.
Many simulations have been for small aspect ratios where
the lateral boundaries dominate the dynamics, and as a
result, complicate the analysis. When larger aspect ratios
are considered, it is often with the assumption of peri-
odic boundaries, which is convenient numerically yet does
not correspond to any laboratory experiment. As a re-
sult of algorithmic inefficiencies, or the lack of computer
resources, simulations have frequently not been carried
out for long times. This presents the difficulty in de-
termining whether the observed behavior represents the
asymptotic non-transient state, which is usually the state
that is most easily understood theoretically.

Fortunately, advances in parallel computers, numerical
algorithms and data storage are such that direct numeri-
cal simulations of the full three-dimensional time depen-
dent equations are possible for experimentally realistic
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situations. We have performed simulations with exper-
imentally correct boundary conditions, in geometries of
varying shapes and aspect ratios over long enough times
so as to allow a detailed quantitative comparison between
theory and experiment.

Alan Newell has made numerous important contri-
butions to the discussion of pattern formation in non-
equilibrium systems. In this paper, presented in this
special issue in his honor, we give a survey of our recent
results that touch on many of the issues he has raised,
and in turn make use of some of the tools that he has
helped develop to understand our simulations.

II. SIMULATION OF REALISTIC
GEOMETRIES

We have performed full numerical simulations of the
fluid and heat equations using a parallel spectral element
algorithm (described in detail elsewhere [2]). The veloc-
ity ~u, temperature T , and pressure p, evolve according to
the Boussinesq equations,

σ−1
(
∂t + ~u•~∇

)
~u = −~∇p + RT ẑ +∇2~u, (1)

(
∂t + ~u•~∇

)
T = ∇2T, (2)

~∇•~u = 0, (3)

where ∂t indicates time differentiation, ẑ is a unit vec-
tor in the vertical direction opposite of gravity, R is the
Rayleigh number, and σ is the Prandtl number. The
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equations are nondimensionalized in the standard man-
ner using the layer height h, the vertical diffusion time
for heat τv ≡ h2/κ where κ is the thermal diffusivity,
and the temperature difference across the layer ∆T , as
the length, time, and temperature scales, respectively.

We have investigated a wide range of geometries in-
cluding cylindrical and rectangular domains, which are
the most common experimentally, in addition to ellipti-
cal and annular domains. Rotation about the vertical
axis of the convection layer for any of these situations is
also possible but will not be presented here. All bounding
surfaces are no-slip, ~u = 0, and the lower and upper sur-
faces and are held at constant temperature, T (z = 0) = 1
and T (z = 1) = 0.

A variety of sidewall boundary conditions are shown
in Fig. 1. Common thermal boundary conditions on the
lateral sidewalls are insulating, n̂•~∇T = 0 where n̂ is a
unit vector normal to the boundary at a given point, and
conducting, T = 1 − z. In the future we will have the
flexibility of imposing a more experimentally accurate
thermal boundary condition by coupling the fluid to a
lateral wall of finite thickness and known finite thermal
conductivity that is bounded on the outside by a vacuum.

Conduct ing

T=1-z

Insulat ing

dT/dx=0

"Fin" R a m p

FIG. 1: Four lateral sidewall boundary conditions utilized in
the numerical simulations. The two thermal boundary condi-
tions are conducting and insulating whereas the fin and ramp
represent geometric conditions employed in experiments.

In experiment, however, small sidewall thermal forc-
ing can have a significant effect upon the resulting pat-
terns and, as a result, finned boundaries have been em-
ployed [3–5]. These are formed by inserting a very thin
piece of paper or cardboard between the top and bottom
plates near the sidewalls. This suppresses convection over
the finned region (R ∼ h3 and the layer height has effec-
tively been reduced) whereas in the bulk of the domain,
i.e. the un-finned region, supercritical conditions prevail.
This is accomplished numerically by extending a no-slip
surface into the domain from the lateral sidewall. In all
of our simulations we have chosen the vertical position of
the fin to be z = 0.5 but this is not necessary. The result
is that the supercritical portion of the convection layer
is bounded by a subcritical region of the same fluid and
hence with the same material properties. An additional
effect is that the mean flow may extend into the finned
region which presents an interesting scenario for explor-

ing the effect of mean flows upon pattern dynamics that
has been investigated both experimentally and theoret-
ically by Pocheau and Daviaud [3, 5] and is discussed
further below.

The sidewalls can also have an orienting effect and
ramped boundaries have been used as a “soft bound-
ary” [6] in an effort to minimize this. By gradually de-
creasing the plate separation as the lateral sidewall is ap-
proached the convection layer eventually becomes critical
and then increasingly subcritical. Using the spectral ele-
ment algorithm we are able to investigate arbitrary ramp
shapes: we have chosen to investigate the precise radial
ramp utilized in recent experiments [7, 8] on a cylindrical
convection layer. Again the mean flow is able to extend
into the subcritical region.

Perhaps the most common method employed exper-
imentally to reduce the influence of sidewalls is to use
a large aspect ratio Γ, where Γ = r/h in a cylindrical
domain where r is the radius and Γ = L/h in a square
domain where L is the length of side. Experiments can
attain aspect ratios as large as ∼ 500. However, the ma-
jority of large aspect ratio experiments are for Γ . 100.
We have performed numerical simulations using the spec-
tral element algorithm for Γ ∼ 60 as shown in Fig. 2.

The top panel in Fig. 2 illustrates the convection pat-
tern present for the parameters of the classic paper [9]
where flow visualization was not possible. Although the
simulation has only been performed for a short time
tf ∼ 100τv it appears that a slow process of domain
coarsening [10] is occurring. The bottom of Fig. 2 illus-
trates the time dependent spatiotemporal chaotic state
of spiral defect chaos [11]. These, and other, interest-
ing large aspect ratio problems can now be addressed
through the use of numerical simulation.

Heuristically, using the spectral element algorithm on
an IBM SP parallel supercomputer, it is our experience
that it is practical to perform full numerical simulations
for aspect ratios Γ ∼ 30 for simulation times of tf ∼ τh

(36 hours on 64 processors), where τh is the horizon-
tal diffusion time for heat τh = Γ2τv, and Γ ∼ 60 for
tf ∼ 300τv (36 hours on 256 processors) for ε . 1,
0.5 . σ . 10, ∆t ≈ 0.01, and approximately cubic
shaped spectral elements with an edge length of unity and
11th order polynomial expansions (where ε = (R−Rc)/Rc

and Rc is the critical value of the Rayleigh number). Of
course for smaller domains the computational require-
ments significantly decrease.

A major benefit of numerical simulations is that a com-
plete knowledge of the flow field is produced. For exam-
ple, we have first used this to address a long standing
open question concerning chaos in small cylindrical do-
mains. The existence of a power-law behavior in the
fall-off of the power spectral density derived from a time
series of the Nusselt number was not understood [9]. The
Nusselt number, N(t), is a global measurement of the
temperature difference across the fluid layer. In cryo-
genic experiments very precise measurements of N(t) are
possible [9, 12–14], however the flow field can not be
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visualized easily. Subsequent room temperature experi-
ments using compressed gasses allowed flow visualization
at the expense of precise measurements of the Nusselt
number [15–17].

FIG. 2: Numerical simulations of two large-aspect-ratio cylin-
drical convection layers. The pattern is illustrated by con-
tours of the thermal perturbation, dark regions represent
cool descending fluid and light regions warm ascending fluid.
Both simulations are initiated from random thermal pertur-
bations and the lateral sidewalls are insulating. (Top) Γ = 57,
σ = 2.94, R = 2169.2 and t = 74τv. (Bottom) A spiral defect
chaos state, Γ = 30, σ = 1.0, R = 2950 and t = 254τv.

By performing long-time simulations, on the order of
many horizontal diffusion times, for the same parame-
ters in cylindrical domains with σ = 0.78 and for a range
of ε, with realistic boundary conditions, we had access to
both precise measurements of the Nusselt number, Fig. 3,
and flow visualization, Fig. 4, allowing us to resolve the
issue [18]. Conducting sidewalls were used and all sim-
ulations were initiated from small, δT ≈ 0.01, random
thermal perturbations. Flow visualization of the sim-
ulations represented in Fig. 3 display a rich variety of
dynamics similar to what was observed in the room tem-
perature experiments. Using simulation results, the par-
ticular dynamical events responsible for the N(t) signa-
ture were identified. The power-law behavior was found
to be caused by the nucleation of dislocation pairs and
roll pinch-off events. Additionally, the power spectral
density was found to decay exponentially for large fre-
quencies as expected for time-continuous deterministic
dynamics. The large frequency regime was not accessible

to experiment because of the presence of the noise floor.
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FIG. 3: Plots of the dimensionless heat transport N(t) for
reduced Rayleigh number ε = 0.557, 0.614, 0.8, 1.0, 1.5, and
3.0, labelled (i-vi) respectively (Γ = 4.72). For cases (i-v),
∆t = 0.01, and for case (vi), ∆t = 0.005 (∆t is the time
step).

III. ROLE OF MEAN FLOW

The mean flow present in these flow fields, and in gen-
eral for σ . 1, plays an important role in theory [19, 20]
yet it is not possible to measure or visualize the mean
flows in the current generation of experiments. In our
simulations, however, we can quantify and visualize the
mean flow.

The mean flow field, ~U(x, y), is the horizontal veloc-
ity integrated over the depth and originates from the
Reynolds stress induced by pattern distortions. Recall-
ing the fluid equations, Eqs. (1) and (3), it is evident
that the pressure is not an independent dynamic vari-
able. The pressure is determined implicitly to enforce
incompressibility,

∇2p = −σ−1~∇•
[(

~u•~∇
)

~u
]

+ R∂zT. (4)

Focussing on the nonlinear Reynolds stress term and
rewriting the pressure as p = po(x, y) + p̄(x, y, z) yields,

po(x, y) ∼ σ−1

∫
dx′dy′ ln (1/ |r − r′|)

〈
~∇′•

[(
~u•~∇

)
~u
]〉

z
.

(5)
In Eq. (5) the ln(1/|r − r′|) is not exact, in order to be
more precise the finite system Green’s function would
be required. However, the long range behavior persists.
This gives a contribution to the pressure that depends on
distant parts of the convection pattern. The Poiseuille-
like flow driven by this pressure field subtracts from the
Reynolds stress induced flow leading to a divergence free
horizontal flow that can be described in terms of a verti-
cal vorticity.
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FIG. 4: Flow visualization showing the pattern (solid dark
lines) and shaded contours of the vorticity potential, ζ, for
ε = 0.614 labelled ii) in Fig 3 (Γ = 4.72). Dark regions corre-
sponding to negative vorticity generate clockwise mean flow
and light regions to a positive vorticity generating a counter
clockwise mean flow. The dark solid lines are zeros of the
thermal perturbation at mid-depth illustrating the outline of
the convection rolls. From top to bottom and left to right
the panels are for t = 600, 605, 630, 650, 735, 785. The dislo-
cations glide toward the right wall focus (shown here); during
the next half period, the dislocations glide to the left wall
focus. This left and right alternation continues for the entire
simulation.

The mean flow is important not because of its strength;
under most conditions the mean flow is substantially
smaller than the magnitude of the roll flow making it ex-
tremely difficult to quantify experimentally. The mean
flow is important because it is a nonlocal effect acting
over large distances (many roll widths) and changes im-
portant general predictions of the phase equation [20].
The mean flow is driven by roll curvature, roll compres-
sion and gradients in the convection amplitude. The re-
sulting mean flow advects the pattern, giving an addi-
tional slow time dependence.

The mean flow present in the simulation flow fields,
~Us(x, y), is formed by calculating the depth averaged hor-
izontal velocity,

~Us(x, y) =
∫ 1

0

~u⊥(x, y, z)dz (6)

where ~u⊥ is the horizontal velocity field. Furthermore it
will be convenient to work with the vorticity potential,
ζ, defined as

∇2
⊥ζ = −ẑ•

(
~∇⊥ × ~Us

)
= −ωz (7)

where ωz is the vertical vorticity and∇2
⊥ is the horizontal

Laplacian.
Six consecutive snapshots in time for the periodic dy-

namics shown in Fig. 3 case ii) are illustrated in Fig. 4.
One half period is displayed illustrating the nucleation of
a dislocation pair and its subsequent annihilation in the
opposing wall foci. The vorticity potential, ζ, is shown on
a grey scale: dark regions represent negative vorticity and
light regions represent positive vorticity which will gen-
erate a clockwise and a counter clockwise rotating mean
flow, respectively. The quadrupole spatial structure of
ζ in the first panel, i.e. four lobes of alternating posi-
tive and negative vorticity with one lobe per quadrant,
generates a roll compressing mean flow that pushes the
system closer to a dislocation pair nucleation event. Dur-
ing dislocation climb and glide the spatial structure of the
vorticity potential is more complicated until the pan-am
pattern is reestablished in final panel and a quadrupole
structure of vorticity is again formed and the process re-
peats. The dislocations alternate gliding left and right
resulting is a slight rocking back and forth of the entire
pattern with each half period which is visible in the dif-
ferent pattern orientations in the first last panels. This
alternation persists for the entire simulation.

A numerical investigation of the importance of the
mean flow for this small cylindrical domain was per-
formed by implementing the ramped and finned bound-
ary conditions. In all of these simulations the bulk region
of constant R extended out to a radius r0 = 4.72. In
the finned case a fin at half height occupied the region
4.72 ≤ r ≤ 7.66. In the ramped case a radial ramp in
plate separation was given by,

h(r) =

{
1, r < r0

1− δr

[
1− cos

(
r−r0
r1−r0

π
)]

, r ≥ r0
(8)

where r0 = 4.72, r1 = 10.0, and δ = 0.15.
The different mean wavenumber behavior (using the

Fourier methods discussed in [11]) exhibited in these
three different cases is shown in Fig. 5. As illustrated
in Fig. 6 the behavior of the vorticity potential suggests
an explanation. In the simulations with a rigid sidewall,
not ramped or finned, the vorticity potential generates a
mean flow that enhances roll compression, as described
above. In the case of the finned and ramped boundaries
the vorticity potential and the resulting mean flow are be-
ing generated by gradients in the convection amplitude
and are largely situated away from the bulk of the do-
main. Furthermore, the mean flow generated is strongest
in the subcritical finned or ramped region away from the
convection rolls. This is demonstrated by comparing the
average value of the mean flow over a fraction of the bulk
of the domain, r ≤ 1, where it was found that Ūs = 0.23,
0.09, and 0.02 for the rigid, finned and ramped domains,
respectively, and that the maximum flow field velocity is
|~u| ≈ 10.

It is attractive to pursue the case of a radial ramp in
plate separation because the variation in the convective
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FIG. 5: Mean pattern wavenumber measurements for a cylin-
drical convection layer, r0 = 4.72, with rigid sidewalls (�),
fin (◦, r1 = 7.66) and a spatial ramp in plate separation
(¦, r1 = 10.0, rc = 7.34, and δ = 0.15). In all three cases
the sidewalls are perfectly conducting and σ = 0.78. For ref-
erence, solid lines labelled E, N, and SV indicate the approx-
imate location of the Eckhaus, Neutral and Skewed Varicose
stability boundaries for an infinite layer straight parallel con-
vection rolls. All patterns represented are time independent.

amplitude caused by the ramp can be determined ana-
lytically and the influence of a mean flow upon nearly
straight rolls can be quantified [21]. Usually the mean
flow can only be determined once the texture is known
and it is hard to calculate because of defects acting as
sources, in addition to the regions of smooth distortions.

Near threshold an explicit expression for the mean
flow, ~U , that advects the convection pattern is [20]

~U(x, y) = −γ~k~∇⊥•
(
~k|A|2

)
− ~∇⊥po(x, y) (9)

where γ is a coupling constant given by γ = 0.42σ−1(σ +
0.34)(σ + 0.51)−1, |A|2 is the convection amplitude nor-
malized so that the convective heat flow per unit area
relative to the conducted heat flow at Rc is |A|2R/Rc,
po is the slowly varying pressure (see Eq. (5)) and ~∇⊥ is
the horizontal gradient operator. The vertical vorticity
is then given by the vertical component of the curl of
Eq. (9),

ωz = ẑ•
(

~∇⊥ × ~U
)

= −γẑ•~∇⊥×
[
~k~∇⊥•

(
~k|A|2

)]
. (10)

Consider a cylindrical convection layer with a radial ramp
in plate separation containing a field of x-rolls given by
~k = kox̂. The amplitude can be represented for large εo,
using an adiabatic approximation, as |A|2 = ε(r)/go for
ε > 0 and |A|2 = 0 for ε(r) < 0 as shown in Fig. 7, mak-
ing the amplitude a function of radius only |A|2 = f(r).
Inserting |A|2 = f(r) into Eq. (10) yields, after some

FIG. 6: Convection pattern and shaded contours of the vortic-
ity potential, ζ, for a cylindrical convection layer, r0 = 4.72,
with rigid sidewalls, fin (r1 = 7.66) and a spatial ramp in plate
separation (r1 = 10.0, rc = 7.34 and marked with a dashed
line, and δ = 0.15) shown top, middle and bottom, respec-
tively. The convection pattern is illustrated by plotting zero
contours of the thermal perturbation. In all three cases the
sidewalls are perfectly conducting, σ = 0.78 and R = 2804.

manipulation, the following expression for the vertical
vorticity,

ωz =
γko

2

2

[
d2|A|2
dr2

− 1
r

d|A|2
dr

]
sin 2θ. (11)

The vorticity generated by the amplitude variation
caused by the ramp is also shown in Fig. 7: there is
a negative vorticity for r0 < r < rc and then a delta
function spike of positive vorticity at rc. To correct for
nonadiabaticity and to smooth |A(r)|2 near rc, the one-
dimensional time independent amplitude equation [22] is
solved,

0 = ε(r)A + ξo
2cos2θ

∂2A

∂r2
− go|A|2A, (12)

where ξo
2 = 0.148, go = (0.6995−0.0047σ−1+0.0083σ−2)

and ε(r) is determined by

ε(r) =
{

εo, r < r0

εo(h3 − h3
c)/(1− h3

c), r ≥ r0
(13)
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rr0
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FIG. 7: A schematic illustrating the radial variation, for
purely adiabatic conditions, of ε (dashed line), |A|2 (solid
line), and ωz (solid line with arrow) for a cylindrical con-
vection layer with a radial ramp in plate separation. Labelled
r0 and rc are the radial values where the ramp begins and
where the ramp yields critical conditions, respectively. Note
that for r > rc, |A|2 = 0 in the adiabatic approximation.

where hc = h(rc). Equation (12) is solved numerically
using the boundary conditions ∂rA = 0 at r = 0, and
A = 0 at r = r1.

To compare these analytical results with simulation
we have chosen to investigate a large-aspect-ratio cylin-
der with a gradual radial ramp, defined by Eq. (8), given
by the parameters: r0 = 11.31, r1 = 20.0, δr = 0.036,
and σ = 0.87. For small ε the amplitude A2(r) is unable
to adiabatically follow the ramp, this nonadiabaticity re-
sults in a deviation from ε(r)/go as shown in Fig. 8a.
However, as ε0 increases the amplitude A2(r) follows
ε(r)/go adiabatically almost over the entire ramp except
for a small kink at rc. The structure of ωz depends upon
this adiabaticity and is shown in Fig. 8b where we have
used the solution to Eq. (12) at θ = π/4 in Eq. (11).
This is not strictly correct since the non-adiabaticity of
the amplitude is θ dependent which will induce higher an-
gular modes of the vorticity not given by Eq. (11). How-
ever, the calculation should give a good approximation to
the main sin 2θ component of the vorticity. It is evident
from Fig. 8b that the vertical vorticity, calculated from
the simulation results as an angular average weighted by
sin 2θ has an octupole angular dependence (octupole in
the sense of an inner and outer quadrupole) and is well
approximated by theory without any adjustable param-
eters.

The mean flow generated by these vorticity distribu-
tions is determined by solving Eq. (10) with the bound-
ary condition ζ(r1) = 0. The vorticity potential is re-
lated to the mean flow in polar coordinates by (Ur, Uθ) =
(r−1∂θζ,−∂rζ). The vorticity potential is expanded ra-
dially in second order Bessel functions while maintain-
ing the sin 2θ angular dependence. Of particular interest
is the mean flow perpendicular to the convection rolls,
Ur(θ = 0) or equivalently Ux(y = 0), which is shown in

Fig. 8c. Again the simulation results compare well with
theory even in the absence of adjustable parameters.
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FIG. 8: Panel (a) shows the solution of Eq. (12) plotted as
A2(r), shown for comparison is ε(r)/go. Panel (b) compares
the vertical vorticity found analytically from Eq. (12) with an
angular average, weighted by sin 2θ, of the vertical vorticity
from simulation. Panel (c) compares the mean flow found
analytically from Eq. (7) with the mean flow from simulation.
Parameters are r0 = 11.31, rc = 13.20, r1 = 20.0, δr = 0.036,
σ = 0.87 and εo = 0.025.

To make the connection between mean flow and
wavenumber quantitative it is noted that the wavenum-
ber variation resulting from a mean flow across a field
of x-rolls can be determined from the one-dimensional
phase equation,

U∂xφ = D‖∂xxφ (14)

where the wavenumber is the gradient of the phase, k =
∂xφ, D‖ = ξ2

oτ−1
o , and τ−1

o = 19.65σ(σ + 0.5117)−1 [1].
Figure 9a illustrates the wavenumber variation for a
large-aspect-ratio simulation, k(r) for r ≤ r0, and makes
evident the roll compression, k(r = 0) > k(r0). Figure 9b
compares the mean flow calculated from simulation to the
predicted value of the mean flow required to produce the
wavenumber variation shown in Fig. 9a. The agreement
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is good and the discrepancy near r0, which is contained
within one roll wavelength from where the ramp begins,
is expected because the influence of the ramp was not
included in Eq. (14). This illustrates quantitatively that
is in indeed the mean flow that compresses the rolls in
the bulk of the domain.

r
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-0.01

-0.005

0 (b)

FIG. 9: Panel (a), the variation in the local wavenumber along
the positive x-axis, or equivalently k(r) at θ = 0. Panel (b), a
comparison of the mean flow from simulation (solid line) with
the predicted value (dashed line) calculated from Eq. (14)
using the wavenumber variation from panel (a). Simulation
parameters, r0 = 11.31, r1 = 20, δr = 0.036, σ = 0.87 and
ε = 0.171.

Finally, to better understand the connection between
mean flow and pattern dynamics, especially that of
spatiotemporal chaotic states exhibiting both temporal
chaos as well as spatial disorder, we apply a novel nu-
merical procedure to eliminate mean flow from the fluid
equation, Eq. (1), thereby evolving the dynamics of an
artificial fluid with no explicit contributions from mean
flow. In this way, we can then obtain quantitative com-
parisons between the patterns generated by this artificial
fluid with mean flow quenched and by the original fluid
equation.

We have applied this procedure to study spiral defect
chaos (see bottom of Fig. 2) [11]. Numerous attempts
have been made to understand how a spiral defect chaos
state is formed and how it is sustained. For example,
experiments [23, 24] have found that spirals transition to
targets when the Prandtl number is increased. Owing

to the fact that the magnitude of mean flow is inversely
proportional to the Prandtl number, c.f. Eq. (9), it was
believed that spiral defect chaos is a low Prandtl num-
ber phenomenon for which mean flow is essential to their
dynamics. This is supported by studies of convection
models based on the generalized Swift-Hohenberg equa-
tion [25–27], where spiral defect chaos is not observed
unless a term corresponding to mean flow is explicitly
coupled to the equation. However, these observations are
by themselves insufficient. For example, there are many
other effects in the fluid equations that grow towards low
Prandtl numbers, and there could be limitations in the
Swift-Hohenberg modelling. We have applied our numer-
ical procedure to this case to explicitly confirm the role
of mean flow in the dynamics of spiral defect chaos.

FIG. 10: Spiral defect chaos (left) and angular textures (right)
obtained by quenching mean flow. The left panel is at t =
152τv and displays the pattern upon which the mean flow
is quenched, the right panel is at t = 320τv. In both cases,
R = 2950, σ = 1.0 and the lateral sidewalls are insulating. We
see that the spiral arms transition to angular textures when
mean flow is quenched. Also, the quenched state is stationary.

Recalling that we can approximate mean flow to be
the depth-averaged horizontal velocity, c.f. Eq. (6), we
can first depth-average the horizontal components of the
fluid equation, Eq. (1), to obtain a dynamical equation
for the mean flow ~Us:

σ−1∂t
~Us + σ−1

∫ 1

0

dz(~u•~∇)~u⊥ =

−~∇⊥
∫ 1

0

dzp +∇2
⊥~Us +

∫ 1

0

dz∂zz~u⊥. (15)

In this equation, the term −∇⊥
∫ 1

0
dzp can be absorbed

into the nonlinear Reynolds stress term via Eq. (5) and
so will be ignored henceforth. The resulting equation is
then a diffusion equation in ~Us with a source term ~Fs ≡∫ 1

0
dz(~u•∇)~u⊥ − σ

∫ 1

0
dz∂zz~u⊥. If this source term were

not present, then ~Us, being the solution to a diffusion
equation, evolves to zero with an effective diffusivity σ,
the Prandtl number. Thus, the role of ~Fs is to act as a
generating source for the mean flow ~Us. Subtracting it
from the fluid equation, Eq. (1), then results in the mean
flow being eliminated.
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In practice, we found that it is necessary to actually
subtract ~Fs multiplied by a constant to ensure that the
magnitude of mean flow becomes zero. This can be un-
derstood in terms of the necessity to correct for the fact
that Eq. (6) is only an approximation to the flow field
that advects the rolls given by

~U =
∫ 1

0

dzg(z)~u⊥ (16)

where g(z) is a weighting function depending on the full
nonlinear structure of the rolls. This is discussed further
elsewhere [28].

We have carried out this procedure by introducing the
term ~Fs to the right-hand-side of the fluid equation after
a spiral defect chaotic state becomes fully developed, typ-
ically after about one horizontal diffusion time starting
from random thermal perturbations as initial condition.
We see that the spirals immediately, on the order of a
vertical diffusion time, “straighten out” to form angular
chevron-like textures; see Fig. 10. Unlike spiral defect
chaos, these angular textures are stationary (with the ex-
ception of the slow motion of defects such as the gliding
of dislocation pairs). Thus, we have shown that when
mean flow is quenched via the subtraction of the term
~Fs from the fluid equation, spiral defect chaos ceases to
exist.

We have further quantified the differences between spi-
ral defect chaos and the angular textures. We men-
tion here briefly one of the results: by comparing the
wavenumber distribution for both sets of states, we have
observed that the mean wavenumber approaches the
unique wavenumber possessed by axisymmetric patterns
asymptotically far away from the center [29]. (The ax-
isymmetric pattern, by symmetry, does not have mean
flow components.) We discuss this as well as other re-
sults in a separate article [28].

IV. CONCLUSION

Full numerical simulations of Rayleigh-Bénard convec-
tion in cylindrical and rectangular shaped domains for a

range of aspect ratios, 5 . Γ . 60, with experimentally
realistic boundary conditions, including rigid, finned and
spatially ramped sidewalls, have been performed. These
simulations provide us with a complete knowledge of the
flow field allowing us to quantitatively address some in-
teresting open questions.

In this paper we have emphasized the exploration of
the mean flow. The mean flow is important in a the-
oretical understanding of the pattern dynamics, yet is
very difficult to measure in experiment, making numeri-
cal simulations attractive to close this gap.

The mean flow is found to be important in small cylin-
drical domains by investigating the result of imposing
different sidewall boundary conditions. Analytical re-
sults are developed for a large-aspect-ratio cylinder with
a radial ramp in plate separation. Numerical results of
the vertical vorticity and the mean flow agree with these
predictions. Furthermore, the wavenumber behavior pre-
dicted using the mean flow in a one-dimensional phase
equation also agrees with the results of simulation. This
allows extrapolation of the analysis to larger aspect ra-
tios.

Lastly we utilize the control and flexibility offered by
numerical simulation to investigate a novel method of
quenching numerically the mean flow. We apply this to a
spiral defect chaos state and find that the time dependent
pattern becomes time independent, angular in nature,
and that the pattern wavenumber becomes larger.

These quantitative comparisons illustrate the benefit of
performing numerical simulations for realistic geometries
and boundary conditions as a means to create quantita-
tive links between experiment and theory.
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