
A Framework for Building a Scientific Knowledge Grid
Applied to Thermochemical Tables
Gregor von Laszewski,1,∗ Branko Ruscic,2 Kaizar Amin,1,3

Patrick Wagstrom,1 Shriram Krishnan,4 and Sandeep Nijsure,1,3

1Mathematics and Computer Science Division and
2Chemistry Division, Argonne National Laboratory
3Department of Computer Science, University of North Texas
3Department of Computer Science, Indiana University
∗corresponding author

running title: Knowledge Grid

Contents

1 Introduction 1

2 Thermochemical Tables 2
2.1 Active Thermochemical Tables . 3
2.2 Benefits of the Active Table Approach . 4
2.3 Transforming Information and Experience to Knowledge 4

3 Knowledge Grid 5
3.1 Open Grid Service Architecture . 6
3.2 Developing Knowledge Grids . 7
3.3 Mobility . 7
3.4 Orchestration . 9
3.5 Grid Service Flow Language . 9

4 Collaborative Framework 11

5 Ad Hoc Grid Management 12

6 Grid Interaction Environments 13

7 Portal to Active Thermochemical Tables 14

8 Conclusion 14

i

A Framework for Building a Scientific Knowledge Grid
Applied to Thermochemical Tables
Gregor von Laszewski,1,∗ Branko Ruscic,2 Kaizar Amin,1,3

Patrick Wagstrom,1 Shriram Krishnan,4 and Sandeep Nijsure,1,3

1Mathematics and Computer Science Division and
2Chemistry Division, Argonne National Laboratory
3Department of Computer Science, University of North Texas
3Department of Computer Science, Indiana University
∗corresponding author

running title: Knowledge Grid

Summary

An important part of enabling the future information infrastructure is to provide con-
venient services for application users that make such an environment highly functional and
easy to use for the nonexpert. In other words, the scientist should be able to focus on the
science but should have sophisticated tools at hand that enable new and enhanced modal-
ities in which science can be performed. We describe a general architecture that provides
access to scientific applications. We demonstrate how such services can interact with each
other and be reused by the scientific application architect to orchestrate Grid services. Our
architecture is implemented by reusing concepts, infrastructures, and middleware from Web
and Grid services, as well as from the newest Globus Toolkit and the Java CoG Kit.

We apply our general architecture to a specific application: active thermochemical ta-
bles. This application demonstrates a number of interesting and future-oriented uses, such
as the need for batch processing, interactive and collaborative steering, use of multiple
platforms, visualization through large displays, and access via a portal framework. Besides
the innovative use of the Grid and Web services, we also provide a novel algorithmic con-
tribution to scientific disciplines that use thermochemical tables. Specifically, we modified
the original approach to constructing thermochemical tables to include an iterative process
of refinement leading to increased accuracy. We have designed a variety of access environ-
ments including a shell, a Gridtop, and a portal for accessing the set of services provided,
which include the display of network dependencies between the reactions a chemist may be
interested in and interactive querying of associated species data.

Modalities that need to be supported are the protection of intellectual property, the
creation of metadata and information shared with and gathered by the community, and the
easy access of the service by the application scientists.

1 Introduction

The study of energy changes that accompany chemical reactions and changes in the physical
states of matter is referred to as thermochemistry. The knowledge of thermochemical stability
of substances is central to chemistry and critical in many industries, since chemical reactions
are ultimately governed by thermochemistry. Hence, thermochemistry finds applications in
other disciplines such as earth science and engineering, helping scientists to better understand
processes such as climate and combustion [1, 2] and thus predict and verify them to a high
degree of accuracy.

1

Until now, the thermochemical data necessary for such calculations has been available
only in static table form, and the algorithms to derive accurate model descriptions have been
too imprecise to deal with the complex chemical reactions encountered in state-of-the-art lab-
oratory experiments or observed in nature. Our goal is to improve this situation by delivering
innovative algorithms to the scientists through an advanced collaborative environment.

Novel modalities of deriving new scientific results can be stimulated by enabling a col-
laborative environment in which scientists can publish and share their results with others,
perform sophisticated calculations that are otherwise not feasible, and integrate newly de-
veloped algorithms [3].

The Grid [4, 5, 6] can provide the basic middleware infrastructure for bootstrapping this
type of sophisticated collaborative environment. The Grid allows scientists to collaborate
even though their resources may be controlled by different domains; access to these resources
is enabled through the use and creation of “virtual organizations.”

In this paper, we describe a general architecture that provides advanced services that
can be accessed collaboratively. Their integration as part of a workflow process enables
the creation of services that can be easily reused by the community. Scientists can then
concentrate on the science, while application developers can focus on the delivery of services
that can be assembled as building blocks to create more elaborate services.

Our paper is structured as follows. First, we present the notion of a “knowledge Grid,”
transforming information into knowledge. Next, we give introduce the problem domain and
the terminology used in thermochemistry that is directly related to the work we perform.
We analyze a current process to derive thermochemical tables, one of the most elementary
building blocks in thermochemistry. Next we provide an improved technique for increasing
the accuracy of this process. We introduce a scenario where our algorithm and the repeated
use by the community will result in a highly accurate and elaborate thermochemistry table
database. We outline our service-oriented architecture and discuss how services such as
security, data transfer, registration, and scheduling assist in assembling such a sophisticated
collaborative environment. We conclude our paper by summarizing the current state of the
project and listing opportunities for further research.

2 Thermochemical Tables

In this section we provide a minimal introduction to basic thermochemistry. Elementary to
the discipline of thermochemistry is enthalpy (∆Ho

f), which refers to the value of energy of
a system when it is at constant pressure. The enthalpy relationships involved in examining
thermochemical equations are easily visualized by means of enthalpy diagrams, such as that
shown on the lowerleft-hand corner of Figure 1.

In this diagram the equations are expressed as a graph with horizontal lines representing
different values of the enthalpy. Typically the differences between these values are determined
experimentally or can be derived by using thermodynamic laws from other enthalpy values.
Values obtained from experiments, however, may contain errors (not shown in the diagram).
Changes in the enthalpy are visualized by the distance between the lines. Based on the
changes performed, different intermediate states (chemical species) may occur during the
transition from one to the other final state. Thus, it is natural to visualize the transition

2

with directed edges between the states. An alternative graph is displayed on the upper
right-hand corner that emphasizes the possible states in which a chemical species (i.e., an
ensemble of chemically identical molecular entities that can explore the same set of molecular
energy levels on the time scale) can occur.

In traditional thermochemical tables the enthalpies of formation (∆Ho
f) are developed

with the help of an elaborate sequential process. In each step a new species is added
while all ∆Ho

f values determined in previous steps are frozen. The enthalpy of the new
species is determined at one temperature T from interconnecting measurements that are
limited to those species already defined in previous steps. The temperature-dependent func-
tions, Co

p , S
o, (Ho

T − Ho
o), ∆Ho

fT , ∆Go
T , are developed by determining the partition function

Q, lnQ, T∂(lnQ)/∂T , and T 2∂2(lnQ)/∂T 2 from the species-specified quantities and the newly
selected single temperature enthalpy [7].

The sequential process follows a standard order of chemical elements: O → H →
halogens → noblegases → chalcogens → pnicogens → carbonperiod → etc. For every
chemical element introduced, the sequence starts at the standard state for that element,
for which ∆Ho

f = 0 by convention. However, enthalpies of formation have complex hidden
dependencies. These dependencies are backwards traceable, albeit with considerable manual
effort, and in practice are not forwards traceable at all.

This sequential approach of introducing new enthalpies has several disadvantages. In
particular, it results in ∆Ho

f and error bars that do not properly reflect the global relation-
ships implied by the species-interconnecting data used. The values and error bars reflect, at
best, only local relationships to nearest neighbors. A cumulative error is introduced based
on the frozen enthalpies in previous steps. Furthermore, the hidden relationships in conven-
tional tables produce thermodynamic tables that are static in nature. Proper update with
new knowledge is nearly impossible because forward relationships are nontransparent; hence,
updating one species may improve the quality locally but increase the global inconsistencies.

We present a new approach, based on active tables, that circumvents these disadvantages.

2.1 Active Thermochemical Tables

The active table approach treats the information in the species-interdependent data from
the viewpoint of a thermochemical network [7, 8]. Every vertex (node) of this network
represents the enthalpy of formation of one species. The species-interdependent data define
the topology of the network graph by providing the edges (links) in the network. Competing
measurements provide multiple (parallel) links in the network. The relational information
define the topology maps onto a set of equations, with the enthalpies of the involved species as
unknowns, the stoichiometry of the reactions defining the coefficients, and the measurements
and their error bars providing the free elements. Since the number of equations regularly
exceeds the number of unknowns, the system is overdetermined. The best solution to the
network is obtained in two steps.

The first step statistically analyzes the network with the goal of checking the error bars of
individual data items for consistency. All inconsistencies are identified and proposals for their
resolutions are generated. The resolutions are generally carried on through incrementing
the error bars of the offending data items to their statistically indicated values, and the

3

analysis is repeated. During subsequent steps the error bars of the offending data items
usually oscillate up and down until self-consistency across the whole network is reached.
The analysis is carried out in both unweighted and error-weighted space.

The second step occurs once the values and error bars of data items achieve consistency
across the whole network. This step consists of finding simultaneously the optimal solution
to all nodes by χ2 minimization (in error-weighted space). The species-specific data is used
to prepare the network for analysis by re-expressing all data items as reaction enthalpies
at one common temperature. Once the optimal solution to the network has been found,
the species-specific data is used to calculate the partition functions and hence develop the
temperature dependence of the standard thermochemical functions. We term this approach
active themochemical tables.

We note that, as opposed to the simultaneous solution described above, in the traditional
sequential approach the nodes are solved one at a time in a prescribed sequence. Each of the
steps corresponds to selecting a particular path in the network leading from solved nodes to
the next node, and ignoring all other possible paths. Both the fact that an overdetermined
system of coupled equations is solved for one unknown at the time and that some of the
equations are ignored contribute to the lack of global consistency in traditional tables.

2.2 Benefits of the Active Table Approach

Unlike the quantities found in a traditional table, the thermochemical quantities (and their
error bars) obtained from the active table properly reflect the globalism of relationships
implied by the underlying thermochemical network. All values and error bars are consistent
in a global sense. An active table allows rapid update with new measurements (and possibly
calculations) by globally propagating the new information through the table. Quality and
integrity of the table are protected throughout the updates by error analysis, which runs
in both directions: the error bar of the new experiment may shrink error bars in the table;
however, the error bars of other experiments in the table might challenge, by means of
the statistical analysis discussed above, the error bar assigned to the new experiment. In
addition, an active table allows “what-if” scenarios and tests. Such tests provide a critical
evaluation of the tested data and its impact on prior thermochemical knowledge or, if the
tests correspond to a new experiment, provide feedback on sensitivity of the network to
various measurements. The approach also has potential to become an interesting learning
and education tool. An active table can provide a ranked list of links that are missing or are
weak from a statistical viewpoint; in particular, it can provide pointers to the most useful
new experiments or calculations to be conducted.

2.3 Transforming Information and Experience to Knowledge

Thermochemical data is available numerous databases and electronically or published in
academic papers. We are faced with some major challanges. First, the update frequency of
the thermochemical data is slow and prevents the od hoc integration of new results derived
from state-of-the art experiemnts and calculations due to a lengthy publication cycle. Sec-
ond, the information is presented in a non standard form making it difficult to retrieve it

4

automaticaly. Third, the number of publications makes it impossible for a single scientist to
create such a database. We must be able to selectively include or exclude data to support
what-if scenarios, or exclude unwanted data. Hence, we will be able to derive predictors for
new, as well as verifiers for recorded reactions.

To enable such new use modalities we need an infrastructure that is conducive to sup-
port the scientists’ ambitious quest. In order for a researcher to select trusted and wanted
contributions the data must be annotated with meta-information. A framework and tools
must be avialable in order to assit the organization of the experienceknownledge collectively
avaialable within the scientific community. This tools will assit in the transformation from
individual experiences into collective knowledge that can be immediately disseminated back
into the community. Hence, our environment must fulfill the following requirements:

Collaboration: the environment must support the interaction among scientists in geo-
graphically dispersed locations.

Security: the environment must protect from the loss of intellectual property and allows
restricted access to the data and compute resources.

Standardization: the environment must enables the scientist to use the tools in a straight-
forward fashion.

Adaptivity: the environment must be flexible to future changes based on hardware and
software.

Dynamicity: the environment must allow the creation of transient services to enable ad
hoc collaboration and use of other application services.

Extensibility: the environment must allow the creation of new capabilities and services
through the availability of an orchestration framework.

These requirements are shared with many other scientific disciplines, and a large amount
of research has been performed in the past few decades to develop frameworks that support
such requirements. Our own research efforts in Grids show that the development of advanced
services based on our previous research will address many of the requirements by integrating
our knowledge deriving algorithms into a service based architecture.

3 Knowledge Grid

The term Grid computing [5] is commonly used to refer to a distributed infrastructure that
promotes large-scale resource sharing in a dynamic multi-institutional virtual organization.
Just as the electric power grid provides pervasive access to electric power, the computational
grid provides ubiquitous access to a large collection to compute related resources and services
[4].

Typically such services focus on navigation, storing, and transferring information [9, 10,
11]. A knowledge Grid is the next important step in Grid computing. Like the computa-
tional Grid, the knowledge Grid allows the effective management of resources ranging from
a personal desktop computer, to resources put together in an ad hoc fashion, to virtual
resources shared by a community. Also similar to the computational Grid, the knowledge
Grid supports interactions among individual scientists performing research and experiments

5

on their own, groups, of scientists working together on a problem, and large communities.
What distinguishes the knowledge Grid, however, is that it adds to the traditional informa-
tion services experience and knowledge services. In Figure 2, we depict the integration of
these services, resources, and communities to a knowledge Grid.

An experience service adds additional value to information by integrating the concept of
information predictors, a knowledge service is much more complex in nature and uses more
sophisticated methods derived from (for example) the artificial intelligence community to
build connections between different contextual information and experience services to derive
knowledge. In Figure 2 we depict the basic interplay between our different concepts that
provides us with a roadmap toward the development of a knowledge Grid. We can bootstrap
our environment from an information service-based to a knowledge service-based Grid.

3.1 Open Grid Service Architecture

Our framework for knowledge Grids will is based on standards under development by the
Grid computing community to provide a solid foundation for our current and future work.

The Grid architecture identifies and solves a wide range of problems that arise as a
result of large-scale resource sharing among separately administered institutions. Within
the Internet and Grid communities we observe most recently the trend to base the next
generation of architectures on the Web services model.

A Web service is a platform-indepedent software component that is described using a
service description language [12] and provides functionalities to publish its interfaces to a
service registry. Published services can be discovered by querying the registry, and invoked
using appropriate binding protocols [12]. This discovery and binding process allows clients to
interact with services that are not available locally but are accessible through a distributed
networked environment such as the Grid envisions. Therefore, a service oriented architecture
lends itself to enabling interoperability across heterogeneous platforms and exposes all or part
of its applications on different machines, platforms, and domains.

The Grid community is enhancing the Web service model to address issues such as tran-
sient services, service lifetime management, and event notification [13], while also focussing
on problems and solutions address important issues such as security, resource management,
and resource discovery [14, 15].

Web services address the discovery and invocation of persistent services, whereas Grid
technologies need to tackle issues related to creation, discovery, and destruction of transient
service instances. Hence, the Open Grid Services Architecture (OGSA) [16] was developed
to provide an extensible framework of services that combines the realms of Web services
and Grid technologies. OGSA introduces the notion of Grid service: a possibly transient
Web service that provides a set of well defined interfaces and that follows some standard
conventions [16]. In summary, OGSA provides a framework that supports

instance creation through Grid service factories that can request new reliable transient
service instances. OGSA provides a mechanism to individually identify these instances
by associating state information with each service instance.

lifetime management to build transient service instances that can negotiate with the ser-
vice Factory at the time of their creation duration and lifetime behavior. It may support

6

soft-state lifetime management, thereby avoiding the need for explicit destruction of
service instances.

registration and discover to allow the registration and discovery of transient service in-
stances. OGSA provides an efficient query mechanism for the client using a search
operation for Grid service against the meta-data maintained by that registry to de-
scribe the services.

notification to establish a publish/subscribe style of notification mechanism between ser-
vice providers and service requesters, thereby supporting asynchronous peer-peer style
of communication.

security to handle the required authentication and authorization policies defined by differ-
ent application and domain administrators.

3.2 Developing Knowledge Grids

OGSA services provide a foundation for sharing resources and services across virtual organi-
zations. The addition of knowledge services to information and knowledge services provides
another essential capability for effective Grid computing. Nevertheless, we need a number
of other critical capabilities for our knowledge Grid:

• Orchestration - to express interactions between services thereby enabling dynamic com-
position of new and more capable services from existing ones.

• Mobility - to deal with the disruptive,sporadic, and ad hoc nature of the Grid while ad-
dressing service mobility, autonomy, and self-healing with quality assertions expressed
through policies

We believe that all three concepts orchestration, mobility, and knowledge must be ad-
dressed to build the next generation Grid middleware reusable as part of sophisticated
knowledge-driven applications. This integrated architecture is depicted in Figure 3.

In the next two sections we elaborate on the ideas of mobility and orchestration.

3.3 Mobility

As part of our framework we propose advanced Grid services that deal with failures and
recovery. Such services are essential to enhance the current generation of Grid services that
can respond to the disruptive behavior common in Grids. These, augmented services will
contribute to the reliability of the Grid. While augmenting such services with quality and
movability assertions we will be able to build a subset of our services to be migratable and
autonomous Grid services that act in behalf of a user or a virtual organization. Based on our
experience in developing hosting environments for mobile agents, we identified the following
set of basic services that are instrumental in the creation of such a dynamic environment:

• An autonomous application factories, which creates jobs that may be executed on re-
mote resources and is also allowed to be moved to a different location without losing
endpoints to the tasks started within the factory. An application factory can be aug-
mented with a set of engines that increase the functionality. Such engines include
logging, constraint and policy, event, and reliable messaging.

7

• An autonomous logging engine, which is a basis for almost every service to allow logging
of events, application check-pointing, and the creation of fault tolerant services. A
mobile application factory may instantiate a logging service. The logging data may
move appropriately based on the autonomous behavior of the initiating service.

• An autonomous constraint and policy engine which may be associated with an execu-
tion broker and is used to verify constraints within the current execution environment.
This includes authentication and authorization augmentations.

• An autonomous event engine, which is needed for performing event notifications based
on the state of a variable, datum, or service.

• An autonomous messaging service, which communicates between services in a reliable
fashion.

The services that we list here are based on elementary Grid services such as those provided
by the Open Grid Service Architecture, but enhance the existing services with a method-
ology of enabling mobile agents through autonomous behaviors. Thus, each service can be
augmented with semantically defined annotations that determine the behavior in the con-
text of Grids. Several of these services need to engage in contract and use policy verification
before migration is enabled to a different hosting environment within the Grid. To this end,
we will use and enhance the underlying Grid security mechanisms to enable the possibility
of engaging in contract negotiations before and during runtime execution of the application.
Furthermore, we will define a set of use policies and contracts that can deal with the dy-
namic nature of the Grid. Based on these services and services that we define in other work
(third-party file transfer, general information service, job execution service, job monitoring
service, and resource management service), we develop more advanced services that hide
much of the underlying functionality that is nonessential for the middleware developer.

To enable such sophisticated services, we need to develop a number of elementary services.
This allows us to provide a flexible design while gradually integrating new services into the
framework (see Figure 4).

Grid Broker Service to deal with large numbers of calculations that are involved with
future large-scale reactions and their real-time requirement for allowing interactive use
[17, 18].

Grid Workflow Service to enable the interplay of Grid services through workflow descrip-
tions [19, 20].

Grid Execution Factories to enable the execution of programs in a Grid while instantiat-
ing them in a hosting environment and making their results accessible to other services
(the Globus Toolkit [21] provides such services in Java and C) [19].

Grid Monitoring Service to monitor the state of the hosting environment so that feed-
back to Grid services is provided, enabling the environment to react to state changes
[22].

Grid Migration Service to be able to migrate services and jobs executed with a Grid
Execution Factory Service to a location that is better suited, based on performance
and quality of service descriptions and policies [23].

Grid Logging Service to log and checkpoint services in order to enable migration and
fault-tolerant behavior.

8

Grid Self-Healing Service to determine how and when it is necessary to change the dy-
namically instantiated Grid workflow applications (including preventive measurements
such as service replication, service migration, service checkpointing, and service moni-
toring).

Collaborative Steering Service to collaboratively create data, thoughts, and ideas that
will lead to new scientific findings [24].

3.4 Orchestration

We need to build an orchestration framework to unleash the power of the Grid services
model. Orchestration includes two concepts: specification of dependencies between services
and the specification of semantic dependencies that determine that interactions between the
services.

Both concepts have received considerable interest recently in industry and academia.
We have contributed to this research field with our development of (1) a Grid Services

Flow language [25], which led to the development of the first XML based language that is
able to express elementary orchestration between Grid services based on OGSA alpha and
(2) a basic workflow management infrastructure as part of the Java CoG Kit [26, 19].

Efforts from industry include the Web Services Flow Language [27, 28] and XLANG
[29], which have been most recently combined into a new technology called Business Process
Execution Language for Web Services (BPEL4WS) [30]; the definition of DAML-S [31]; Web
service Orchestration Interface (WSCI) [32]; and the Business Process Modeling Language
(BPML) [33] a metalanguage for modeling business processes.

Many Grid-related workflow systems have been developed, including Webflow [34], DAG-
Man [35], Unicore [?] , and XCAT [36]. Webflow is one of the earliest successful systems
providing workflow management for Grid like systems. DAGMan is a meta-scheduler for
Condor [37] that manages dependencies between jobs. Some of the tools mentioned above
use direct acyclic graphs as the underlaying workflow data structure. However, the con-
cept of using a directed acyclic graph to represent a set of programs where the inputs,
outputs, and the execution are interdependent cannot be applied to describe the dependen-
cies between the Web services. Hence, the XCAT Application Factories address workflow
issues for Grid-based components within the Common Component Architecture (CCA) [38]
framework. XCAT allows components to be connected to each other dynamically, making it
possible to build applications in ways not possible with the standard Web services model.

3.5 Grid Service Flow Language

Since the current standards do not address the features implicitly included in OGSA, a
framework is needed that allows for orchestration of such services with regards to instance
creation, lifetime management, registration and discovery, notification, and security, while
at the same time fulfilling a number of high level requirements that allow us to formulate,
deploy, instantiate, and automate workflow orchestration.

It will be essential to address these issues within a Web service orchestration language.To
create such a mechanism, we must not only describe the order in which these services and

9

their methods execute but also present a way in which such an agglomerate can export
itself as a service. In this context, we define the term “orchestration” as a set of rules that
define the interactions between a set of services in order to be composed into a meta-service.
The set of rules we must deal with include contracts, exception handling, process control,
asynchronicity, and lifetime management. Scalability, mobility, and autonomic behavior are
additional concepts to be addressed while implementing our workflow engine in the concept
of a knowledge Grids.

Just as Web services aim to do, the Grid workflow specification should allow specific
activities implemented by individual services to be exported as activities of the workflow.
It should also allow the exported activities to trigger a chain of other activities. Current
technologies such as WSFL address these issues effectively.

Hence, we incorporated features presented by WSFL into the Grid Services Flow Lan-
guage we designed. The specification is rich enough to describe the workflow such that the
WSDL for the workflow entity (henceforth referred to as a workflow coordinator) can be
auto-generated from the specification. The workflow coordinator must be able to handle the
methods that have been dynamically exported as a composition of the various activities of
the workflow, and handle them in such a way that clients can access them using the same
standard tools that they use to deal with the individual services. This is an important
requirement for recursive composition of services.

Despite the fact that it is theoretically possible to define peer-to-peer interactions between
Web services that are part of the workflow in languages such as WSFL (via plugLinks),
it is not feasible because solicit-response and notification operations are not fully defined
in WSDL 1.1. There are multiple interpretations of these operations in the Web service
community, and there is considerable debate about their removal in the forthcoming WSDL
1.2 [39] specification. As a result, and as has been pointed out by [36], existing Web services
define their workflow in such a way that the workflow engine has to intermediate at each step
of the application sequence, as shown in Figure 5. In business-to-business communication the
workflow engine does not end up being a bottleneck because there may only be a moderate
level of data transmission between the services. For Grid-based services, however, exchanging
large amounts of data is the norm. Having a central workflow engine relay the data between
the services would be a bad idea in this case. The workflow specification needs to be able to
allow communication between the services, as depicted in Figure 6.

As we mentioned, OGSA adds extensions to WSDL in order to address Grid-specific
needs. It addresses communication between Grid services by using notification sources and
sinks, which allow services to carry out asynchronous delivery of messages between each
other. GSFL must provide a mechanism to connect notification sources and notification
sinks, thus obviating the need for the workflow engine to mediate at every step. Additionally,
OGSA uses registries and factories for locating and creating Grid services, respectively.
These must be appropriately handled by GSFL.

It is conceivable that certain Grid services in the workflow will not be executing while
others are. One reason may be the fact that the services that need to execute earlier run
for weeks; another reason may be that the service that executes later needs data from the
former to bootstrap itself. The Grid workflow specification should be able to handle these
situations. Additionally, it should also be able to handle instantiation of the individual

10

Grid services on a per method or a per workflow instance basis. If the Grid services are
instantiated on a per workflow instance basis, certain activities exported by the workflow
may not function because a certain Grid service may have run to completion or may not have
been instantiated yet. In such a case, certain ordering has to be imposed on the exported
activities, such as the one proposed by WSCL [40].

We have designed the Grid Services Flow Language based on the XML-schema based
language allowing the specification of orchestration and workflow descriptions for Grid ser-
vices in the OGSA framework. It has the following important features, which are explained
in more detail in [25].

• Service Providers, which are the list of services taking part in the workflow;

• Activity Model, which describes the list of important activities in the workflow;

• Composition Model, which describes the interactions between the individual services;
and

• Lifecycle Model, which describes the lifecycle for the various activities and the services
that are part of the workflow.

Together these features are sufficient to support our requirements to express workflow
and orchestration within our knowledge Grid.

4 Collaborative Framework

To support our need for collaboration, we have defined a set of collaborative services that
we term Open Collaborative Grid Services Architecture (OCGSA), which contains a set of
common components that can be easily customized for individual applications. The OCGSA
services enable users to form ad hoc collaborative groups by interacting over a set of prede-
fined notification topics. It provides appropriate lifetime management for individual groups,
offers an advanced discovery mechanism for service instances, and establishes sophisticated
security mechanisms at different levels of the application [41, 24].

Rather than redefining metadata information for every collaborative Grid service, we
introduce the notion of a collaborative Grid service: a Grid service with a set of predefined
metadata elements and behaviors. In analogy with the Grid Service port type [42], we
define a collaborative Grid service port type that provides base interfaces required for a
collaborative Grid service instance. For example, it defines metadata with regard to the
creator, name, description, and current members of the group, as well as the level of event
archiving desired. Additional interfaces are designed to handle security policies at different
levels of the application (application level and group level), basic community chat facilities,
an adequate presence management for users, and capabilities for interactively controlling
and steering the application. We are formalizing these concepts in a Collaborative Grid
Service Descriptive Language (CGSDL) by which a developer is able to predefine a set of
notification topics that will be supported by collaborative Grid services. The collaborative
Grid description language is an extension to the Grid Service Description Language (GSDL)

11

defined by OGSA and is used to describe details of a collaborative Grid service. A code
generator will generate necessary stubs for this definition, while allowing application-specific
details for each notification topic be implemented by the developer.

To archive the data for later queries and reuse, we have developed a sophisticated archiv-
ing service that functions more than a simplistic event database. The event archiving service
in the OCGSA framework is designed as a Grid service, thereby efficiently handling the life-
time management policies of individual archives that can be set and manipulated by creators
of corresponding group instances. Further, the event archiving service will implement the
same security policies as implemented by the collaborative Grid services, hence forcing ap-
propriate authorization policies at the application level and individual group level. This
strategy ensures that a malicious user lacking the proper credentials, who was denied access
to an active group earlier cannot have access to the communication archives when the group
is off-line.

Similar to discovering a collaborative Grid service, it is extremely important to efficiently
and conveniently discover event archives. On fundamental level, the archiving system must
support a query-by-name style of information retrieval indicating whether an archive for a
particular group exists. Support must also be built to enable advanced queries of meta data
values of individual group archives similar to that of the OCGSA registration component.
Hence, end-users will be able to discover archives hosted by a set of archiving services based
on complex queries regarding group names, lifetime validity, security authorization, and
similar criteria.

To implement the functionality mentioned above, OCGSA provides an Event Archiving
Grid service that provides an interface to XML:DB. Hence, the Grid service can take care of
the security and lifetime management issues, and the XML:DB (NXD, native XML database)
provides the functionality for the data storage and retrieval using XPath queries. The
XML:DB can be embedded within the Grid service or can be located on an individual
machine. The event archiving service can be considered as a specialization of a generic data
storage Grid service that provides a Grid service interface to a native XML database (NXD)
implementing all the generic operations required to manipulate the XML database that can
store any XML document including event logs.

5 Ad Hoc Grid Management

An important success of Grids will be based on their ease of use and intractability in the daily
activities of scientists. Thus it is important that software and methodologies are developed
that allow scientists to use the Grid in an easy and seamless fashion. The Java CoG Kit
provides the ability to develop easy to use and deploy components.Such a strategy, although
costly in the development has a great payoff due to increased usability. Thus we have decided
to follow the strategy demonstrated by the Java CoG Kit and investigate in the development
of a number of services that allow the deployment and use of the collaborative framework
by the non expert. To these services not only belong our execution factory, but also services
that directly relate to the instantiation of a virtual organization on behalf of a user, group,
or community. Additionally, we prototyped a tool that can wrap any command line oriented

12

program as Web service (Figure 7). Once the OGSA release is finalized, we will be able to
deliver such a command line to Web services converter also for OGSA.

This will bring us one step closer in building, and managing communities and resources
in an organized but also ad hoc fashion.

6 Grid Interaction Environments

To interact with a knowledge Grid, we need to developed a variety of components with differ-
ent user communities in mind. As the current generation of Web browsers is rather limited
in functionality, we will be able to provide a simple portal infrastructure for elementary
interactive uses based on simple query mechanisms and page reload. We have developed
such an interface for our application domain based on the Jetspeed framework, which allows
users to can interact with the application Web services via portlets. Portlets are applications
running inside a Web-based portal framework. It provides a mechanism for individual look
and feel as well as the choice to integrate new components in one’s personalized window to
the knowledge Grid. Choice of a portal framework offers many advantages. A variety of
scientific applications can be accessed from a single portal. Hence, it provides a uniform
visual interface and, in most cases, a single sign-on. Each user can easily customize a per-
sonally owned portal page to include only the commonly used applications. The portal can
be accessed with only a Web browser, thus relieving the scientist of any complicated software
installation procedures. It can even be used from places such as libraries and airports, where
a computer connected to the Internet may be available. The portal we have built for the
CMCS project allows scientists to access the query service and reaction graph service as
described earlier. In addition, the portlet features an easy-to-use JavaScript menu that lets
the user change Active Chemical Tables application parameters and send commands to the
application. Our design include s WebDAV server so results can be stored with versioning
information. A typical user session looks like following:

1. The user logs into the portal.
2. The user chooses the ATcT portlet from the list of available portlets and adds it to

her portal page. This needs to be done only on the first visit to the portal. The portal
remembers the users choice.

3. The user communicates through the portlet to query thermochemical data for a chem-
ical species, for example, carbon. This causes the portlet to communicate with the
query Web service, sending it the species name. The Web service passes it on to the
AT application, retrieves the result from the application, and sends it to the portlet.

4. Thermochemical data may be unavailable or limited, because of several reasons. The
species may not be in ATcT database. Enthalpy data may need to be provided by the
user. A reaction network may need to be constructed.

5. The user gathers the necessary input data on her WebDAV workspace and then uses
the portlet to retrieve this data and send it to the a query service, which passes it on
to the AT application.

6. The user instructs the ATcT application to solve the reaction network by choosing the
“solve” command from the portlet menu.

13

7. A new query is submitted to retrieve a complete result.
8. The result is stored into a personal maintained WebDAV workspace, which can be

integrated with other Web Dav services..

Nevertheless, we observe often that this interface is not sufficient and a tighter integration
with the users desktop is desired. We term such a Grid-based thick client that may use
the newest Web and Grid protocols to communicate with the backend services a GridTop.
As part of such GridTops we have developed command shells and visual components that
provide sophisticated user interfaces on the client side, but can be deployed and upgraded
easily through Web technologies. Additionally, we have also developed a portal that is based
on jetspeed technology. The user interacts through the portal (or other interface) with the
sophisticated environment, so that scientists may concentrate on the science and not the
environment [4, 20, 17].

7 Portal to Active Thermochemical Tables

As part of the SciDAC CMCS project, we have implemented the concepts and components
described in the proceeding section in a prototype knowledge Grid focusing on the active
thermochemical tables. We also enhanced the original concept to enable steering and ac-
tivating activate components in collaborative fashion while using access control through
collaborative groups. We use the Grid security infrastructure it is possible to provide secure
application sharing and control.

In Figure 8 we outline several technical components that are described in more detail
in [3] to illustrate how these services interact with each other. They are accessed through
a portal and use a shared data storage that can be controlled by individuals, groups, and
communities. We see that knowledge is created with the help of sophisticated applications,
and supported through a sophisticated Grid infrastructure supporting the vision.

8 Conclusion

Scientific applications are complex and produce an ever increasing amount of information.
To deal with this information, we need a framework that can be expanded and deal with
future demands. The Grid services framework builds a foundation for such an infrastructure.
Nevertheless, we need to provide advanced services that transform the large amount of
information and experience available in domain-specific and interdisciplinary scientific into
knowledge. To this end, we have proposed a knowledge Grid that requires sophisticated
domain-specific algorithms, collaborative, and mobile Grid services, as well as Grid service
flow language that takes into account specific requirements of the newest standards defining
Grid services. We have developed a prototype environment that uses a novel algorithm such
as active thermochemical tables. We demonstrated this environment at SC’2002.

14

Acknowledgments

This work was supported by the Division of Chemical Sciences, Geosciences and Biosciences,
Office of Basic Energy Sciences, and by the Mathematical, Information, and Computational
Science Division subprogram of the Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38. Funding for the Globus Project
research and development is provided by DOE, DARPA, NASA, and NSF. The work is
performed with help of the SciDAC Collaboratory for Multi-scale Chemical Sciences (CMCS)
and the SciDAC Java Commodity Grid project sponsored by the Department of Energy. We
thank Jim Myers, Larry Rahn, David Leahy, David Montoya, Karen Schuchardt, Carmen
Pancerella, Christine Yang, Ian Foster, the other members of the SciDAC CoG Kit project,
the SciDAC CMCS project, and the Globus Project. The Globus Toolkit and Globus Project
are trademarks held by the University of Chicago.

Bibliographies

Gregor von Laszewski is a scientist at Argonne National Laboratory and a fellow at the
University of Chicago Computation Institute. He specializes in Grid computing. He is
the principal investigator of the Java CoG Kit, which provided the first defacto standard
for accessing Globus through Java. He obtained his B.S. and his M.S in computer science
at University of Bonn, Germany. In 1996, he received a Ph.D. form Syracuse University,
where he developed a loosely coupled metacomputing environment allowing seamless access
to several supercomputing centers through workflows. He has published more than forty
papers and technical reports in the area of distributed and Grid computing.

Branco Ruscic is a scientist in the Chemistry Division of Argonne National Laboratory.
His current interests are in the spectroscopic and thermochemical properties of free radicals
and other transient species relevant in combustion and atmospheric chemistry, using pho-
toionization mass spectrometry and photoelectron spectroscopy with conventional, laser and
synchrotron light sources, as well as very highlevel electronic structure calculations resulting
in accurate thermochemical properties. He has received a Ph.D. in physical chemistry from
the University of Zagreb, Croatia, in 1979. He has had various appointments with the Rugjer
Boskovic Institute in Zagreb and the Physics and Chemistry Divisions at Argonne National
Laboratory. He has been permanently at Argonne National Laboratory since 1988. He has
authored or coauthored approximately one hundred scientific and technical publications and
holds one patent.

Kaizar Amin Kaizar Amin is a Ph.D. student in the computer science department at the
University of North Texas. He received his B.E in computer engineering from Mumbai
University (India) and M.S in computer science from the University of North Texas. His
research interest includes adaptive middleware for Grid computing, peer-to-peer Grids, Grid
workflows, and Grid mobility using mobile agents.

15

Sandeep G. Nijsure received his B.E in Computer Science from University of Bombay
(India) and M.S in Computer Science from the University of North Texas. During this
project he worked as research assistant at Argonne National Laboratory. After graduation
he will be working with Microsoft Corporation.

Patrick Wagstrom

Shriram Krishnan [43]

16

Increased Enthalpy (H)

C
(s

) +
 O

2(
g)

C
O

(g
) +

 0
.5

 O
2(

g)

C
O

2(
g)

∆
H

=-
11

0.
5

kJ

∆
H

=-
28

3.
0

kJ

∆
H

=-
39

3.
5

kJ

1

2

0

R
ea

ct
io

n
Ta

bl
e

N
o.

 R
ea

ct
io

n

 ∆
H

__

(0
)

C
(s

) +
 O

2(
g)

 ↔
 C

O
2(

g)

 -

39
3.

5
(1

)
C

(s
) +

 O
2(

g)
 ↔

 C
O

(g
) +

 0
.5

 O
2(

g)
 -

28
3.

0
(2

) C
O

(g
) +

 0
.5

 O
2(

g)
 ↔

 C
O

2(
g)

-1
10

.5

21
0

C
O

2

C
O

C
O

2

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
5

R
ea

ct
io

n
V

ie
w

er
X

Figure 1: Enthalpy diagrams and thermochemical reaction tables.

17

K
no

w
le

dg
e

In
fo

rm
at

io
n

Ex
pe

rie
nc

e

Web and Grid Services Frameworks

C
om

m
un

ity
G

ro
up

In
di

vi
du

al

Ta
rg

et
 C

om
m

un
ity

Knowled
ge G

rid

C
om

m
un

ity
G

rid
A

d-
H

oc
 G

rid
s

R
es

ou
rc

e

R
es

ou
rc

es

Services

Figure 2: A knowledge Grid is necessary to deal with the large amount of information
that is created by interdisciplinary scientific applications, managing resources, and building
communities.

18

G
rid

 F
ab

ric
 (

R
es

ou
rc

es
)

O
G

S
A

C
ol

la
bo

ra
tiv

e
an

d
M

ob
ile

 G
rid

 S
er

vi
ce

s

Grid Orchestration Framework

E
xp

er
ie

nc
e

S
er

vi
ce

s

In
fo

rm
at

io
n

S
er

vi
ce

s

K
no

w
le

dg
e

S
er

vi
ce

s

G
rid

-b
as

ed
 D

om
ai

n
S

er
vi

ce
s

an
d

A
cc

es
s

E
nv

iro
nm

en
ts

Figure 3: Our general architecture is build on several layers that make it possible to develop
advanced services that are mobile and can be used to build ad hoc Grids to support group
and community collaborations.

19

G
rid

W
or

kf
lo

w
Se

rv
ic

e

R
es

ou
rc

e
H

os
tin

g
En

vi
ro

nm
en

t
R

es
ou

rc
e

H
os

tin
g

En
vi

ro
nm

en
t

R
es

ou
rc

e
H

os
tin

g
En

vi
ro

nm
en

t

G
rid

M
on

ito
rin

g
Se

rv
ic

e

G
rid

B
ro

ke
r

Se
rv

ic
e

G
rid

Ex
ec

ut
io

n
Fa

ct
or

y
Se

rv
ic

e
G

rid
M

ig
ra

tio
n

Se
rv

ic
e

A
pp

lic
at

io
n

Se
rv

ic
e

…

G
rid

Lo
gg

in
g

Se
rv

ic
e

G
rid

A
ut

he
nt

ic
at

io
n

Se
rv

ic
e

G
rid

A
ut

ho
riz

at
io

n
Se

rv
ic

e

G
rid

A
ut

he
nt

ic
at

io
n

Se
rv

ic
e

G
rid

A
ut

ho
riz

at
io

n
Se

rv
ic

e

G
rid

A
ut

he
nt

ic
at

io
n

Se
rv

ic
e

G
rid

A
ut

ho
riz

at
io

n
Se

rv
ic

e

G
rid

Se
lf

H
ea

lin
g

Se
rv

ic
e

Ea
ch

 G
rid

 s
er

vi
ce

ca

n
 b

e
co

nt
ro

lle
d

by
 a

 s
er

vi
ce

 p
ol

ic
y

A
pp

lic
at

io
n

Se
rv

ic
e

Figure 4: Orchestration is an important part of a flexible Grid middleware infrastructure

20

W
eb

 S
er

vi
ce

s
W

or
kf

lo
w

 E
ng

in
e

S
er

vi
ce

 1
S

er
vi

ce
 2

S
er

vi
ce

 3

In
iti

al
 D

at
a

In
Fi

na
l D

at
a

O
ut

S
1

In
S

1
O

ut
S2

 In
S

3
In

S
2

O
ut

S3
 O

ut

in
vo

ca
tio

n
vi

a
st

an
da

rd
 m

et
ho

ds

co
nt

ro
l a

nd
 a

ll
da

ta

no
 d

at
a

is
 tr

an
sf

er
re

d
vi

a
pe

er
 to

 p
ee

r m
et

ho
ds

Figure 5: Web services workflow model

21

G
rid

 S
er

vi
ce

s
W

or
kf

lo
w

 C
oo

rd
in

at
or

S
er

vi
ce

 1
S

er
vi

ce
 2

S
er

vi
ce

 3

In
iti

al
 D

at
a

In
Fi

na
l D

at
a

O
ut

co
nt

ro
l a

nd
 s

m
al

l a
m

ou
nt

s
of

 d
at

a

m
os

t o
f t

he
 d

at
a

is
 tr

an
sf

er
re

d
pe

er
 to

 p
ee

r v
ia

 n
ot

ifi
ca

tio
ns

in
vo

ca
tio

n
vi

a
st

an
da

rd
 m

et
ho

ds

Figure 6: Grid services workflow model

22

U
D

D
I

O
G

SA

St
an

da
rd

 M
ec

ha
ni

sm
s

N
on

 G
rid

 A
w

ar
e

A
pp

lic
at

io
n

Po
rt

al

G
rid

 A
w

ar
e

A
pp

lic
at

io
n

Fa
ct

or
y

A
pp

lic
at

io
n

 P

ar
am

et
er

s
O

ut
pu

t

W
SF

L

W
eb

 S
er

vi
ce

H
os

tin
g

En
vi

ro
nm

en
t

Figure 7: A tool to convert existing command line- and library- based applications is needed
to quickly integrate new services into the future service-oriented Grid infrastructure.

23

Th
er

m
o

C
he

m
ic

al
D

at
ab

as
e

Th
er

m
o

C
he

m
ic

al
D

at
ab

as
e

A
ct

iv
e

Ta
bl

e
Se

rv
ic

e

A
ct

iv
e

Ta
bl

e
Po

rt
al

C
lie

nt

D
es

kt
op

W
eb

 S
er

vi
ce

s

c c

c

b

b

b

a

a

a

a
Po

ly
no

m
ia

l
Fi

tti
ng

Se
rv

ic
e

Pl
ot

tin
g

Se
rv

ic
e

Po
ly

no
m

ia
l

Fi
tti

ng
C

om
po

ne
nt

/
Po

rt
le

t

A
ct

iv
e

Ta
bl

e
C

om
po

ne
nt

/
Po

rt
le

t

R
ea

ct
io

n
C

om
po

ne
nt

/
Po

rt
le

t

W
el

co
m

e
C

om
po

ne
nt

/
Po

rt
le

t

Q
ue

ry
Se

rv
ic

e
R

ea
ct

io
n

Se
rv

ic
e Th

er
m

o
C

he
m

ic
al

D
at

ab
as

e

In
fo

rm
at

io
n

A
gg

re
ga

tio
n

Se
rv

ic
e

G
ra

ph
Se

rv
ic

e

Figure 8: Components of the knowledge Grid for Active Themochemical Tables

24

References

[1] C. M. Pancerella, L. Rahn, and C. Yang, “The Diesel Combustion Collaboratory: Com-
bustion Researchers Collaborating over the Internet,” in Proceedings of SC99, Portland,
OR, November 13-19 1999, http://www.supercomp.org/sc99/.

[2] M. Frenklach, Combustion Chemistry. Springer-Verlag, 1984, ch. 7 Modeling, pp.
423–453.

[3] G. von Laszewski, B. Ruscic, P. Wagstrom, S. Krishnan, K. Amin, S. Nijsure,
R. Pinzon, M. L. Morton, S. Bittner, M. Minkoff, A. Wagner, and J. C.
Hewson, “A Grid Service Based Active Thermochemical Table Framework,” in
Third International Workshop on Grid Computing, ser. Lecture Notes in Computer
Science. Baltimore, MD: Springer, 18 Nov. 2002, pp. 25–38. [Online]. Available:
http://www.mcs.anl.gov/∼laszewsk/bib/papers/vonLaszewski--cmcs.pdf

[4] G. von Laszewski, G. Pieper, and P. Wagstrom, “Gestalt of the Grid,” in Performance
Evaluation and Characterization of Parallel and Distributed Computing Tools, ser. Wiley
Book Series on Parallel and Distributed Computing, to be published 2003. [Online].
Available: http://www.mcs.anl.gov/∼laszewsk/bib/papers/vonLaszewski--gestalt.pdf

[5] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” International Journal of Supercomputer Applications, vol. 15,
no. 3, 2001. [Online]. Available: http://www.globus.org/research/papers/anatomy.pdf

[6] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration,”
http://www.globus.org/research/papers/ogsa.pdf, February 2002. [Online]. Available:
http://www.globus.org/research/papers/ogsa.pdf

[7] B. Ruscic, J. V. Michael, P. C. Redfern, L. A. Curtiss, and K. Raghavachari, “Simulta-
neous Adjustment of Experimentally Based Enthalpies of Formation of CF3X, X = nil,
H, Cl, Br, I, CF3, CN, and a Probe of G3 Theory,” J. Phys. Chem. A., vol. 102, pp.
10 889–10 899, 1998.

[8] B. Ruscic, M. Litorja, and R. L. Asher, “Ionization Energy of Methylene Revisited:
Improved Values for the Enthalpy of Formation of CH2 and the Bond Energy of CH3
via Simultaneous Solution of the Local Thermochemical Network,” J. Phys. Chem. A.,
vol. 103, pp. 8625–8633, 1999.

[9] G. von Laszewski, M.-H. Su, J. A. Insley, I. Foster, J. Bresnahan, C. Kesselman,
M. Thiebaux, M. L. Rivers, S. Wang, B. Tieman, and I. McNulty, “Real-
Time Analysis, Visualization, and Steering of Microtomography Experiments
at Photon Sources,” in Ninth SIAM Conference on Parallel Processing for
Scientific Computing, San Antonio, TX, 22-24 Mar. 1999. [Online]. Available:
http://www.mcs.anl.gov/∼laszewsk/papers/vonLaszewski--siamCmt99.pdf

25

http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cmcs.pdf
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--gestalt.pdf
http://www.globus.org/research/papers/anatomy.pdf
http://www.globus.org/research/papers/ogsa.pdf
http://www.mcs.anl.gov/~laszewsk/papers/vonLaszewski--siamCmt99.pdf

[10] “Griphyn - grid physics network,” Web page. [Online]. Available: http:
//www.griphyn.org/index.php

[11] “http://eu-datagrid.web.cern.ch/eu-datagrid/.” [Online]. Available: http://
eu-datagrid.web.cern.ch/eu-datagrid/

[12] M. G. Christensen E., Curbera F. and W. S., “Web services description language,”
2000. [Online]. Available: http://msdn.microsoft.com/xml/general/wsdl.asp

[13] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” International Journal of Supercomputing Applications, vol. 15,
no. 3, 2002.

[14] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Nakamura, and
R. Neyama, Building Web Services With Java. SAMS, 2002.

[15] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration,” Open Grid
Service Infrastructure WG, Global Grid Forum, 22 June 2002. [Online]. Available:
http://www.globus.org/research/papers/ogsa.pdf

[16] “Open grid services architecture homepage,” http://www.globus.org/ogsa, April 2002.
[Online]. Available: http://www.globus.org/ogsa

[17] G. von Laszewski and I. Foster, “Grid Infrastructure to Support Science Portals for
Large Scale Instruments,” in Proceedings of the Workshop Distributed Computing on
the Web (DCW). University of Rostock, Germany, 21-23 June 1999, pp. 1–16, (Invited
Talk).

[18] “Condor home page,” http://www.cs.wisc.edu/condor/. [Online]. Available: http:
//www.cs.wisc.edu/condor/

[19] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, “A Java Commodity Grid
Kit,” Concurrency and Computation: Practice and Experience, vol. 13, no. 8-9,
pp. 643–662, 2001. [Online]. Available: http://www.globus.org/cog/documentation/
papers/cog-cpe-final.pdf

[20] G. von Laszewski, I. Foster, J. Gawor, P. Lane, N. Rehn, and
M. Russell, “Designing Grid-based Problem Solving Environments and Por-
tals,” in 34th Hawaiian International Conference on System Science,
Maui, Hawaii, 3-6 Jan. 2001, http://www.mcs.anl.gov/~laszewsk/papers/cog-
pse-final.pdf, http://computer.org/Proceedings/hicss/0981/volume%209/0981toc.htm.
[Online]. Available: http://www.mcs.anl.gov/∼laszewsk/bib/papers/
vonLaszewski--cog-pse-final.pdf

[21] “The Globus Project,” June 2002. [Online]. Available: http://www.globus.org/

26

http://www.griphyn.org/index.php
http://www.griphyn.org/index.php
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://msdn.microsoft.com/xml/general/wsdl.asp
http://www.globus.org/research/papers/ogsa.pdf
http://www.globus.org/ogsa
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://www.globus.org/cog/documentation/papers/cog-cpe-final.pdf
http://www.globus.org/cog/documentation/papers/cog-cpe-final.pdf
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cog-pse-final.pdf
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cog-pse-final.pdf
http://www.globus.org/

[22] G. von Laszewski, J. Gawor, C. J. Peña, and I. Foster, “InfoGram: A Peer-to-Peer
Information and Job Submission Service,” in Proceedings of the 11th Symposium on
High Performance Distributed Computing, Edinbrough, U.K., 24-26 July 2002, pp.
333–342. [Online]. Available: http://www.mcs.anl.gov/∼laszewsk/papers/infogram.ps

[23] G. von Laszewski, K. Shudo, and Y. Muraoka, “Grid-based Asynchronous Migration
of Execution Context in Java Virtual Machines,” in Proceedings of EuroPar 2000, ser.
Lecture Notes in Computer Science, A. Bode, T. Ludwig, W. Karl, and R. Wismüller,
Eds., vol. 1900. Munich, Germany: Springer, 29 Aug. - 1 Sept. 2000, pp. 22–34, (Invited
Talk).

[24] K. Amin, S. Nijsure, and G. von Laszewski, “Open Collaborative Grid Services Architec-
ture (OCGSA),” in Euroweb 2002 Conference, The Web and the GRID: from e-Science
to e-Business. St Anne’s College Oxford, UK: The British Computer Society, 17-18 Dec.
2002, pp. 101–107.

[25] S. Krishnan, P. Wagstrom, and G. von Laszewski, “GSFL: A Workflow Framework
for Grid Services,” in Preprint ANL/MCS-P980-0802, Argonne National Laboratory,
9700 S. Cass Avenue, Argonne, IL 60439, U.S.A., 2002. [Online]. Available:
http://www-unix.globus.org/cog/papers/gsfl-paper.pdf

[26] G. von Laszewski, “A Loosely Coupled Metacomputer: Cooperating Job
Submissions Across Multiple Supercomputing Sites,” Concurrency, Experience,
and Practice, vol. 11, no. 5, pp. 933–948, Dec. 1999. [Online]. Available:
http://www.mcs.anl.gov/∼gregor/papers/vonLaszewski--CooperatingJobs.ps

[27] F. Leymann, “Web Services Flow Language,” Web page, May 2001. [Online]. Available:
http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[28] Distributed Systems Department Pervasive Collaborative Computing Environment
Project (PCCE), LBL, “PCCE Quarterly Reports,” April 2002. [Online]. Available:
http://www-itg.lbl.gov/Collaboratories/quarterly-reports.html

[29] S. Thatte, “XLANG: Web services for Business Process Design,” 2001. [Online].
Available: http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm

[30] F. Curbera, Y. Goland, Y. Klein, F. Leymann, D. Roller, and S. Weerawarana,
“Business Process Execution Language for Web Services,” Web page, version 1.0 - July
31, 2002. [Online]. Available: http://www.ibm.com/developerworks/library/ws-bpel/

[31] “Comparison of daml-s and bpel4ws (initial draft),” Sept 2002. [Online]. Available:
http://www.ksl.stanford.edu/projects/DAML/Webservices/DAMLS-BPEL.html

[32] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani,
K. Riemer, S. Struble, P. Takacsi-Nagy, I. Trickovic, and S. Zimek, “Web
Services Choreography Interface,” June 2002, version 1.0. [Online]. Available:
http://wwws.sun.com/software/xml/developers/wsci/index.html

27

http://www.mcs.anl.gov/~laszewsk/papers/infogram.ps
http://www-unix.globus.org/cog/papers/gsfl-paper.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.ps
http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-itg.lbl.gov/Collaboratories/quarterly-reports.html
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ksl.stanford.edu/projects/DAML/Webservices/DAMLS-BPEL.html
http://wwws.sun.com/software/xml/developers/wsci/index.html

[33] A. Arkin, “Business Process Modelling Language,” June 2002. [Online]. Available:
http://www.bpmi.org/bmpi-downloads/BPML-SPEC-1.0.zip

[34] T. Haupt, E. Akarsu, and G. Fox, “Webflow: A framework for web based metacomput-
ing,” in HPCN Europe, 1999, pp. 291–299.

[35] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G: a computation
management agent for multi-institutional grids,” in High Performance Distributed
Computing, 2001. Proceedings. 10th IEEE International Symposium. San Francisco,
CA, USA: IEEE Computer Society Press, Aug 2001, pp. 55–63. [Online]. Available:
http://xplore2.ieee.org/iel5/7513/20446/00945176.pdf?isNumber=20446

[36] D. Gannon, R. Ananthakrishnan, S. Krishnan, M. Govindaraju, L. Ramakrishnan, and
A. Slominski, “Grid Web Services and Application Factories,” June 2002. [Online].
Available: http://www.extreme.indiana.edu/xcat/AppFactory.pdf

[37] “Condor : High Throughput Computing,” 2002. [Online]. Available: http:
//www.cs.wisc.edu/condor/

[38] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker,
and B. Smolinski, “Toward a Common Component Architecture for High-Performance
Parallel Computing,” in Proceedings of High Performance Distributed Computing,
CCA Forum. Redondo Beach, California: , 1999, pp. 115–124. [Online]. Available:
http://citeseer.nj.nec.com/context/1079818/225047

[39] R. Chinnici, M. Gudgin, J.-J. Moreau, and S. Weerawarana, “Web Services Description
Language Version 1.2,” July 2002, w3C Working Draft 9. [Online]. Available:
http://www.w3.org/TR/2002/WD-wsdl12-20020709/

[40] The Hewlett-Packard Company, “Web Services Conversation Language (WSCL) 1.0,”
March 2002. [Online]. Available: http://www.w3.org/TR/wscl10/

[41] K. Amin, S. Nijsure, and G. Laszewski, “A Grid Services Framework for Collaboratorive
Applications,” in SC’2002, Baltimore, MD, 11-16 Nov. 2002, (Poster).

[42] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman, “Grid
service specification,” http://www.globus.org/reserach/papers/gsspec.pdf, February
2002. [Online]. Available: http://www.globus.org/reserach/papers/gsspec.pdf

[43] D. C. Marinescu, Internet-Based Workflow Management: Toward a Semantic Web.
John Wiley & Sons, Inc., 2002.

28

http://www.bpmi.org/bmpi-downloads/BPML-SPEC-1.0.zip
http://xplore2.ieee.org/iel5/7513/20446/00945176.pdf?isNumber=20446
http://www.extreme.indiana.edu/xcat/AppFactory.pdf
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://citeseer.nj.nec.com/context/1079818/225047
http://www.w3.org/TR/2002/WD-wsdl12-20020709/
http://www.w3.org/TR/wscl10/
http://www.globus.org/reserach/papers/gsspec.pdf

	Introduction
	Thermochemical Tables
	Active Thermochemical Tables
	Benefits of the Active Table Approach
	Transforming Information and Experience to Knowledge

	Knowledge Grid
	Open Grid Service Architecture
	Developing Knowledge Grids
	Mobility
	Orchestration
	Grid Service Flow Language

	Collaborative Framework
	Ad Hoc Grid Management
	Grid Interaction Environments
	Portal to Active Thermochemical Tables
	Conclusion

