Grid Middleware

Gregor von Laszewski? and Kaizar Amin'?
'Mathematics and Computer Science Division,

Argonne National Laboratory

2Computation Institute, University of Chicago

3Department of Computer Science, University of North Texas

in Middleware for Commnications edited by Qusay H. Mahmoud

Corresponding author:
Gregor von Laszewski
Argonne National Laboratory
9700 S. Cass Ave

Argonne, IL 60439
gregor@mcs.anl.gov

Tel: 630 252 0472

Fax: 630 252 1997

This is a draft not for public distribution.
Images can be redrawn based on publication requirements.

gregor@mcs.anl.gov

MIDDLEWARE
FOR COMMUNICATIONS

Contributors

GREGOR VON LASZEWSKI,

Argonne National Laboratory, Argonne, IL. 60439, U.S.A.,

Computation Institute, University of Chicago, Chicago IL 60637, U.S.A.
KA1ZAR AMIN,

Argonne National Laboratory, Argonne, IL. 60439, U.S.A.,

Department of Computer Science, University of North Texas, Denton, TX
76203, U.S.A.

Contents

Part I Grid Middleware

1

vi

Grid Middleware

Gregor von Laszewski''? and Kaizar Amin*3

1.1 The Grid
1.2 Grid Architecture
1.3 Grid Middleware Software
1.4 Grid Middleware Challenges
1.5 Grid Middleware Standardization
1.6 Grid Middleware Services
1.6.1 Elementary Grid Middleware Services
1.6.2 Advanced Grid Management Services
1.7 Grid Middleware Toolkits
1.7.1 Globus Toolkit
1.7.2 Legion
1.7.3 Condor
1.7.4 SETIQHome
1.7.5 Network Weather Service
1.7.6 Commodity Grid Kits
1.7.7 Open Grid Services Architecture
Service Factories and Instances.
Service Data.
1.7.7.1 Notification
1.8 Portal Middleware for Grids

1.8.1 Grid Middleware to Deploy Virtual Organization Por-
tals

1.9 Applications Using and Enhancing Grid Middleware
1.9.1 Astrophysics

0 00 00 ~J O = N

10
12
12
13
14
15
16
16
17
19
20
20
20

21
22
22

1.9.2 Earthquake Engineering
1.9.3 High Energy Physics Grids
1.10 Concluding Remarks

References

CONTENTS

vii

23
23
24

27

Part 1
Grid Middleware

]_ Grid Middleware

Gregor von Laszewskil'? and Kaizar Amin!:?

"Mathematics and Computer Science Division,

Argonne National Laboratory

2Computation Institute, University of Chicago

3Department of Computer Science, University of North Texas

The reason why we are on a higher imaginative level is not because we have finer

imagination, but because we have better instruments.
—Alfred North Whitehead [1]

The Grid creation of middleware is an essential aspect of the software
engineering effort to create an evolving layer of infrastructure residing between
the network and applications [2]. In order to be effective, this Grid middleware
manages security, access, and information exchange to

e develop collaborative approaches for a large number of users, including
developers, users, and administrators, that can be extended to the larger
set of Internet and network users;

e transparently share a wide variety of distributed resources, such as com-
puters, data, networks, and instruments, among the scientific, academic,
and business communities; and

e develop advanced tools to enable, manage, and expedite collaboration
and communication.

Scenarios that influence the state-of-the art middleware development in-
clude challenging worldwide efforts to deliver scientific experiment support
for thousands of physicists at hundreds of laboratories and universities [3].
Such an advanced environment is possible only if the middleware supports
high-end and high-performance resource requirements to allow managing and
analyzing petabytes of data while using end-to-end services under quality and
security provisions.

In this chapter we present information about research activities to develop
such computing environments that are supported through Grid middleware.
We address the following questions:

e What does the term Grid mean?

2 GRID MIDDLEWARE

How does the Grid middleware help to develop a collaborative science
and business environment?

What trends exist in Grid middleware development?

What applications exist that use Grid middleware?

Where can we find more information about Grids?
What will the future bring?

1.1 THE GRID

Because of the recent popularity of the term Grid we revisit its definition.
Throughout this chapter we follow the definition as introduced in [2].

In general, we distinguish between (a) the Grid approach, or paradigm,
that represents a general concept and idea to promote a vision for sophis-
ticated international scientific and business-oriented collaborations and (b)
the physical instantiation of a production Grid based on available resources
and services to enable the vision for sophisticated international scientific and
business-oriented collaborations. Both ideas are often referred to in the liter-
ature simply as Grid. In most cases the usage of “Grid” is apparent from its
context.

The term “Grid” is chosen in analogy to the electric power grid that allows
pervasive access to electric power. Similarly, computational Grids provide ac-
cess to pervasive collections of compute-related resources and services. The
concept of the Grid is not a new one; it was suggested in the mid-sixties to
imagine a computer facility operating “like a power company or water com-
pany” [4, 5]. However, we stress that our current understanding of the Grid
approach is far beyond simply sharing compute resources [6] in a distributed
fashion; indeed, we are dealing with far more than the distribution of a sin-
gle commodity to its customers. Besides supercomputer and compute pools,
Grids include access to information resources (such as large-scale databases)
and access to knowledge resources (such as collaborative interactions between
colleagues). We believe it is crucial to recognize that Grid resources also
include actual scientists or business consultants that may share their knowl-
edge with their colleagues [2]. Middleware must be developed to support the
integration of the human in the loop to guide distributed collaborative prob-
lem solving processes. In order to enable the Grid approach, an infrastructure
must be provided that allows for flexible, secure, coordinated resource sharing
among dynamic collections of individuals, resources, and organizations.

When a production Grid is created in order to support a particular user
community, we refer to it as community production Grid.

Although the resources within such a community may be controlled in dif-
ferent administrative domains, they can be accessed by geographically and
organizantionaly dispersed community members. The management of a com-

THE GRID 3

munity production Grid is handled as part of a wvirtual organization [7, 8].
While considering different organizations, we have to make sure that the poli-
cies between the organizations are properly defined. Not only may organiza-
tions belong to different virtual organizations, but also part of an organization
(organizational unit) may be part — but not all — of a virtual organization (Fig-
ure 1.1). This is just one aspect addressed within the creation of a Grid; we
will address many more challenging issues throughout the chapter.

=

VO A

= CT

[brg 1\J L

vocC
VOB

Fig. 1.1 Virtual organizations typically contain multiple organizations with complex
policy rules. The Grid provides mechanisms to transparently include resources from a
number of organizations into a virtual organization.

Although typical Grids contain high-performance resources such as super-
computers, we avoid the term highperformance and replace it in favor of high-
end in order to stress the fact that performance is just one of many qualities
required of a Grid. Fault tolerance and robustness are other qualities that are
viewed as important.

In parallel to the electrical power Grid, we term producers and contributers
of resources a Grid plant. Intermediaries that trade resource commodities are
termed Grid brokers. Users are able to access these resources through Grid
appliances, devices and tools that can be integrated into a Grid while providing
the user with a service that enables access to Grid resources. Such appliances
can be as simple as computers, handheld devices, or cell phones, but may be
as complex as collaborative spaces enabling group-to-group communication [9]
or sensor networks as part of sophisticated scientific infrastructure [10]. Many
Grid appliances are accessed and controlled through sophisticated portals that
enable easy access, utilization, and control of resources available through a
Grid by the user.

One important concept that was originally not sufficiently addressed within
the Grid community was the acknowledgment of sporadic and ad hoc Grids
that promote the creation of time-limited services. This concept was first
formulated as part of an initial Grid application to conduct structural biology
and computed microtomography experiments at Argonne National Labora-

4 GRID MIDDLEWARE

tory’s Advanced Photon Source (APS) [11, 12, 13]. In these applications, it
was not possible to install, on long term basis, Grid-related middleware on
the resources, because of policy and security considerations. Hence, besides
the provision for a pervasive infrastructure, we require Grid middleware to
enable sporadic and ad hoc Grids that provide services with limited lifetime.
Furthermore, the administrative overhead of installing such services must be
small, to allow the installation and maintenance, to be conducted by the
nonexpert with few system privileges. This requirement is common in many
peer-to-peer networks [14] in which connections between peers are performed
on an ad hoc or sporadic basis.

1.2 GRID ARCHITECTURE

In order to develop software supporting the Grid approach, it is important to
design an architecture that corresponds with our vision.

A review of the literature [2] shows that a Grid architecture combines tradi-
tional architectural views. Such architectural views include layers, roles, and
technologies. However, we believe it is important to recognize that the archi-
tecture of the Grid is multifaceted and an architectural abstraction should be
chosen that best suites the area of the particular Grid research addressed by
the architectural view.

The multifaceted aspects of the Grid motivate an architecture that is (a)
layered, allowing us to bootstrap the infrastructure from a low to a high level,
(b) role-based, allowing us to abstract the Grid functionality to interface with
single resources to a collective multiple resources, (¢) service oriented allowing
a convenient abstraction model that others can easily deploy, create, and
contribute to.

Let us consider the architectural diagram depicted in Figure 1.2. As men-
tioned previously, a virtual organization contains resources that are governed
by policies and accessed by people that are part of the virtual organization.
The Grid fabric contains protocols, application interfaces, and toolkits that
allow development of services and components to access locally controlled re-
sources, such as computers, storage resources, networks, and sensors. The
application layer comprises the users’ applications that are used within a vir-
tual organization. Additional layers within the Grid middleware are defined
from top down as follows [2, 7]:

e The connectivity layer includes the necessary Grid-specific core commu-
nication and authentication support to perform secure network trans-
actions with multiple resources within the Grid fabric. This includes
protocols and services allowing secure message exchange, authentica-
tion, and authorization.

GRID ARCHITECTURE 5

C Users

@pphanca @pphamca @pphanc@ @pphanca @pp\lanca @pphanca

Collaborative Science and Business
Environments

[Virtual Organizations }
~ ™
. . L
Applications o
0 S
Q2 oW
[0 1] e 3 q 1] o c O
= i} Grid Middleware < 2 [—8
2 || 26 L& =
. <
E] & | et T8 3
|_
- €
3
Grid Fabric —
Plant

Fig. 1.2 Grid middleware is an evolving layer of software infrastructure residing
between the Grid Fabric and applications.

e The resource layer contains protocols that enable secure access and mon-
itoring by collective operations.

e The collective layer is concerned with the coordination of multiple re-
sources and defines collections of resources that are part of a virtual
organization. Popular examples of such services are directories for re-
source discovery and brokers for distributed task and job scheduling.

A benefit of this architecture is the ability to bootstrap a sophisticated Grid
framework while successively improving it on various levels. Grid middleware
is supported with an immensely rich set of application interfaces, protocols,
toolkits, and services provided through commodity technologies and develop-
ments within high end computing. This interplay between different trends in
computer science is an essential asset in our development for Grids, as pointed
out in [15].

Recently it is become apparent that a future Grid architecture will be
based on the Web services model, but will also need additional convenient
frameworks of abstraction [16]. From the perspective of Grid computing, we
define a service as a platform-independent software component that is self
describing and published within a directory or registry by a service provider

6 GRID MIDDLEWARE

(see Figure 1.3). A service requester can locate a set of services with a query to
the registry, a process known as resource discovery. Binding allows a suitable
service to be selected and invoked [17, 18, 19].

The usefulness of the service-based Grid architecture can be illustrated by
scheduling a task in a virtual organization containing multiple supercomput-
ers. First, we locate sets of compute resources that fulfill the requirements of
our task under quality of service constraints. Next, we select one of these sets
and establish a service binding to reserve the resources. Finally, we execute
the task. Clearly, it is desirable to develop complex flows between services.
Since this service-based model involves the use of asynchronous services, it
will be important to deal appropriately with service guarantees in order to
avoid deadlocks and other computational hazards.

The service-based concept has been in wide use, not only by the Grid
community, but also by the business community. This fact has led to recent
collaborative efforts between the Grid and the business community. An exam-
ple of such an activity is the creation of the Open Grid Service Architecture,
which is described in more detail in Section 1.7.7.

// \\

/ \

\ Registry

\ /

N & "

(@) find S (2) publish

/ 7 \\\\\ ///// \\\\
/ \ (4) bind r/)
(\Requester} { Provider)
N\ N J \\ J/

(1) describe

Fig. 1.3 The service model allows the description of the provider service by the
provider that can be published in a registry and be found and bound by a requester.

1.3 GRID MIDDLEWARE SOFTWARE

Developing middleware is not an easy undertaking. It requires the develop-
ment of software that can be shared, reused, and extended by others in a
multitude of higher-level frameworks. Choosing the right paradigm for a soft-
ware engineering framework in which the middleware is developed provides
the means of its usefulness within the community. Hence, developing just an
API as part of the middleware development is possible but does not provide
the abstraction level needed in the complex Grid approach. Figure 1.4 depicts
a useful subset of technologies that should be provided by state-of-the-art Grid

GRID MIDDLEWARE CHALLENGES 7

middleware. It includes protocols, data structures, and objects that can be
accessed through convenient APIs and classes. Appropriate schemas need to
be available to describe services and to deliver components for easy reuse in
rapid prototyping of the next generation of Grid software. In many cases it
is not sufficient to concentrate just on one of these aspects. It is important
that any middleware that is developed strives to fulfill the needs of the user
community reusing this middleware. In case of the Grid the user community
is so diverse that it is essential to also address the diverse needs of the com-
munity while choosing the appropriate frameworks and other tools that must
be part of the middleware layer [20].

Compenents

_ Classes
Services
Objects
Schemas Middleware
Datastructures
Protocols APls

Fig. 1.4 Grid Middleware needs to support a variety of technologies in order to
accommodate a wide variety of uses.

1.4 GRID MIDDLEWARE CHALLENGES

The current challenge in developing middleware software for the Grid is to
address the complexity of developing and managing Grids. As we address a
wide user community ranging from application developers to system admin-
istrators, and also a wide range of infrastructure as part of diversified virtual
organizations, we must identify a path that leads to an integral software en-

8 GRID MIDDLEWARE

vironment developed by the community. Besides emphasizing the interoper-
ability issues, one needs to be concerned about the maintenance, management
and policy issues that go beyond the actual delivery of a technical solution.
In many cases it may be difficult to establish such management collaboration
because of the complex and contradictory operating guidelines institutions
may have. Hence, building a Grid has not only a technical challenge but also
a social challenge.

1.5 GRID MIDDLEWARE STANDARDIZATION

In order for any middleware to achieve acceptance with a large community, it
must be developed and maintained with the help of a community standards
body. In the early days of the Grid development, there was no standard for
Grid development; thus, several non-interoperable Grid frameworks resulted
[7, 21, 22, 23]. The Global Grid Forum (GGF) [24] has presented itself as
the much required body that coordinates the standardization of the Grid
development.

The GGF is a community-initiated forum of more than five thousand in-
dividual researchers and practitioners working on distributed computing or
Grid technologies. The primary objective of GGF is to promote and sup-
port the development, deployment, and implementation of Grid technologies
and applications through the creation and documentation of “best practices” —
technical specifications, user experiences, and implementation guidelines. Ad-
ditionally, the efforts of the GGF are aimed at the development of a broadly
based integrated Grid architecture that can serve to guide the research, devel-
opment, and deployment activities of emerging Grid communities. Defining
such an architecture will advance the Grid approach through the broad de-
ployment and adoption of fundamental basic services and by sharing code
among different applications with common requirements.

1.6 GRID MIDDLEWARE SERVICES

Now that we have an elementary understanding on what the Grid approach
constitutes, we ask the question which elementary Grid services must we pro-
vide as part of Grid middleware and which services must be enhanced to make
the middleware more useful.

1.6.1 Elementary Grid Middleware Services

The most elementary Grid services include job execution services, security
services, information services, and file transfer services.

GRID MIDDLEWARE SERVICES 9

Job execution services provide mechanisms to execute jobs on a remote
resource while appropriate security mechanisms are applied to allow only au-
thenticated and authorized users to use the desired compute resources. Job
execution services also allow users to interface with batch queuing systems
[25]. Hence, a job execution service must be able to submit a job asyn-
chronously and be able to check its status at a later time. As multiple remote
resources may be part of the Grid, jobs must have a unique identifier so that
they can be properly distinguished.

Security services that are part of the Grid infrastructure should provide the
ability to perform authentication and authorization to protect resources and
data on the Grid. Encryption and other elementary security mechanism are
usually included in Grid security services through the use of commodity tech-
nologies such as PKI or Kerberos. Because of the large number of resources in
the Grid, it is important to establish policies and technologies that allow the
users to perform a single sign-on to access the Grid. The Globus Grid security
infrastructure provides the framework for such a mechanism [26]. A user can
sign on through a single interaction with the Grid. A security credential is
created on his behalf that is used through a delegation process to sign onto
other resources. Naturally, the user must be authenticated to use the resource.
In general, all Grid services must integrate Grid security mechanism that can
be established by reusing middleware protocols, APIs, and data structures so
they can be reused to develop more sophisticated security services.

Information services provide the ability to query for information about
resources and participating services on the Grid. Typically a virtual organi-
zation maintains a Grid Information Service relevant to its user community.
Community production Grids may maintain different information services ex-
posed through different protocols. This is in part motivated by the different
scale and functionality of the diverse user communities as part of a virtual
organization. An application user may be interested in knowing only on which
computer he may be able to compile a sophisticated FORTRAN 90 applica-
tion. Other users may want to know on where to execute this application
under certain resource constraints. Hence an information services framework
must be able to deal with the diverse nature of queries directed to it. Many
different information services can be integrated and the capabilities be an-
nounced and made accessible to the users of the community Grid. Services
such as querying the amount of free memory for a compute resource may
pose immediately problems if the information service is not properly imple-
mented. Assume a user queries the amount of memory every millisecond, but
the memory change is updated only every second. Many resources are wasted
for a useless query. Hence, as pointed out in [27], information services must
provide protocols and mechanisms that can dynamically change their behav-
ior toward unreasonable requests by the users. We expect that such smart
Grid services will become increasingly available and developed by the large
Grid community. Agglomeration and filter services as part of the information

10 GRID MIDDLEWARE

service framework can be used to join or reduce the amount of information
that is available to the user. The capabilities of such services must be self-
described, not only through the availability of schemas and objects that can
be retrieved, but also through the semantics attached with the information
through metadata annotations.

File transfer services must be available to move files from one location to
the other location. Such file transfer services must be sophisticated enough to
allow access to high-performance and high-end mass storage systems. Often
such systems are coupled with each other, and it should be possible to uti-
lize their special capabilities in order to move files between each other under
performance considerations. Striping and parallel streams are some obvious
strategies to be included in file transfer services between file servers. Ideally
the middleware for file transfers must be exposed to the user community as
simply as possible through, for example, a command like “copy file A from
server Y to file B on server Z as fast as possible.” New protocols and ser-
vices must be developed that support this notion. An API that provides this
functionality is not sufficient.

1.6.2 Advanced Grid Management Services

With the help of the basic Grid middleware services, a variety of more ad-
vanced services can be developed. Such services include file Management,
task Management, and information management. Such an advanced service
may manage the agglomeration and filtering of information for a community.
There exist many more examples of such advanced services. As pointed out
in the preceding section, users wish to manage file transfers in an easy and
transparent fashion through the invocation of an elementary set of protocols
and APIs. These should hide the underlying complexity of the Grid as much
as possible from the user but should provide enough flexibility that individual
control about a file transfer can be issued. Users may want to use advanced
file transfer services that dynamically adapt to changing network conditions
and fault situations [28], without user intervention.

Task management of multiple tasks prepared by a user is a common prob-
lem. Envision a computational biologist conducting a comparative study in
genome analysis. As part of the problem-solving process, multiple, similar
experiments must be run. These could involve many thousands of subtasks.
Organizing and scheduling these tasks should be performed by a sophisti-
cated service that utilizes the capabilities of the Grid by reusing the current
generation of Grid services.

Taking a closer look at our two examples, we observe that in Grid literature
a distinction is made between file transfers, task execution, and information
queries. However, we believe this distinction is useful only for developers of
basic Grid middleware and not for the larger community developing even more
advanced Grid services. We have demonstrated in [27] that an abstraction of

GRID MIDDLEWARE SERVICES 11

Fault Recovery
Services
Migration
Service

Encryption
Services

Replication
Services
Backup
Services
Checkpointing
Services

Information
Services

Authorization
Services

Security
Services

Reliability
Services

Authentication
Services

Grid Task
Management

Job Submission
Services
Cormpilation
Services

Monitoring
Services

Prediction
Services

Messaging
Services

File Transfer
Services

Performance
Services

Virtualization
Services

Fig. 1.5 Grid task management is a complex issue as part of any Grid middleware

Quality
Assessment
Services

software.

all of these can be, and should be, performed. Using such an abstraction
will allow us to introduce more easily uniform service specifications that inte-
grate higher level functionality such as fault tolerance and self-configuration.
Without this abstraction the development of future Grid middleware is rather
limited and will not address the more complex management issues.

Although middleware typically does not contain user-level applications,
one must recognize the fact that middleware must be provided to simplify
the development of user applications that reuse Grid middleware [29, 30, 31].
As part of this effort tools are created within the NSF Middleware Initiative
(NMI) to provide portal middleware for Grids [29]. Additional efforts are
already under way to provide similar functionality as part of Java Beans by,
for example, the Java CoG Kit.

As we also address not only the application developer or the Grid middle-
ware developer, but also those maintaining and monitoring Grids a

Significant effort also is currently being spent in developing tools that make
the task of the Grid system administrator easier. Administrative and moni-
toring services are under development facilitating the maintenance of accounts
and the monitoring of the services running at remote locations.

12 GRID MIDDLEWARE
1.7 GRID MIDDLEWARE TOOLKITS

Currently the community is building Grid middleware toolkits that address
some of the complex issues related to the Grid approach. These efforts are
still in their infancies. However, they have made great progress in the past
years. In this section we briefly outline a subset of these developments in
order to introduce several different toolkits.

1.7.1 Globus Toolkit

The Globus Project has contributed significantly to the Grid effort through (a)
conducting research on Grid-related issues such as resource management, se-
curity, information services, data management, and application development
environments; (b) developing the Globus Toolkit as part of an open-source
development project; (c) assisting in the planning and building of large-scale
testbeds, both for research and for production use by scientists and engineers;
(d) contributing as part of collaborations in a large number of application-
oriented efforts that develop large-scale Grid-enabled applications in collab-
oration with scientists and engineers; and (e) participating in community
activities that include educational outreach and Grid standards as part of the
Global Grid Forum.

The Globus Toolkit has evolved from a project developing APIs (Nexus
and DUROC) to a project that also develops protocols and services (MDS,
GRAM, and their uses through the Java CoG Kit). During the past few
years the Globus Toolkit has evolved from an API-oriented solution to a more
protocol and service-oriented architecture.

The Globus Toolkit includes the following features:

Security is an important aspect of the Globus Toolkit [2]. The Grid Se-
curity Infrastructure (GSI) uses public key cryptography as the basis for its
functionality. It enables key security services such as mutual authentication,
confidential communication, delegation, and single sign-on. GSI builds the
core for implementing other Globus Toolkit services.

Communication (in the C-based Globus Toolkit) is handled through the
GlobusIO API that provides TCP, UDP, IP multicast, and file I/O services
with support for security, asynchronous communication, and quality of ser-
vice. An important tool provided by the Globus Project is MPICH-G2, which
supports MPI across several distributed computers.

Information about a Grid is handled in the Globus Toolkit version 2
through the Metacomputing Directory Service. The concept of a distributed
directory service for the Grid was first defined in [32] and later refined in [33].
The Metacomputing Directory Service manages information about entities in
a Grid in a distributed fashion. The implementation of MDS in GT2 is based
on the Lightweight Directory Access Protocol (LDAP). In [27] we have shown

GRID MIDDLEWARE TOOLKITS 13

that the Globus architecture can be significantly simplified while combining
the information services with a job submission service. We expect this con-
cept to be introduced into future versions of the Globus Toolkit. In version 3
of the toolkit this protocol is being replaced by XML while providing similar
functionalities as the original toolkit.

Resource management within the Globus Toolkit is handled through a lay-
ered system in which high-level global resource management services are built
on top of local resource allocation services [2]. The current Globus Toolkit
resource management system comprises three components: (1) an extensi-
ble resource specification language for exchanging information about resource
requirements among the components in the Globus Toolkit resource man-
agement architecture; (2) a standardized interface to local resource man-
agement tools including, for example, PBS, LSF, and Condor; and (3) a
resource coallocation API that may allow the construction of sophisticated
co-allocation strategies that enable use of multiple resources concurrently
(DUROC) [25, 34, 35].

Data management is supported by integration of the GSI protocol to access
remote files through, for example, the HT'TP and the FTP protocols.

Data Grids are supported through replica catalog services in the newest
release of the Globus Toolkit. These services allow copying of the most rele-
vant portions of a data set to local storage for faster access. Installation of the
extensive toolkit is enabled through a packaging software that can generate
custom-designed installation distributions.

1.7.2 Legion

Legion, developed at the University of Virginia, addresses key Grid issues such
as scalability, programming ease, fault tolerance, security, and site autonomy.
The goal of Legion is to support parallelism in application code and to manage
the complexities of the physical systems for the user. Legion schedules and
distributes the user processes on available and appropriate resources while
providing the illusion of working on a single, virtual machine.

Legion provides a set of advanced services. These include the automatic
installation of binaries, a secure and shared virtual file system that spans all
the machines in a Legion system, strong PKI-based authentication, flexible
access control for user objects, and support of legacy codes execution and
their use in parameter space studies. Legion’s architecture is based on an
object model. Each entity in the Grid is represented as an active object that
responds to member function invocations from other objects. Legion includes
several core objects, such as compute resources, persistent storage, binding
objects that map global to local process IDs, and implementation objects that
allow the execution of machine code. The Legion system is extensible and
allows users to define their own objects. Although Legion defines the message
format and high-level protocol for object interaction, it does not restrict the

14 GRID MIDDLEWARE

programming language or the communications protocol. Legion has been
used for parameter studies, ocean models, macromolecular simulations, and
particle-in-cell codes.

1.7.3 Condor

Condor is a high-throughput system for utilizing idle compute cycles on work-
stations while distributing a number of queued jobs to them. While typ-
ical supercomputing focuses on floating-point operations per second, high-
throughput systems focus on floating-point operations per month or year
[23, 36, 23]. Condor maintains a pool of computers while using a centralized
broker to distribute jobs based on load information or preference asserted with
the jobs to be executed. The proper resources are found through the Clas-
sAds mechanism of Condor. This mechanism allows each computer in the
pool to advertise the resources that it controls and publish them in a central
information service. In order not to disable interactive use of a workstation,
the machine must be made available quickly to the console users.

To address this issue, the program uses checkpoints and restarts on, another
host machine. Condor allows the specification of elementary authorization
policies, such as “user A is allowed to use the machine but not user B,” and
the definition of a policies for running jobs in the background or when the user
is not interactively using the machine. Similar authorization frameworks have
been successfully reused in other projects such as SETI@Home [37, 38, 39, 40].

Today, Condor also includes client side brokers that handle more complex
tasks such as job ordering via acyclic graphs and time management features.
Such features have been demonstrated earlier in Webflow and the Java CoG
Kit. To prevent monopolizing the resources by a single large application,
Condor uses a fair scheduling algorithm.

To integrate resources maintained as part of batch queues, Condor intro-
duced a mechanism that provides the ability to temporarily integrate resources
for a particular period of time into a Condor pool. This concept, also known
as glide-in, is enabled through a Globus Toolkit resource management back-
end. Using this technique, a job submitted on a Condor pool may be executed
elsewhere on another computing resource [36].

Much of Condor’s capability results from the trapping of system calls by
a specialized version of GLIBC that C programs are linked against. Using
this library, most programs require only minor changes to the source code.
Consequently, workstations in the Condor pool do not require accounts for
everyone who can submit a job. Rather, only one general account for Condor
is needed. This strategy greatly simplifies administration and maintenance.
Moreover, the special GLIBC library provides the ability to checkpoint the
progress of a program. Nevertheless, Condor provides also a mechanism that
makes it possible to run jobs unchanged, but much of the advanced features
such as checkpointing and restarting cannot be used [2].

GRID MIDDLEWARE TOOLKITS 15

Additional Grid capabilities have been provided, called Condor flocks, that
represent pools in possibly different administrative domains. Policy agree-

ments between these flocks enable the redistribution of jobs between these
flocks [39, 40].

1.7.4 SETIQHome

SETI@Home, a middleware toolkit and application created by the Space Sci-
ence Laboratory at the University of California-Berkeley, is one of the most
successful coarse-grained distributed computing systems. Its goal is to inte-
grate compute resources on the Web as part of a collective resource that can
solve many independent calculations at the same time, similar in spirit to Con-
dor. In contrast to Condor, however, it deals with a specialized application-
oriented functionality. The system was designed to handle the overwhelming
amount of information recorded by the Arecibo radio telescope in Puerto Rico
and the analysis of the data. The SETIQhome project developed stable and
user-appealing screen savers for Macintosh and Windows computers and a
command-line client for Unix systems [41, 42] that started to be widely used
in 1999. SETIQHome is a client-server distributed network. When a client
connects to the SETIQHome work unit servers, a packet of data recorded
from the Arecibo telescope is downloaded to the requesting client. The client
then performs a fixed mathematical analysis on the data to find signals of
interest. At the end of analysis, the results are sent back to the server and a
new packet is downloaded while repeating the cycle.

Packets of information that have been shown to have valuable information
are then analyzed again to ensure there was no client error in the reporting of
the calculation performed on the data. Hence, the system shows resiliency to-
ward modified clients while maintaining scientific integrity [41]. SETIQHome
has accumulated more than 900,000 CPU-years of processing time from over
3.5 million volunteers around the world. The entire system today averages
out to 45 Tflops, which makes it the world’s most powerful computing sys-
tem. However, it is suitable only for coarse-grained problems [43]. One of the
principal reasons for the project’s success is its noninvasive nature; running
SETTIQHome causes no additional load on most PCs, where it is run only
during the inactive cycles. In addition, the system provides a wealth of both
user and aggregate information and allows organizations to form teams for
corporations and organizations, which then have their standings posted on
the Web site. SETIQHome was also the first to mobilize massive numbers of
participants by creating a sense of community and project the goals of the
scientific project to large numbers of nonscientific users. Seti@Home has also
been adapted to other scientific domains [37, 44]; hence, it has become not
only an application but also a middleware toolkit.

16 GRID MIDDLEWARE

1.7.5 Network Weather Service

Network Weather Service (NWS) [45] is a specialized and limited middleware
toolkit and service that periodically records and forecasts the performance of
network and computational resources. The service is based on a distributed
set of computational performance sensors that gather performance related
information in a central location. This data is used by numerical models to
generate forecasts (similar to a weather forecasting). The information also can
be used by dynamic schedulers to provide statistical quality-of-service readings
in a Grid. Currently, the system supports sensors for end-to-end TCP/IP
performance measuring bandwidth and latency, available CPU percentage,
and available nonpaged memory. The forecast models include mean-based
methods, which use some estimate of the sample mean as a forecast, and
median-based methods, which use a median estimator, and autoregressive
methods. While evaluating the accuracies of the prediction during runtime,
NWS is able to configure itself and choose the forecasting method (from those
that are provided with NWS) that best fits the prediction. NWS can be
extended by including new models.

NWS addresses just one aspect of the Grid approach; however, it can en-
hance the usefulness of, for example, Legion or the Globus Toolkit.

1.7.6 Commodity Grid Kits

The Globus Project provides an elementary set of Grid middleware. Unfortu-
nately, these services may not be compatible with the commodity technologies
used for application development by other Grid middleware developers.

To overcome this difficulty, the Commodity Grid project is creating Commodity
Grid Toolkits (CoG Kits) that define mappings and interfaces between Grid
services and particular commodity frameworks. Technologies and frameworks
of interest include Java, Python, CORBA [46], Perl, Web services, NET, and
JXTA.

Existing Python and Java CoG Kits [47, 48, 49] provide the best support
for a subset of the services within the Globus Toolkit. The Python CoG Kit
uses SWIG in order to wrap the Globus C-API, while the Java CoG Kit is
a complete reimplementation of the Globus protocols in Java. Although the
Java CoG Kit can be classified as middleware for integrating advanced Grid
services, it can also be viewed both as a system providing advanced services
currently not available in the Globus Toolkit and as a framework for designing
computing portals [49]. Both the Java and Python CoG Kits are popular
with Grid programmers and have been used successfully in many community
projects. The usefulness of the Java CoG Kit has been proven during the
design and implementation of the Globus Toolkit version 3 (GT3). Today the
Java CoG Kit has been made integral part of the GT3 release. Some features
that are not included in the GT3 release but can be downloaded from the Java

GRID MIDDLEWARE TOOLKITS 17

CoG Kit Web pages [50] are the availability of prototype user interfaces that
are designed as Java beans and can be easily integrated in interface definition
environments for rapid prototyping. As these components work on GT2 and
GT3. The CoG Kit provides a new level of abstraction for Grid middleware
developers (see Figures 1.6 and 1.7). In contrast to the Globus Toolkit, the
Java CoG Kit has extended the notion of middleware while not only providing
middleware for elementary Grid services, but also middleware for Grid portal
development. A variety of other tools are build on top of the Java CoG Kit
[51, 52, 53].

1.7.7 Open Grid Services Architecture

The Open Grid Services Architecture (OGSA) [54] initiative of the GGF de-
fines the artifacts for a standard service-oriented Grid framework based on the
emerging W3C defined Web services technology [55]. A service-oriented Grid
framework provides a loosely coupled technology- and platform-independent
integration environment that allows different vendors to provide Grid-enables
services in a variety of technologies, yet conforming to the GGF-defined OGSA
standards.

Web services, as defined by W3C [56], comprise “a software system identi-
fied by a URI, whose public interfaces and bindings are defined and described
using XML. Its definition can be discovered by other software systems. These
systems may then interact with the Web service in a manner prescribed by
its definition, using XML based messages conveyed by Internet protocols”. In
other words, a Web service is a network-enabled software component that can
be described, published, discovered, and invoked.

Web services are described through the Web services description language
(WSDL) [17], providing an XML format for defining Web services as set of
endpoints operating on messages. Web service descriptions can be published
and discovered on centrally available service registries using protocols such as
universal description, discovery, and integration (UDDI) [57]. Alternatively,
the service descriptions can be published locally within the service hosting
environment and discovered by using distributed protocols such as the Web
service inspection language (WSIL) [58]. Web services can be invoked by
defined operations as a part of service descriptions by passing XML message
inputs wrapped in standard Internet protocols such as the simple object access
protocol (SOAP) [18].

OGSA has introduced the concept of a Grid service as a building block
of the service-oriented framework. A Grid service is an enhanced Web ser-
vice that extends the conventional Web service functionality into the Grid
domain. A Grid service handles issues such as state management, global ser-
vice naming, reference resolution, and Grid-aware security, which are the key
requirements for a seamless, universal Grid architecture. To facilitate the de-

GRID MIDDLEWARE

I [z 15, Fom e

File Edit View Project Build Debug Versioning Tools Window Help

e E

X

lpomse | sceanoc| as

fppor | wopuuy

Ul Editing

Explorer [Filesystems]

@ A examples
@ [colorpicker
® [imageviewer
& @ texteditor

@ Filesystems

© @ Jhome/mike/netbeans 3 5/sar

[Swing | Swing (Other) | KW | Beans | Layouts | Borders |
=] = wEme-e-mHsE A0 R

Subject: O=Grid,0= Globus,0Ll=mes.anl.gov,CN=Mihael Hategan, CN=proxy
Time Left: 1 days, 2 h, 23 min, 6 sec
Strength: 1024 bits

© B fFramejava | create || peswoy || memresh |

£0g-jglobus Jar

Idapbp jar Catekeeper |
-1)

Ny ST

<ryptix-asnljar

cryptix jar Job Specificiation

sz Bewable| | [Jiocarie| |
jaasgar Direcory:[]

ice-jdkL3-119 jar Aguments:| |

Jossjar Environment:|]

indijar

Junitjar swowe| [[iecalfile l:l

Idapjar

Stderr: [Local file l:l

PIPPPPPPPPPPPRPOPP

log4j-1.2.8.jar

puretis.jar sudin: [Lecal file El

xercesjar

x4 jar Job Options

[[Redirect stdout/err to Window [Full delegation ‘
Py 1
T JFrame =

| I]|
[E Output Window [Execution View] E‘

(D Filesystems * EEE= |2 <hio processes Running> 1
% | compiler x ‘LOExecuunr\\/mwX I

Fig. 1.6 The Java CoG Kit contains a number of JavaBeans that provides the next
level of Grid middleware to develop simple, yet powerful components for Grid users.

=
e —
[use PKCS11 Device
Create Exit
Authentication

> & 4 2 5 =
Form :.. ooy e |
Drag&Drop Desktop — ——

ot specmciation

Exeoutabie: s | 0 Locat e
Dumctary: Fomasgrager

File Transfer Grid Shell

Fig. 1.7 Selected Java CoG Kit GUI components include convenient prototype in-
terfaces to perform file transfer, job submissions, and service access while interfacing
with Grid middleware.

GRID MIDDLEWARE TOOLKITS 19

scription of Grid services, GGF has extended the conventional WSDL schema
to incorporate Grid-enabled attributes. The Grid-aware WSDL is called as
Grid Service Description Language (GSDL). Hence, an OGSA-compliant Grid
architecture will be composed of Grid services described using GSDL, pub-
lished and discovered on specialized Grid registries, and invoked, by using an
Internet protocol such as SOAP.

=+ OGSA Hosting Environment = -

Grid Service Factory

Grid Service Fa:tury

Grid Service

Regis
gistry Grid Service Factury

Grid Service Factury

Grid Service
b Instance

—b[Grid Client

Fig. 1.8 Typical usage pattern for OGSA services. (1) The client accesses the central
Grid registry and discovers the handle for a Grid service factory capable of providing
the required functionality. (2) It then invokes the instance-creation operation of the
Grid service factory. (3) The factory creates a Grid service instance and provides the
client a unique network handle (GSH) for this instance. (4) The factory then registers
the instance handle with the Grid registry so that other clients can discover it. This
step is optional. (5) The client uses the GSH to communicate with the Grid service
instance based on the operations promised in its description (GSDL).

Additional features provided by OGSA include the following:

Service Factories and Instances. The Web services paradigm addresses the
discovery and invocation of persistent services. The Grid paradigm supports
the creation, management, and termination of transient service instances han-
dled at runtime. The OGSA framework defines entities and patterns between
these entities to support of such dynamic management of transient instances.
OGSA implements the factory pattern, whereby persistent Grid service fac-
tories enable the creation of transient Grid service instances. The factory and
the service instance collectively provide constructs for lifetime negotiation and
state management of the instance. Every service instance has a universally
unique identity, also called the Grid service handle (GSH), that provides a
network pointer to that service instance. As shown in Figure 1.8 a typical

20 GRID MIDDLEWARE

usage pattern in OGSA is as follows. A user identifies a central Grid service
registry (using some out-of-band methodology), selects a persistent Grid ser-
vice factory appropriate for the functionality desired, negotiates the instance
lifetime with the factory, and invokes the instance-creation operation on the
factory. The factory creates a service instance and provides, the client with
a unique GSH. From that point on the client uses the GSH to communicate
with the corresponding service instance directly.

Service Data. To support discovery, introspection, and monitoring of Grid
services, OGSA introduced the concept of service data. Every Grid service
instance has a set of service data elements associated with it. These elements
refer to metadata used internally by the OGSA framework, as well as the
runtime data retrieved by clients and other external services. In other words,
the Service Description Elements (SDEs) of a Grid service instance represent
its internal and external state. In an object-oriented terminology the SDEs
in a Grid service are equivalent to instance variables in an object.

1.7.7.1 Notification OGSA also provides the classic publish/subscribe
style communication mechanism with Grid services. Hence, clients can sub-
scribe to receive notification messages based for any activity on a predefined
notification topic or change in the data value of SDEs. OGSA provides mech-
anisms for a notification source and notification sink to allow asynchronous,
one-way delivery of messages from the source to the sink. Hence, OGSA shifts
from a client-server Web service model to a peer-to-peer Grid service model.

1.8 PORTAL MIDDLEWARE FOR GRIDS

The term “portal” is not uniformly defined within the computer science com-
munity. Sometimes it is used interchangeably for integrated desktops, elec-
tronic market places, or information hubs [59, 60, 61]. We use the term portal
in the more general sense of a community access point to information and
services. A portal typically is most useful when designed for a particular
community in mind.

Web portals build on the current generation of Web-based commodity tech-
nologies, based on the HT'TP protocol for accessing the information through
a browser.

A Grid portal is a specialized portal for users of production Grids or Grid-
enabled applications. A Grid portal provides information about the status
of the Grid resources and services. Commonly this information includes the
status of batch queuing systems, load, and network performance between the
resources. Furthermore, the Grid portal may provide a targeted access point
to useful high-end services, such as the generation of a compute- and data-
intensive parameter study for climate change. Grid portals provide commu-

PORTAL MIDDLEWARE FOR GRIDS 21

nities another advantage: they hide much of the complex logic to drive Grid-
related services with simple interaction through the portal interface. Further-
more, they reduce the effort needed to deploy software for accessing resources
on production Grids.

In contrast to Web portals, Grid portals may not be restricted to simple
browser technologies but may use specialized plug-ins or executables to handle
the data visualization requirements. These advanced portals may be the Web
portals of tomorrow. A Grid portal may deal with different user communities,
such as developers, application scientists, administrators, and users. In each
case, the portal must support a personal view that remembers the preferred
interaction with the portal at time of entry. To meet the needs of this diverse
community, sophisticated Grid portal middleware must provide commodity
collaborative tools such as news-readers, e-mail, chat, and video conferencing,
and event scheduling.

It is important to recognize the fact that Grid middleware must also include
software that allows the creation of portals for Grids. Such middleware has
in the past been relying on the Java CoG Kit and can, through abstractions,
continue to build on the convenient functions provided. Several efforts are
using Jetspeed as part of this middleware to enable Grid portals [62, 63, 64].

1.8.1 Grid Middleware to Deploy Virtual Organization Portals

Compute center portals provide a collective view of and access to a distributed
set of high-performance computing resources as part of a high performance
computing center. Typical candidates are HotPage [65], and UNICORE [21].

HotPage enables researchers easily to find information about each of the
resources in the computational Grid. This information (which is stored in
HTML) includes technical documentation, operational status, load and cur-
rent usage, and queued jobs. Hence it combines information provided by Grid
middleware services and other informational databases maintained as part of
the virtual organization. Additionally, HotPage enables users to access and
manipulate files and data and to submit, monitor, and delete jobs. Grid access
is through the Globus Toolkit [66] or the Network Weather Service [45]. The
HotPage backend is accessed through Perl CGI scripts that create the pages
requested. HotPage has been installed on a variety of production Grids, such
as NPACT [67] and NASA IPG [31]. Future versions of Hotpage are expected
to be implemented in Java by using the Java CoG Kit, OGSA, and Jetspeed.

UNICORE (UNiform Interface to COmputing REsources) provides a verti-
cal integration environment for Grids, including access to resources through a
Java Swing framework. It is designed to assist in the workflow management of
tasks to be scheduled on resources part of supercomputing centers similar to
[20]. A UNICORE workflow comprises hierarchical assemblies of interdepen-
dent tasks, with dependencies that are mapped to actions such as execution,
compilation, linking, and scripting according to resource requirements on tar-

22 GRID MIDDLEWARE

get machines on the Grid. Besides strong authentication, UNICORE assists
in compiling and running applications and in transferring input and output
data. One of the main components of UNICORE is the preparation and mod-
ification of structured jobs through a graphical user interface that supports
workflows. It allows the submission, monitoring, and control of the execution
as part of a client that gets installed on the user’s machine. New functionality
is developed to handle system administration and management, modeling of
dynamic and extensible resources, creation of application-specific client and
server extensions, improved data and file management functions, and runtime
control of complex job chains. The ability to utilize Globus Toolkit enabled
resources within UNICORE [63] while reusing the Java CoG Kit is under
development. Future developments will also include GTS3.

1.9 APPLICATIONS USING AND ENHANCING GRID
MIDDLEWARE

In this section we focus on three applications representative of current Grid
activities reusing and enhancing Grid middleware.

1.9.1 Astrophysics

The Astrophysics Simulation Collaboratory is an example of a Grid appli-
cation requiring large numbers of tightly coupled resources that are used as
part of large parameter studies. The Astrophysics Simulation Collaboratory
(ASC) was originally developed in support of numerical simulations in astro-
physics. It has let to the development of a general-purpose code for partial
differential equations in three dimensions [68, 69, 70].

The astrophysics simulation collaboratory (ASC) pursues the following ob-
jectives [71]: (a) promote the creation of a community for sharing and de-
veloping simulation codes and scientific results; (b) enable transparent access
to remote resources, including computers, data storage archives, information
servers, and shared code repositories; (¢) enhance domain-specific component
and service development supporting problem-solving capabilities, such as the
development of simulation codes for the astrophysical community or the devel-
opment of advanced Grid services reusable by the community; (d) distribute
and install programs onto remote resources while accessing code repositories,
compilation, and deployment services; (e) enable collaboration during pro-
gram execution to foster interaction during the development of parameters
and the verification of the simulations; (f) enable shared control and steering
of the simulations to support asynchronous collaborative techniques among
collaboratory members; and (g) provide access to domain-specific clients that,
for example, enable access to multimedia streams and other data generated
during the execution of the simulation.

APPLICATIONS USING AND ENHANCING GRID MIDDLEWARE 23

To communicate these objectives as part of a collaboratory, ASC uses a
Grid portal based on JSP for thin-client access to Grid services. Specialized
services support community code development through online code reposito-
ries. The Cactus computational toolkit is used for this work [2].

1.9.2 Earthquake Engineering

The intention of NEESgrid is to build a national-scale distributed virtual
laboratory for earthquake engineering. The initial goals of the project are to
(1) extend the Globus Information Service to meet the specialized needs of
the community and (2) develop a set of application specific services, reusing
existing Grid services. Ultimately, the system will include a collaboration
and visualization environment, specialized servers to handle and manage the
environment, and access to external system and storage provided by NCSA
[72].

One of the objectives of NEESgrid is to enable observation and data access
to experiments in real time. Both centralized and distributed data repositories
will be created to share data between different locations on the Grid. These
repositories will have data management software to assist in rapid and con-
trolled publication of results A software library will be created to distribute
simulation software to users. This will allow users with NEESgrid-enabled
desktops to run remote simulations on the Grid [73].

NEESgrid comprises a layered architecture, with each component being
built on core Grid services that handle authentication, information, and re-
source management but are customized to fit the needs of earthquake engi-
neering community.

1.9.3 High Energy Physics Grids

A number of large projects related to high energy research have recognized the
potential and necessity of Grids is part of their sophisticated problem solving
infrastructure. Such projects include Particle Physics Data Grid (PPDG) [74],
international Virtual Data Grid Laboratory (iVDGL) [75] and the European
DataGrid [3].

PPDG is a collaboratory project concerned with providing the next-generation
infrastructure for current and future high-energy and nuclear physics exper-
iments. One of the important requirements of PPDG is to deal with the
enormous amount of data that is created during high energy physics exper-
iment and must be analyzed by large groups of specialists. Data storage,
replication, job scheduling, resource management, and security components
supplied by the Globus Toolkit, Condor, STACS, SRB, and EU DataGrid
projects all will be integrated for easy use by the physics collaborators. De-
velopment of PPDG is supported under the DOE SciDAC initiative (Particle
Physics Data Grid Collaboratory Pilot) [30, 74].

24 GRID MIDDLEWARE

The goal of iVDGL is to establish and utilize a virtual laboratory com-
prising heterogeneous computing and storage resources in the United States,
Europe, and other regions linked by high-speed networks and operated as a
single system for the purposes of interdisciplinary experimentation in Grid-
enabled, data-intensive scientific computing. iVDGL is aiming at the physics
community while providing future production services, which may also de-
signed in the Grid Physics Network (GriPhyN) [76]. Integration of the two
projects will provide a community production Grid.

In general, the communities addressed by such Grids require sharing and
modifying large amounts of data.

Many of these projects reuse the concept of virtualization, which is well un-
derstood by the processor design community in addressing the design of mem-
ory hierarchies. In Grid projects, however, the virtualization goes beyond the
concept of tertiary storage space and includes not only file systems but also
the annotation of data with metadata. This metadata allows the scientists to
formulate complex context sensitive queries returning the appropriate infor-
mation. As result, some of these queries have been generated by state-of-the
art algorithms that are too resource intensive to be run redundantly by the
many users. Thus, it is beneficial to store the results in a cache-like system
that can be queried rather than generated. On the other hand, some of the
calculations performed on the data may actually be cheaper and less resource
intense than storing the data and their intermediate results. In both cases
it is important to annotate the data and the way it has or can be created
with metadata. Efforts such as [77, 78, 79] are reporting on progress in this
area. In many such efforts [80, 81] lessons learned from parallel computing
while mapping an abstract direct acyclic graph specification onto a physical
environment are used. Through late mapping that postpones the mapping in
successive steps, the dynamical of the actual Grid resources are optimized. At
present, however, these efforts do not address the more formal aspects such
as deadlocks or resource over- and underprovision.

1.10 CONCLUDING REMARKS

In this chapter, we have concentrated on several aspects of middleware for
Grids. We have seen that the Grid approach and the creation of Grid mid-
dleware are a natural continuations of established parallel and distributed
computing research. We highlighted a number of projects that address some
— but not all — of the issues that must be resolved before the Grid is truly uni-
versal. In addition to the development of middleware, interfaces are needed
that can be used by application scientists to access Grids. These interfaces are
provided by portal middleware toolkits that allow the easy integration of Grid
middleware in ongoing application development efforts. Based on the efforts
in the community we observe the trend that many advanced tools will be part

CONCLUDING REMARKS 25

of the middleware of tomorrow. Hence the level of abstraction included in
middleware to enable collaborative research is expected to rise significantly
over the next years. Also critical are commodity Grid toolkits, enabling ac-
cess to Grid functionality in the area of Web services, programming paradigms
and frameworks, as well as the integration with other programming languages
The tools and technologies discussed in this chapter are the first step in the
creation of a global computing Grid.

Acknowledgments

This work was funded in part by the U.S. Department of Energy, Office
of Advanced Scientific Computing, SciDAC program “CoG Kits: Enabling
Middleware for Designing Science Applications, Web Portals, and Problem-
Solving Environments,” under Contract W-31-109-ENG-38. Globus Project
is a trademark held by the University of Chicago. Globus Toolkit is a reg-
istered trademark held by the University of Chicago. We thank Gail Pieper
and Jens Vockler for comments on this chapter.

References

10.

. Science and the Modern World. New York: Free Press, 1967, page 58.

G. von Laszewski, G. Pieper, and P. Wagstrom, “Gestalt of the
Grid,” in Performance Fvaluation and Characterization of Parallel and
Distributed Computing Tools, ser. Series on Parallel and Distributed
Computing. Wiley, 2003, (to be published). [Online]. Available: http:
//www.mcs.anl.gov/~laszewsk /bib/papers/vonLaszewski--gestalt.pdf

“The DataGrid Project,” 2000. [Online]. Available: http://www.
eu-datagrid.org/

. V. A. Vyssotsky, F. J. Corbat, and R. M. Graham, “Structure of the

Multics Supervisor,” in Joint Computer Conference, AFIPS Conf. Proc
27, 1965, p. 203. [Online]. Available: http://www.multicians.org/fjcc3.
html

J. Licklider and R. W. Taylor, “The Computer as a Communication
Device,” 1968. [Online]. Available: http://memex.org/licklider.pdf

L. Smarr and C. Catlett, “Metacomputing,” Communications of the
ACM, vol. 35, no. 6, pp. 44-52, 1992.

I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” International Journal of
Supercomputing Applications, vol. 15, no. 3, 2002. [Online]. Available:
http://www.globus.org/research/papers/anatomy.pdf

I. Foster, “The Grid: A New Infrastructure for 21st Century Science,”
Physics Today, vol. 55, mno. 22, p. 42, 2002. [Online]. Available:
http://www.aip.org/pt/vol-55/iss-2/p42.html

“The Access Grid Web Page,” Web Page. [Online]. Available:
http://www-fp.mcs.anl.gov/fl/accessgrid/

“NEESgrid Homepage,” Web Page. [Online]. Available: http://www.
neesgrid.org/

27

http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--gestalt.pdf
http://www.eu-datagrid.org/
http://www.eu-datagrid.org/
http://www.multicians.org/fjcc3.html
http://www.multicians.org/fjcc3.html
http://memex.org/licklider.pdf
http://www.globus.org/research/papers/anatomy.pdf
http://www.aip.org/pt/vol-55/iss-2/p42.html
http://www-fp.mcs.anl.gov/fl/accessgrid/
http://www.neesgrid.org/
http://www.neesgrid.org/

28

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

REFERENCES

G. von Laszewski, M.-H. Su, J. A. Insley, 1. Foster, J. Bresnahan,
C. Kesselman, M. Thiebaux, M. L. Rivers, S. Wang, B. Tieman,
and I. McNulty, “Real-Time Analysis, Visualization, and Steering
of Microtomography Experiments at Photon Sources,” in Ninth
SIAM Conference on Parallel Processing for Scientific Computing,
San Antonio, TX, 22-24 Mar. 1999. [Online]. Available: http:
//www.mcs.anl.gov/~laszewsk /papers/vonLaszewski--siamCmt99.pdf

I. Foster, J. Insley, G. von Laszewski, C. Kesselman, and M. Thiebaux,
“Data Visualization: Data Exploration on the Grid,” IFEE Computer,
vol. 14, pp. 3641, Dec. 1999.

G. von Laszewski, M. Westbrook, I. Foster, E. Westbrook, and
C. Barnes, “Using Computational Grid Capabilities to FEnhance
the Ability of an X-Ray Source for Structural Biology,” Cluster
Computing, vol. 3, no. 3, pp. 187-199, 2000. [Online]. Available:
ftp://info.mcs.anl.gov/pub/tech_reports/P785.ps.Z

A. Oram, Ed., Peer-To-Peer. O’Reiley, 2001.

G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke,
“CoG Kits: A Bridge between Commodity Distributed Computing
and High-Performance Grids,” in ACM Java Grande 2000 Conference,
San Francisco, CA, 3-5 June 2000, pp. 97-106. [Online]. Available:
http://www.mcs.anl.gov/~laszewsk/papers/cog-final.pdf

G. von Laszewski and K. Amin, “Java CoG Kit GridSDK,” Web PAge.
[Online]. Available: http://www.globus.org/cog/projects/gridsdk/

R. Chinnici, M. Gudgin, J.-J. Moreau, and S. Weerawarana,
“Web Services Description Language Version 1.2, July 2002, w3C
Working Draft 9. [Online]. Available: http://www.w3.org/TR/2002/
WD-wsdl12-20020709/

J. Scheinblum, “An introduction to SOAP,” Web Page, 2001. [Ounline].
Available: http://builder.cnet.com/webbuilding/0-7704-8-4874769-1.
html

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, “Simple Object Access Protocol
(SOAP) 1.1, May 2000. [Online]. Available: http://www.w3.org/TR/
SOAP

G. von Laszewski, “A Loosely Coupled Metacomputer: Cooperating
Job Submissions Across Multiple Supercomputing Sites,” Concurrency,
Ezxperience, and Practice, vol. 11, mno. 5, pp. 933-948, Dec.
1999. [Online]. Available: http://www.mcs.anl.gov/~gregor/papers/
vonLaszewski-- CooperatingJobs.ps

http://www.mcs.anl.gov/~laszewsk/papers/vonLaszewski--siamCmt99.pdf
http://www.mcs.anl.gov/~laszewsk/papers/vonLaszewski--siamCmt99.pdf
ftp://info.mcs.anl.gov/pub/tech_reports/P785.ps.Z
http://www.mcs.anl.gov/~laszewsk/papers/cog-final.pdf
http://www.globus.org/cog/projects/gridsdk/
http://www.w3.org/TR/2002/WD-wsdl12-20020709/
http://www.w3.org/TR/2002/WD-wsdl12-20020709/
http://builder.cnet.com/webbuilding/0-7704-8-4874769-1.html
http://builder.cnet.com/webbuilding/0-7704-8-4874769-1.html
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.ps
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.ps

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

REFERENCES 29

“Unicore,” Web Page. [Online]. Available: http://www.unicore.de/

A. S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwide
Virtual Computer,” Communications of the ACM, vol. 40, no. 1, pp.
39-45, January 1997. [Online]. Available: http://legion.virginia.edu/
copy-cacm.html

“Condor: High Throughput Computing,” Web Page. [Online|. Available:
http://www.cs.wisc.edu/condor/

“The Global Grid Forum Web Page,” Web Page. [Online]. Available:
http://www.gridforum.org

“Portable Batch System,” Web Page, Veridian Systems. [Online].
Available: http://www.openpbs.org/

R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer,
and V. Welch, “A National-Scale Authentication Infrastructure,” IEEFE
Computer, vol. 33, no. 12, pp. 60-66, 2000.

G. von Laszewski, J. Gawor, C. J. Pena, and I. Foster, “InfoGram: A
Peer-to-Peer Information and Job Submission Service,” in Proceedings
of the 11th Symposium on High Performance Distributed Computing,
Edinbrough, UK., 24-26 July 2002, pp. 333-342. [Online]. Available:
http://www.mcs.anl.gov/~laszewsk/papers/infogram.ps

B. Allcock and R. Madduri, “Reliable File Transfer Service,”
Web Page. [Online]. Available: http://www-unix.globus.org/ogsa/docs/
alpha3/services/reliable_transfer.html

“NSF Middleware Initiative,” Web Page. [Online]. Available: http:
/ /www.nsf-middleware.org/Middleware/

“Scientific Discovery through Advanced Computing (SciDAC),” Web
Page, 2001. [Online]. Available: http://scidac.org/

“Information Power Grid Engeneering and Research Site,” Web Page,
2001. [Online]. Available: http://www.ipg.nasa.gov/

G. von Laszewski, S. Fitzgerald, 1. Foster, C. Kesselman, W. Smith,
and S. Tuecke, “A Directory Service for Configuring High-Performance
Distributed Computations,” in Proceedings of the 6th IEEE Symposium
on High-Performance Distributed Computing, 5-8 Aug. 1997, pp. 365—
375. [Online]. Available: http://www.mcs.anl.gov/~laszewsk/papers/
fitzgerald--hpdc97.pdf

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid Infor-
mation Services for Distributed Resource Sharing.” in Proceedings of the
Tenth IEEE International Symposium on High-Performance Distributed

http://www.unicore.de/
http://legion.virginia.edu/copy-cacm.html
http://legion.virginia.edu/copy-cacm.html
http://www.cs.wisc.edu/condor/
http://www.gridforum.org
http://www.openpbs.org/
http://www.mcs.anl.gov/~laszewsk/papers/infogram.ps
http://www-unix.globus.org/ogsa/docs/alpha3/services/reliable_transfer.html
http://www-unix.globus.org/ogsa/docs/alpha3/services/reliable_transfer.html
http://www.nsf-middleware.org/Middleware/
http://www.nsf-middleware.org/Middleware/
http://scidac.org/
http://www.ipg.nasa.gov/
http://www.mcs.anl.gov/~laszewsk/papers/fitzgerald--hpdc97.pdf
http://www.mcs.anl.gov/~laszewsk/papers/fitzgerald--hpdc97.pdf

30

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

REFERENCES

Computing. San Francisco, CA: IEEE Press, 7-9 Aug. 2001, pp. 181-184,
http://www.globus.org/research/papers/MDS-HPDC.pdf.

“Load Sharing Facility,” Web Page, Platform Computing, Inc. [Online].
Available: http://www.platform.com/

K. Czajkowski, I. Foster, and C. Kesselman, “Co-allocation Services for
Computational Grids,” in Proceedings of the 8th IEEE Symposium on
High Performance Distributed Computing, 1999.

C. Team, Condor Version 6.2.2 Manual, 6th ed., University of
Wisconsin-Madison, Professor Miron Livny, 7367 Computer Science,
1210 West Dayton St, Madison, W1 53706-1685, 2001. [Online|. Available:
http://www.cs.wisc.edu/condor /manual/v6.2/condor-V6_2-Manual.pdf

“SETI@Home Home Page,” Web Page, Feb. 2002. [Online]. Available:
http://setiathome.ssl.berekeley.edu/

S. Fields, “Hunting for Wasted Computing Power: New Software
for Computing Networks Puts Idle PC’s to Work,” University
of Wisconsin Research Sampler, 1993. [Online]. Available: http:
//www.cs.wisc.edu/condor/doc/Wiscldea.html

X. Evers, J. F. C. M. de Jongh, R. Boontje, D. H. J. Epema,
and R. van Dantzig, “Condor flocking: Load sharing between
pools of workstations,” Delft University of Technology, Delft, The
Netherlands, Tech. Rep. DUT-TWI-93-104, 1993. [Online]. Available:
http://citeseer.nj.nec.com/evers93condor.html

D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and
J. Pruyne, “A worldwide flock of condors: load sharing among
workstation clusters,” Delft University of Technology, Delft, The
Netherlands, Tech. Rep. DUT-TWI-95-130, 1995. [Online]. Available:
http://citeseer.nj.nec.com/epema96worldwide.html

E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky,
“SETI@home-massively distributed computing for SETIL,” Computing in
Science € Engineering, vol. 3, no. 1, pp. 78-83, January—February 2001.

D. Molnar, “The SETIat-home Problem,” ACM, no. 1, jan 2001.
[Online]. Available: http://www.acm.org/crossroads/columns/onpatrol/
september2000.html

G. Bell and J. Gray, “What’s next in high-performance computing,”
Communications of the ACM, vol. 45, no. 2, pp. 91-95, Feb. 2002.
[Online]. Available: http://doi.acm.org/10.1145/503124.503129

“Folding@home.” [Online]. Available: http://folding.stanford.edu/

http://www.platform.com/
http://www.cs.wisc.edu/condor/manual/v6.2/condor-V6_2-Manual.pdf
http://setiathome.ssl.berekeley.edu/
http://www.cs.wisc.edu/condor/doc/WiscIdea.html
http://www.cs.wisc.edu/condor/doc/WiscIdea.html
http://citeseer.nj.nec.com/evers93condor.html
http://citeseer.nj.nec.com/epema96worldwide.html
http://www.acm.org/crossroads/columns/onpatrol/september2000.html
http://www.acm.org/crossroads/columns/onpatrol/september2000.html
http://doi.acm.org/10.1145/503124.503129
http://folding.stanford.edu/

45

46.

47.

48.

49.

50.

51.

52.

93.

54.

REFERENCES 31

. B. Gaidioz, R. Wolski, and B. Tourancheau, “Synchronizing Network
Probes to avoid Measurement Intrusiveness with the Network Weather
Service,” in Proceedings of 9th IEEE High-Performance Distributed
Computing Conference, August 2000, pp. 147-154. [Online]. Available:
http://www.cs.ucsb.edu/~rich/publications/

S. Verma, J. Gawor, G. von Laszewski, and M. Parashar, “A CORBA
Commodity Grid Kit,” in 2nd International Workshop on Grid Computing
in conjunction with Supercomputing 2001 (SC2001), Denver, Colorado,
November 12 2001. [Online]. Available: http://www.globus.org/cog

G. von Laszewski, I. Foster, J. Gawor, and P. Lane, “A Java
Commodity Grid Kit,” Concurrency and Computation: Practice and
Ezperience, vol. 13, no. 89, pp. 643-662, 2001. [Online]. Available:
http://www.globus.org/cog/documentation/papers/cog-cpe-final.pdf

V. Getov, G. von Laszewski, M. Philippsen, and 1. Foster,
“Multi-Paradigm Communications in Java for Grid Computing,”
Communications of ACM, vol. 44, no. 10, pp. 119-125, Oct. 2001.
[Online]. Available: http://www.mcs.anl.gov/~laszewsk/bib/papers/
vonLaszewski--cacm.pdf

G. von Laszewski, I. Foster, J. Gawor, P. Lane, N. Rehn, and M. Russell,
“Designing Grid-based Problem Solving Environments and Portals,”
in 34th Hawaiian International Conference on System Science, Maui,
Hawaii, 3-6 Jan. 2001. [Online]. Available: http://www.mcs.anl.gov/
~laszewsk /bib /papers/vonLaszewski--cog-pse-final.pdf

“The Commodity Grid Project,” Web Page. [Online]. Available:
http://www.globus.org/cog

A. Jhoney, M. Kuchhal, and Venkatakrishnan, “Grid Application
Framework for Java (GAF4J),” IBM Software Labs, India, Tech.
Rep., 2003. [Online]. Available: https://secure.alphaworks.ibm.com/
tech/GAF4J

M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon,
and R. Bramley, “XCAT 2.0 : A Component Based Programming
Model for Grid Web Services,” in Submitted to Grid 2002, 3rd
International Workshop on Grid Computing, 2002. [Online]. Available:
http://www.extreme.indiana.edu/xcat

H. Nakada, M. Sato, and S. Sekiguchi, “Design and Implementations of
Ninf: towards a Global Computing Infrastructure,” Future Generation
Computing Systems, vol. 15, no. 5-6, pp. 649-658, 1999.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology
of the Grid: An Open Grid Services Architecture for Distributed

http://www.cs.ucsb.edu/~rich/publications/
http://www.globus.org/cog
http://www.globus.org/cog/documentation/papers/cog-cpe-final.pdf
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cacm.pdf
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cacm.pdf
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cog-pse-final.pdf
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cog-pse-final.pdf
http://www.globus.org/cog
https://secure.alphaworks.ibm.com/tech/GAF4J
https://secure.alphaworks.ibm.com/tech/GAF4J
http://www.extreme.indiana.edu/xcat

32

55.

56.

o7.

58.

99.

60.

61.

62.

63.

64.

65.

66.

67.

68.

REFERENCES

Systems Integration,” Web page, Jan. 2002. [Ounline]. Available:
http://www.globus.org/research/papers/ogsa.pdf

“World Wide Web Consortium,” Web Page. [Online]. Available:
http://www.w3.org/

“Web Services Gloassary,” Web Page, May 2003, w3C Working Draft.
[Online]. Available: http://www.w3c.org/TR/ws-gloss/

“Universal Description, Discovery and Integration of Business for the
Web,” Web Page. [Online]. Available: http://www.uddi.org/

K. Ballinger, P. Brittenham, A. Malhotra, W. Nagy, and S. Pharies,
“Web Services Inspection Language (WS-Inspection) 1.0,” Web
Page, November 2001. [Online]. Available: http://www-106.ibm.com/
developerworks/webservices/library /ws-wsilspec.html

G. C. Fox, “Portals for Web Based Education and Computational Sci-
ence,” 2000.

L. Smarr, “Infrastructures for Science Portals,” 2001. [Online]. Available:
http://www.computer.org/internet/v4nl/smarr.htm

G. C. Fox and W. Furmanski, “High Performance Commodity Comput-
ing,” in The Grid: Bluepirnt for a new computing infrastructure, 1. Foster
and C. Kesselman, Eds. Morgam Kaufman, 1999.

“The Jetspeed Webpage,” Web page. [Online]. Available: http:
//jakarta.apache.org/jetspeed/

“Grid Interoperability Project,” Web Page. [Online]. Available:
http://www.grid-interoperability.org/

D. Snelling, S. van den Berghe, G. von Laszewski, P. Wieder,
J. MacLaren, J. Brooke, D. Nicole, and H.-C. Hoppe., “A unicore
globus interoperability layer,” Web page, Nov. 2001. [Online]. Available:
http://www.grid-interoperability.org/D4.1b_draft.pdf

“NPACI HotPage,” Web Page, 2001. [Online]. Available: https:
/ /hotpage.npaci.edu/

“The Globus Project,” Web Page. [Online]. Available: http://www.
globus.org

“National Partnership for Advanced Computational Infrastructure,” Web
Page. [Online]. Available: http://www.npaci.edu/

G. von Laszewski, M. Russell, I. Foster, J. Shalf, G. Allen,
G. Daues, J. Novotny, and E. Seidel, “Community Software Development
with the Astrophysics Simulation Collaboratory,” Concurrency and

http://www.globus.org/research/papers/ogsa.pdf
http://www.w3.org/
http://www.w3c.org/TR/ws-gloss/
http://www.uddi.org/
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html
http://www.computer.org/internet/v4n1/smarr.htm
http://jakarta.apache.org/jetspeed/
http://jakarta.apache.org/jetspeed/
http://www.grid-interoperability.org/
http://www.grid-interoperability.org/D4.1b_draft.pdf
https://hotpage.npaci.edu/
https://hotpage.npaci.edu/
http://www.globus.org
http://www.globus.org
http://www.npaci.edu/

69.

70.

71.

72.

73.

74.

75.

76.

7.

REFERENCES 33

Computation: Practice and Fxperience, vol. 14, pp. 1289-1301, 2002.
[Online]. Available: http://www.mcs.anl.gov/~laszewsk/bib/papers/
vonLaszewski--cactusb.pdf

“ASC Portal Home Page,” http://www.ascportal.org.

G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann, J. Masso,
A. Merzky, T. Radke, E. Seidel, and J. Shalf, “Solving Einstein’s
Equations on Supercomputers,” IFEE Computer, pp. 52-59, 1999.
[Online|. Available: http://www.cactuscode.org

G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lanfermann, A. Merzky,
T. Radke, E. Seidel, and J. Shalf, “The Cactus Code: A Problem
Solving Environment for the Grid,” in High-Performance Distributed
Computing, 2000. Proceedings. The Ninth International Symposium
on, Pitsburg, PA, August 2000, pp. 253 —260. [Online]. Available:
http://xplore2.ieee.org/iel5,/6975/18801/00868657.pdf 7isNumber=18801

T. Prudhomme and K. D. Mish, “NEESgrid: A Distributed
Virtual Laboratory for Advanced Earthquake Experimentation and
Simulation: Project Execution Plan,” NEES, Tech. Rep. 2001-02,
June 2001. [Online]. Available: http://www.neesgrid.org/html/TR_2001/
NEESgrid_TR.2001-02.pdf

T. Prudhomme, C. Kesselman, T. Finholt, I. Foster, D. Parsons,
D. Abrams, J.-P. Bardet, R. Pennington, J. Towns, R. Butler, J. Futrelle,
N. Zaluzec, and J. Hardin, “NEESgrid: A Distributed Virtual Laboratory
for Advanced Earthquake Experimentation and Simulation: Scoping
Study,” NEES, Tech. Rep. 2001-02, February 2001. [Online]. Available:
http://www.neesgrid.org/html/TR_2001 /NEESgrid_TR.2001-04.pdf

“Particle Physics Data Grid,” Web Page, 2001. [Online]. Available:
http://www.ppdg.net/

“The International Virtual Data Grid Laboratory,” Web Page. [Online].
Available: http://www.ivdgl.org/

“GriPhyN - Grid Physics Network,” Web page. [Online]. Available:
http://www.griphyn.org/index.php

G. von Laszewski, B. Ruscic, P. Wagstrom, S. Krishnan, K. Amin,
S. Nijsure, R. Pinzon, M. L. Morton, S. Bittner, M. Minkoff,
A. Wagner, and J. C. Hewson, “A Grid Service Based Active
Thermochemical Table Framework,” in Third International Workshop
on Grid Computing, ser. Lecture Notes in Computer Science, vol. 2536.
Baltimore, MD: Springer, 18 Nov. 2002, pp. 25-38. [Online]. Available:
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cmes.pdf

http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cactus5.pdf
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cactus5.pdf
http://www.cactuscode.org
http://xplore2.ieee.org/iel5/6975/18801/00868657.pdf?isNumber=18801
http://www.neesgrid.org/html/TR_2001/NEESgrid_TR.2001-02.pdf
http://www.neesgrid.org/html/TR_2001/NEESgrid_TR.2001-02.pdf
http://www.neesgrid.org/html/TR_2001/NEESgrid_TR.2001-04.pdf
http://www.ppdg.net/
http://www.ivdgl.org/
http://www.griphyn.org/index.php
http://www.mcs.anl.gov/~laszewsk/bib/papers/vonLaszewski--cmcs.pdf

34

78.

79.

80.

81.

REFERENCES

C. Pancerella, J. D. Myers, T. C. Allison, K. Amin, S. Bittner, B. Di-
dier, M. Frenklach, J. William H. Green, Y.-L. Ho, J. Hewson, W. Koe-
gler, C. Lansing, D. Leahy, M. Lee, R. McCoy, M. Minkoff, S. Nijsure,
G. von Laszewski, D. Montoya, R. Pinzon, W. Pitz, L. Rahn, B. Rus-
cic, K. Schuchardt, E. Stephan, A. Wagner, B. Wang, T. Windus, L. Xu,
and C. Yang, “Metadata in the collaboratory for multi-scale chemical
science,” in 2003 Dublin Core Conference: Supporting Communities of
Discourse and Practice-Metadata Research and Applications, Seatle, WA
28 Sept.2 Oct. 2003.

I. Foster, J.-S. Vockler, M. Wilde, and Y. Zhao, “Chimera: A Virtual Data
System for Representing, Querying and Automating Data Derivation,” in
14th International Conference on Scientific Database Management, Edin-
burgh, 2002.

E. Deelman, J. Blythe, Y. Gil, and C. Kesselman, “Pegasus: Planning for
Execution in Grids,” ISI, Tech. Rep. TR-2002-20, November 2002.

“DAGMan (Directed Acyclic Graph Manager),” Web Page. [Online].
Available: http://www.cs.wisc.edu/condor/dagman/

http://www.cs.wisc.edu/condor/dagman/

Biographies

REFERENCES

Gregor von Laszewski is a scientist at Argonne
National Laboratory and a fellow at the University
of Chicago Computation Institute. He specializes in
Grid computing. He is the principal investigator of
the Java CoG Kit, which provided the first defacto
standard for accessing Globus through Java. He ob-
tained his B.S. and his M.S in computer science at
University of Bonn, Germany. In 1996, he received
a Ph.D. form Syracuse University, where he devel-
oped a loosely coupled metacomputing environment
allowing seamless access to several supercomputing
centers through workflows. He has published more
than forty papers and technical reports in the area
of distributed and Grid computing.

Kaizar Amin is a Ph.D. student in the computer
science department at the University of North Texas.
He received his B.E in computer engineering from
Mumbai University, India and M.S in computer sci-
ence from the University of North Texas. His re-
search interest includes adaptive middleware for Grid
computing, peer-to-peer Grids, Grid workflows, and
Grid mobility using mobile agents.

35

	I Grid Middleware
	Grid Middleware
	The Grid
	Grid Architecture
	Grid Middleware Software
	Grid Middleware Challenges
	Grid Middleware Standardization
	Grid Middleware Services
	Elementary Grid Middleware Services
	Advanced Grid Management Services

	Grid Middleware Toolkits
	Globus Toolkit
	Legion
	Condor
	SETI@Home
	Network Weather Service
	Commodity Grid Kits
	Open Grid Services Architecture
	Service Factories and Instances.
	Service Data.

	Notification

	Portal Middleware for Grids
	Grid Middleware to Deploy Virtual Organization Portals

	Applications Using and Enhancing Grid Middleware
	Astrophysics
	Earthquake Engineering
	High Energy Physics Grids

	Concluding Remarks

	

