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Abstract

Highly variable parallel application execution time is a
persistent issue in cluster computing environments, and can
be particularly acute in systems composed of Networks of
Workstations (NOWs). We are looking at this issue in terms
of consistency. In particular, we are focusing on network
performance. Before we can use techniques from fault man-
agement to attain consistency, this paper presents our pre-
liminary analysis of run-time variability from logs and ex-
periments, exposing important issues related to systemic in-
consistency in NOW clusters. The characterization of appli-
cation sensitivity can be used to set network performance
goals, thereby defining operational requirements. Network
performance depends on the virtual topology imposed by
the scheduler’s allocation of nodes and the communication
patterns of the set of running applications. Therefore it is
important to look at both the network and the cluster’s cen-
tralized node mapper (scheduler) as critical subsystems.

Keywords: Cluster, Mryinet, Application Run-Time Sen-
sitivity, Network performance.

1. Introduction

A central idea in cluster computing is that the entire com-
puting environment (the applications, the resources they
use, and any centralized allocation and control entities)

must be thought of as a “system”. Moreover, it is desirable
that the system operate in a consistent manner. Inconsis-
tent, or highly variable run-time of applications executing
on clusters continues to be an issue, particularly on systems
composed of networks of workstations (NOWs) [1]. Highly
variable run-time carries both technological and economic
ramifications.

Parallel applications running on clusters are generally
submitted as batch jobs. Users request a number of nodes
from a centralized scheduler/resource manager that allo-
cates nodes based upon centralized access policies and
queueing disciplines. Variability in application run-time
is often attributed to variations in the input data set or
the design of the application itself. When the input data
set remains constant, highly variable run-time performance
forces the developer or user to “pad” estimates of run-time
in order to ensure completion of the job [18]. This approach
of padding run-time estimates may work to undermine the
efficiency of the scheduler due to large numbers of job ter-
minations at unexpected times.

Computing using clusters is rapidly evolving from the
laboratory to the business environment. A ramification of
job padding is the potential of unused (idle) nodes and the
resulting loss of revenue. Additionally, continued refine-
ment of applications to achieve “optimum” performance re-
sults in increased development cost and lack of portability.
As this evolution progresses, it will quickly become unac-
ceptable for providers of cluster resources to deliver incon-



sistent performance of those resources while reaping finan-
cial benefits of extended application run-times. Moreover,
it will also become unacceptable for providers not to con-
trol the performance of their resources or even explain why
inconsistency is occurring relative to them.

We are focusing on the contribution of the interconnec-
tion network to application run-time variability in clusters
of NOWs. The network in these systems has no direct con-
trol over the virtual topology imposed by the scheduler at
run-time. This topology along with the communication pat-
terns of each application running on the cluster at any given
time complicates the efficient transfer of information (mes-
sages) between nodes. Moreover, network reaction to con-
gestion and other soft faults is further complicated since
adaptive routing schemes do not take into account other
cluster subsystems, and therefore the ramifications of net-
work adaptation.

This work presents an analysis of issues related to par-
allel application run-time variability from logs and experi-
ments on the Chiba City Linux NOW cluster located at Ar-
gonne National Laboratory [21]. We show that inconsistent
application performance may not be limited to the applica-
tion itself. Other cluster subsystems, such as the intercon-
nection network and scheduler may also contribute to over-
all system performance degradation. This systemic perfor-
mance degradation ultimately degrades the performance of
one or more parallel applications simultaneously executing
on the cluster.

The remainder of this paper is organized as follows. In
section 2, we present background information on parallel
application design with emphasis on modeling communi-
cation cost. Section 3 examines work related to various as-
pects of performance variability in high performance com-
puting. We then present our preliminary experiments and re-
sults in section 4. Finally, we summarize our thoughts and
target areas for future work in section 5.

2. Background

Parallel programs are distributed among many processes
which are then distributed across several compute nodes.
Several processes may be allocated to a single compute
node but in many cases a one-to-one relationship is es-
tablished of processes to processors. Communication be-
tween processes then reduces to communication between
processors, requiring the services of the interconnection
network. Several parallel applications execute simultane-
ously in NOW clusters. Therefore there are several factors
to consider and balance to ensure that applications do not
excessively “interfere” with each other.

An important area of consideration is to examine how
parallel programs are analyzed, modeled and designed. Tra-
ditionally parallel programs (applications) are developed

with a single goal - maximum performance. In this case
maximum performance is defined as

Definition 2.1 Maximum Performance. Solving (or at
least terminating) a computational problem in the small-
est amount of real (wall clock) time.

2.1. Parallel Application Design

A methodology developed in [11] commonly used to an-
alyze, model, and design parallel programs (sometimes re-
ferred to as “codes”), follow four distinct yet interdepen-
dent stages:

1. Partitioning. The decomposition of the problem into
small computational tasks, exposing opportunities for
parallel execution. The problem is partitioned into
small pieces of computation and data by way of func-
tional or domain decomposition respectively.

2. Communication. Defining the communication required
to coordinate task execution.

3. Agglomeration. Tasks may be combined into larger
tasks to improve performance or reduce development
costs.

4. Mapping. Finally, each task is assigned to a proces-
sor in a manner that attempts to satisfy the compet-
ing goals of maximum processor utilization with min-
imum communication cost.

Clearly, perfect balance of these goals is not always possi-
ble or desired.

The mapping process is clearly a critical aspect
of achieving maximum performance. The static map-
ping of tasks is useful for those codes that decompose
nicely into structured communication formations, tak-
ing advantage of certain direct interconnection topolo-
gies, such as trees, grids, or meshes. When communication
patterns become unstructured static mapping is less use-
ful. Moreover, when parallel applications execute on
NOW’s tasks (nodes) are generally mapped dynami-
cally using centralized schedulers and resource managers.
The mapping aspect of parallel program design then be-
comes disjoint from the other design aspects.

2.2. Parallel Application Communication Model-
ing

The concept of modeling communication cost in paral-
lel programs is developed in [11] and [13] with a linear 2-
parameter model:

Tmsg = s + rn, (1)

where s is the startup time, r is the transfer time of a unit of
data (bits, bytes, words, etc.) and n is the number of units



being transferred. The startup time s is generally assumed
to be independent of message size.

When there is competition for network resources a scal-
ing factor S is introduced to represent the number of pro-
cessors needing to send concurrently over the same wire

Tmsg = s + rnS. (2)

Equation 2 does not account for the cost of contention, be
it for message retransmission due to collision or the cost of
network adaptation (re-routing). Parallel applications such
as finite difference (commonly used in atmospheric model-
ing) and other single program multiple data (SPMD) prob-
lems operate synchronously. This means processors tend to
send and receive messages at approximately the same time.
In these applications processes cannot proceed until their
messages have been received. The impact of repeated or
prolonged contention is a gradual skewing of application
synchronization, resulting in unpredictable and often exces-
sive run-time. Other problems such as searches and matrix
construction algorithms operate asynchronously. Therefore
it is assumed that processors executing this type of applica-
tion will seldom compete for network bandwidth.

The scaling factor S is most useful when the parallel ap-
plication is the only one running on the cluster. When more
than one application is executing simultaneously (a com-
mon practice on NOW’s) modeling communication perfor-
mance in this manner for the purpose of run-time perfor-
mance estimation may be less effective, since the systemic
communication patterns and task locations for the set of ap-
plications is unknown.

Considerable effort has been put forth to achieve max-
imum performance of network hardware in terms of raw
bandwidth. Techniques have also been developed at the
sub-application level to achieve communication abstraction
and latency improvement. Special message passing libraries
such as MPI [15] and PVM [12] have been developed for
this purpose. Additionally, techniques have been developed
to all but eliminate kernel intervention of the communica-
tion process with so-called “zero copy” mechanisms.

3. Related Work

The issue of run-time variability has been studied from
several different perspectives. From the perspective of the
application, performance tuning and so-called “steering”
concepts have been attempted to aid in post-mortem appli-
cation development and optimized (tuned) execution. Re-
search in centralized schedulers has attempted to address
run-time variability in a proactive manner by trying to op-
timize the location of nodes while maintaining the sched-
uler’s overall objective of maximum node utilization. Work
related to network performance has traditionally focused on
raw bandwidth performance, reachability, and adaptability.

We are looking at this issue at the “communication” level
from the perspectives of the network and application.

3.1. Application Performance Management

Several areas related to performance management have
been studied in the context of (wide area) Grids and (local
area) clusters. Work in the area of parallel program appli-
cation performance prediction such as [26] provide meth-
ods and assessment of application program stability by in-
strumenting the application code and stimulating it using
a time perturbation technique and creating program execu-
tion graphs.

Program tuning [35] and steering [17], [38], [37] is an
area that shows promise toward adapting parallel applica-
tions to run more efficiently (maximizing performance) dur-
ing program execution. Simply, “program steering permits
users to control program execution in terms of program ab-
stractions familiar to them” [37]. The concept does how-
ever require learning a toolkit (middleware), then instru-
menting the application with steerable objects. A limitation
as noted by the authors is that some programs are more
steerable than others. Before a program can be tuned or
steered it is necessary for the parallel program to communi-
cate “what” can be tuned or steered, which is considered in
[20]. As part of the Active Harmony [36] software architec-
ture for computational object management in dynamic en-
vironments, it is intended to allow applications to advertise
tuning options to a higher level decision making entity.

3.2. Scheduling and Resource Management

The function of a scheduler in a cluster environment is to
allocate (map) nodes to jobs. So we say that the scope of the
scheduler is system wide. For example, a cluster scheduler
generally is responsible for allocating nodes within a clus-
ter to jobs. Closely related to schedulers are resource man-
agers whose focus is component related. What we mean is
that a resource manager is more concerned with individual
components, such as a single compute node or a portion of
an interconnection network. For instance, a resource man-
ager typically handles activities such as moving a parallel
program’s application code to the nodes, then beginning the
execution of the program. Overall, solving the problem of
efficiently scheduling groups of tasks to a set of machines
forming a system is NP-complete [28], [9], [23].

The objectives of each subsystem are clear. For cost ef-
fectiveness, the scheduler must always try to fully utilize the
nodes within the system. The objective of a resource man-
ager is to utilize each system component effectively. An ex-
ample of this might be to match compute node capability in
a cluster with high performance network resources with an
application that can most benefit from these resources. In-



terestingly, most schedulers available today work well only
on certain systems and were never designed specifically for
use on clusters [4].

In cluster environments, distributed techniques such as
[9] propose local scheduling based on coscheduling tech-
niques. Coscheduling attempts to ensure that no process
will wait for a nonscheduled process for synchronization or
communication and will minimize waiting time at synchro-
nization points. This work focuses on issues related strictly
with the nodes, such as its architecture, and fails to address
issues related to the interconnection network explicitly.

Work related to centralized cluster scheduling include
communication-aware task mapping strategies [28], con-
tiguous allocation strategies with [18], [22] or without ag-
gressive backfilling [24], [32]. At this time however there is
no evidence of combining the gathering of communication
requirements or the converse (application run-time sensitiv-
ity to communication performance) with the integration of
centralized scheduling and resource management systems.
In [28], network awareness is achieved by understanding
application communication requirements, either by mea-
surement or estimation. Additionally, the available network
resources must be characterized and a criterion must be de-
veloped to determine the suitability of network resource al-
location to each application allocated. A mapping technique
is developed based on these requirements but there is no
mention on how these requirements are actually gathered or
how the resulting mapping would be integrated with a cen-
tralized scheduler.

3.3. Network Performance and Adaptability

Research continues in the areas related to high perfor-
mance network performance, contention, congestion and
traffic control and adaptive routing. The vast majority of
work attempts to understand the fine details of moving bits
of information from point A to point B. In high performance
networks this requires specialized fine-grained techniques
such as sophisticated clocks [5] and faster sampling rates
[31].

Other work such as [25] studies the effects of latency,
overhead, and bandwidth in cluster architectures in the con-
text of the LogP model [7], where it is noted that the abil-
ity to predict network performance in the face of commu-
nication imbalance (burstiness) is difficult at best. Another
ongoing research project [2] involves the combination of
network monitoring and adaptability which could be ap-
plied to our work. The Active Mapper and Monitor for
Myrinet (AM3) uses a hierarchical approach to route dis-
covery, traffic monitoring, and adaptability of a high perfor-
mance Myrinet network.

An area closely related to network performance and
adaptability is that of congestion and traffic control. In one

case [6], special nodes are used to remove data from the net-
work temporarily. Another approach is to handle nonuni-
form traffic that is known a priori differently from uniform
traffic by marking the traffic prior to entry into the network
[19]. This approach does require modifications to current
hardware.

Other approaches that attempt to address high perfor-
mance network congestion include using what are com-
monly called overlays, in this case called multirail networks
[30] and exchange schemes [34] that take into account the
network topology to compute a communication schedule
that is a contention free complete exchange of information
in the cluster. Yet another mechanism proposed in [3] as-
sumes the existence of virtual channels and estimates net-
work traffic locally based on a percentage of free virtual
channels available.

All of the above work considers network performance,
but not overall system performance. A lack of systemic con-
sideration exposes the potential for interactions that may
contribute to highly variable parallel application execution
time. This is due to the fact that some parallel applications
are sensitive to excessive or continued time “perturbations”
in their execution [26]. One particularly nagging question
arises that when the network is experiencing congestion,
how does the network know that adapting in a particular
way will not induce more network congestion?

3.4. Network Performance Variability

In [8], the topic of hot spot contention is explored in
shared-memory multiprocessor systems. In this context, hot
spot contention is described as a phenomenon whereby sev-
eral processors request access to a critical data structure, or
more generally to a single critical memory module, inde-
pendent of data structure. Once hot spot contention begins,
interconnection points (network buffers, links) also become
congested. This leads to a ”tree-saturation” phenomenon in
multistage interconnection networks. Since some or all pro-
cessors are connected to a subset of these switches, hot-spot
congestion can effect normal (non hot-spot) traffic, degrad-
ing performance of all applications involved.

Communication performance from the perspective of
message passing libraries has been studied. The difficulties
and pitfalls of obtaining reproducible measurements are dis-
cussed in [13]. While the focus of this work was to illus-
trate issues involved with performance for a single applica-
tion, we note that several of the perils cited have relevance
to our work.

For example, depending on how communication con-
nections are setup the “first communication between two
processes can take far longer than subsequent communi-
cations”. Additionally, when trying to obtain reproducible
measurements for a given application it is important not to



ignore contention with unrelated applications or jobs. This
is precisely the type of behavior we are interested in, how-
ever we are interested in how application run-time is af-
fected by this contention. Finally, message-passing accom-
plishes both the transfer of data and a synchronization. The
synchronization (or handshake) indicates that the data are
available. We need to ensure that this is taken into account.

4. Experiments and Results

It is generally difficult to acquire sufficient direct data
reflecting the overall execution of parallel programs. Suf-
ficiently instrumenting a parallel application can lead to
overwhelming amounts of data that must then be analyzed.
Probing can affect data movement (cache) efficiency, which
can alter the original performance of the application itself.
Moreover, the nature of concurrent processing suggests that
no two executions of the same parallel program using the
same input data set will execute exactly the same way with
the same run-time. It is precisely this idea that makes it so
difficult to precisely predict how long a parallel program
will take to run.

In most cases, jobs are submitted to clusters in such a
way that a request is made to the scheduler for some num-
ber of nodes for some period of (wall clock) time. It has
been reported in [10] and [18] that in fact these requests
overestimate the actual wall clock execution time by fac-
tors of 2 to 5. Therefore the requested time for nodes is ac-
tually the sum of an estimated run-time plus some amount
of “padding”. This padding not only complicates the task
of the scheduler, but it also demonstrates the ineffectiveness
of accurately predicting the run-time of parallel programs.
Conversely, we see that parallel programmers do have some
idea of how long their program should take to execute, yet
there seems to be a wide variation in overestimation thus
it is difficult to determine the accuracy of the estimate por-
tion.

Our preliminary investigation of run-time variabil-
ity is the analysis of run-time logs produced by the sched-
uler/resource management system (Maui/PBS) [33],[27] of
the Chiba City [21] Linux NOW cluster at Argonne Na-
tional Laboratory. The Maui scheduler has gained wide
acceptance as one of the most advanced schedulers cur-
rently available to the High Performance Computing (HPC)
community. Maui is what is known as a batch sched-
uler, which determines when and where submitted jobs
should run in a sequential fashion [18].

The Maui scheduler handles both static and automatic
control of the batch job process. By automatic we mean that
Maui automatically distributes the required input and exe-
cutable files out to the allocated nodes and begins execu-
tion of the job. If an application (or script) terminates be-
fore the scheduled timeout of the job, Maui will automat-

ically close down the job by retrieving the output files for
the submitter, then relinquishing the nodes back to being
available. Alternatively, users can reserve nodes for a pe-
riod of time and manually push their job files out to each
reserved node, run the job, then manually pull the result-
ing output back. Here the user does not need to specifically
estimate the run-time of the job. Rather, the user must esti-
mate how long it will take to run the job as well as the time
to push any executable and data files to the assigned nodes
and also collect any output data from the nodes when the
job finishes. In either case (more so in the manual case) it is
possible for there to be idle nodes for long periods of time.

Maui operates on an iterative basis, where events trig-
ger the beginning of a new iteration. These events include a
job or resource state-change, a reservation boundary, an ex-
ternal command, or a timeout. Maui supports the notions of
job class, QoS, job credentials, and throttling policies. It is
worth noting that the concept of QoS in the scheduler con-
text has nothing to do with communication or network QoS
[33]. Instead, QoS applies to special privileges such as im-
proved queue time, access to additional resources, or ex-
emptions from certain constraining policies.

Two policies for backfill are implemented in Maui,
where backfill is a scheduling optimization allowing bet-
ter (high utilization) of resources by running jobs out of or-
der. This concept “essentially fills holes in the node space”.
The backfill policies are called “soft” and “hard” pol-
icy backfill respectively. They differ by virtue of soft and
hard “throttling policies” which limit resources such as pro-
cessors, jobs, nodes, and memory. One of the drawbacks
of backfilling cited is job subset delay, which strongly re-
lates to inaccurate estimation of run-time performance by
the submitter, a problem discussed earlier.

To gain a better understanding parallel application run-
time variability we performed experiments consisting of
communication tests and event log analysis. These initial
experiments were aimed at confirming or refuting the fol-
lowing hypotheses:

1. Parallel applications running on NOW clusters exhibit
a high degree of run-time variability.

2. Requested node times for these applications signifi-
cantly overestimate (pad) the actual run-time.

3. Linear communications models used for application
design and run-time estimation purposes may not ac-
curately reflect “real” communications.

4.1. Application Run-Time Variability

Maui scheduler log files from the years 2000, 2001, and
2002 were examined. Each job is represented by an event
entry consisting of 44 attributes similar to that shown in fig-
ure 1. Each log file contains event records of the completed



job activity from a single day. Each job completion event
constitutes a record in the file. Note that in figure 1 there
are indications of which nodes were assigned to the job
(ccn152:ccn151:...) and what interconnection net-
work was used ([myrinet]).

35248 0 12 binns futures
28800 Completed [default:1]1034179264 1034179277
1034179277 1034181293 [NONE] [NONE] [NONE]
>= 0 >= 0 [myrinet]
1034179264 12 1 [NONE] [RESTARTABLE]
mcs-mml [NONE] [NONE] 0 239162.01
DEFAULT 1 0 0 0
0 2140000000 ccn152:ccn151:ccn149:ccn148:ccn116:
ccn115:ccn113:ccn112:ccn111:ccn110:ccn109:ccn108
0 [NONE] [NONE] [DEFAULT] [NONE]
[NONE]

Figure 1. Maui run-time log entry (2002)

The event logs of a set of over 4000 jobs executed dur-
ing 8 days between August to December of 2002 were ex-
amined. Of the 4209 jobs completed, 1318 (about 31%) of
the jobs had requested more than one processor. Of the 2891
remaining single processor jobs, 1982 (about 69%) of those
jobs “appear” to have been multiprocessor jobs. We deduce
this by examining groups of completed job events where a
single user requested more than one node at the same time
(or within seconds of each other) and the run-time is simi-
lar (same order of magnitude). We therefore conclude that
these multi-processor jobs were submitted to the scheduler
in a manual fashion as previously described. Table 1 clari-
fies this point.

Jobs Numproc > 1 Numproc = 1 Numproc = 1 &
Multiproc

4209 1318 (31%) 2891 (69%) 1982

Table 1. Job Distribution

Returning our focus back to the 1318 multiprocessor
jobs, we examined the run-time of each job. Jobs that lasted
less than 10 seconds were considered outliers and removed
from the data set. For the remaining 1146 jobs, the re-
quested time was compared against the actual run-time. Re-
sults of this comparison are shown in table 2. In this case
the majority of jobs (91%) are overestimated by a factor of
2 or greater.

Several interesting event sequences were also observed,
where we define an “event sequence” as a series of “Com-
pleted” events close in time where the same user has re-
quested the same number of nodes asking for the same

amount of wall clock time. We deduce from the informa-
tion contained in these sequences that the user ran the same
application with presumably the same or very similar data
set two or more times in a row, with subsequent runs fol-
lowing closely (within minutes) in time. By similar data we
mean that the user did not in all likelihood change the size
of the problem. If the user had changed the size of the prob-
lem then presumably the requested time of the job would
have been adjusted to accommodate the change. These se-
quences allow us to identify potential cases of run-time vari-
ability, however we do not have enough information to de-
termine the precise cause of the observed system and appli-
cation behavior. Table 3 illustrates a sampling of sequences
where the run-time variability is fairly high.

Jobs Req. < 2x Act. ≥ 2x to ≤ 5x Req. > 5x Act.

1146 92 (8%) 101 (9%) 953 (83%)

Table 2. Requested vs. Actual Run-time

Table 3 also illustrates the issue of overestimation of ap-
plication run-time. We observe that the requested time of
the nodes far exceeds the actual run-time (by a factor of
2 to over 10). In fact, in the best cases where applications
are known to be stable and exhibit less than 5% communi-
cation overhead the logs revealed that the requested node
times were still on the order of 2 to 5 times the actual run-
time, as also stated in [10] and [18].

4.2. Non-Deterministic Node Allocation

As discussed in section 2, the parallel program design
process consists of a “mapping” phase, where tasks are
mapped to specific nodes in order to minimize communi-
cations contention. Schedulers in clusters of NOWs allo-
cate nodes dynamically at run-time, effectively removing
the mapping step from the parallel program designer. If
the scheduler does not use or have the capability of taking
advantage of network topology, then intuitively the effec-
tiveness of the mapping step may be diminished from the
perspective of the application. We are concerned that the
combination of a lack of network topology awareness and
scheduler backfilling may inadvertently contribute to creat-
ing congestion spaces when several parallel applications ex-
ecute simultaneously on the cluster.

Run-time variability was also observed in conjunction
with Non-deterministic node allocation as seen in table 3.



User Req.
(sec.)

Actual
(sec.)

Req.
Nodes

Node Allocation

A 28000 416 12 111 - 100

A 28000 207 12 111 - 100

A 28000 2016 12 152, 151, 149, 148,
116, 115, 113-108

B 18000 1426 72 224-218, 216, 210-
201, 154, 151, 130,
119, 118, 116, 115,
113-105, 103-98, 96,
95, 93-85, 81-74, 72,
71, 69, 67-65, 32, 31,
29-27, 25, 23

B 18000 131 72 223-218, 216, 210-
207, 205-201, 154,
151, 130, 119, 118,
116, 115, 113-105,
103-101, 98, 96, 95,
93-85, 81, 80, 78, 77,
75, 74, 72, 71, 66, 65,
32, 31, 29-27, 25, 23,
20, 19, 16, 13, 12, 10,
7-4

C 21600 511 32 224 - 222, 210, 207,
203, 154, 151, 130,
119, 118, 116, 115,
113 - 105, 103 - 98, 96,
95, 93, 92

C 21600 187 32 224 - 218, 216, 215,
213 - 201, 154, 151,
130, 119, 118, 116,
115, 113 - 111

D 3600 1184 6 167 - 164, 162, 161

D 3600 431 6 183 - 178

Table 3. Run-time Event Sequences

User A clearly experiences a significant run-time increase
when the allocation of nodes is more widely distributed
around the cluster as shown between runs 2 and 3. It is less
clear, but it appears that user B experiences an improve-
ment when the allocation becomes apparently more widely
distributed. The jobs submitted by user C on the other hand
showed a marked improvement in run time when the allo-
cation of nodes is tighter.

In the context of Chiba City the Maui scheduler assigns
nodes in “reverse node number order”. The physical distri-
bution of nodes to switches is not in node order however.
This is presumably done to ensure “all-to-all” maximum
bisection bandwidth among the nodes in the cluster. Each
node is equipped with both fast Ethernet and Mryinet net-
work interfaces. In terms of Mryinet connectivity the clus-
ter topology is flat, with 256 compute nodes and 88 16-port
switches. A node communicating with its nearest neighbor
(numerically speaking) must traverse a minimum of one,
and a maximum of three switches. Communication across
the cluster must traverse a maximum of five switches.

In the case of user A in table 3, the effect is that commu-
nications between the assigned set of nodes (111-100) uti-

lizes 14 switches. Had the scheduler selected a specific “set”
of nodes the number of switches involved could have been
reduced to as little as 3. A more detailed examination of
the network’s routing tables or tests using different node as-
signments must be performed in order to determine if any
congestion avoidance advantage is possible using this ap-
proach.

4.3. Communication Variability

As discussed previously in section 2, communication
cost in parallel programs is most often described using lin-
ear s + rn models. From the perspective of the application
we would expect to see little variation in communication
time for a given message size. Several tools exist for eval-
uating MPI performance such as MPIBench [16], mpptest
[14], and SKaMPI [29] to distinguish the s+rn relationship
between inter-process, but intra-processor vs. inter-process,
inter-processor communications. Many of these tools exe-
cute short “bursts” of many messages. They also tend to rely
on finely granular global clocking mechanisms and are less
useful to test the intra-processor (many processes on a sin-
gle processor) communications for comparison purposes.

We wish to study the statistical variation of communi-
cation cost, a feature lacking in most performance specific
tools. We are currently running experiments on Chiba City
to ascertain the required timing accuracy and a reasonable
development strategy for the first iteration of a tool to bet-
ter understand the network contribution to communication
variability.

We have executed a series of experiments to learn about
the nature of communications on NOWs. These simple ex-
periments expose communication variability as a function
of message size. Tests were run on 1, 2, 4, and 8 node
configurations. In all cases multiple processes communi-
cated with each other in pairs, similar to the implementa-
tion of MPIBench [16]. The main difference was that rather
than communicating as rapidly as possible we intentionally
slowed down our “application communication emulation”.
The communication “message rate” was such that the run
time was on the order of several hours to collect data on
roughly several thousand messages. We also limited this set
of experiments to blocking send operations.

Figure 2 illustrates the behavior observed on a single
node. Message data in this case was only collected up to
64KB sized messages. Figures 3, 4, and 5 illustrate mes-
sage variability behavior for 2, 4, and 8 nodes, particularly
as the message size grows beyond 10KB. Data points that
were clearly indicative of connection setup as described in
[14] were considered outliers and removed from the data
sets and subsequent statistical calculations.

The results of these simple experiments are both inter-
esting and surprising. Message sizes used for the 2, 4, and 8
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Figure 3. Blocking Send (2 Nodes, 2 Pro-
cesses)

node experiments were 1, 128, 1K, 16K, 32K, 64K, 128K,
and 512K bytes. Notice in figure 2 as the message size in-
creases (especially above 1KB) the mean value rises at a
very near linear rate. This performance would be expected
according to the s + rn model. As we look at the graphs
of multiprocessor communications we begin to see unex-
pected behavior.

In figures 3, 4, and 5 we can see sections where the mean
message time (the solid line) is actually non-monotonic. In
figures 3 and 5 two message sizes (32KB and 128KB) ex-
hibited average message times that were less than the next
smaller message size (16KB and 64KB respectively), which
was unexpected. A degree of non-monotonicity can be ex-
pected due to a number of possible causes, such as a change
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Figure 5. Blocking Send (8 Nodes, 8 Pro-
cesses)

in cache operation or communication protocol [14]. Gener-
ally however we would expect this to occur at one point.
In these experiments only the minimum value (dashed “x”
line) exhibited strictly monotonic behavior over the range
of message sizes tested.

The maximum values (the dotted line) were observed to
exhibit widely varying behavior across the range of exper-
iments. Both the maximum value and standard deviation
(dashed “plus” line) varied significantly across the 16KB
to 128KB message sizes. After initially plotting these re-
sults we went back to investigate any obvious explanation
for these results. Surprisingly, there was no indication that
that the maximum value or standard deviation variations
were caused by several excessively long connection estab-



lishment events. To the contrary, the data contributing to
this were indeed scattered about the collected data in a ran-
dom fashion.

These results illustrate the potential of subsystem limi-
tations that may contribute to “systemic” inconsistency in
NOW clusters. The limitations of Application communi-
cation cost modeling, scheduler effects, and interprocessor
communications combine to degrade system performance,
resulting in highly variable application run-time behavior.
Our analysis and experiments are ongoing, however these
early results suggest that run-time variability remains an is-
sue in NOW clusters. The results also serve to motivate con-
tinued research in this area.

5. Summary and Future Work

We are in the early stages of our research to better un-
derstand the relationship between network performance and
parallel application run-time sensitivity. This work provides
the background and motivation to investigate using fault
management techniques to strive toward systemic perfor-
mance consistency in high performance computing. Paral-
lel applications using high performance networks do so be-
cause maximum performance is expected, and therefore as-
sumed. The interconnection network tries to move data as
fast and efficiently as possible from point A to point B. In
the presence of congestion the network could autonomously
decide to re-route traffic to reduce or avoid congestion, but
is this the “correct” decision to make?

Our approach to addressing parallel application run-time
sensitivity comes from the area of fault management. The
fault management paradigm is based on monitoring a sys-
tem to verify it is performing to some performance objective
or requirement. When a situation arises where this is com-
promised (or will shortly be compromised) a corrective ac-
tion is undertaken for the benefit of the operation of the sys-
tem.

While exploring the relationship between applica-
tion run-time sensitivity and network performance we
have also exposed three distinct yet inter-related clus-
ter “subsystems”, namely the scheduler/resource manager,
the interconnection network, and the “set” of applica-
tions executing on the cluster at any given moment. We
plan on investigating other potential relationships be-
tween these subsystems with the purpose of combining
them in a comprehensive NOW cluster management frame-
work.

The results of our experiments suggest that run-time
variability continues to be an issue in high performance
computing. Moreover, we show that run-time estimates con-
tinue to be conservatively padded to insure that the sched-
uler does not time out and terminate the application prema-
turely. Additionally, our results suggest that the virtual net-

work topology being produced by the scheduler may not be
sufficiently considered, which also may contribute to run-
time variability. Our preliminary findings also indicate that
linear n-parameter models traditionally used for modeling
communication cost may be less useful for larger message
sizes and when multiple applications run simultaneously on
the same system, a more common occurrence with today’s
large high performance NOW clusters. These issues when
taken collectively may go to undermine consistent perfor-
mance of the system as a whole.

Our future work promises to further expose the net-
work contribution to parallel application run-time variabil-
ity. It is recognized however, that subsystems acting au-
tonomously to correct perceived performance degradation
may be in fact contributing to systemic performance degra-
dation. It is therefore important to recognize that a compre-
hensive approach should be considered that addresses the
objectives and requirements of each critical subsystem (net-
work, scheduler, and applications) in a collective manner to
achieve more consistent performance.
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