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Abstract We present a reformulation of the well-known GRAM architecture based on the
Service-Level Agreement (SLA) negotiation protocols defined within the Ser-
vice Negotiation and Access Protocol (SNAP) framework. We illustrate how a
range of local, distributed, and workflow scheduling mechanisms can be viewed
as part of a cohesive yet open system, in which new scheduling strategies and
management policies can evolve without disrupting the infrastructure. This ar-
chitecture remains neutral to, and in fact strives to mediate, the potentially con-
flicting resource, community, and user policies.

1. INTRODUCTION

A common requirement in distributed computing systems such as
Grids [FK99, FKT01] is to coordinate access to resources located within dif-
ferent administrative domains than the requesting application. The coordina-
tion of Grid resources is complicated by the frequently competing needs of
the resource consumer (or application) and the resource owner. The appli-
cation needs to understand and affect resource behavior and often demands
assurances as to the level and type of service being provided by the resource.
Conversely, the resource owner may want to maintain local control and discre-
tion over how their resource(s) are used.

A common means of reconciling these two competing demands is to estab-
lish a procedure by which the parties can negotiate a service-level agreement
(SLA) that expresses a resource provider contract with a client to provide some
measurable capability or to perform a specified task. An SLA allows a client



2

to understand what to expect from resources without requiring detailed knowl-
edge of competing workloads nor of resource owners’ policies.

The Globus resource management architecture that we present here is based
on the notion of negotiation of SLAs between a client and a resource provider.
A resource provider can be directly associated with a resource, or alternatively
may be a service that virtualizes multiple resources, i.e., a broker or super-
scheduler in which case negotiation proceeds hierarchically. The SLAs are
defined such that it is meaningful to construct hierarchies of negotiating entities
acting as both providers and clients.

We have previously explored Grid resource management methods in our
work with the Grid Resource Allocation and Management (GRAM)
[CFK

�
98b] component of the Globus Toolkit, which supports remote access

to job-submission systems; DUROC [CFK99], a co-allocation system that uses
GRAM functions to compose jobs that use more than one resource; and the
General-purpose Architecture for Reservation and Allocation (GARA) [FRS00,
FFR

�
02], which extends GRAM to support immediate and advance reserva-

tion. Building on these experiences, and in particular on the decoupling of
reservation and task creation introduced in GARA, we defined the Service Ne-
gotiation and Access Protocol (SNAP) framework [CFK

�
02], an abstract ar-

chitecture that defines operations for establishing and manipulating three dis-
tinct types of SLA, as follows:

1 Resource service level agreements (RSLAs) that represent a commit-
ment to provide a resource when claimed by a subsequent SLA.

2 Task service level agreements (TSLAs) that represent a commitment to
perform an activity or task with embedded resource requirements.

3 Binding service level agreements (BSLAs) that represent a commitment
to apply a resource to an existing task, i.e. to extend the requirements of
a task after submission or during execution.

As illustrated in Figure 1.1, these three kinds of SLA support an interactive
resource management model in which one can independently submit tasks to
be performed, obtain promises of capability, and bind a task and a capability.
These three types of agreement can be combined in different ways to represent
a variety of resource management approaches including batch submission, re-
source brokering, adaptation, co-allocation, and co-scheduling.

Our presentation here first reviews the SNAP design and then describes a
concrete realization of the framework in the GRAM-2 next-generation Globus
resource management architecture. The GRAM-2 design addresses various
technical issues that arise when the SNAP protocol building blocks are incor-
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Figure 1.1. Three types of SLA—RSLA, TSLA, and BSLA—allow a client to schedule re-
sources as time progresses from ��� to �
	 . In this case, the client acquires two resource promises
(RSLAs) for future times; a complex task is submitted as the sole TSLA, utilizing RSLA 1 to
get initial portions of the job provisioned; later, the client applies RSLA 2 to accelerate execu-
tion of another component of the job via BSLA 1; finally, the last piece of the job is provisioned
by the manager according to the original TSLA.

porated into an operational resource management system. It provides a com-
plete solution to the problem of hierarchical negotiation of SLAs between a re-
source consumer and a resource provider. (A resource provider can be directly
associated with a resource, or alternatively may be a service that virtualizes
multiple resources, e.g., a broker or scheduler.)

2. MOTIVATING SCENARIOS

The SNAP SLA model is designed to address a broad range of applications
through the aggregation of simple SLAs. We motivate its design by examin-
ing three scenarios: a Grid in which community schedulers mediate access to
shared resources on behalf of different client groups; a file-transfer service that
uses advance reservations to perform data staging under deadline conditions;
and a job-staging system that uses co-allocation to coordinate functions across
multiple resource managers.

The schedulers in our scenarios are all examples of a class of resource man-
agement intermediaries that are variously referred to as brokers,
agents, distributed schedulers, meta-schedulers, or super-schedulers
[FRS00, MBHJ98]. What distinguishes each kind of intermediary are the poli-
cies that are supported between users, intermediaries, and underlying resource
schedulers. For example, an intermediary may support a large community of
users (e.g., a typical resource broker), or act on behalf of a single user (an
agent). A similarly wide range of policies can exist between the intermedi-
ary and its resource(s)—some intermediaries may have exclusive access to
resources while others may have no more rights than a typical user. The in-
termediary may not even be a distinguished entity for policy but instead may
simply act via rights delegated from the client.
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(a) Community scheduler scenario. Com-
munity schedulers (S1–S2) mediate access to
the resources (R1–R6) by their users (J2–J6)
through resale of SLAs suitable to community
criteria.
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(b) File transfer scenario. Transfer sched-
uler coordinates disk reservation before co-
scheduling transfer endpoint jobs to perform
transfer jobs for clients.

Figure 1.2. SLA architecture scenarios. Persistent intermediate scheduling services form
SLAs with users and underlying resources to help coordinate user activity in the Grid. This
supports scalable negotiation and also identifies points where mapping from one request or pol-
icy language to another is likely to occur.

2.1 Community Scheduler Scenario

A community scheduler is an entity that acts as a policy-enforcing interme-
diary between a community of users and a set of resources. Activities are sub-
mitted to the community scheduler rather than to end resources. The scheduler
then works to schedule those activities onto community resources so as to meet
community policies regarding use of the resource set: for example, to optimize
response time or throughput, or to enforce allocations. We are thus faced with
a two-tiered SLA negotiation process, from client to scheduler and then from
scheduler to client. The strictness of the policy environment in enforcing this
multi-tier SLA negotiation will affect the predictability and efficiency of the
resulting schedules. Even in an open resource environment in which the com-
munity scheduler is easily bypassed by aggressive clients, lightweight clients
may benefit from the sharing of resource discovery processes performed by the
scheduler.

As depicted in Figure 1.2(a), a Grid environment may contain many re-
sources (R1–R6), all presenting both an RSLA and a TSLA interface. First,
the scheduler negotiates capacity guarantees (via RSLAs) with its underlying
resources. With these capacity guarantees in hand, it can then negotiate RSLAs
or TSLAs with its clients, fulfilling its commitments by negotiating further
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SLAs with resources to map the requested user activities to the previously ne-
gotiated capacity. Depending on the community, workload, and other factors,
the scheduler may variously negotiate capacity before receiving user requests
(as suggested in the preceding discussion), or alternatively, may do so only af-
ter receiving requests. In either case, the ability to negotiate agreements with
underlying resources abstracts away the impact of other community schedulers
as well as any non-Grid local workloads, assuming the resource managers will
enforce SLA guarantees at the individual resources.

Community scheduler services (S1 and S2 in Figure 1.2(a)) present a TSLA
interface to users. Users in this environment interact with community and
resource-level schedulers as appropriate for their goals and privileges. The
privileged client with job J7 in Figure 1.2(a) may not need RSLAs nor the
help of a community scheduler, because the goals are expressed directly in the
TSLA with resource R6. The client with job J1 acquires an RSLA from R2 in
anticipation of its requirements and utilizes that reservation in a TSLA.

Jobs J2 to J6 are submitted to community schedulers S1 and S2 which might
utilize special privileges or domain-specific knowledge to efficiently imple-
ment their community jobs across the shared resources. Note that R2 is running
job J1 while guaranteeing future availability to S1 (which is in turn guarantee-
ing J2 a place to run based on that reservation). Similarly, R4 is running job
J4 from S1 while guaranteeing a future slot to J6 by way of S2. Scheduler
S1 also maintains a speculative RSLA with R1 to more rapidly serve future
high-priority job requests.

2.2 File Transfer Service Scenario

We next consider a scenario in which the user activities of interest are con-
cerned with the transfer of a file from one storage system to another. A transfer
requires multiple resources—storage space on the destination resource, plus
network and endpoint I/O bandwidth during the transfer—and thus the sched-
uler needs to manage multiple resource types and perform co-scheduling of
these resources through their respective managers.

As depicted in Figure 1.2(b), the file transfer scheduler S1 presents a TSLA
interface, storage systems provide TSLA/RSLA interfaces, and a network re-
source manager R2 presents an RSLA/BSLA interface. A user submitting a
transfer job (J1) to the scheduler negotiates a TSLA that includes a deadline.
The scheduler works to meet this deadline by: (1) obtaining a storage reserva-
tion on the destination resource R3 to ensure that there will be space for the
data; (2) obtaining bandwidth reservations from the network and the storage
devices, giving the scheduler confidence that the transfer can be completed
within the user-specified deadline; (3) submitting transfer endpoint jobs J2 and
J3 to implement the transfer using the previously negotiated space and band-



6

TSLA1

RSLA1

BSLA1

TSLA2

TSLA3

S
ta

ge
 o

ut

S
ta

ge
 in

time

BSLA2

RSLA2

TSLA4

Net

30 GB for /scratch/tmpuser1/foo/* files

Complex job

50 GB in /scratch filesystem

account tmpuser1

Figure 1.3. Dependent SLAs for file transfers associated with input and output of a job with
a large temporary data space. BSLA2 is dependent on TSLA4 and RSLA2, and has a lifetime
bound by those two. All job components depend on an outermost account sandbox assigned
temporarily for the purpose of securely hosting this job.

width promises; and finally, establishing a BSLA with R2 to utilize the network
reservation for the sockets created between J1 and J2.

2.3 Job Staging with Transfer Service Scenario

SLAs can be linked to address more complex resource co-allocation situ-
ations. We illustrate the use of linking by considering a job that consists of
a sequence of three activities: data is transferred from a storage system to an
intermediate location; some computation is performed using the data; and the
result is transferred to a final destination. Such a sequence would typically
be treated monolithically by the job system, but this approach is inappropriate
when data transfers involve significant resource utilization that spans resource
domains, as in the previous data transfer scenario, in which source and desti-
nation storage are under separate control.

As in the other examples, the computation in question is to be performed on
resources allocated to a community of users. However, for security reasons, the
computation is not performed using a group account, but rather, a temporary
account is dynamically created for the computation. The SLA model facilitates
the decomposition of staging and computation activities that is required for
these functions to be integrated with dynamic account management functions.

In Figure 1.3, TSLA1 results from a negotiation with the resource to estab-
lish a temporary user account, such as might be established by a resource for a
client who is authorized through a Community Authorization
Service [PWF

�
02]. All job interactions performed by that client on the re-

source become linked to this long-lived TSLA, as in order for the account to be
reclaimed safely, all dependent SLAs must be destroyed. The figure illustrates
how the individual SLAs associated with resources and tasks can be combined
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to address the end-to-end resource and task management requirements of the
entire job. Of interest in this example are:

TSLA1 is the TSLA negotiated to establish the above-mentioned temporary
user account.

RSLA1 promises the client 50 GB of storage in a particular file-system on the
resource.

BSLA1 binds part of the promised storage space to a particular set of files
within the file-system.

TSLA2 runs a complex job that will subsequently spawn subjobs for staging
input and output data.

TSLA3 is the TSLA negotiated for the first file transfer task, which stages the
input to the job site (without requiring any additional QoS guarantees in
this case).

TSLA4 is the TSLA negotiated for the second file transfer task, to stage the
large output from the job site, under a deadline, before the local file-
system space is lost.

RSLA2 and BSLA2 are used by the file transfer service to achieve the ad-
ditional bandwidth required to complete the (large) transfer before the
deadline.

The job for which TSLA2 is negotiated might have built-in logic to establish
the staging jobs TSLA3 and TSLA4, or this logic might be incorporated within
the entity that performs task TSLA2 on behalf of the client. In Figure 1.3,
the nesting of SLA “boxes” is meant to illustrate how the lifetime of these
management abstractions is linked in practice. Such linkage can be forced by
a dependency between the subjects of the SLAs, e.g., BSLA2 is meaningless
beyond the lifetime of TSLA4 and RSLA2, or alternatively can be added as a
management convenience, e.g., by triggering recursive destruction of all SLAs
from the root to hasten reclamation of application-grouped resources.

3. RESOURCE VIRTUALIZATION THROUGH
INTERMEDIARIES

The Community Scheduler introduced above can be viewed as virtualizing
a set of resources for the benefit of its user community. Resource virtualiza-



8

Scheduler
CommunityClient

Application
Resource
Manager

Resource

User Policy Resource PolicyCommunity Policy

control

request

respond

request

respond

advertise advertise

Figure 1.4. SLA negotiation with intermediaries. A negotiation pipeline between a user, com-
munity scheduler, and resource manager permits policies to be introduced at each stage which
affect the outcome and are illustrated using color mixing. User policy affects what requests are
initiated, community policy affects how user requests are mapped to resource-level requests,
and resource policy affects how resources may be utilized. Thus policy from each source mixes
into the stream of requests going to the right, and into the streams of advertisements and request-
responses going to the left.

tion can serve to abstract details of the underlying resources or to map between
different resource description domains. In our initial community scheduler ex-
ample, the scheduler provides the same sort of resource and task description
as the underlying resources, only insulating the user community from task-
placement decisions. However, with the file transfer scenario, the scheduler
accepts requests in a more application-level file transfer description language.
In this case, the scheduler insulates the user community from the more compli-
cated resource interactions necessary to implement a file transfer with deadline
guarantees in a distributed environment.

Each such intermediary scheduler delineates a boundary between resource
domains and may map from more abstract user terminology to underlying re-
source mechanisms, as well as bridging policy domains. Such mappings can
complicate the Grid resource management problem, as important scheduling
information can be lost. However, we believe that there is also the opportunity
to introduce intuitively-framed policies at each such boundary.

Figure 3 illustrates how policies from different domains mix into SLA nego-
tiation with intermediaries, each of which can potentially contribute to resource
management decisions. Community policies may affect relative priority of dif-
ferent user tasks with a community scheduler. At the resource, owner policies
may affect relative priority of different communities. In order to implement the
community policy, the community scheduler must negotiate dynamic policies
(SLAs) to differentiate tasks on the same physical resources.
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4. UNDERSTANDING SERVICE LEVEL
AGREEMENTS

The preceding sections describe the role of automated intermediaries in ne-
gotiating SLAs for complex Grid scenarios. Automated SLA negotiation re-
quires that we be able to represent, in machine-processable terms, what is of-
fered by a service and what is desired or requested by a client. Following
discovery and negotiation, our three kinds of SLA represent what is to be per-
formed by the resources.

This leads to several questions. If all three agreements capture what is to
be performed, what distinguishes the three kinds of agreement? How are the
SLAs represented? What does it mean for a scheduler to agree or “promise” to
do something? In the remainder of this section, we answer these questions.

4.1 Different Kinds of Agreement

There are three promises we can capture in our SLAs. Resource managers
can promise that a resource will be available for future use, promise that a
resource will be consumed in a certain manner, and promise that a certain
task will be performed. The three kinds of agreement introduced in Section 1
capture important combinations of these promises. What makes these com-
binations important is how they provide for the multiple negotiation phases
exploited in our scenarios.

All three kinds of SLA provide a promise of future resource availability.
What distinguishes RSLAs from the others is that RSLAs only promise re-
source availability without any associated plan for utilization. As illustrated
in Figure 1.5, the remaining two kinds of SLA are formulated by the intro-
duction of the other promises. Our BSLAs add a plan for resource utilization,
without performing any new tasks, and TSLAs capture all three promises at
once. There is not a fourth kind of SLA capturing a task promise without uti-
lization. Such an agreement would not be meaningful, because performing a
task requires resource utilization.

In the simplest case, these SLAs are negotiated in sequential order, as spec-
ified above. More generally, there is a partial order based on references made
in the resulting SLAs. For example, an RSLA may be referenced in a TSLA,
or it may only be referenced in a subsequent BSLA that augments the task. In
the latter case, the TSLA and RSLA can be negotiated in any order. General
many-to-many references are meaningful, though the range of possible scenar-
ios may be limited by policy in a given negotiation.

RSLAs correspond to (immediate or advance) reservations, i.e. they repre-
sent a promise that can be employed in future SLA negotiation. No RSLA
has any effect unless it is claimed through a follow-up TSLA or BSLA nego-
tiation. This split-phase negotiation is useful when attempting to synchronize
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interactions with multiple resource providers, because it allows a client to ob-
tain commitments for future availability of capability before details of the use
of that capability have been decided [DKPS97, FGV97, HvBD98, FRS00].

By binding a resource reservation to a task, a BSLA allows for control of
the allocation of resources to tasks (provisioning), independent of task creation.
Negotiation of a BSLA does not initiate any task: the task must be created sep-
arately (either before or after the BSLA, depending on the task naming mech-
anisms employed in BSLA). This decoupled provisioning can be used to pro-
vision a task created outside the SLA negotiation framework, e.g., a network
socket or local UNIX process created through interactive mechanisms. BSLA
negotiation can also be used to separate the provisioning decisions from basic
task management with TSLAs; if the task has variable requirements, these can
be expressed by shorter duration BSLAs associated with a long-lived TSLA
that only represents the baseline requirements of the task. A BSLA can add to,
but not diminish, the resource allocation requirements expressed during task
creation.

Finally, the negotiation of an TSLA represents a commitment by a resource
manager (task scheduler) to perform the described task with the described lev-
els of resource provisioning. In all cases, there is a need for complex SLA
meta-data to denote whether or how implied requirements are addressed.
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Figure 1.5. Three kinds of SLA. All three SLAs promise resource availability, but TSLAs and
BSLAs add additional promises of task completion and/or resource utilization.

4.2 Representing SLAs

To build a system using these three kinds of SLA, we need to represent them
in some machine-processable form. For integration with XML-based systems
such as Web Services [CCMW01] or Grid Services [TCF

�
03], we would want

XML schema definitions for the SLA content. However, these definitions are
cumbersome to present and should be developed in a community standards
body.

We can describe the content of the SLAs, both to help envision the scope of
the terms and for input into standards processes. Our descriptions make use of
the following elemental descriptions:
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SLA references, which allow the newly negotiated SLA to be associated
with pre-existing SLAs;

Resource descriptions, which are the main subject of RSLA negotiations
and may also appear within a TSLA or BSLA (potentially accompanied
by RSLA references);

Resource metadata, which qualify the capability with time of availabil-
ity, reliability, etc.;

Task descriptions, which are the main subject of TSLA negotiations and
may also appear within a BSLA;

SLA metadata, which qualify the SLA content with degree of commit-
ment (see Section 4.2), revocation policies, SLA lifetime, etc.

The content of an RSLA includes resource descriptions and metadata, as
well as SLA metadata. The description captures resource capabilities such as
storage space, nodes in a multicomputer, or processing throughput during a
certain interval of time. The SLA metadata might capture the level of commit-
ment promised by the resource manager to the client.

The content of a BSLA includes TSLA references or task descriptions, re-
source descriptions, optional RSLA references, and SLA metadata. The TSLA
references or task descriptions identify tasks which will consume resources.
The resource descriptions describe what resources will be provided to the tasks
and the RSLA references identify existing resource promises to be exploited.
Example tasks might be job processes, network flows, or filesystem accesses.

The content of a TSLA includes a task description, resource descriptions,
optional RSLA references, and SLA metadata. The task description describes
what task will be completed. The resource description describes requirements
of the task and the RSLA references identify existing resource promises to be
exploited.

The ability to negotiate SLAs can be beneficial regardless of how much
credence one is able to put in the agreements. At one extreme, an SLA may
represent simply a guess as to what may be possible; at another, it may be
accompanied by a strict contractual agreement with defined financial penalties
for noncompliance. Even if this degree of commitment is formalized in SLA
meta-data, it is always possible for a manager to be error-prone or untrust-
worthy. Licensing mechanisms might be used to allow users to judge which
managers are to be trusted [LMN94].

5. SLA CONSTRAINT-SATISFACTION MODEL

The SNAP model is concerned primarily with the protocols used to nego-
tiate SLAs. However, it is also useful to provide some informal discussion
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Figure 1.6. Constraint domain. Lower items in the figure conservatively approximate higher
items. The solution spaces on the right are ordered as subsets, e.g., Provisioning � Reserves
because provisioning constrains a resource promise to a particular task. Solution ordering maps
to the model relation for constraints, e.g., BSLA � RSLA on the left.

of the semantics associated with SLA negotiation. Given a particular task de-
scription and resource description language, the purpose of a resource provider
(whether resource owner or scheduler) is to attempt to satisfy SLAs speci-
fied in requests. An SLA is satisfied if the resource provider can produce a
non-empty solution set of possible resource and task schedules that delivers
the capabilities and performs the directives encoded in the SLA content. A
self-contradictory or unsatisfiable SLA has an empty solution set. We have
previously explained [CFK

�
02] how satisfaction of SLA terms by resource

behavior is related to the notion of problem solving by refinement of plans. As
application goals are translated through a sequence of intermediaries, the terms
are refined until a concrete resource schedule is reached and application goals
satisfied.

A TSLA says that a manager will run a job according to its self-expressed
performance goals and provisioning requirements. A RSLA says that a man-
ager will provide a resource capability when asked by the client. A correspond-
ing BSLA encompasses both of these agreements and says the manager will
apply a resource to help satisfy requirements while performing a job.

5.1 Descriptive and Behavioral Concept Domains

Figure 1.6 illustrates this ordering of SNAP concepts in terms of refinement
and satisfaction. Descriptive or behavioral elements at the bottom of the fig-
ure are more concrete realizations of the concepts connected above them in the
figure. This domain diagram partially orders abstract concepts by vertical posi-
tion, with more abstract concepts on top. Concepts are only ordered if there is
a connecting path of lines representing a transitive ordering relationship. The
thick lines between the right-hand behavioral concepts represent the subset re-
lationship, e.g., actual resource states are a subset of possible states fitting a
provisioning plan (State � Provision) and a concrete provisioning solutions are
a subset of task solutions.
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The left-hand SLA terms in Figure 1.6 are ordered by the satisfaction rela-
tionship that we introduced previously [CFK

�
02], in which, for example, the

more specific BSLA terms can be thought to satisfy the more general TSLA
or RSLA terms while also introducing new details absent from the more gen-
eral SLAs. Note the interesting parallel between the two halves of the figure,
shown by thin arrows that link behavioral concepts to descriptive terms. The
behavioral concept solves a constraint specified with the descriptive terms. For
a particular BSLA � and TSLA � , there are corresponding provisioning and
task solution sets ��������� and ��������� , respectively, such that �! "� if and only if
� � �����#�$� � ����� .
6. APPROACHES TO IMPLEMENTATION

The SNAP architectural model serves to frame our understanding of existing
resource management mechanisms and how they fit together in a Grid environ-
ment. Adoption of the abstract model does not require much change to existing
systems, though it does help identify limitations and policy-biased features of
existing systems. Just as GRAM [CFK

�
98b] adapts localized schedulers to

a Grid-wide protocol, we believe that the SLA-based SNAP architecture can
be deployed as GRAM-2 with adapters to local schedulers. However, the best
implementation approach would be for vendors to natively support new inter-
operable negotiation protocols in the local schedulers.

6.1 Toward Standards for Interoperability

Within the Global Grid Forum, the GRAAP working group is chartered to
standardize negotiation protocols in the form of Open Grid Service Architec-
ture portTypes (interfaces). Further work needs to be chartered to produce SLA
content standards.

GRAM-2 implementation is underway using similar but proprietary port-
Types in anticipation of this work; we will migrate to use standard interfaces
when they are available. Multiple commercial scheduler vendors are interested
in implementing GRAAP interfaces—and interim Globus GRAM-2 interfaces
while GRAAP standardization progresses.

Multiple products, including Globus Toolkit 3 (GT3), will provide OGSA
infrastructure implementation within which a scheduler implementation can be
hosted.

6.2 SLA Implementation Through Policy Mapping

A TSLA transfers specific task-completion responsibilities from the user
to a manager. The scheduler then becomes responsible for reliably planning
and enacting the requested activity, tracking the status of the request, and per-
haps notifying the user of progress or terminal conditions. A RSLA similarly
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delegates specific resource capacity from a manager to a user. The manager
might implement this delegation via hidden operational policy statements that
enforce the conditions necessary to deliver on the guarantee. For example, a
CPU reservation might prevent further reservations from being made, or an
internal scheduling priority might be adjusted to steal resources from a best-
effort pool when necessary.

Tasks may make resource requests dynamically during their execution: for
example, I/O requests or low-level memory allocation requests. Thus, we can
configure the task-resource binding expressed by a BSLA so that task resource
requests are interpreted as claims against the RSLA promise. In the general
case, a BSLA binding may include capability descriptions to restrict what
claims can be made, as well as more fine-grained resource-to-task mapping
information. When such restriction and mapping information is expressible,
it is possible to create complex many-to-many binding relationships between
RSLAs and TSLAs without ambiguity or over-subscription to capabilities.

In the face of ambiguous or over-committed binding, fall-back policies must
still resolve conflicts at runtime. Traditional first-come, first-serve or fair-share
job schedulers can be seen as implementing such fall-back policies in an en-
vironment where every TSLA is bound to the same machine-wide RSLA. The
addition of fine-grained binding information simply partitions these conflicts
into smaller logical resource domains, thus allowing the scheduler to be guided
with application and administrator goals.

6.3 Security Considerations

Whether SLA guarantees are enforced via such policy-mapping or not, the
negotiation of SLAs is easily seen as a form of distributed policy management.
As such, work needs to be started to get SLA proponents involved with existing
security standards activities.

With the Global Grid Forum, the OGSA working group is chartered to guide
narrowly-targeted groups providing OGSA-relevant standards. The OGSA-
SEC working group is specifically chartered to develop approaches comple-
mentary of basic Web Service standards coming from other communities such
as W3C and OASIS.

7. RELATED WORK

Resource management in networks and wide area computing systems is re-
ceiving increased attention (for overviews, see [Ber99, GS99]). However, there
has been little work on the specific problems addressed here, namely general-
purpose architectural constructs for reservation and co-allocation of heteroge-
neous collections of resources. Here we review briefly some relevant work;
space constraints prevent a complete survey.
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Various proposals have been made for advance reservations in the Inter-
net [WS97, FGV97, DKPS97, HvBD98, BL98]. These capabilities are typi-
cally encapsulated into the function of the network, in the form of cooperat-
ing sets of servers that coordinate advance reservations along an end-to-end
path. Such efforts have proposed solutions for various network reservation
challenges, but do not address problems that arise when an application requires
co-allocation of multiple resource types.

The theory of co-allocation is well understood, and sophisticated techniques
exist for determining resource requirements (e.g., identifying the CPU and net-
work resources required to meet application QoS requirement [MIS96, NS96,
NCN98]) and for scheduling scarce resources in the face of competing de-
mands. However, the mechanics of co-allocation in a distributed computing en-
vironment have received less attention. RSVP [BZB

�
97] and

Beagle [CFK
�

98a] can be used to signal resource QoS requirements through
a network, but they focus on networks and do not address directly how to
discover and select (perhaps under application control) appropriate resources
from potentially large populations.

Multimedia applications have motivated techniques for allocating both mem-
ory and CPU for channel handlers [MIS96] and CPU, bandwidth, and other
resources for video streams [NS96, NCN98]. However, these specialized ap-
proaches do not extend easily to other resource types. Many approaches deal
with collection of network resources only [FGV97, DKPS97, WG98]. Other
related work presents generic methods which could be used for heterogeneous
resource types [HvBD98, SP98].

The policy issue is investigated within admission control [WG98] and re-
source sharing [SP98]. For example, in [WG98] effective admission control
policy is proposed for booking ahead network services. Admission control is
based on a novel application of effective bandwidth theory to the time domain.

In decentralized, wide area systems, a lack of exclusive control of resources,
reduced resource reliability, and a larger resource base from which to select
candidate resources introduces the problem of co-allocating multiple resources
while individual allocation requests may fail. We believe that effective strate-
gies for discovering alternative resources subject to policy variation and reser-
vation failure will be highly application specific, and any solution that embeds
this strategy into the basic infrastructure will fail to meet QoS requirements.

The Darwin project at CMU has built a system with some similarities to
SNAP [CFK

�
98a]. However, Darwin deals with network resources only. It

assumes that the network is controlled via Darwin-specific protocols (i.e., Bea-
gle) and hence does not accommodate independently administered resources.

In summary, previous work has not focused on the integration of heteroge-
neous collections of locally administered resources. Furthermore, much of the
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effort has been to support network-centric applications, such as multimedia,
rather than the more general applications that we seek to support here.

8. CONCLUSIONS

We have presented a new model and protocol for managing the process of
negotiating access to, and use of, resources in a distributed system. In contrast
to other architectures that focus on managing particular types of resources (e.g.,
CPUs or networks), our Service Negotiation and Acquisition Protocol (SNAP)
defines a general framework within which reservation, acquisition, task sub-
mission, and binding of tasks to resources can be expressed for any resource in
a uniform fashion.

Our SLA-based model, with hierarchies of intermediaries, emphasizes multi-
phase negotiation across the policy domain boundaries that structure the Grid.
By identifying three important types of SLA needed for multi-phase negotia-
tion, we show how generic brokering patterns can be deployed and extended
with details of new resource types. The use of generic negotiation patterns
and the allowance for resource virtualization—by which intermediaries trans-
late from one set of negotiable terms to another—allows for evolution in a
resource management architecture. Evolution is an important step toward re-
alizing a permanent global Grid, in which new resource capabilities and appli-
cation modes must be incorporated into a running distributed system.
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