
Chapter 1

COMPUTATION SCHEDULING AND
DATA REPLICATION ALGORITHMS
FOR DATA GRIDS

Kavitha Ranganathan
�

and Ian Foster
��� �

�
Department of Computer Science, The University of Chicago�
Mathematics and Computer Science Division, Argonne National Laboratory

Abstract Data Grids seek to harness geographically distributed resources for large-scale
data-intensive problems such as those encountered in high energy physics, bioin-
formatics, and other disciplines. These problems typically involve numerous,
loosely coupled jobs that both access and generate large data sets. Effective
scheduling in such environments is challenging, because of a need to address
a variety of metrics and constraints (e.g., resource utilization, response time,
global and local allocation policies) while dealing with multiple, potentially in-
dependent sources of jobs and a large number of storage, compute, and network
resources.

We describe a scheduling framework that addresses these problems. Within
this framework, data movement operations may be either tightly bound to job
scheduling decisions or performed by a decoupled, asynchronous process on
the basis of observed data access patterns and load. We develop a family of
job scheduling and data movement (replication) algorithms and use simulation
studies to evaluate various combinations. Our results suggest that while it is
necessary to consider the impact of replication on the scheduling strategy, it
is not always necessary to couple data movement and computation scheduling.
Instead, these two activities can be addressed separately, thus significantly sim-
plifying the design and implementation of the overall Data Grid system.

1. INTRODUCTION
A Grid is a distributed collection of computer and storage resources main-

tained to serve the needs of some community or virtual organization
(VO) [FK99, FKT01]. Any of the potentially large number of authorized users
within that VO has access to all or some of these resources and is able to submit
jobs to the Grid and expect responses. The choice of algorithms used to sched-
ule jobs in such environments depends on the target application. Our focus



2

here is on scheduling algorithms suitable for large-scale data-intensive prob-
lems, such as those that arise in the high-energy physics experiments currently
being developed at CERN [CMS] that will generate petabytes of scientific data
by 2006. In these experiments, a community of hundreds of physicists around
the world will ultimately submit millions of jobs, with each job accessing some
subset of that data.

Scheduling is a challenging task in this context. The data-intensive na-
ture of individual jobs means it can be important to take data location into
account when determining job placement. Replication of data from primary
repositories to other locations can be an important optimization step to reduce
the frequency of remote data access. And the large number of jobs and re-
sources means that centralized algorithms may be ineffective. Thus, for exam-
ple, scheduling algorithms that focus only on maximizing processor utilization
by mapping jobs to idle processors (disregarding costs associated with fetching
remote data) are unlikely to be efficient.

To address this problem, we define a general and extensible scheduling
framework within which we can instantiate a wide variety of scheduling algo-
rithms. We then use simulation studies to explore the effectiveness of different
algorithms within this framework.

We assume a system model in which many users submit requests for job
execution from any one of a large number of sites. At each site, we place three
components: an external scheduler (ES), responsible for determining where
to send jobs submitted to that site; a local scheduler (LS), responsible for de-
termining the order in which jobs are executed at that particular site; and a
dataset scheduler (DS), responsible for determining if and when to replicate
data and/or delete local files. The choice of algorithms for each component
defines a particular scheduling system.

Within this framework, we have defined a family of five ES and four DS
algorithms, LS algorithms being widely researched in the past [SHK95]. Our
ES algorithms dispatch jobs to a random site, the least loaded site, a randomly
selected less loaded site, the local site, or a site where required data already
exists. Our DS algorithms perform no explicit replication (only caching), or
alternatively, choose a random or the least loaded neighbor for replication of
popular datasets (we shall use file and dataset interchangeably for the rest of
the chapter). In the case of no replication, a job execution is preceded by a
fetch of the required data, leading to a strong coupling between job scheduling
and data movement. By contrast, the other replication strategies are loosely
coupled to job execution.

To study the effectiveness of these different scheduling algorithms, we have
developed a modular and extensible discrete event Data Grid simulation sys-
tem, ChicagoSim (the Chicago Grid Simulator) [Chi]. In this chapter, we syn-
thesize and extend simulation results presented in other articles [RF03, RF02].



Computation Scheduling and Data Replication 3

Our simulation results show a marked improvement in Grid performance
when the right combination of loosely coupled replication and scheduling poli-
cies are used. Our results also show that evaluating scheduling algorithms on
their own, without considering the impact of replication techniques, can lead
to suboptimal choices.

The outline of the chapter is as follows. Section 2 reviews relevant work in
the arenas of Web caching and replication, distributed file systems, and Grid
resource management. In Section 3, we briefly touch upon alternative Grid
scheduling frameworks and provide details of our proposed model. Section 4
describes the scheduling and replication algorithms that we evaluate. Simu-
lation details are discussed in Section 5 while Section 6 contains results. We
conclude and point to future directions in Section 7.

2. RELATED WORK
Our work is related to two distinct areas: replication/caching on the Web

and data management in distributed file systems. We discuss related work in
these areas and their applicability to data management in Grids. We also talk
about related research in the arena of Grid computing.

2.1 Data Management on the Web
Replication/caching of files has proved beneficial to reduce access latency,

server load, and network bandwidth consumption on the Internet. Dynamic
replication strategies are useful when user behavior changes over time, thus
facilitating automatic creation and deletion of replicas.

Push caching, proposed by [GS95], uses access history to replicate files on
remote servers. A server knows how popular its files are and so it decides
when to push one of its popular files to a remote friend server. The network is
divided into subnets, and a server has a record of how many requests for a file
were generated by each subnet. Depending on the number of requests, a server
calculates the optimal subnet to replicate a file. A similar strategy can be used
for Grids. An entity (such as the proposed dataset scheduler in our framework)
can keep track of file popularity at storage centers in the Grid and replicates
popular files to less loaded data centers or to data centers near potential users,
thus reducing hotspots and access latency.

Both [BC96] and [RA99] propose techniques to exploit geographical and
temporal locality exhibited in Web client access patterns, by moving popular
data closer to potential users. Bestavros et al. use the information available in
the TCP/IP record route option is used to put together a tree of nodes. The
server (host) is the root, the various other proxies (replication sites) form the
nodes of the tree, and the clients form the leaves. The server keeps track of
the popularity of each document and where the requests come from in the tree.
It then periodically creates replicas of the files down the tree depending on



4

a popularity function. RaDar [RA99] (Replicator and Distributor and Redi-
rector) uses the information available in routers to move data closer to clients.
When a request for data is generated from a client to a server, the route taken by
the request is noted and used to generate what is known as a preference path.
The host computes preference paths periodically from information from the
system’s router. If one particular node appears frequently on a file’s preference
path, it is considered a good choice to replicate the file at that node.

Of particular importance is the issue of whether Grid user access patterns
exhibit some degree of temporal, geographical, or spatial locality. Such in-
formation can then be exploited for intelligent replication strategies, similar to
those described above. Initial studies of potential Grid user logs [IR03] sug-
gest that interesting patterns of locality do exist. Earlier [RF01] we studied
different file replication strategies for Grid scenarios, with the aim of exploit-
ing locality properties in user behavior, but we did not consider job scheduling.
Here we consider the effect of using such replication strategies in combination
with certain job scheduling strategies.

2.2 Distributed File Systems
Projects such as OceanStore [KBC

�
00], Pangaea [SK01] and

Freenet [CSWH00] aim to span the globe and facilitate large-scale data shar-
ing, with an emphasis on security, reliability, availability, or anonymity. Others
such as MojoNation [MOJ], Gnutella [Gnu], and Napster [Nap] focus on peer-
to-peer file-sharing without much concern for security or locality. We discuss
here some of the data management techniques employed by two such systems
and their applicability to Grid data management.

OceanStore uses two approaches, cluster recognition and replica manage-
ment, to increase the efficiency of the system. Cluster recognition involves
periodically running a clustering algorithm that attempts to identify closely re-
lated files. This helps to pre-stage clusters of files that are likely to be used
together. Replica management involves tracking the load created by a partic-
ular file and creating more replicas for that file on nearby nodes when access
requests overwhelm it. Both methods are applicable to data management in
Grid computing.

Pangaea focuses on achieving a high availability of files by massive, decen-
tralized and optimistic replication [SK01]. Since the developers of Pangaea be-
lieve that predicting access patterns for wide-area transfers is difficult, Pangaea
aggressively creates a replica of a file, whenever and wherever it is accessed.
Pangaea maintains a sparely connected graph of all replicas for each file that
aids in updating or deleting replicas. Replicas are deleted when the disk is out
of space or a replica is inactive. To ensure a minimum number of replicas for
a file, Pangaea classifies replicas as either gold or bronze and tries to maintain
gold replicas on the disk for as long as possible.



Computation Scheduling and Data Replication 5

Aggressive replication in Grids may be a viable option, especially if access
patterns cannot be predicted accurately. Since files are replicated only when
they are accessed, unneeded data transfers are avoided. Moreover, disk space
is occupied only as long as there is no better use for it. Widespread replication
in a Grid could, however, cause thrashing of disks. If a job was sent to a site
because of the data it contained, and that data was quickly expunged (to make
room for new replicas) before the job could run, the job would have to be
transferred elsewhere, or the files would have to be fetched again.

2.3 Resource Management for Grids

A number of projects deal with Grid resource management. Thain et
al. [TBAD

�
01], for example, describe a system that links jobs and data by

binding execution and storage sites into I/O communities that reflect physical
reality. An I/O community consists of a storage device and several compute
devices associated with that storage device. Jobs that run on those compute ele-
ments are encouraged to use their own community’s storage device for access-
ing and storing data. Thus, similar applications could form a community and
reduce usage of wide-area resources. Since the work of Thain et al. presents
building blocks for such communities but does not address policy issues, our
work on scheduling policies complements that effort.

Execution Domains [BLM00] is a framework that defines bindings between
computing power and data resources in a Grid such that applications are sched-
uled to run at CPUs that have access to required data and storage. Again, since
this work is concerned with building such a system as opposed to defining
scheduling policies, our work can be put to use here.

Another recent project, the DaP (Data Placement) Scheduler [DAP], aims to
intelligently manage and schedule data to decrease I/O wait time and response
time and increase disk usage and throughput in Grid communities. AppLeS
(Application Level Scheduling) [BWF

�
96], involves scheduling from the per-

spective of an application. Information such as the computation/communica-
tion ratio, memory required, and nature of application data structures is all
taken into account while generating schedules. Casanova et al. [COBW00] de-
scribe an adaptive scheduling algorithm XSufferage, for parameter sweep ap-
plications in Grid environments, under the AppLeS guidelines. Their approach
is to place files strategically for maximum reuse. The basic difference between
their work and ours is that our heuristic also actively replicates/pre-stages files.
In addition, while [COBW00] makes scheduling decisions centrally, we con-
centrate on a decentralized and presumably more scalable model, where each
site decides where and when to place its job and data.



6

3. ARCHITECTURES FOR SCHEDULING ON DATA
GRIDS

One can envision three basic categories of scheduling architec-
tures [HSSY00] for a distributed wide-area community: centralized, hierar-
chical, and decentralized. In centralized scheduling, all jobs, no matter where
they originate, are submitted to a central scheduler for the whole Grid. The
central scheduler then decides which machine to run each job on, depend-
ing on the state of different remote machines. The advantage of a centralized
scheme is potentially very efficient schedules, since global state knowledge is
used to generate workloads. A drawback of the centralized scheme is the bot-
tleneck caused by all the scheduling functionality being present at one entity.
As the size of the Grid grows, the central scheduler must manage more and
more computing elements and thus does not scale well. Another disadvantage
of a centralized scheme is the conflict in administrative domains. Local ad-
ministration must give all machine handling rights to the central scheduler that
decides what job to run on any machine in the Grid.

A solution to the administrative problem is to use a hierarchical scheme.
In a hierarchical scheme, both local and global policies can be in place. Jobs
are submitted to a central global scheduler, which then sends the jobs to a
local scheduler present at a site. The local scheduler allocates those jobs to its
machines depending on its local policy.

In the decentralized framework, jobs are submitted to more than one global
or external schedulers. These external schedulers then select a local scheduler
for each job. An advantage is that the failure of a single component does not
adversely affect the whole system. Also, this scheme scales well, an important
feature when we have thousands of users simultaneously submitting jobs. The
disadvantage is that schedulers may have to reply on partial information or a
restricted view of the Grid to make their decisions. Coordination among the
external schedulers may help minimize the so-called herd behavior [Dah99]
of multiple entities submitting simultaneously to a desirable site, causing it to
overload.

A typical Data Grid may be composed of many different administrative do-
mains and may ultimately serve hundreds of sites with thousands of users.
Intelligent data management techniques can play a crucial role in maximizing
the efficiency of Grid resources for such a Data Grid. Keeping the above fac-
tors in mind, we define a Grid scheduling framework that facilitates efficient
data management, allows priority to local policies, and is decentralized with no
single point of failure. We adopt a decentralized architecture, but the proposed
framework could also handle the other two architectures described earlier. The
scheduling logic is encapsulated in three modules (see Figure 1.1).



Computation Scheduling and Data Replication 7

User User User

ES

N users

User User

ES

Local Scheduler Data
Mover

DataSet
Scheduler

Computers Storage

J... ...

S sites

LS DS

Storage

LS DS

Computers Storage

D

Monitor
Popularity

E External Schedulers

Computers

Migrate
Data

J

J J

Schedule
on Idle
node

D D

J

J

J

Figure 1.1. Interactions among Data Grid components.

External Scheduler (ES): Users submit jobs to the external scheduler
they are associated with. The ES then decides which remote site to send
the job to depending on some scheduling algorithm. It may need external
information such as the load at a remote site or the location of a dataset
in order to make its decisions.

Local Scheduler (LS): Once a job is assigned to run at a particular site
(and sent to an incoming job queue), it is then managed by the local
scheduler. The LS of a site decides how to schedule all jobs allocated to
its using its local resources.

Dataset Scheduler (DS): The DS at each site keeps track of the popular-
ity of each dataset locally available. It then replicates popular datasets to
remote sites depending on some algorithm. The DS may need external
information such as whether the data already exists at a site or the load
at a remote site before making a decision.

Different mappings between users and external schedulers lead to different
scenarios. For example, in a one-to-one mapping between external schedulers
and users, the users make scheduling decisions on their own, whereas having
a single ES in the system involves a central scheduler to which all users sub-
mit their jobs. For our experiments we assumed one ES per site. We plan to



8

study other mappings in the future. The external information a module needs
can be obtained either from an information service (e.g., the Globus Toolkit’s
Monitoring and Discovery Service [CFFK01] or the Network Weather Ser-
vice [Wol97]) or directly from the sites.

4. SCHEDULING AND REPLICATION ALGORITHMS

We are interested in two distinct functionalities: external scheduling and
data replication. For each, we define and evaluate a range of different algo-
rithms.

Our framework allows each site to have its own local scheduling policy that
is implemented by the LS. Management of internal resources is a problem that
has been widely researched [FR01, SHK95]. We use FIFO (first-in first-out)
as a simplification.

An external scheduler selects a remote site to which to send a job, based on
one of five algorithms:

Random: A randomly selected site. Each site has an equal probability of
getting selected, and the expected number of jobs assigned to each site
is the same.

LeastLoaded: The site that currently has the least load. Various defini-
tions for load are possible; here we define it simply as the least number
of jobs waiting to run, that is, the shortest job queue.

RandLeastLoaded: A site randomly selected from the n least-loaded
sites. This is a variation of LeastLoaded with the aim of minimizing
any hotspots caused by the symmetry of actions of various sites.

DataPresent: A site that already has the required data. If more than one
site qualifies, the least loaded one is chosen.

Local: The site where the job originated. That is, a job is always run
locally.

In each case, any data required to run a job is fetched locally before the task
is run, if it is not already present at the site. For the dataset scheduler, we define
four algorithms:

DataCaching: No active replication takes place. Datasets are pre-assign-
ed to different sites, and no dynamic replication policy is in place. Data
may be fetched from a remote site for a particular job, in which case it
is cached and managed using a least recently used (LRU) algorithm. A
cached dataset is then available to the Grid as a replica.



Computation Scheduling and Data Replication 9

DataRandom: The DS keeps track of the popularity of the datasets it
contains (by tracking the number of jobs that have needed a particular
dataset); and when the site’s load exceeds a threshold, those popular
datasets are replicated to a random site on the Grid.

DataLeastLoaded: The DS keeps track of dataset popularity and chooses
the least loaded site as a new host for a popular dataset. Again it repli-
cates only when the load at its site exceeds a threshold.

DataRandLeastLoaded: This is a variation of DataLeastLoaded where a
random site is picked from the top n least loaded sites to avoid symmetry
of behavior among sites.

In all cases, data is also cached, and the finite storage at each site is managed
by using LRU.

We thus have a total of 5x4 = 20 algorithms to evaluate.

5. SIMULATION STUDIES

We have constructed a discrete event simulator, ChicagoSim, to evaluate the
performance of different combinations of job and task scheduling algorithms.
ChicagoSim is built on top of Parsec [PAR], a C-based simulation language.
We describe in turn the simulation framework and experiments performed.

5.1 Simulation Framework

We model a Data Grid as a set of sites, each comprising a number of pro-
cessors and a limited amount of storage; a set of users, each associated with
a site; and a set of files, each of a specified size, initially mapped to sites ac-
cording to some distribution. We assume that all processors have the same
performance and that all processors at a site can access any storage at that site.
Each user generates jobs according to some distribution. Each job requires that
a specified set of files be available before it can execute. It then executes for a
specified amount of time on a single processor.

In the absence of real traces from real Data Grids, we model the amount
of processing power needed per unit of data, and the size of input and output
datasets, on the expected values of CMS experiments [Hol01], but otherwise
generate synthetic data distributions and workloads, as we now describe.

Table 1.1 specifies the simulation parameters used for our study. Dataset
sizes are selected randomly with a uniform distribution between 500 MB and
2 GB and with initially only one replica per dataset in the system. Users are
mapped evenly across sites and submit jobs according to a Poisson distribution
with an inter-arrival time of 5 seconds. Each job requires a single input file and
runs for 300D seconds (estimated job characteristics for CMS experiments),



10

where D is the size of the input file in gigabytes. The transfer of input files from
one site to another incurs a cost corresponding to the size of the file divided
by the nominal speed of the link. Since job output is often much smaller than
input we disregard output optimization for now.

The jobs (i.e., input file names) needed by a particular user are generated
randomly according to a geometric distribution with the goal of modeling sit-
uations in which a community focuses on some datasets more than others. We
note that we do not attempt to model changes in dataset popularity over time.

Table 1.1. Simulation parameters used in study.

Number of sites/users 30/120
Compute elements per site 2-5
Total number of datasets 1000
Connectivity bandwidth 10 MB/sec
Size of workload 6000 jobs

5.2 Experiments

A particular Data Grid execution (DGE) is defined by a sequence of job
submissions, allocations, and executions along with data movements. A DGE
can be characterized according to various metrics, such as elapsed time, aver-
age response time, processor utilization, network utilization, and storage uti-
lization. The scheduling problem for a Data Grid is to define algorithms that
will produce DGEs that are both correct and good with respect to one or more
metrics.

We use the following metrics for our experiments:

Average amount of data transferred (bandwidth consumed) per job

Average job completion time (max (queue time, data transfer time) +
compute time)

Average idle time for a processor

The amount of data transferred is important from the perspective of overall
resource utilization, while system response time is of more concern to users.
Since the data transfer needed for a job starts while the job is still in the pro-
cessor queue of a site, the average job completion time includes the maximum
of the queue time and transfer time, in addition to the execution time.

The idle time of processors helps measure the total utilization of the system
under the different algorithms. A processor is idle because either the job queue
of that site is empty or the datasets needed for the jobs in the queue are not yet
available at that site.



Computation Scheduling and Data Replication 11

We ran each of our 5x4 = 20 pairs of scheduling algorithms five times, with
different random seeds in order to evaluate variance. In practice, we found no
significant variation.

6. RESULTS AND DISCUSSION

Figures 1.2, 1.3, and 1.4 show the average response time, data transferred,
and average idle time of processors for the system parameters of Table 1.1
for the different combinations of the data replication and job scheduling algo-
rithms. The results are the average over five experiments performed for each
algorithm pair. The access patterns follow a geometric distribution with � =
0.98.

Figure 1.2. Average response time for different combinations of scheduling and replication
strategies.

When plain caching (DataCaching) is used, algorithm RandLeastLoaded
(send job to a randomly selected least loaded site) performs the best in terms
of response time, and algorithm DataPresent (compute where the data is) per-
forms the worst. Random and Local perform worse than the least loaded algo-
rithms but significantly better than DataPresent. This result can be explained
as follows. Although data is uniformly distributed across the Grid, the geomet-
ric distribution of dataset popularity causes certain sites to contain often-used
datasets. When the algorithm DataPresent is used, these sites get more jobs
than others and hence tend to get overloaded. This overloading leads to long
queues at those particular sites and hence a degradation in performance. Since
there is no active replication, the amount of data transferred is zero in this par-
ticular case (Figure 1.3). Also, RandLeastLoaded effectively minimizes the



12

Figure 1.3. Average data transferred per job for the different scheduling and replication com-
binations.

Figure 1.4. Average idle time of processors for the different strategies.

negative impact of symmetry of decisions made by different sites. This fact
explains the significant improvement in response times of RandLeastLoaded
as compared with LeastLoaded.

Once we introduce a replication policy, however, DataPresent performs bet-
ter than all the other alternatives (Figure 1.2). It does not seem to matter which
particular replication strategy is chosen, as long as one of them is employed. In



Computation Scheduling and Data Replication 13

terms of data transfer (Figure 1.3), the best combination is again DataPresent
and DataRandom since the amount of bandwidth used in this case is almost ten
times less than the other job allocation choices. Similarly, the idle time of pro-
cessors is significantly smaller (Figure 1.4) for DataPresent with replication.

Clearly, in this case, dynamic replication helps reduce hotspots created by
popular data and enables load sharing. The significantly better performance
of strategy DataPresent when combined with any replication policy can be ex-
plained as follows.

The scheduling strategy by itself generates minimal data transfer, since jobs
are scheduled to the site where the data they need is already present. Datasets
are moved only as a result of explicit replication. This strategy ensures that
the network does not get overloaded. Moreover, since the input data is already
present at the site, jobs are not held up waiting for the required data to arrive;
hence, response times are shorter. We note that once we extend our work to
consider jobs that require more than one dataset, these statements may not
always be true, since a job may be sent to a node that has only some of the
datasets required by that job. The replication policy ensures that jobs do not
accumulate at a few sites that contain popular data (by replicating popular data
to other sites). Thus the computing power at a site does not cause a bottleneck.
However, the replication algorithms studied do not have any significant effects
on the other three scheduling algorithms.

As Figure 1.3 illustrates, the difference in the average amount of data trans-
ferred between algorithm DataPresent and the others is large. Clearly, if data
locality issues are not considered, even the best scheduling algorithms fall
prey to data transfer bottlenecks. These results point to the following. If the
scheduling algorithms are studied by themselves (using plain caching), Ran-
dLeastLoaded appears to be the best choice. When the algorithms are studied
along with the effect of replication strategies, however, we see that DataPre-
sent works much better than any other choice. Similarly, a replication policy
that might work well by itself may not guarantee the best overall performance
of the Grid. Only by studying the effects of the combination of different repli-
cation and scheduling policies were we able to come up with a solution that
works better than each isolated study.

In terms of idle time, DataRandom performs much worse than the other two
replication policies DataLeastLoaded, and DataRandLeastLoaded.

6.1 Effect of Bandwidth

The large amounts of data transfers that take place seem to imply that the
bandwidth available to processes has a direct impact on performance. In-
deed, we find that if network bandwidth is decreased from 10 MB/sec to 1
MB/sec (Figure 1.5), the performance of all algorithms that involve extensive



14

Figure 1.5. Response times of job scheduling algorithms for different bandwidth scenarios
(replication algorithm used is DataRandLeastLoaded).

data transfer (Random, LeastLoaded, RandLeastLoaded, and Local) degrade
sharply. DataPresent performs more or less consistently, since it does not in-
volve a large amount of data movement. Similarly, when the network band-
width is increased, the four algorithms with large data transfers perform much
better. The point to be noted here is that under these new conditions of ample
bandwidth (100 MB/sec), RandLeastLoaded performs almost as well as Dat-
aPresent. Thus, while we believe that the system parameters of Table 1.1 are
realistic for a global scientific Grid, we must be careful to evaluate the impact
of future technological changes on our results.

7. CONCLUSIONS AND FUTURE WORK

We have addressed the problem of scheduling job executions and data move-
ment operations in a distributed Data Grid environment with the goal of iden-
tifying both general principles and specific algorithms that can be used to
achieve good system utilization and/or response times. In support of this in-
vestigation, we have developed a modular and extensible Data Grid schedul-
ing framework. We have instantiated this framework with five different job
scheduling algorithms and four different replication algorithms and then used
a Data Grid simulation system, ChicagoSim, to evaluate the performance of
different algorithm combinations.

Our results are as follows. First, the choice of scheduling algorithm has a
significant impact on system performance. Second, it is important to address
both job and data scheduling explicitly: for example, simply scheduling jobs
to idle processors, and then moving data if required, performs significantly
less well than algorithms that also consider data location when scheduling.



Computation Scheduling and Data Replication 15

Third, and most interesting, we can achieve particularly good performance
with an approach in which jobs are always scheduled where data is located, and
a separate replication process at each site periodically generates new replicas
of popular datasets. We note that this approach has significant implementation
advantages when compared with (say) approaches that attempt to generate a
globally optimal schedule: first, it effectively decouples job scheduling and
data replication, so that these two functions can be implemented and optimized
separately, and second it permits highly decentralized implementations.

These results are promising, but in interpreting their significance we have
to bear in mind that they are based on synthetic workloads and simplified Grid
scenarios. In future work, we plan to investigate more realistic scenarios (e.g.,
multiple input files) and real user access patterns. We are currently working on
using workloads from Fermi Laboratory [FNA].

We also plan to validate our simulation results on real Grid testbeds, such as
those being developed within the GriPhyN project [GRI] and by participants
in the International Virtual Data Grid Laboratory [iVD].

Furthermore, we plan to explore adaptive algorithms that select algorithms
dynamically depending on current Grid conditions. For example, slow links
and large datasets might imply scheduling the jobs at the data source and using
a replication policy similar to those we used for our studies. On the other hand,
if the data is small and networks links are not congested, moving the data to
the job.

Acknowledgments

We thank Jennifer Schopf and Mike Wilde for their valuable discussions
and feedback, and Koen Holtman for his input on physics workloads. This
research was supported by the National Science Foundation’s GriPhyN project
under contract ITR-0086044.





References

[BC96] Azer Bestavros and Carlos Cunha. Server-initiated document
dissemination for the WWW. IEEE Data Engineering Bulletin,
19, 1996.

[BLM00] J. Basney, M. Livny, and P. Mazzanti. Harnessing the capacity of
computational Grids for high energy physics. In Proceedings of
the International Conference on Computing in High Energy and
Nuclear Physics (CHEP 2000), 2000.

[BWF
�

96] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous net-
works. In Proceedings of SuperComputing (SC’96), 1996.

[CFFK01] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
information services for distributed resource sharing. In Pro-
ceedings of the Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), August 2001.

[Chi] ChicSim: The Chicago Grid Simulator. http://people.
cs.uchicago.edu/~krangana/ChicSim.html.

[CMS] Compact Muon Solenoid (CMS). http://cmsinfo.cern.
ch/Welcome.html/.

[COBW00] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The Ap-
pLeS parameter sweep template: User-level middleware for the
Grid. In Proceedings of SuperComputing (SC’00), 2000.

[CSWH00] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
distributed anonymous information storage and retrieval sys-
tem. In Proceedings of the ICSI Workshop on Design Issues in
Anonymity and Unobservability, 2000.

[Dah99] M. Dahlin. Interpreting stale load information. In Proceedings
of the Ninteenth International Conference on Distributed Com-
puting Systems, 1999.



18

[DAP] Dap scheduler. http://www.cs.wisc.edu/condor/
dap.

[FK99] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kauffmann, 1999.

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Interna-
tional Journal of High Performance Computing Applications,
15(3):200–222, 2001. Also available from http://www.
globus.org/research/papers/anatomy.pdf.

[FNA] Fermi National Accelerator Laboratory. http://www.fnal.
gov.

[FR01] D.G. Feitelson and L. Rudolph, editors. Job Scheduling Strate-
gies for Parallel Processing (Proceedings of the Seventh Interna-
tional JSSPP Workshop; LNCS #2221). Springer Verlag, 2001.

[Gnu] Gnutella. www.gnutellanews.com/information.

[GRI] GriPhyN: The Grid Physics Network. http://www.
griphyn.org.

[GS95] J. Gwertzman and M. Seltzer. The case for geographical push
caching. In Proceedings of the Fifth IEEE Workshop on Hot Top-
ics Operating Systems (HotOS’95), 1995.

[Hol01] K. Holtman. CMS requirements for the Grid. In Proceedings
of International Conference on Computing in High Energy and
Nuclear Physics (CHEP 2001), 2001.

[HSSY00] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour.
Evaluation of job-scheduling strategies for Grid computing. In
Proceedings of the Seventh International Conference of High
Performance Computing, 2000.

[IR03] A. Iamnitchi and M. Ripeanu. Myth and reality: Usage pat-
terns in a large data-intensive physics project. Technical Report
TR2003-4, GriPhyN, 2003.

[iVD] iVDGL: International Virtual-Data Grid Laboratory. http://
www.ivdgl.org.

[KBC
�

00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,



REFERENCES 19

C. Wells, and B. Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proceedings of the Ninth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000), 2000.

[MOJ] MojoNation. http://www.mojonation.net.

[Nap] Napster. http://www.napster.com.

[PAR] Parsec: Parallel simulation environment for complex systems.
http://pcl.cs.ucla.edu/projects/parsec.

[RA99] M. Rabinovich and A. Aggarwal. RaDaR: A scalable architec-
ture for a global Web hosting service. In Proceedings of the
Eighth International World Wide Web Conference, 1999.

[RF01] K. Ranganathan and I. Foster. Identifying dynamic replica-
tion strategies for a high-performance Data Grid. In Proceed-
ings of the Second International Workshop on Grid Computing
(Grid2001), 2001.

[RF02] K. Ranganathan and I. Foster. Decoupling computation and data
scheduling in distributed data intensive applications. In Proceed-
ings of the Eleventh IEEE International Symposium on High-
Performance Distributed Computing (HPDC-11), 2002.

[RF03] K. Ranganathan and I. Foster. Simulation studies of computation
and data scheduling algorithms for DataGrids. Journal of Grid
Computing, to appear, 2003.

[SHK95] B. A. Shirazi, A. R. Husson, and K. M. Kavi. Scheduling and
Load Balancing in Parallel and Distributed Systems. IEEE Com-
puter Society Press, 1995.

[SK01] Y. Saito and C. Karamanolis. Autonomous and decentralized
replication in the Pangaea planetary-scale file service. Technical
report, HP, HPL-TR-2001-323, 2001.

[TBAD
�

01] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and
M. Livny. Gathering at the well: Creating communities for Grid
I/O. In Proceedings of SuperComputing (SC’01), November
2001.

[Wol97] R. Wolski. Forecasting network performance to support dy-
namic scheduling using the Network Weather Service. In Pro-
ceedings of the Sixth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-6), 1997.



20

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (“Argonne”) under Contract No.
W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Govern-
ment retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display pub-
licly, by or on behalf of the Government.


