
Chapter 1

A PEER-TO-PEER APPROACH TO RESOURCE
LOCATION IN GRID ENVIRONMENTS

Adriana Iamnitchi
�

and Ian Foster
��� �

�
Department of Computer Science, The University of Chicago�
Mathematics and Computer Science Division, Argonne National Laboratory

Abstract Resource location (or discovery) is a fundamental service for resource-sharing
environments: given desired resource attributes, the service returns locations of
matching resources. Designing such a service for a Grid environment of the
scale and volatility of today’s peer-to-peer systems is not trivial. We explore
part of the design space through simulations on an emulated Grid. To this end,
we propose four axes that define the resource location design space, model and
implement an emulated Grid, evaluate a set of resource discovery mechanisms,
and discuss results.

1. INTRODUCTION

When dealing with large sets of shared resources, a basic problem is locat-
ing resources in the absence of a naming scheme, that is, dealing with requests
that specify a set of desired attributes (“Linux machine with more than 128
MB of available memory”) rather than a globally unique identifier (such as
“ficus.cs.uchicago.edu”). Attribute-based search is challenging when resource
attributes can vary over time (e.g., CPU load, available bandwidth, even soft-
ware versions) and when the number of resources is large and/or dynamic (as
resources join, leave, or fail).

We study the resource discovery problem in a resource-sharing environ-
ment that combines the complexity of Grids with the scale and dynamism of
peer-to-peer communities. While the two environments have the same final
objective—to pool large sets of resources—they emerged from different com-
munities, and hence their current designs highlight different requirements. We
believe that the design objectives of the two environments will eventually con-



2

verge. Consequently, it is important to analyze, compare, and contrast their
current requirements and characteristics.

To this end, we discuss the resource location problem in the context of the
two resource-sharing environments (Section 2). We identify four critical de-
sign objectives for resource discovery (Section 3), and we present a scheme
for characterizing resource discovery mechanisms (Section 4) that defines the
design space and provides the basis for comparing existing solutions. We then
describe an emulated large-scale resource-sharing environment (Section 5),
which we use for a preliminary performance evaluation of resource discovery
techniques (Section 6). We conclude with a brief summary.

2. GRID AND PEER-TO-PEER ENVIRONMENTS

In recent years significant interest has focused on two resource-sharing en-
vironments: Grids and peer-to-peer (P2P) systems. The two systems have
followed different evolutionary paths. Grids have incrementally scaled the
deployment of relatively sophisticated services, connecting small numbers of
sites into collaborations engaged in complex scientific applications. P2P com-
munities, on the other hand, have developed rapidly around unsophisticated
but popular services such as file sharing, focusing on scalability and support
for intermittent user and resource participation. As a result of these different
evolutionary paths, the two systems differ in three respects: target communi-
ties, resources, and applications. We discuss each of these below.

Despite these differences, however, we maintain that the two environments
are in fact concerned with the same general problem, namely, resource shar-
ing within virtual organizations (VOs) that link resources and people spanning
multiple physical organizations. Moreover, the two environments seem likely
to converge in terms of their concerns, as Grids scale and P2P systems address
more sophisticated application requirements [FI03].

2.1 Target Communities and Incentives

The development and deployment of Grid technologies were motivated ini-
tially by the requirements of professional communities to access remote re-
sources, federate datasets, and/or to pool computers for large-scale simulations
and data analysis. Participants in contemporary Grids form part of established
communities that are prepared to devote effort to the creation and operation of
required infrastructure and within which exist some degree of trust, account-
ability, and opportunities for sanctions in response to inappropriate behavior.



A Peer-to-Peer Approach to Resource Location in Grid Environments 3

In contrast, P2P has been popularized by grass-roots, mass culture (music)
file-sharing and highly parallel computing applications [ACK

�
02, AK02] that

scale in some instances to hundreds of thousands of nodes. The “communities”
that underlie these applications comprise diverse and anonymous individuals
with little incentive to act cooperatively and honestly. Thus, for example, we
find that in file-sharing applications, there are few providers and many con-
sumers [AH00]; the operators of SETI@home [SET] devote significant effort
to detecting deliberately submitted incorrect results; and people tend to inten-
tionally misreport their resources [SGG02].

The two target communities differ in scale, homogeneity, and the intrinsic
degree of trust. The natural tendency of Grids to grow, however, will inevitably
lead to less homogeneous communities and, consequently, to smaller degrees
of trust. Participation patterns will change also with scale: intermittent partic-
ipation is likely to become the norm. All these characteristics have a strong
impact on defining the assumptions one can make (or, rather, cannot) about the
environment. We need support for volatile user communities; and we need to
deal with the lack of incentives for and interest in centralized, global adminis-
trative control.

2.2 Resources

In general, Grid systems integrate resources that are more powerful, more
diverse, and better connected than the “desktop at the edge of the
Internet” [Shi00] that constitutes a typical P2P resource. A Grid resource might
be a cluster, storage system, database, or scientific instrument of considerable
value that is administered in an organized fashion according to some well-
defined policy. This explicit administration enhances the resource’s ability to
deliver desired qualities of service and can facilitate, for example, software up-
grades, but it can also increase the cost of integrating the resource into a Grid.
Explicit administration, higher cost of membership, and stronger community
links within scientific VOs mean that resource availability tends to be high and
uniform.

In contrast, P2P systems deal with intermittent participation and highly vari-
able behavior. For example, one study of Mojo Nation [WO02] showed that
a node remained connected on average for about 28% of time. Moreover, the
connection time distribution was highly skewed, with one sixth of the nodes
remaining always connected.

Large-scale Grids will borrow some of the characteristics of today’s P2P
systems in resource participation: unreliable resources and intermittent partic-
ipation will constitute a significant share. At the same time, Grid resources
will preserve or increase their diversity. Consequently, services - and resource
discovery in particular - will have to tolerate failures and adapt to dynamic
resource participation.



4

2.3 Applications

The range and scope of scientific Grid applications vary considerably. Three
examples that show the variety of deployed Grid applications are the Hot-
Page portal, providing remote access to supercomputer hardware and soft-
ware [TMB00]; the numerical solution of the long-open nug30 quadratic opti-
mization problem using hundreds of computers at many sites [ABGL02]; and
the NEESgrid system that integrates earthquake engineering facilities into a
national laboratory [PKF

�
01].

In contrast, P2P systems tend to be vertically integrated solutions to spe-
cialized problems: currently deployed systems share either compute cycles
or files. Diversification comes from differing design goals, such as scalabil-
ity [RFH

�
01, SMK

�
01, RD01], anonymity [CSWH00], or

availability [CSWH00, KBC
�

00].
Grid applications also tend to be far more data intensive than P2P appli-

cations. For example, a recent analysis of Sloan Digital Sky Survey data
[AZV

�
02] involved, on average, 660 MB input data per CPU hour; and the

Compact Muon Solenoid [Neg94] data analysis pipeline involves from 60 MB
to 72 GB input data per CPU hour. In contrast, SETI@home moves at least
four orders of magnitude less data: a mere 21.25 KB data per CPU hour. The
reason is presumably, in part at least, better network connectivity.

The variety of Grid applications requires significant support from services.
Applications may use not only data and computational power, but also storage,
network bandwidth, and Internet-connected instruments at the same time. Un-
like in file-sharing systems such as Gnutella, this variety of resources requires
attribute-based identification (such as “Linux machine with more than 1 GB
memory”), since globally unique names are of no significant use. Also, Grid
services must provide stronger quality-of-service guarantees: a scientist that
runs data-analysis applications in a Grid is less willing to wait until data is
retrieved than is a typical P2P user in search for music files.

3. REQUIREMENTS FOR RESOURCE DISCOVERY

As we have noted, we expect Grid and P2P systems to converge in a unified
resource-sharing environment. This environment is likely to scale to millions
of resources shared by hundreds of thousands of participants (institutions and
individuals); no central, global authority will have the means, the incentive,
and the participants’ trust to administer such a large collection of distributed
resources. Participation patterns will be highly variable: there will be perhaps
a larger number of stable nodes than in today’s P2P systems, but many re-
sources will join and leave the network frequently. Resources will have highly
diverse types (computers, data, services, instruments, storage space) and char-
acteristics (e.g., operating systems, number of CPUs and speed, data of various



A Peer-to-Peer Approach to Resource Location in Grid Environments 5

sizes, services). Some resources will be shared following well-defined public
policies, such as “available to all from 6 pm to 6 am”. Other resources will par-
ticipate rather chaotically, for example, when idle. Technical support will be
variable: some participants will benefit from technical support, whereas others
will rely on basic tools provided by community (e.g., today’s Gnutella nodes
run various implementations of the protocol, each with its own particularities).

To perform efficiently in these conditions, a resource discovery mechanism
should have the following features:

Independence of central, global control. This is a departure from pre-
vious Grid solutions and a step toward the fully decentralized solutions
typical of P2P approaches.

Support for attribute-based search, a feature not found in current P2P
solutions.

Scalability, which becomes more important to the Grid community with
the increase in scale and participation.

Support for intermittent resource participation, a characteristic frequent
in today’s P2P systems but rare in current Grid solutions.

In the following sections, we propose a scheme for characterizing resource
discovery techniques. Although we are interested primarily in designing mech-
anisms that adhere to the requirements above, our characterization scheme
comprises a more general set of solutions.

4. RESOURCE LOCATION: COMPONENTS AND
SOLUTIONS

We assume that every participant in the VO—institution or individual—
publishes information about local resources on one or more local servers. We
call these servers nodes, or peers. Nodes hence provide information about
resources: some advertise locally stored files or the node’s computing power,
as in a traditional P2P scenario; others advertise all the resources shared by an
institution, as in a typical Grid scenario.

From the perspective of resource discovery, a Grid is thus a collection of
geographically distributed nodes that may join and leave at any time and with-
out notice (for example, as a result of system or communication failure). Users
send their requests to some known (typically local) node. Typically, the node
responds with the matching resource descriptions if it has them locally; other-
wise it processes the request, possibly forwarding it to one or more nodes.



6

4.1 Four Axes of the Solution Space

We partition a general resource discovery solution into four architectural
components: membership protocol, overlay construction, preprocessing, and
query processing. This partitioning helps us recognize the unexplored regions
in the solution space. It also provides the basis for comparing previous solu-
tions from both the P2P area and the traditional distributed computing domain,
solutions that we present in Section 4.2.

4.1.1 Membership Protocol

The membership protocol specifies how new nodes join the network and
how nodes learn about each others (we refer to the latter part of the member-
ship problem as peer discovery, although it has multiple names in the litera-
ture [KP00]).

Imagine a graph whose vertices are peers and whose edges indicate whether
vertices know of each other. Ideally, despite frequent vertex departures and
joins, this graph is a clique; that is, every member of the network has ac-
curate information about all participants. In practice, however, this situation
is impossible [CHTCB96], and different protocols have been suggested, each
involving different tradeoffs. For example, Gnutella uses an aggressive mem-
bership protocol that maintains the highly dynamic nodes in the membership
graph connected, but at a significant communication cost [RFI02]. More scal-
able with the number of nodes are membership protocols based on epidemic
communication mechanisms [GT92].

4.1.2 Overlay Construction

The overlay construction function selects the set of collaborators from the
local membership list. In practice, this set may be limited by such factors as
available bandwidth, message-processing load, security or administrative poli-
cies, and topology specifications. Hence, the overlay network often contains
only a subset of the edges of the membership graph. For example, a Gnutella
node maintains a relatively small number of open connections (the average is
less than 10, with 3.4 measured as of May 2001 [RFI02]) but knows of many
more peers (hundreds) at any given time.

The overlay topology has a significant effect on performance. For example,
Barabási and Albert [BA99] show a strong correlation between robustness and
the power-law topology; Adamic et al. [AHLP01] give a search algorithm that
exploits the power-law topology in a cost-efficient way; and Kleinberg [Kle00]
presents an optimal algorithm for search in small-world graphs with a particu-
lar topology (two-dimensional lattice) and knowledge about global properties,
such as distance between any two nodes. On the other hand, a large number of
dynamic, real networks, ranging from the Internet to social and biological net-



A Peer-to-Peer Approach to Resource Location in Grid Environments 7

works, all exhibit the same power-law and small-world patterns (as surveyed
in [AB02] and discussed in detail in [Bar02] and [Wat99]).

4.1.3 Preprocessing

Preprocessing refers to off-line processing used to enhance search perfor-
mance prior to executing requests. For example, prefetching is a preprocessing
technique, but caching is not. Another example of a preprocessing technique is
dissemination of resource descriptions, that is, advertising descriptions of the
local resources to other areas of the network for better search performance and
reliability. A third example of preprocessing is rewiring the overlay network
to adapt to changes in usage characteristics.

It is not obvious, however, that such preprocessing strategies work in the
dynamic environments that we consider, in which resources may leave the pool
and resource characteristics and user behavior may change suddenly. A recent
result [CS02] shows that, in a static environment, the optimum replication of
an item for search in unstructured networks is proportional to the square root
of the popularity of that item.

4.1.4 Request Processing

The request-processing function has a local and a remote component. The
local component looks up a request in the local information, processes aggre-
gated requests (e.g., a request for A and B could be broken into two distinct
requests to be treated separately), and/or applies local policies, such as drop-
ping requests unacceptable for the local administration.

The remote component implements the request propagation rule. Request
propagation is currently an active research topic in the P2P area [RFH

�
01,

SMK
�

01, RD01, LCC
�

02, ZKJ01, IRF02, SMZ03]. In some cases, request
propagation rules are dictated by other components of the resource discov-
ery mechanism, as with distributed hash tables [RFH

�
01, SMK

�
01, RD01,

ZKJ01], where the overlay and the propagation rules are strongly correlated.
In an unstructured network, however, there are many degrees of freedom in
choosing the propagation rule. Various strategies can be employed, charac-
terized by the number of neighbors to which a request is sent and the way in
which these neighbors are selected.

4.2 Previous Solutions to Resource Discovery

To provide a basis for our proposed characterization scheme, we discuss
here existing solutions and related work from the perspective of the four archi-
tectural components presented above.

Many solutions to resource discovery presume the existence of globally
unique names. In some cases, this naming scheme is natural (for example,



8

filenames used as global identifiers in P2P file-sharing systems); in others, it
is created to support discovery. In the context of Grid computing it is diffi-
cult (if even possible) to define a global naming scheme capable of supporting
attribute-based resource identification. We now present resource location solu-
tions that exploit natural naming schemes.

Domain Name Service [Moc87] is perhaps the largest such system that pro-
vides name-based location information. Its hierarchical topology dictates the
design of all four components: nodes (domains) join at a specified address in
the hierarchy, the overlay function maintains the domain-based tree structure,
requests are propagated upward in the hierarchy.

Recent contributions to name-based resource location solutions have been
proposed in the context of P2P file-sharing systems, such as Gnutella and Nap-
ster. The basic mechanism used in Gnutella is flooding. Its flooding-based
membership component manages a highly dynamic set of members (with me-
dian lifetime per node of about 60 minutes [SGG02]) by sending periodic mes-
sages. Its overlay function selects a fixed number of nodes from those alive
(in most instances, the first nodes of the membership list). Flooding is also
the core of the request-processing component: requests are propagated in the
overlay until their time-to-live expires. No preprocessing component is active
in Gnutella. Answers are returned along the same trajectory, from node to
node, to the node that initiated the request. Gnutella’s relatively good search
performance (as measured in number of hops) is achieved at the cost of inten-
sive network use [RFI02].

Napster uses a centralized approach: a file index is maintained at a central
location, while real data (files) are widely distributed on nodes. The mem-
bership component is centralized: nodes register with (and report their locally
stored files to) the central index. Hence, the request-processing component is
a simple lookup in the central index. Napster does not use a distinct overlay
function.

Distributed hash table structures such as CAN [RFH
�

01], Chord [SMK
�

01],
Tapestry [ZKJ01], and Pastry [RD01] build search-efficient overlays. All have
similar membership and request processing components, based on information
propagation in a structured overlay. Differentiating these four solutions is the
definition of the node space, and consequently the overlay function that pre-
serves that definition despite the nodes’ volatility: ring in Chord, d-coordinate
space on a torus in CAN, Plaxton mesh [PRR97] in Pastry and Tapestry.

The file location mechanism in Freenet [CSWH00] uses a request-propa-
gation component based on dynamic routing tables. Freenet includes both file
management and file location mechanisms: popular files are replicated closer
to users, while the least popular files eventually disappear.

The solutions discussed above are concerned with locating resources that in-
herently can be named. Solutions that create an artificial name have been pro-



A Peer-to-Peer Approach to Resource Location in Grid Environments 9

posed for attribute-based service location (Ninja) and as location-independent
identifiers (Globe).

In Ninja’s service location service [GBHC00, GWvB
�

01], services are
named based on a most relevant subset of their attributes. Its preprocessing
component disseminates lossy aggregations (summaries) of these names up a
hierarchy. Requests are then guided by these summaries up or down the hierar-
chy, in a B-tree search fashion. The fix overlay function (hence, the construc-
tion of the hierarchy) is specified at deployment.

The location mechanism in Globe [vSHT99] is based on a search-tree-like
structure where the search keys are globally unique names. Its naming ser-
vice [BvST00] transforms a URL into a location-independent unique identifier.

Among the few attribute-based resource location services is Condor’s Match-
maker (Chapter ??, [RLS98]). Resource descriptions and requests are sent to
a central authority that performs the matching.

Lee and Benford [LB98] propose a resource discovery mechanism based
on request propagation: nodes (called traders) forward unsolved requests to
other nodes in an unstructured overlay. The overlay function takes into ac-
count neighbors’ expertise and preference: a node connects to a node that has
useful services and/or good recommendations. This evaluation uses informa-
tion collected by the preprocessing component: traders explore the network
off-demand, whenever necessary, and disseminate state changes via flooding.

Another solution is provided by the Globus Toolkit MDS [CFFK01]. Ini-
tially centralized, this service moved to a decentralized structure as its pool
of resources and users grew. In MDS-2, a Grid consists of multiple informa-
tion sources that can register with index servers (“nodes” in our terminology)
via a registration protocol. Nodes and users can use an enquiry protocol to
query other nodes to discover entities and to obtain more detailed descriptions
of resources from their information sources. Left unspecified is the overlay
construction function, the techniques used to associate information sources to
nodes and to construct an efficient, scalable network of index servers.

5. EXPERIMENTAL STUDIES

Our objective is to observe and quantify the synergies emerging from the
interaction of the four components of resource discovery in flat, unstructured
networks. In the absence of a large-scale, deployed Grid available to test de-
sign ideas, we modeled an environment in which we experimented with a set
of resource discovery mechanisms. This emulated Grid, while specifically de-
signed to test resource location ideas, can be easily expanded to evaluate other
services on large-scale testbeds, such as resource selection and scheduling.
More important, it provides a framework for evaluating aggregations of coop-
erative services, such as resource location, resource selection, and scheduling.



10

5.1 Emulated Grid

Existing Grid simulators are specialized for certain services, such as schedul-
ing [LMC03] or data replication [RF02]. Others, such as the MicroGrid
[SLJ

�
00], run Grid software and applications on virtual resources. No cur-

rent simulator is appropriate for or easily extensible to evaluating generic Grid
services. We built an emulated Grid that is scalable and is suitable for resource
discovery but also is easily extensible to other purposes.

In our framework, nodes form an overlay network. Each node is imple-
mented as a process that communicates with other nodes via TCP. Each node
maintains two types of information: (1) information about a set of resources
and (2) information about other nodes in the overlay network (including mem-
bership information).

The large number of processes needed by our large-scale emulation raises
multiple problems, ranging from resource starvation to library limitations. For
the preliminary experiments (of up to 32,768 virtual nodes) presented in Sec-
tion 6, we used 128 systems (256 processors) communicating over fast Ether-
net of the Chiba City cluster of Argonne National Laboratory. With minimal
modifications, the framework could be used in real deployments.

5.2 Modeling the Grid Environment

Four environment parameters influence the performance and the design of a
resource discovery mechanism:

1 Resource information distribution and density: Some nodes share infor-
mation on a large number of resources, whereas others share just on a
few (for example, home computers). Also, some resources are common
(e.g., PCs running Linux), while others are rare or even unique (e.g.,
specific services or data).

2 Resource information dynamism: Some resource attributes are highly
variable (e.g., CPU load or availably bandwidth between two nodes),
while others vary so slowly that they can be considered static for many
purposes (e.g., operating system version, number and type of CPUs in a
computer, etc.).

3 Request popularity distribution: The popularity of users’ requests for re-
sources varies. For example, studies [BCF

�
99] have shown that HTTP

requests follow Zipf distributions. Our analysis [IR03] of a scientific
collaboration, on the other hand, reveals different request popularity pat-
terns, closer to a uniform distribution.



A Peer-to-Peer Approach to Resource Location in Grid Environments 11

4 Peer participation: The participation of peers, or nodes, varies, more
significantly in P2P systems than in current Grids. Influenced by incen-
tives, some nodes activate in the network for longer than others.

The failure rate in a large-scale system is inevitably high and hence neces-
sary to model. This factor can easily be captured by two of the parameters just
listed, namely, resource information dynamism and peer participation. The
effects of failure are visible at two levels: the resource level and the node
level. When resources fail, the nodes that publish their descriptions may need
to update their local information to reflect the change. Resource failure can
therefore be seen as yet another example of resource attribute variation and
can be treated as part of resource information dynamism. When nodes fail, not
only do their resources disappear, but they cease to participate in maintaining
the overlay and processing remote requests. Node failures can therefore be
captured in the peer participation parameter as departures. We note, however,
that node failures are ungraceful (unannounced) departures. Moreover, such
failures may not be perceived in the same way by all peers; for example, in the
case of network partitioning, a node may seem failed to some peers and alive
to others.

To isolate some of the correlations between the many parameters of our
study, we used a simplified, optimistic Grid model characterized by static re-
source attributes, constant peer participation, and no failures. Thus, we model
only the resource and request distributions.

5.2.1 Resource Distributions

In Grids and peer-to-peer environments, the total number of resources in-
creases with the number of nodes, so we model this as well. We assume that
the average number of resources per node remains constant with the increase
in the network size: in our experiments, we (arbitrarily) chose this constant
equal to 5.

New nodes often bring new types of resources, however, such as unique on-
line instruments, new data, and new, possibly locally developed, applications.
To account for these, we allowed the set of resource types to increase slowly
(5%) with the number of nodes in the system.

In this context, we experimented with two resource distributions of different
degrees of fairness, as presented in Figure 1.1: a balanced distribution, with all
nodes providing the same number of resources, and a highly unbalanced one,
generated as a geometric distribution in which most resources are provided by
a small number of nodes.



12

0

10

20

30

40

50

60

1 10 100

N
um

be
r 

of
 r

es
ou

rc
es

 p
er

 n
od

e

Node rank

Unbalanced (U)
Balanced (B)

Figure 1.1. Distribution of resources on nodes: balanced (all nodes have equal number of
resources) and unbalanced (a significant part of nodes have no resources).

5.2.2 Request Distributions

Although usage patterns can be decisive in making design decisions, we
faced the problem of not having real user request logs, a problem inherent in
systems during the design phase. We therefore logged, processed, and used
one week’s requests for computers submitted to the Condor [LLM88] pool at
the University of Wisconsin. This pool consists mainly of Linux workstations
and hence is a rather homogeneous set of resources. On the other hand, since
it is intensively used for various types of computations, the requests specify
various attribute values (e.g., for minimum amount of available memory or
required disk space). We processed these requests to capture their variety. We
acknowledge, however, that despite their authenticity, these traces may not
accurately represent the request patterns in a sharing environment that usually
comprises data and services in addition to computers.

We also experimented with a synthetic request popularity distribution mod-
eled as a uniform distribution. Figure 1.2 highlights the differences between
the two request distributions. The Condor traces exhibit a Zipf-like distribu-
tion, where a small number of distinct requests appear frequently in the set
of 2000 requests considered. In the pseudo-uniform distribution, on the other
hand, requests are repeated about the same number of times. We evaluated
various resource location strategies in overlay networks ranging in size from���

to
� �	�

nodes. In our experiments we randomly chose a fixed percentage
of nodes to which we sent independently generated sets of 200 requests. The
same sets of requests, sent to the same nodes, respectively, were repeated to
compare various request-forwarding algorithms.



A Peer-to-Peer Approach to Resource Location in Grid Environments 13

1

10

100

1000

1 10 100 1000

R
eq

ue
st

 fr
eq

ue
nc

y

Request rank

Uniform
Condor

Figure 1.2. Distribution of user requests.

5.3 Resource Discovery Mechanisms

We considered a set of simple resource discovery mechanisms constructed
by fixing three of the four components presented in Section 4.1 and varying
the fourth: the request-processing component.

For the membership protocol we use a join mechanism that is commonly
used in P2P systems: a node joins by contacting a member node. Contact ad-
dresses of member nodes are learned out-of-band. A node contacted by joining
members responds with its membership information. Membership information
is passively enriched over time: upon the receipt of a message from a previ-
ously unknown node, a node adds the new address to its membership list.

In our design, the overlay function accepts an unlimited number of neigh-
bors: hence, we allowed the overlay connectivity to grow as much as the mem-
bership information. In this way, we neutralized one more component, aiming
to understand the correlations between graph topology and discovery perfor-
mance. We generated the starting overlay by using a hierarchy-based Internet
graph generator [Doa96]. We assumed no preprocessing.

Our design of the request-processing component is based on forwarding.
We assumed simple requests, satisfiable only by perfect matches. Hence, local
processing is minimized: a node that has a matching resource responds to the
requester; otherwise, it decrements TTL and forwards it (if TTL 
 0) to some
other node. Requests are dropped when received by a node with no other
neighbors or when TTL=0.

We evaluated four request propagation strategies:

1 Random walk: the node to which a request is forwarded is chosen ran-
domly. No extra information is stored on nodes.



14

2 Learning-based: nodes learn from experience by recording the requests
answered by other nodes. A request is forwarded to the peer that an-
swered similar requests previously. If no relevant experience exists, the
request is forwarded to a randomly chosen node.

3 Best-neighbor: the number of answers received from each peer
is recorded (without recording the type of request answered). A request
is forwarded to the peer who answered the largest number of requests.

4 Learning-based + best-neighbor: this strategy is identical with the
learning-based strategy except that, when no relevant experience exists,
the request is forwarded to the best neighbor.

6. EXPERIMENTAL RESULTS

This section presents preliminary results in two areas: (1) quantification of
the costs of simple resource discovery techniques based on request- forwarding
(no preprocessing), and (2) effects of resource and request distributions on
resource discovery performance.

6.1 Quantitative Estimation of Resource Location Costs

A first question to answer is: What are the search costs in an unstructured,
static network in the absence of preprocessing? To this end, we considered
time-to-live infinite. The answer is presented in Figures 1.3, 1.4, and 1.5: the
learning-based strategy is the best regardless of resource-sharing characteris-
tics, with fewer than 200 hops response time per request for the largest network
in our experiment. For a network of thousands of nodes (hence, possibly thou-
sands of institutions and individuals) the average response time is around 20
hops. Assuming 20 ms to travel between consecutive nodes on a path (10 ms.
latency in a metropolitan area network and 10 ms. necessary for request pro-
cessing), then a path of 20 hops takes less than half a second.

Key to the performance of the learning-based strategy is the fact that it takes
advantage of similarity in requests by using a possibly large cache. It starts
with low performance until it builds its cache.

The random-forwarding algorithm has the advantage that no additional stor-
age space is required on nodes to record history. We also expect it to be the
least efficient, however, an expectation confirmed by the results shown in Fig-
ure 1.5 (Condor-based user requests, unbalanced resource distribution). For
all network sizes in our experiments, the learning-based algorithm consistently
performs well, while its more expensive version (learning-based + best neigh-
bor) proves to be rather unpredictable in terms of performance (see, for ex-
ample, the large standard error deviation for 1024 and 2048 simulated nodes
in 1.5).



A Peer-to-Peer Approach to Resource Location in Grid Environments 15

0

20

40

60

80

100

120

140

160

180

200

102 103 104 105

A
ve

ra
ge

 n
um

be
r 

of
 h

op
s 

pe
r 

re
qu

es
t

Number of nodes (log scale)

Condor (U)
Uniform (U)
Condor (B)
Uniform (B)

Figure 1.3. Performance (in average number of hops) of learning-based forwarding strategy
for the two request distributions (Condor and uniform), in two environments with different
resource-sharing characteristics (balanced B and unbalanced U).

0

100

200

300

400

500

600

700

800

900

102 103 104 105

A
ve

ra
ge

 n
um

be
r 

of
 h

op
s 

pe
r 

re
qu

es
t

Number of nodes

Condor (U)
Uniform (U)
Condor (B)
Uniform (B)

Figure 1.4. Performance (in average number of hops) of the best neighbor request forwarding
strategy under different user request and sharing characteristics.

We emphasize that these results do not advocate one strategy over another
but give a numerical estimate of the costs (in response time) involved. These
estimates are useful in at least two ways. First, they give a lower bound for the
performance of resource location mechanisms based on request propagation.
They show that more sophisticated strategies (potentially including preprocess-
ing techniques) are needed for efficient resource location in large-scale (tens of
thousands institutions) Grids. Second, they can be used in estimating the per-
formance of more sophisticated mechanisms that have a request-propagation
component (as is, for example, the solution in [IRF02]).



16

0

50

100

150

200

250

300

350

102 103 104 105

A
ve

ra
ge

 n
um

be
r 

of
 h

op
s 

pe
r 

re
qu

es
t

Number of nodes

Random
Learning

Best Neighbor
Learning+BN

Figure 1.5. Performance of all four request-forwarding strategies for a Condor request load in
the unbalanced resource-sharing environments.

6.2 Effects of the Environment

Figure 1.3 highlights the influence of user request popularity distribution
on the performance of the learning-based request forwarding strategy. (Of the
strategies we considered, this is the most sensitive to user request patterns.)
The slightly better performance in the fair-sharing environment is due to the
random component of this strategy, employed when no relevant previous in-
formation on a specific request exists: random forwarding has a better chance
of reaching a useful node when information is distributed fairly on nodes. The
learning-based strategy takes most advantage of the Condor request distribu-
tion, where a significant part of the requests are repeated (and hence can benefit
from previous experience).

The best-neighbor strategy is influenced more strongly by sharing patterns:
compared with a balanced environment, in a highly unbalanced environment
a node that had already answered a request is more likely to have answers to
other requests as well. Figure 1.4 shows the response latency in unbalanced
and balanced environments for the two request patterns we considered: the
response latency almost doubles in the balanced sharing environment as com-
pared with the unbalanced one. We note that the performance of the best-
neighbor strategy is influenced by past requests: the algorithm records the
number of requests answered regardless of their type, hence it does not dis-
tinguish between nodes that answered same request n times and nodes that
answered n distinct requests. This fact explains why the algorithm performs
better under a uniform user distribution load than under the Condor traces:
since the number of distinct requests in a uniform distribution is larger, the
best neighbor identified by this strategy has indeed a larger number of distinct
resources.



A Peer-to-Peer Approach to Resource Location in Grid Environments 17

7. SUMMARY

We estimate that the characteristics and the design objectives of Grid and
P2P environments will converge, even if they continue to serve different com-
munities. Grids will increase in scale and inherently will need to address in-
termittent resource participation, while P2P systems will start to provide more
complex functionalities, integrating data and computation sharing with vari-
ous quality of service requirements. We are therefore studying the resource
discovery problem in a resource-sharing environment that combines the char-
acteristics of the two environments: the complexity of the Grids (that share a
large diversity of resources, including data, applications, computers, online in-
struments, and storage) with the scale, dynamism, and heterogeneity of today’s
P2P systems.

We have identified four components that, we believe, can define any de-
centralized resource discovery design: membership protocol, overlay function,
preprocessing, and request processing.

We have also proposed a Grid emulator for evaluating resource discovery
techniques based on request propagation. Our results give a quantitative mea-
sure of the influence of the sharing environment (i.e., fairness of sharing) on
resource discovery.

Acknowledgments

We are grateful to Daniel C. Nurmi for his help with deploying the Grid
emulator on the Chiba City cluster at Argonne National Laboratory. This
work was supported by the National Science Foundation under contract ITR–
0086044.





References

[AB02] R. Albert and A. L. Barabasi. Statistical mechanics of complex
networks. Reviews of Modern Physics, 74:47–97, 2002.

[ABGL02] K. Anstreicher, N. Brixius, J.-P. Goux, and J. T. Linderoth.
Solving large quadratic assignment problems on computational
Grids. Mathematical Programming, 91(3):563–588, 2002.

[ACK
�

02] D. P. Anderson, J. Cobb, E. Korpella, M. Lebofsky, and
D. Werthimer. SETI@home: An experiment in public-resource
computing. Communications of the ACM, 45:56–61, 2002.

[AH00] E. Adar and B. A. Huberman. Free riding on Gnutella.
First Monday, 5, 2000. Also available from http://www.
firstmonday.dk/issues/issue5_10/adar/.

[AHLP01] L. Adamic, B. Huberman, R. Lukose, and A. Puniyani. Search
in power law networks. Physical Review E, 64:46135–46143,
2001.

[AK02] D. P. Anderson and J. Kubiatowicz. The worldwide computer.
Scientific American, March 2002.

[AZV
�

02] James Annis, Yong Zhao, Jens Voeckler, Michael Wilde, Steve
Kent, and Ian Foster. Applying Chimera virtual data concepts
to cluster finding in the Sloan Sky Survey. In Proceedings of
SuperComputing (SC’02), 2002.

[BA99] A. L. Barabási and R. Albert. Emergence of scaling in random
networks. Science, 286:509–512, 1999.

[Bar02] A. L. Barabási. Linked: The New Science of Networks. Perseus
Publishing, 2002.

[BCF
�

99] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and implications.
In Proceedings of InfoCom, 1999.



20

[BvST00] G. Ballintijn, M. van Steen, and A. S. Tanenbaum. Scalable
naming in global middleware. In Proceedings of Thirteenth In-
ternational Conference on Parallel and Distributed Computing
Systems (PDCS-2000), 2000.

[CFFK01] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
information services for distributed resource sharing. In Pro-
ceedings of the Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), August 2001.

[CHTCB96] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost.
On the impossibility of group membership. In Proceedings of the
Fifteenth Annual ACM Symposium on Principles of Distributed
Computing (PODC’96), 1996.

[CS02] E. Cohen and S. Shenker. Replication strategies in unstructured
peer-to-peer networks. In Proceedings of the SIGCOMM, 2002.

[CSWH00] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
distributed anonymous information storage and retrieval sys-
tem. In Proceedings of the ICSI Workshop on Design Issues
in Anonymity and Unobservability, 2000.

[Doa96] M. Doar. A better model for generating test networks. IEEE
Global Internet, 1996.

[FI03] I. Foster and A. Iamnitchi. On death, taxes, and the convergence
of peer-to-peer and Grid computing. In Proceedings of the Sec-
ond International Workshop on Peer-to-Peer Systems (IPTPS),
2003.

[GBHC00] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for Internet service con-
struction. In Proceedings of the Fourth Symposium on Operating
Systems Design and Implementation (OSDI 2000), 2000.

[GT92] R. A. Golding and K. Taylor. Group membership in the epidemic
style. Technical Report UCSC-CRL-92-13, Jack Baskin School
of Engineering, University of California, Santa Cruz, 1992.

[GWvB
�

01] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer, D. Culler,
N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. D. Joseph,
R. H. Katz, Z. Mao, S. Ross, and B. Zhao. The Ninja architec-
ture for robust Internet-scale systems and services. Special Issue
of Computer Networks on Pervasive Computing, 35(4):473–497,
2001.



REFERENCES 21

[IR03] A. Iamnitchi and M. Ripeanu. Myth and reality: Usage pat-
terns in a large data-intensive physics project. Technical Report
TR2003-4, GriPhyN, 2003.

[IRF02] A. Iamnitchi, M. Ripeanu, and I. Foster. Locating data in (small-
world?) peer-to-peer scientific collaborations. In Proceedings
of the First International Workshop on Peer-to-Peer Systems
(IPTPS’02), 2002.

[KBC
�

00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proceedings of the Ninth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000), 2000.

[Kle00] J. Kleinberg. The small-worlds phenomenon: an algorithmic
perspective. In Proceedings of the Thirty-Second ACM Sympo-
sium on Theory of Computing, 2000.

[KP00] S. Kutten and D. Peleg. Deterministic distributed resource dis-
covery. In Proceedings of the Nineteenth Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC’02), 2000.

[LB98] O. Lee and S. Benford. An explorative approach to federated
trading. Computer Communications, 21(2), 1998.

[LCC
�

02] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and repli-
cation in unstructured peer-to-peer networks. In Proceedings of
the Sixth Annual ACM International Conference on Supercom-
puting (ICS), 2002.

[LLM88] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a hunter
of idle workstations. In Proceedings of the 8th International
Conference on Distributed Computing Systems, pages 104–111,
1988.

[LMC03] A. Legrand, L. Marchal, and H. Casanova. Scheduling dis-
tributed applications: The SimGrid simulation framework. In
Proceedings of the Third IEEE International Symposium on
Cluster Computing and the Grid (CCGrid’03), 2003.

[Moc87] P. Mockapetris. Domain names–concepts and facilities. Techni-
cal Report RFC 1034, Internet Engineering Task Force (IETF),
1987.



22

[Neg94] M. D. Negra. CMS collaboration. Technical Report LHCC 94-
38, CERN, 1994.

[PKF
�

01] T. Prudhomme, C. Kesselman, T. Finholt, I. Foster, D. Parsons,
D. Abrams, J.-P. Bardet, R. Pennington, J. Towns, R. Butler,
J. Futrelle, N. Zaluzec, and J. Hardin. NEESgrid: A distributed
virtual laboratory for advanced earthquake experimentation and
simulation: Scoping study. Technical report, NEESgrid, Techni-
cal Report, 2001. Available from http://www.neesgrid.
org/documents/NEESgrid_TR.2001-01.pdf.

[PRR97] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In Pro-
ceedings of the ACM Symposium on Parallel Algorithms and Ar-
chitectures (SPAA), 1997.

[RD01] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer sys-
tems. In Proceedings of Middleware ’01, 2001.

[RF02] K. Ranganathan and I. Foster. Decoupling computation and data
scheduling in distributed data intensive applications. In Proceed-
ings of the Eleventh IEEE International Symposium on High-
Performance Distributed Computing (HPDC-11), 2002.

[RFH
�

01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In Proceedings of SIG-
COMM 2001, 2001.

[RFI02] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the Gnutella
network: Properties of large-scale peer-to-peer systems and im-
plications for system design. Internet Computing, 6, 2002.

[RLS98] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed resource management for high throughput computing.
In Proceedings of the Seventh IEEE International Symposium
on High-Performance Distributed Computing (HPDC-7), 1998.

[SET] SETI@home: The Search for Extraterrestrial Intelligence.
http://setiathome.berkeley.edu.

[SGG02] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Proceed-
ings of SPIE Multimedia Computing and Networking 2002
(MMCN’02), 2002.



REFERENCES 23

[Shi00] C. Shirky. What is P2P...and what isn’t? http:
//www.openp2p.com/pub/a/p2p/2000/11/24/
shirky1-whatisp2p.html, 2000.

[SLJ
�

00] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang,
K. Taura, and A. Chien. The MicroGrid: A scientific tool for
modeling computational Grids. In Proceedings of SuperCom-
puting (SC’00), 2000.

[SMK
�

01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
Internet applications. In Proceedings of ACM SIGCOMM 2001,
2001.

[SMZ03] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content
location using interest-based locality in peer-to-peer systems. In
Proceeding of INFOCOM, 2003.

[TMB00] M. P. Thomas, S. Mock, and J. Boisseau. Development of Web
toolkits for computational science portals: The NPACI HotPage.
In Proceedings of the Ninth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-9), 2000.

[vSHT99] M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A wide-
area distributed system. IEEE Concurrency, 7(1):70–78, January
1999.

[Wat99] D. J. Watts. Small Worlds: The Dynamics of Networks Between
Order and Randomness. Princeton University Press, 1999.

[WO02] B. Wilcox-O’Hearn. Experiences deploying a large-scale emer-
gent network. In Proceedings of the First International Work-
shop on Peer-to-Peer Systems (IPTPS’02), 2002.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Technical Report CSD-01-1141, Berkeley, 2001.



24

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (“Argonne”) under Contract No.
W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Govern-
ment retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display pub-
licly, by or on behalf of the Government.


