
Using the GA and TAO Toolkits for Solving
Large-Scale Optimization Problems on Parallel
Computers
S. BENSON (benson@mcs.anl.gov)
Mathematics and Computer Science Division, Argonne National
Laboratory
M. KRISHNAN (manoj@pnl.gov)
Computational Sciences and Mathematics, Pacific Northwest
National Laboratory
L. MCINNES (mcinnes@mcs.anl.gov)
Mathematics and Computer Science Division, Argonne National
Laboratory
J. NIEPLOCHA (Jarek.Nieplocha@pnl.gov)
Computational Sciences and Mathematics, Pacific Northwest
National Laboratory
J. SARICH (sarich@mcs.anl.gov)
Northwestern University

7/24/2006

Challenges in the scalable solution of large-scale optimization problems include the development of innovative
algorithms and efficient tools for parallel data manipulation. This paper discusses two complementary toolkits
from the collection of Advanced CompuTational Software (ACTS), namely, Global Arrays (GA) for parallel
data management and the Toolkit for Advanced Optimization (TAO), which have been integrated to support
large-scale scientific applications of unconstrained and bound constrained minimization problems. Most likely
to benefit are minimization problems arising in classical molecular dynamics, free energy simulations, and other
applications where the coupling among variables requires dense data structures. TAO uses abstractions for
vectors and matrices so that its optimization algorithms can easily interface to distributed data management and
linear algebra capabilities implemented in the GA library. The GA/TAO interfaces are available both in the
traditional library mode and as components compliant with the Common Component Architecture (CCA). We
highlight the design of each toolkit, describe the interfaces between them, and demonstrate their use.

Categories and Subject Descriptors:
General Terms: Numerical Optimization, Distributed Data Structures, One-Sided Communication, Load
Balancing, Molecular Dynamics, Lennard-Jones Potential.

1. INTRODUCTION

Modern scientific applications are becoming increasingly complex in terms of their
mathematical models, computational algorithms, and parallel computing techniques;
these projects often require the contributions of software developed by different groups.
Some of the challenges in large-scale, interdisciplinary problems can be addressed by the
adoption of reusable software toolkits and libraries, which can help application scientists
incorporate the expertise of domain specialists. For example, a recent project in
molecular geometry optimization [Kenny et al. 2004] used MPQC [Janssen 2003] and
NWChem [Bernholdt et al. 1995] to evaluate energy functions, Global Arrays (GA)
[Nieplocha et al. 1994; 1996] to manage distributed arrays of data, the Toolkit for
Advanced Optimization (TAO) [Benson et al. 2005, Benson et al. 2001] for the
optimization algorithms, and MPI [MPI-Forum 1994] for interprocess communication.
Managing the interactions among multiple software packages, however, often imposes
other types of challenges to application scientists. Technical issues such as overlapping

 2

namespaces and the use of different programming languages can hinder the adoption of
independently developed software libraries. In addition, diverse software design
philosophies can complicate the development of interfaces among various packages and
may require potentially expensive restructuring and redistribution of data. A desire to
achieve efficient and scalable performance that is portable across different high-end
architectures further magnifies these difficulties.

The Advanced CompuTational Software (ACTS) initiative was established to
overcome some of the major impediments in developing of scientific applications. One
of this initiative’s goals was to make software toolkits used within the laboratories of the
U.S. Department of Energy (DOE) more applicable and interoperable [DOE-ACTS 1998,
Drummond and Marques 2003]. Attaining this goal involves creating consistent
interfaces, generalizing data management strategies for complex programming needs,
resolving runtime issues such as thread safety, addressing language interoperability, and
providing long term support for evolving research software. As a result of the effort
funded under this initiative, the two ACTS toolkits described in this paper, Global Arrays
and TAO, provide state-of-the art capabilities in the areas of distributed data management
and large-scale optimization, respectively. In this paper, we show how GA and TAO
have been designed and integrated to assist computational scientists working in projects
that involve the advanced management of dense distributed arrays, dynamic load
balancing, and large-scale optimization. These projects typically involve many variables,
each of which is coupled to the others in a nonlinear fashion. The combined use of GA
and TAO as a result of this integration effort has proven valuable for large-scale quantum
chemistry simulations, where benchmarking of molecular geometry problems that use
NWChem and MPQC, along with GA for parallel data management and TAO for
numerical optimization, has demonstrated reduced run times up to 43% compared to the
stand-alone chemistry packages [Kenny et al. 2004]. Such capabilities have potentially
broad applicability, as the discovery of molecular geometries corresponding to stable and
reactive chemical species is a fundamental step in computational processes, including
combustion modeling, catalyst design, and the simulation of biological processes.

A second example of problems targeted by the combined use of GA and TAO is a classic
application kernel known as the Lennard-Jones problem [Averick et al. 1991]. The
determination of the minimum energy configuration of a cluster of particles or molecules
is known as the molecular conformation problem. This problem is central to the study of
cluster statistics. For additional background on this problem, see, for example, [Hoare
1979]. More formally, given the positions nppp ,...,, 21 of n particles (atoms or

molecules) in ℜd, the function V on the set of particles p is defined as

),||(||)(2

1

12
ij

j

i

n

j

ppvpV −= ∑∑
−

==

where v:ℜ→ℜ is the potential function on the distance between a pair of particles. The
Lennard-Jones potential function is defined by

,2)(612 −− −= rrrv

where r is the distance between the particles. The molecular conformation problem is to
determine the positions of the n particles that minimize the energy potential function, V,
which is invariant with respect to permutations, translations, and rotations of the n
molecules. Translating the cluster so that the center of gravity is at the origin can
eliminate invariance with respect to translations. While relatively simple with a concise
problem statement, this example serves as an excellent test for optimization software
[Averick et al. 1991] because it can be made arbitrarily large, and its key features are

 3

similar to our target applications (see, e.g., [Kenny et al. 2004]). Small instances of this
problem involving fewer than a thousand particles have been solved many times, but
larger instances mandate efficient capabilities to manage dense, distributed data and
effective optimization solvers to compute molecular configurations with as few energy
evaluations as possible.

Various software packages are available for solving optimization problems [Moré and
Wright 1993]. Most of these packages are restricted to single processors, but excellent
efforts in parallel optimization software include OPT++ [Meza 1994], APPSPACK
[Hough et al. 2001, Kolda 2005], and Dakota [Dakota 2005]. The latter two packages, in
particular, achieve parallelism through simultaneous evaluations of the objective
function. This approach is very efficient when an optimization solver needs to evaluate
the objective function at multiple points before determining the next step. In contrast,
TAO includes a set of numerical optimization solvers whose parallelism is achieved in
the function evaluations and the linear algebra operations. This approach is appropriate
when a large number of variables that can be distributed over multiple processors. To
compute a minimum, TAO solvers require users to provide first derivatives in the form of
gradient vectors (and sometimes second derivatives in the form of Hessian matrices).
These derivative evaluations should also work in parallel.

Because in the Lennard-Jones problem each particle pj exerts a force on each of the
other particles to create a dense coupling among variables, distributed data structures for
dense arrays are important for the efficient parallel computation of the derivatives of the
energy function. The Global Arrays toolkit [Nieplocha et al. 1994; 1996] presents to the
application developer a distributed data structure as a single object and allows operations
on distributed-memory architectures as though the data resided in shared memory. In
addition, the availability of one-sided (put/get) communication and atomic operations is
valuable for implementing effective dynamic load balancing, as shown in Section 6 in the
context of the Lennard-Jones problem. These features help application scientists to work
at higher levels of abstraction and increase code reuse. This strategy reduces the amount
of new code that must be written and enables scientists to program in terms of physically
meaningful concepts rather than manipulating low-level distributed data structures and
handling explicit interprocessor communication. Thus, this approach can help to make
scientists more productive and permit more time to be spent improving performance-
critical algorithms and application kernels [Bernholdt et al. 2004].

Both TAO and GA offer functionality that can reduce the complexity of solving
minimization problems, and the design of each toolkit determines how easily they can
used together. With applications such as the Lennard-Jones cluster in mind, GA and
TAO have been developed to enable interoperability with other packages through the
Common Component Architecture (CCA) as well as using more traditional interfaces.

The remainder of this paper is organized as follows. Section 2 describes the parallel
data management capabilities of the GA toolkit. Section 3 outlines the optimization
solvers in TAO and highlights the abstractions used for vector and matrix operations,
which enable TAO to use the data structures provided by GA. Section 4 describes the
integration of these two toolkits as conventional libraries, while Section 5 discusses their
use as components that support the CCA. Section 6 presents numerical results using GA
and TAO to solve large instances of the Lennard-Jones problem. Section 7 summarizes
our experiences in interfacing between these two toolkits.

2. GLOBAL ARRAYS

 4

Global Arrays can be used as a toolkit for managing dense distributed arrays in
applications based on message passing (e.g., MPI) or as a complete parallel programming
environment based on a shared-memory paradigm. Although a class of operations for
sparse data management was recently added [Nieplocha et al. 2001], the core capabilities
of GA focus on managing dense distributed arrays. The original version of the GA
package offered explicit support for two-dimensional arrays that was based on one-sided
communication in the Aggregate Remote Memory Copy Interface [Nieplocha and
Carpenter 1999, Nieplocha and Ju 2000]. One-sided communication allows a process to
access remote data owned by another process without explicit cooperation by that
process. (Depending on the platform, one-sided access can be implemented using shared
memory, threads, network hardware, Remote Direct Memory Access (RDMA), or other
vendor-specific mechanisms.) The current version of GA supports n-dimensional array
capabilities involving integer, floating point, double precision, and character data types.
The maximum number of dimensions is a compile time option; the default is seven, the
maximum number of dimensions supported by Fortran.

Figure 1 illustrates the concept of shared-memory access to distributed arrays, that is,

global arrays. The Global Arrays toolkit strives to combine the better features of the
shared and distributed-memory programming models [Nieplocha et al. 2002, Nieplocha
et al. 1994] by implementing a shared-memory programming approach in which the user
has the ability to manage data locality. Explicit calls to GA functions transfer data
between a global address space (a distributed array) and local storage. In this respect, the
GA model is similar to distributed shared-memory (DSM) models that provide an explicit
acquire/release protocol (see, e.g., [Zhou et al. 1996]). However, unlike DSM systems
[Cox et al. 1997] that rely on virtual memory to facilitate access to remote shared data,
GA is implemented as a library with specific user interfaces for accessing shared data

Physically distributed data

Single, shared data structure

1

2 4 6 8

3 5 7

e.g., A(4,3) rather than buf(7) on task 2

Process X
ga_get (a,100, 200, 17, 20, buf, 100)

Process Y
ga_get (a,180, 210,

23, 40, buf, 30)

Figure 1: Left: GA manages a distributed array as a single shared data object. As shown,
any process can access the distributed data using global indexing (e.g., using global index
A(4,3)). Right: Any part of the array can be accessed noncollectively as if it is located in
shared memory (e.g., Process X gets a block of the global array with global indices
starting at (100,17) and blocksize=100x3).

Process Z
ga_get (a,175, 185,

19, 70, buf, 10)

 5

based on multidimensional array APIs. In addition, the GA model acknowledges that
remote data is slower to access than is local data and allows applications optionally to
specify and manage data locality when allocating GA arrays or accessing data. These
capabilities are supported through explicit library calls. Although they can be ignored by
the programmer in most parts of the application code, they can be quite useful for
optimizing performance and scalability in communication intensive parts of the
applications [Zhang et al. 2005]. By using communication operations in ARMCI that
were optimized to maximize transfer rates of sections of multidimensional arrays, and
moving only the data requested by the user rather than full memory pages or cache lines
like in DSM, GA also avoids issues such as false sharing or redundant data transfers
present in some DSM solutions. See, for example, [Bershad et al. 1993, Cox et al. 1997,
Freeh and Andrews 1996]. GA provides a relaxed consistency for the shared data
equivalent to the location consistency model [Gao and Sarkar 2000]. The toolkit can be
used in C, C++, Fortran 77, Fortran 90, and Python programs.

The GA toolkit provides extensive support for controlling array distribution and
accessing locality information, which is important for some applications [Zhang et al.
2005]. Applications can create global arrays by allowing the toolkit to determine the
array distribution, specifying a decomposition only for one array dimension and allowing
the toolkit to determine the others, specifying the distribution block size for all
dimensions, or specifying an irregular distribution as a Cartesian product of irregular
distributions for each axis. The distribution and locality information available through
toolkit operations specify the array section held by a process, indicate which process
owns a particular array element, and return a list of processes and the blocks of data
owned by each process corresponding to a given section of an array.

The GA toolkit supports both task and data parallelism. Task parallelism uses one-
sided copy operations that transfer data between global memory (distributed/shared
array) and local memory. In addition, each process can access data held in a section of a
global array that is logically assigned to that process. The one-sided communications
used by Global Arrays eliminate the need for the programmer to manage responses by
remote processors. Only the process issuing the data request is involved, thereby
considerably reducing algorithmic complexity compared to the programming effort
required to move data around in a two-sided communication model. Copying data from a
local buffer to a distributed array requires a single call. Based on the data distribution, the
GA toolkit decomposes the call into point-to-point data transfers to each of the different
processors.

The data parallel computing model, as employed in Section 4 of the TAO-GA-
Application Object, relies on a set of collective functions that operate on either entire
arrays or sections of global arrays. This set of functions includes BLAS-like operations
(for example, copy, addition, transpose, dot product, and matrix-vector multiplication).
These are collective data-parallel operations that are called by all processes in the parallel
job. For example, data between different arrays can be moved by using a single function
call. Provided two patches of data have the same number of elements, that function call
can move a patch of data, identified by a set of lower and upper indices in the global
index space, from one global array to another global array. The array distributions do not
have to be identical, and the implementation can perform the necessary data
reorganization (i.e., “MxN” problem [CCA-Forum 2005]).

Some data parallel operations, such as addition, are defined and supported for all
array dimensionality. Other operations, such as matrix-vector multiplication, are limited
to one- and two-dimensional arrays (matrix-vector multiplication is also offered on two-
dimensional subsections of higher-dimensional arrays). GA extends its capabilities in the
area of linear algebra by offering interfaces to third-party libraries such as ScaLAPACK
[Blackford et al. 1997] for linear equation solvers and PeIGS [PeIGS 2005] for standard

 6

and generalized real symmetric eigensolvers. Additional atomic operations,1 executed
serially, allow applications to synchronize processes and verify computations. As
discussed in the context of the Lennard-Jones example in Section 6, the atomic fetch-and-
increment operation proved valuable for implementing dynamic load-balancing schemes
and updating a shared counter (stored in a global array) representing the number of
outstanding tasks. This capability, in combination with the shared-memory access
supported by GA, simplifies the development of applications requiring dynamic load
balancing and exhibiting irregular communication patterns. Other implementations
relying on the traditional message-passing model require explicit coordination between
the sender and receiver of data.

3. THE TOOLKIT FOR ADVANCED OPTIMIZATION

The Toolkit for Advanced Optimization [Benson et al. 2005, Benson et al. 2001] focuses
on the solution of large-scale optimization problems of the form

minimize {F(x): subject to l ≤ x ≤ u},

where the bounds l, u ∈ nR and F:ℜn→ℜ is the objective function of the variables

x∈ℜn. The vectors l and u define lower and upper bounds on the variables. When lower
or upper bounds on the problem do not exist, the bounds may be set to negative or
positive infinity, respectively. Problems of particular interest can be characterized by a
large number of variables and an objective function that is differentiable, expensive to
evaluate, and decomposable over multiple processors.

Optimization problems of this form pervade many areas of science and engineering.
The finite-element formulation of many elliptic partial differential equations, for
instance, can be expressed as a minimization problem. The obstacle problem, which
minimizes the area of a surface over a closed domain subject to boundary conditions and
obstacle constraints [Rodrigues 1987], is a common example of a bound-constrained
optimization problem. Considered in more detail in this paper is another example that
arises in molecular dynamics, where a stable molecular configuration minimizes the
potential energy function associated with it. As introduced in Section 1, the Lennard-
Jones potential function v(⋅) is a nonconvex function that is bounded below. Since v(r) is
not defined at r=0, the distance between two particles must always be positive. Indeed,
v(r) approaches +∞ as r approaches 0, while v(r) converges to zero as r approaches +∞.
The global minimum of v occurs at r=1. Because each particle pj exerts a force on each of
the other particles, the second partial derivative d2V(p)/ dpi dpj is nonzero for all i and j.
The solution of such problems demands robust and flexible solution strategies, including
efficient algorithms and implementations that allow scientists to exploit problem-specific
structure to improve solver performance.

The collection of solvers in TAO includes Newton-based methods, which use first-
and second-derivative information from the objective function and are well known for
their fast local convergence properties. Global convergence of these methods is enforced
by using one of two techniques. First, a line search can ensure that each iteration of the
algorithm provides a better solution than the previous iteration. The GPCG solver [Moré
and Toraldo 1991], in particular, uses a projected line search that can add or remove
multiple variables from the set of variables fixed to the lower or upper bound. This
technique makes GPCG especially suitable for large-scale problems. Second, a trust

1 Atomic operations in GA are guaranteed to be executed serially, in an uninterrupted
manner with respect to atomic operations targeting the same memory and issued by the
same or other processors. The library does not guarantee that atomic operations called by
different processors will be completed in the exactly the same order as they were issued.

 7

region can be designed to represent regions near the current iteration where the quadratic
model is sufficiently accurate. The TRON solver [Lin and Moré 1999] implemented in
TAO, for example, uses a trust region in conjunction with approximate solutions to the
linearized Newton systems provided by iterative solvers.

Other solvers in TAO do not require second-derivative information. Nonlinear
conjugate gradient solvers use the first-order derivatives of the objective function to
compute a step direction. The use of these methods originated in solving linear systems
involving a symmetric, positive definite matrix. Several variants, including Fletcher-
Reeves, Polak-Ribiérre, and Hestenes-Stiefel [Nocedal and Wright 1999], extend linear
conjugate gradient techniques to unconstrained minimization and are available in TAO.
Limited-memory variable-metric (also known as quasi-Newton) solvers use first-order
derivatives at several points to approximate second-order information. Each iteration of
these solvers uses relatively little time and memory compared with full Newton methods.
These solvers have proven successful for unconstrained problems and have been adapted
to bound-constrained optimization [Benson and Moré 2001].

Although multiple implementations of these various optimization techniques exist,
TAO has carefully addressed issues of portability, versatility, and scalability within
parallel environments. Even on single-processor architectures, TAO does not make rigid
assumptions about the way mathematical objects such as vectors and matrices are
represented by the computer. Therefore, users can employ a natural representation of
data for a particular application instead of one imposed by the optimization library.
These benefits are magnified by the nature of multiprocessor architectures, as robust and
efficient implementations of mathematical functions involves the added considerations of
parallel data structures and communication among processors.

The optimization methods in TAO employ abstractions for vector and matrix objects.
These abstractions include about fifty well-defined operations, such as duplication and
destruction of these objects, vector sums, inner products, norms, and matrix-vector
products. The subroutines that implement these operations are the only routines whose
implementation is particular to a specific representation of the data. Because these
subroutines perform most of the floating-point operations and data manipulation
associated with the optimizations algorithm, efficient implementations are of paramount
importance. These subroutines constitute the interface between TAO and other packages
that support vector and matrix operations. The design of TAO allows users to implement
these interfaces, but the amount of effort required to write these subroutines from scratch
may discourage all but the most ambitious of users. Therefore, it is important for the
developers of TAO to write and support interfaces to other popular toolkits.

The use of object-oriented techniques in TAO allows scientists and engineers to
employ the toolkit in the context of data structures and data management packages
appropriate for their applications. This design decision is strongly motivated by the
challenges inherent in the use of large-scale distributed memory architectures and the
reality of working with large scientific codes. For example, the initial versions of TAO
supported the parallel sparse vector and matrix objects within PETSc [Balay et al. 2005,
Balay et al. 1997]. This interface is appropriate for discretizations of many continuous
optimization problems. The current effort has extended the availability of TAO to
optimization problems using GA and components compliant with the Common
Component Architecture. More explanation of the CCA is given in Section 5.

4. INTEGRATING AN APPLICATION WITH GLOBAL ARRAYS AND TAO

While TAO and GA were designed so that users can employ the packages together, the
joint work among both project teams has facilitated the simultaneous use of the two

 8

packages by implementing an interface that combines their complementary capabilities.
Through the component model discussed in the next section, interfaces between GA and
TAO are available in several different programming languages and styles. For users
more comfortable with traditional software libraries, we also provide a procedural
interface in the C programming language. The choice of a procedural over an object-
oriented C++ interface was made to be consistent with the original GA and TAO
interfaces, which are familiar and preferable to the packages’ current users, who are a
primary target for employing these new capabilities. This section provides an overview
of this interface between GA and TAO, which is described in full detail in the
documentation that accompanies this freely available software[Benson et al. 2005].

As illustrated by Figure 2, the interface among GA, TAO, and the application-specific
code is contained in a TAO-GA-Application object, which is an input argument to the
user-defined routines for evaluating the objective function and its derivatives. This
object wraps the GA implementations of vectors and matrices into objects whose
methods are defined in the abstract classes in TAO, thereby encapsulating the interface
between the two packages without exposing users to details. There are about fifty of
these vector and matrix methods, including sums, products, norms, and several operations
specific to optimization solvers in TAO, such as elementwise addition of two arrays and
shifting the diagonal of a two-dimensional array.

The routine that evaluates the objective function to be minimized and its gradient

must be written by the application developer. The name of the routine is arbitrary, but a
set of arguments must match the following declaration

 FormFunctionGradient(TAO_GA_APPLICATION taogaapp, GAVec X,

 double *f, GAVec G, void *ptr);

The first argument is the TAO-GA-Application object, which encapsulates details about
TAO and GA. The second argument is a GA vector with the current approximate
solution. The newly computed objective value and gradient vector should be returned by
using the third and fourth arguments, respectively. The coupling of objective value and
gradient evaluations improves performance in some problems. The final argument is a
pointer to a user-defined structure or object that this user-defined routine may use to
perform the function and gradient computations. Neither TAO nor GA will access this
data, so the application developer is free to define this structure in a manner appropriate

Figure 2: Applications involving TAO and GA require the coupling of an objective
function and its derivatives, an optimization solver, and linear algebra capabilities.

Application Driver

Vectors, Matrices

Optimization Solvers

Objective Function and
Derivative Information

Data Management

 GA TAO-GA-Application TAO User Code

 9

for the application. Although it can point to a specific type of object, it will be passed
through the solver as a (void*) type in order to maintain generality in the software.

The code fragment in Figure 3 shows how we pass the optimization problem to the
solver. In particular, line 6 calls a subroutine that creates a TAO-GA-Application object.
The subroutine in line 8 creates a GA vector that we pass to the application object in line
9. In lines 11--12, we pass a function pointer to the subroutine
FormFunctionGradient to the application object. We also cast the address of a
structure containing application-specific information, AppCtx, to a (void*) type and
pass it to the solver in line 12 with the function pointer. The address of this structure will
be passed back to the application as the fifth argument of FormFunctionGradient.
We pass lower and upper bounds on the variables, in the form of GA Vector objects, to
the application object in another routine. Line 14 calls a routine that creates a TAO
solver that implements the limited-memory variable-metric (“tao_lmvm”) method. Line
15 passes the TAO-GA-Application object to the TAO solver, which computes a
minimizer of the objective function. Additional routines may be necessary to generate
the data, set various options, and save the solution, but this snippet of code indicates how
the application can interact with the software libraries.

When Newton methods are employed, the application must also provide a routine that

evaluates the Hessian matrix. GA has implemented a dense matrix class and supports the
necessary operations on these structures, such as matrix-vector products and linear
solves. Like the routine that evaluates the objective and gradient, the arguments for this
routine are the TAO-GA-Application object, a GA vector containing the variables, a GA
matrix for the Hessian, and a pointer to application-specific data.

As Figure 3 shows, the interface between the application and optimization toolkit is
minimal. It consists of creating an object, giving it an objective function and initial
variable vector, and passing the object to a TAO solver to compute a minimum. Most
details underlying parallel data structures are embedded within the objects, insulating the
user from many of the complications of distributed-memory computing. The most

1 GAVec X; /* solution vector */

2 TAO_SOLVER tao; /* TAO optimization solver */

3 TAO_GA_APPLICATION taogaapp; /* TAO application using GA */

4 AppCtx user; /* user-defined data structure */

5

6 TaoGAApplicationCreate (MPI_COMM_WORLD, &taogaapp);

7

8 X = NGA_Create (C_DBL,1,&n,"GA_X", NULL);

9 TaoGAAppSetInitialSolutionVec(taogaapp, X);

10

11 TaoGAAppSetObjectiveAndGradientRoutine (taogaapp,

12 FormFunctionGradient, (void *)&user);

13

14 TaoCreate(MPI_COMM_WORLD, "tao_lmvm", &tao);

15 TaoSolveGAApplication(taogaapp,tao);

Figure 3: Code fragment in C illustrating the use of TAO and GA.

 10

computationally intensive aspect of solving the application is evaluating the objective and
gradient, and the details of these operations presumably lie within the application
developer’s realm of expertise.

5. COMMON COMPONENT ARCHITECTURE

An alternative to linking to external libraries through a procedural interface, as described
for GA and TAO in Section 4, is the use of the Common Component Architecture (CCA)
[Armstrong et al. 1999, CCA-Forum 2005]. The CCA is a component model specifically
designed to address the needs of high-performance scientific computing by the CCA
Forum, which originated as a grass-roots undertaking by some of the participants of the
DOE-2000 ACTS initiative [DOE-ACTS 1998]. Currently a subset of CCA Forum
members continue development of component-based scientific software and tools[DOE-
SciDAC 2005]. From an application scientist’s perspective, components allow software
developers to describe the calling interfaces of libraries and applications in a manner that
hides low-level details, such as implementation language, compiler, parallelism, or
location on a network. Components encapsulate the knowledge, experience, and work of
other scientists, and they provide building blocks that speed application development. To
provide these benefits to applications, we have developed CCA component interfaces for
both the GA and TAO toolkits. We expect that the advantages offered by the CCA
interfaces will be of particular interest to computational science research projects that
require the coordinated use of a variety of independently developed software capabilities,
such as multimodel chemistry and physics implementations, tools for numerical
computing, parallel data management and input/output, and visualization, which
naturally may evolve over the lifetime of the projects. In other words, the component
approach to GA and TAO facilitates their interoperability both with each other and with a
variety of additional external software packages.

While the details of the CCA specification are beyond the scope of this paper, we
highlight the key points that are most pertinent for the combined parallel use of GA and
TAO components in the single-program multiple-data (SPMD) mode; see [Bernholdt et
al. 2005, CCA-Spec 2005, McInnes et al. 2005] for further details. The CCA approach
consists of three main elements: components, ports, and frameworks. Briefly, components
are basic units of software functionality that can be composed together at runtime to form
applications; ports are the abstract interfaces through which components interact, and
frameworks manage components as they are assembled into applications and executed.
One of the fundamental assumptions in the CCA is that components may be written in
different programming languages. In order to facilitate language interoperability, the
Scientific Interface Definition Language (SIDL) has been adopted to describe component
interfaces [Cleary et al. 1999, Kohn et al. 2001].

Components may provide ports, meaning that they implement the functionality
expressed in a port (called provides ports), or they may use ports, meaning that they
make calls on a port provided by another component (called uses ports). This
uses/provides paradigm allows components in the same process address space to be
invoked directly, without intervention by the framework, and with data passed by
reference if desired (also referred to as “direct connect” or “in-process” components).
Figure 4 shows an example of components based on GA and TAO interfacing through
ports.

 11

For an SPMD application, such as the Lennard-Jones model introduced in Section 1,

each parallel process would be loaded with the same set of components, with their ports
connected in the same way. Interactions within a given parallel process occur through
normal CCA port mechanisms. These would generally use the “direct connect’’
approach to minimize the CCA-related overhead. Interactions within the parallel cohort
of a given component are free to use the parallel programming model they prefer, and in
this case we employ MPI.

We developed the Global Array and TAO components by adding thin wrappers
around the libraries described in Sections 2 and 3 to manage port registration and
framework interactions. While the details of this process are beyond the scope of this
paper, we refer interested readers to [CCA-Forum 2005, McInnes et al. 2005, Sarich
2004] for examples and code. The TAO component provides the port
“OptimizationSolver,” and the Global Array component provides the ports
“GlobalArrayPort,” “DADFPort,” and “LAPort.” “GlobalArrayPort” has interfaces for
creating and accessing distributed arrays. “DADFPort” offers interfaces for defining
and querying array distribution templates and distributed array descriptors following the
API proposed by the CCA Forum Distributed Data Working Group. “LAPort” provides
TAO the core linear algebra support for manipulating vectors, matrices, and linear
solvers.

Figure 5 illustrates the composition of the Lennard-Jones energy optimization using
the graphical user interface of Ccaffeine, a CCA-compliant framework that supports the
SPMD paradigm [Allan et al. 2002]. The TaoSolver component in this snapshot has been
configured to use a limited-memory variable-metric method, which requires an
application-specific component (implementing the Lennard-Jones model) to evaluate the
model's function and gradient, as well as a linear algebra component (based on GA) to
manipulate vectors, matrices, and linear solvers. The model uses a distributed array
component (based on GA) for managing distributed data structures. The boxes in the
wiring diagram show components for the distributed array, optimization solver, linear
algebra, visualization, and application-specific driver and model. The connector lines in
this diagram represent connections between uses and provides ports. For example, the
TaoSolver’s optimization component's “OptimizationModel” uses port is connected to
the GA_LJMDModel's “OptimizationModel” provides port; hence, the optimization
solver component can invoke the interface methods for function and gradient
computation that the GA_LJMDModel component has implemented. The special
“GoPort” (named Optimize in this application) is used to start the execution of the
application.

Figure 4: Example of two components interfacing through ports. The port LA is
provided by the GA component and used by the TAO component.

 GA TAO

addProvides Port RegisterUses Port

GetPort
(“LA”)

GA
DADF

LA LA

CCA Services CCA Services

 12

6. COMPUTATIONAL RESULTS

The combined use of GA and TAO resulting from this integration effort has already
proven valuable for large-scale quantum chemistry simulations in molecular geometry
optimization [Kenny et al. 2004]. These simulations, which involved MPQC and
NWChem to evaluate energy functions, reduced run times up to 43% compared to the
solvers implemented in stand-alone chemistry packages.

In this paper, we demonstrate computational results of the software for Lennard-Jones
problems with the limited-memory variable-metric and nonlinear conjugate gradient
methods. To measure component overhead and demonstrate efficient runtime
performance, we consider both the traditional procedural interface to GA and TAO
introduced in Section 4 and the CCA component approach highlighted in Section 5. We
employ up to 170 processors for several problem sizes to demonstrate the combined
capabilities and scalability of GA and TAO for large-scale optimization problems.

We store the particle coordinates in a global array distributed over the processors.
Each processor computes a fixed set of interatomic forces [Plimpton and Heffelfinger
1992]. Symmetry of forces between two particles halves the amount of computation, and
a centralized task list maintains another global array that stores the information about the
order in which forces will be computed.

 Load imbalance is a serious concern for force decomposition molecular dynamics
algorithms [Plimpton 1995]. To address the potential load imbalance in our test problem,
we use a simple and effective dynamic load-balancing technique called fixed-size
chunking [Kruskal and Weiss 1985]. Initially, all the processes get a block from the task
list. When a process finishes computing its block, it gets the next available block from
the task list. Computation and communication overlap by issuing a nonblocking “get”
call to the next available block in the task list, while computing a block [Tipparaju et al.
2003]. This implementation of the dynamic load-balancing technique takes advantage of
the atomic and one-sided operations in the GA toolkit (see Figure 6). The GA one-sided
operations eliminate explicit synchronization between a processor that executes a task
and a processor that has the relevant data; see Figure 1. Atomic operations reduce the
communication overhead in the traditional message-passing implementations of dynamic

Figure 5: CCA component wiring diagram for Lennard-Jones energy optimization.

TaoSolver
OptimizationSolver

cProps
OptimizationModel

LinearAlgebra
GA_LAFactory

LinearAlgebra
cProps

Visualization
VisualizePort

cProps

GA_Classic
GAClassicPort

cProps

GA_DADFFactory
GADADescriptorFactory

cProps
GADATemplateFactory

Petsc_LAFactory
LinearAlgebra

cProps

GA_LJMDModel

OptimizationSolver
cProps

GAClassicPort
VisualizePort

GADADescriptorFactory
GADATemplateFactory

ApplicationDriver
Optimize
cProps OptimizationSolver

Legend

Connection Component B
Provides Port

cProps
Component A

Uses Port

Driver
GAClassic
GADADFactory
GALAFactory
LinearAlgebra_Petsc
LinearAlgebra_GA
LJMDModel
TAOSolver
Visualization

TaoSolver
OptimizationSolver

cProps
OptimizationModel

LinearAlgebra
TaoSolver

OptimizationSolver
cProps

OptimizationModel
LinearAlgebra

GA_LAFactory
LinearAlgebra

cProps
GA_LAFactory

LinearAlgebra
cProps

Visualization
VisualizePort

cProps
Visualization

VisualizePort
cProps

GA_Classic
GAClassicPort

cProps
GA_Classic

GAClassicPort
cProps

GA_DADFFactory
GADADescriptorFactory

cProps
GADATemplateFactory

GA_DADFFactory
GADADescriptorFactory

cProps
GADATemplateFactory

Petsc_LAFactory
LinearAlgebra

cProps
Petsc_LAFactory
LinearAlgebra

cProps

GA_LJMDModel

OptimizationSolver
cProps

GAClassicPort
VisualizePort

GADADescriptorFactory
GADATemplateFactory

GA_LJMDModel

OptimizationModell
cProps

GAClassicPort
VisualizePort

GADADescriptorFactory
GADATemplateFactory

ApplicationDriver
Optimize
cProps OptimizationSolver

ApplicationDriver
Optimize
cProps OptimizationSolver

Legend

Connection Component B
Provides Port

cProps
Component A

Uses Port Legend

Connection Component B
Provides Port

cProps
Component B

Provides Port
cProps

Component A
Uses Port

Driver
GAClassic
GADADFactory
GALAFactory
LinearAlgebra_Petsc
LinearAlgebra_GA
LJMDModel
TAOSolver
Visualization

 13

load balancing based on the master-worker strategy. This strategy has associated
scalability issues, because with the increased number of processors, management of the
task list by a single master processor becomes a bottleneck. Hierarchical master-worker
implementations (with multiple masters) [Matthey and Izaguirre 2001] address that part
of the problem; however, the introduced synchronization between multiple masters
degrades the performance. Moreover, the message-passing implementation of this
strategy can be quite complex. On the other hand, the implementation of dynamic load
balancing using GA atomics (fetch-and-increment operation) involves only a few lines of
code, while the overall performance of the simulation is competitive with the MPI-1
version [Tipparaju et al. 2003].

As explained in Section 3, through a single interface TAO provides access to both
nonlinear conjugate gradient (CG) and limited-memory variable-metric (LMVM, also
known as L-BFGS) methods. Although Newton-type methods are also supported, large-
scale problems with dense Hessian matrices easily exhaust the available computing
resources. For example, a matrix with 64,000 rows and columns would require over 32
GB of RAM and O(64,0003) floating-point operations to factor. Therefore, CG and
LMVM methods, which do not require the Hessian matrix, offer an appealing alternative
for the Lennard-Jones application, which has global connectivity among its variables.
The ability of variable-metric methods to create a coarse approximation to the Hessian
[Nocedal and Wright 1999] has meant that they can often find solutions to minimization
problems by using fewer function evaluations than do CG methods. Figure 7
demonstrates this

Get task (i.e., block info) to be computed (atomic fetch-and-add)
Issue nonblocking get call for the first block
do (until last block/task)
 determine what the next block/task is
 issue nonblocking get call for the next block
 wait for previously issued get call
 compute Function-Gradient

 (overlapping communication with computation.
i.e., receiving next block while computing previous
block)

 accumulate function and gradient into respective Arrays
done

Figure 6: Function and gradient evaluation using GA for parallel data management.

 14

situation for a sample Lennard Jones problem with 2,048 particles on 16 and 64
processors, where we used the Polak-Ribière version of CG as well as LMVM with the
default value of five correction pairs.

Molecular configurations with a relative residual (defined to be the norm of the

gradient divided by the absolute value of the objective function) less than 0.001 were
considered sufficiently optimal to terminate the solver. The experiments were performed
on the 2.4 GHz Pentium-4 Linux cluster with Myrinet-2000 at the State University of
New York at Buffalo. Figure 8 shows the energy after each iteration of the LMVM
method (left) and the final configuration for a 256-particle system in the computational
domain (right) with periodic boundary conditions.

Figure 9 shows the parallel speedup of the LMVM algorithm, which is defined as the
ratio of the time required to solve a problem using a single processor and the time needed

Figure 7: Comparison of the CG and LMVM algorithms for 2,048 particles.

0

10

20

30

40

50

60

16 64

Processors

S
ec

o
n
d
s

CG
LMVM

Figure 8: Energy optimization steps of the limited-memory variable-metric method.
Energy after each iteration (left) and the final configuration for a 256-particle system in
the computational domain (right) with periodic boundary conditions.

-720

-700

-680

-660

-640

-620

-600
0 16 32 48 64 80 96 112 128

iterations

en
er

gy

 15

to solve the problem using n processors. Sixty-four processors achieved speedups of 59.4
and 61.5 for the 32,768 and 65,536 particle examples, respectively. For these large
problems, the cost of the parallel computations dominates the cost of passing messages
among processors. When run on 128 processors, the LMVM solver employed 939
function/gradient evaluations for the 32,768 particle example and 1,084 function/gradient
evaluations for the 65,536 particle example. The number of function evaluations using
other processor counts was nearly identical, which indicates that the algorithms is
numerically stable with respect to multiple processors. While in exact arithmetic the
number of iterations should be the same, in our experience, small changes in the iteration
numbers for the LMVM method are to be expected and are not a cause for concern. We
also note that the nonlinear conjugate gradient algorithm scaled comparably.

Additional tests were performed to evaluate the overhead of the CCA component
version with respect to the noncomponent (library-approach) C interface version. We
measured the overall wall-clock times of the C and CCA versions and repeated each test
five times. Denoting the average wall-clock times over five runs of the C and CCA
versions as tc and tcca respectively, we measure the overhead of CCA as (tcca - tc)/tc. As
shown in Figure 10, the performance overhead due to the CCA approach is less than
0.2% in most cases, a negligible amount when compared to the total execution time. For
example, when a minimization of 32,768 particles was run on 64 processors, each
iteration of LMVM used about 1 second, and the 0.002 seconds overhead incurred by the
CCA was about the same as the time for a global reduction.

Figure 9: Speedup in the Lennard-Jones potential energy optimization for 32,768 and
65,536 particles.

0

32

64

96

128

160

0 34 68 102 136 170

Processors

S
p

ee
d

-u
p

32768 atoms

65536 atoms

 16

7. CONCLUSIONS

This paper highlights key features of two complementary toolkits within the ACTS
collection, namely, the Global Arrays library and the Toolkit for Advanced Optimization.
In combination they provide state-of-the art capabilities for distributed data management
and optimization for large-scale computational science problems. The GA toolkit
provides efficient vector and matrix classes, support for dynamic load balancing using
one-sided and atomic operations, and an easy-to-use interface for efficiently managing
dense distributed arrays. TAO provides first- and second-order optimization methods that
are portable, robust, and efficient, with a common interface for each class of problems
(such as unconstrained and bound-constrained), so that applications can switch from
classic methods to recently developed techniques without restructuring their code.

Performance results of molecular configuration computations with a Lennard-Jones
model demonstrate the combined effectiveness of the two toolkits using both
conventional libraries and components compliant with the Common Component
Architecture (CCA). Advantages for applications developers include (1) efficient and
scalable performance achieved by leveraging highly tuned implementations of modern
algorithms written by experts in the field and (2) reduced overall application
development time by focusing users’ code development on application-specific phases,
where their primary interest and expertise reside. The latter feature is important even on
single processor machines, and the complexities of multiprocessor systems magnify its
advantages.

We also discuss some general principles in high-performance software integration that
not only are important to this work with the GA and TAO libraries but are also broadly
applicable to large-scale computational science projects. Such software interoperability,
which promotes the reuse of well-tested and tuned software throughout the scientific
computing community, is one of the key goals of the ACTS project [DOE-ACTS 1998].
Indeed, the fact that fundamental changes to the original toolkits were not needed and the
CCA specification to enable them to function well together on a practical level is a
testament to the careful thought and design that have gone into their development.

These features have already attracted the attention of computational scientists solving
large-scale problems. In particular, efforts involving quantum chemistry packages MPCQ
[Janssen 2003] at Sandia National Laboratories and NWChem [Bernholdt et al. 1995] at

0

0.05

0.1

0.15

0.2

0.25

1 4 16 3 2 6 4 12 8 170

Figure 10: Performance (left) and percentage overhead (right) of the C version
(noncomponent) vs. CCA version (component) of Lennard-Jones molecular dynamics
using GA/TAO for 32,768 particles.

Processors Processors

%
 o

ve
rh

ea
d

1

10

100

1000

10000

100000

1 4 16 32 64 128 170

C

CCA
E

xe
cu

ti
on

 ti
m

e
in

 s
ec

s

 17

Pacific Northwest National Laboratory have incorporated the CCA-compliant
components based on GA and TAO into their applications [Kenny et al. 2004]. Both GA
and TAO are freely available to the public and portable to a wide variety of modern
parallel architectures.

ACKNOWLEDGMENTS

The work at ANL was supported by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing, Office of Science, SciDAC Program, U.S. Department of Energy, under
Contract W-31-109-Eng-38. The work at PNNL was supported by the DoE-2000 ACTS
toolkit project and DoE SciDAC Center for Component Technology for Terascale
Simulation Software. We thank our colleagues within the Common Component
Architecture [CCA-Forum 2005] for stimulating discussions of issues in component and
interface design. We also thank the anonymous referees, whose careful reading and
constructive suggestions improved this article significantly.

REFERENCES

Allan, B.A., Armstrong, R.C., Wolfe, A.P., Ray, J., Bernholdt, D.E., and Kohl, J.A. 2002. The
CCA core specification in a distributed memory SPMD framework. Concurrency
Computataions 14, 1-23.

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S., and
Smolinski, B. 1999. Toward a common component architecture for high-performance scientific
computing. In Eighth International Symposium on High Performance Distributed Computing,
115 - 124.

Averick, B.M., Carter, R.G., and Moré, J.J. 1991. The MINPACK-2 test problem collection.
ANL/MCS-TM-150. Argonne National Laboratory.

Balay, S., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik D., Knepley, M., McInnes, L., Smith,
B., and Zhang, H. 2005. PETSc users manual, ANL-95/11, Revision 2.3.0, Mathematics and
Computer Science Division, Argonne National Laboratory. http://www.mcs.anl.gov/petsc.

Balay, S., Gropp, W.D., McInnes, L.C., and Smith, B.F. 1997. Efficient management of parallelism
in object oriented numerical software libraries. In Arge, E., Bruaset, A.M. and Langtangen, H.P.
eds. Modern Software Tools in Scientific Computing, Birkhauser Press, 163-202.

Benson, S., McInnes, L., Moré, J.J., and Sarich, J. 2005. TAO users manual. ANL/MCS-TM-242 -
Revision 1.7. Mathematics and Computer Science Division, Argonne National Laboratory.

Benson, S.J., McInnes, L.C., and Moré, J.J. 2001. A case study in the performance and scalability
of optimization algorithms. ACM Transactions on Mathematical Software 27, 3 (September),
361-376.

Benson, S.J., and Moré, J.J. 2001. A limited-memory variable-metric algorithm for bound-
constrained minimization. ANL/MCS-P909-0901. Argonne National laboratory.

Bernholdt, D.E., Allan, B.A., Armstrong, R., Bertrand, F., Chiu, K., Dahlgren, T.L., Damevski, K.,
Elwasif, W.R., Epperly, T.G.W., Govindaraju, M., Katz, D.S., Diachin, L.F., Kohl, J.A.,
Krishnan, M., Kumfert, G., Lefantzi, S., Lewis, M.J., Malony, A.D., McInnes, L.C., Nieplocha,
J., Norris, B., Parker, S.G., Ray, J., Shende, S., Windus, T.L., and Zhou.S. 2005. A component
architecture for high-performance scientific computing. Intl. J. High-Perf. Computing Appl.
Submitted to ACTS Collection special issue, in press.

 18

Bernholdt, D.E., Apra, E., Fruchtl, H.A., Guest, M.F., Harrison, R.J., Kendall, R.A., Kutteh, R.A.,
Long, X., Nicholas, J.B., Nichols, J.A., Taylor, H.L., Wong, A.T., Fann, G.I., Littlefield, R.J.,
and Nieplocha, J. 1995. Parallel computational chemistry made easier: The development of
NWChem. Int. J. Quantum Chem. Symposium 29, 475-483.

Bernholdt, D.E., Nieplocha, J., and Sadayappan, P. 2004. Raising the level of programming
abstraction in scalable programming models. In HPCA Workshop on Productivity and
Performance in High-End Computing (P-PHEC 2004), Madrid, Spain.

Bershad, B.N., Zekauskas, M.J., and Sawdon, W.A. 1993. Midway distributed shared memory
system. In 38th Annual IEEE Computer Society International Computer Conference -
COMPCON SPRING '93, Feb 22-26 1993, Publ by IEEE, Piscataway, NJ, USA, San Francisco,
CA, USA, 528-537.

Blackford, L.S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R.C. 1997.
ScaLAPACK: A linear algebra library for message-passing computers. In Eighth SIAM
Conference on Parallel Processing for Scientific Computing, Minneapolis, MN.

CCA-Forum. 2005. Common Component Architecture Forum. http://www.cca-forum.org.

CCA-Spec. 2005. http://www.cca-forum.org/docs/specification.html.

Cleary, A., Kohn, S., Smith, S., and Smolinski, B. 1999. Language interoperability mechanisms for
high-performance scientific applications. In SIAM Workshop on Object Oriented Methods for
Inter-operable Scientific and Engineering Computing, 30-39.

Cox, A.L., Dwarkadas, S., Lu, H., and Zwaenepoel, W. 1997. Evaluating the performance of
software distributed shared memory as a target for parallelizing compilers. In 1997 11th
International Parallel Processing Symposium, IPPS 97, Apr 1-5 1997, IEEE, Los Alamitos, CA,
USA, Geneva, Switz, 474-482.

Dakota. 2005. Dakota Web Page. http://endo.sandia.gov/DAKOTA/software.html.

DOE-ACTS. 1998. The DOE ACTS Collection. http://acts.nersc.gov/.

DOE-SciDAC. 2005. http://www.osti.gov/scidac/.

Drummond, L.A., and Marques, O. 2003. The Advanced Computational Testing and Simulation
Toolkit. LBNL-50414. Lawrence Berkeley National Laboratory. Technical Report.

Freeh, V.W., and Andrews, G.R. 1996. Dynamically controlling false sharing in distributed shared
memory. In 1996 5th IEEE International Symposium on High Performance Distributed
Computing, Aug 6-9 1996, Syracuse, NY, USA, 403-411.

Gao, G., and Sarkar, V. 2000. Location consistency -- a new memory model and cache consistency
protocol. IEEE Transactions on Computers 49, 8, 798-813.

Hoare, M.R. 1979. Structure and dynamics of simple microclusters. Advances in Chemical Physics
40, 49-135.

Hough, P., Kolda, T., and Torczon, V. 2001. Asynchronous parallel pattern search for nonlinear
optimization. SIAM J. Scientific Computing 23, 1, 134-156.

Janssen, C. 2003. The Massively Parallel Quantum Chemistry Program.
http://aros.ca.sandia.gov/~cljanss/mpqc/index.html.

 19

Kenny, J.P., Benson, S.J., Alexeev, Y., Sarich, J., Janssen, C.L., McInnes, L.C., Krishnan, M.,
Nieplocha, J., Jurrus, E., Fahlstrom, C., and Windus, T.L. 2004. Component-based integration
of chemistry and optimization software. Journal of Computational Chemistry 25, 14, 1717-
1725.

Kohn, S., Kumfert, G., Painter, J., and Ribbens, C. 2001. Divorcing language dependencies from a
scientific software library. In Tenth SIAM Conference on Parallel Processing.

Kolda, T. 2005. APPS web page. http://software.sandia.gov/appspack/.

Kruskal, C.P., and Weiss, A. 1985. Allocating independent subtasks on parallel processors. IEEE
Trans. Softw. Eng. 11, 10, 1001-1016.

Lin, C.J., and Moré, J.J. 1999. Newton's method for large bound-constrained optimization
problems. SIAM Journal of Optimization 9, 4, 1100-1127.

Matthey, T., and Izaguirre, J.A. 2001. ProtoMol: A molecular dynamics framework with
incremental parallelization. In Tenth SIAM Conf. on Parallel Processing for Scientific
Computing (PP01), Society for Industrial and Applied Mathematics.

McInnes, L.C., Allan, B.A., Armstrong, R., Benson, S.J., Bernholdt, D.E., Dahlgren, T.L., Diachin,
L.F., Krishnan, M., Kohl, J.A., Larson, J.W., Lefantzi, S., Nieplocha, J., Norris, B., Parker, S.G.,
Ray, J., and Zhou.S. 2005. Parallel PDE-based simulations using the common component
architecture. ANL/MCS-P1179-0704. To appear in the book Numerical Solution of Partial
Differential Equations on Parallel Computers, A. M. Bruaset, P. Bjorstad, and A. Tveito,
editors, Springer-Verlag. Argonne National Laboratory.

Meza, J.C. 1994. OPT++: An object-oriented class library for nonlinear optimization. SAND94-
8225. Sandia National Laboratories.

Moré, J.J., and Toraldo, G. 1991. On the solution of large quadratic programming problems with
bound constraints. SIAM Journal of Optimization 1, 93-113.

Moré, J.J., and Wright, S.J. 1993. Optimization Software Guide. SIAM Publications, Philadelphia.

MPI-Forum. 1994. MPI: A message-passing interface standard. International Journal of
Supercomputer Applications and High Performance Computing 8, 3/4 (Fall-Winter), 159-416.

Nieplocha, J., and Carpenter, B. 1999. ARMCI: A portable remote memory copy library for
distributed array libraries and compiler run-time systems. In RTSPP of IPPS/SDP'99.

Nieplocha, J., Harrison, R.J., Krishnan, M., Palmer, B., and Tipparaju, V. 2002. Combining shared
and distributed memory models: Evolution and recent advancements of the Global Array
Toolkit. In POHLL'2002 workshop of ICS-2002, New York.

Nieplocha, J., Harrison, R.J., and Littlefield, R.J. 1994. Global Arrays: A portable shared memory
programming model for distributed memory computers. In Supercomputing, IEEE CS Press,
340-349.

Nieplocha, J., Harrison, R.J., and Littlefield, R.J. 1996. Global Arrays: A nonuniform memory
access programming model for high-performance computers. Journal of Supercomputing 10, 2,
169-189.

Nieplocha, J., and Ju, J. 2000. ARMCI: A portable aggregate remote memory copy interface.
http://www.emsl.pnl.gov:2080/docs/parsoft/armci/armci1-1.pdf.

 20

Nieplocha, J., Trease, H., Ju, J., Rector, D., and Palmer, B. 2001. Building an application domain
specific programming framework for computational fluid dynamics calculations on parallel
computers. In Tenth SIAM Conference on Parallel Processing for Scientific Computing.

Nocedal, J., and Wright, S. 1999. Numerical Optimization. Springer-Verlag, New York.

PeIGS. 2005. PeIGS Home Page.
http://www.emsl.pnl.gov/docs/nwchem/doc/peigs/docs/peigs3.html.

Plimpton, S. 1995. Fast parallel algorithms for short-range molecular-dynamics. Journal of
Computational Physics 117, 1 (Mar 1), 1-19.

Plimpton, S., and Heffelfinger, G. 1992. Scalable parallel molecular dynamics on MIMD
supercomputers. In Scalable High Performance Computing Conference, 246-251.

Rodrigues, J.F. 1987. Obstacle Problems in Mathematical Physics. Elsevier Publishing Company,
Amsterdam.

Sarich, J. 2004. A programmer's guide for providing CCA component interfaces to the toolkit for
advanced optimization. ANL/MCS-TM-279. Argonne National Laboratory.

Tipparaju, V., Krishnan, M., Nieplocha, J., Santhanaraman, G., and Panda, D. 2003. Exploiting
non-blocking remote memory access communication in scientific benchmarks. In High
Performance Computing - HiPC, 248-258.

Zhang, Y., Tipparaju, V., Nieplocha, J., and Hariri, S. 2005. Parallelization of the NAS conjugate
gradient benchmark using the global arrays shared memory programming model. In 19th IEEE
International Parallel and Distributed Processing Symposium.

Zhou, Y., Iftode, L., and Li, K. 1996. Performance evaluation of two home-based lazy release
consistency protocols for shared virtual memory systems. In Operating Systems Design and
Implementation Symposium.

 The submitted manuscript has been created by the University of Chicago as Operator of Argonne
National Laboratory (“Argonne”) under Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable, worldwide licence in said article to reproduce, prepare,
derivative works, distribute copies to the public, and perform publicly and display publicly, by
or on behalf of the Government.

