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_______________________________________________________________________ 
 
Challenges in the scalable solution of large-scale optimization problems include the development of innovative 
algorithms and efficient tools for parallel data manipulation.  This paper discusses two complementary toolkits 
from the collection of Advanced CompuTational Software (ACTS), namely, Global Arrays (GA) for parallel 
data management and the Toolkit for Advanced Optimization (TAO), which have been integrated to support 
large-scale scientific applications of unconstrained and bound constrained minimization problems.  Most likely 
to benefit are minimization problems arising in classical molecular dynamics, free energy simulations, and other 
applications where the coupling among variables requires dense data structures.  TAO uses abstractions for 
vectors and matrices so that its optimization algorithms can easily interface to distributed data management and 
linear algebra capabilities implemented in the GA library.  The GA/TAO interfaces are available both in the 
traditional library mode and as components compliant with the Common Component Architecture (CCA).  We 
highlight the design of each toolkit, describe the interfaces between them, and demonstrate their use. 
 
Categories and Subject Descriptors:  
General Terms:  Numerical Optimization, Distributed Data Structures, One-Sided Communication, Load 
Balancing, Molecular Dynamics, Lennard-Jones Potential. 
_______________________________________________________________________ 
 
 
1. INTRODUCTION 

Modern scientific applications are becoming increasingly complex in terms of their 
mathematical models, computational algorithms, and parallel computing techniques;  
these projects often require the contributions of software developed by different groups.  
Some of the challenges in large-scale, interdisciplinary problems can be addressed by the 
adoption of reusable software toolkits and libraries, which can help application scientists 
incorporate the expertise of domain specialists. For example, a recent project in 
molecular geometry optimization [Kenny et al. 2004] used MPQC [Janssen 2003] and 
NWChem [Bernholdt et al. 1995] to evaluate energy functions, Global Arrays (GA) 
[Nieplocha et al. 1994; 1996] to manage distributed arrays of data, the Toolkit for 
Advanced Optimization (TAO) [Benson et al. 2005, Benson et al. 2001] for the 
optimization algorithms, and MPI [MPI-Forum 1994] for interprocess communication.  
Managing the interactions among multiple software packages, however, often imposes 
other types of challenges to application scientists.  Technical issues such as overlapping 
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namespaces and the use of different programming languages can hinder the adoption of 
independently developed software libraries.  In addition, diverse software design 
philosophies can complicate the development of interfaces among various packages and 
may require potentially expensive restructuring and redistribution of data.  A desire to 
achieve efficient and scalable performance that is portable across different high-end 
architectures further magnifies these difficulties.   

The Advanced CompuTational Software (ACTS) initiative was established to 
overcome some of the major impediments in developing of scientific applications.  One 
of this initiative’s goals was to make software toolkits used within the laboratories of the 
U.S. Department of Energy (DOE) more applicable and interoperable [DOE-ACTS 1998, 
Drummond and Marques 2003]. Attaining this goal involves creating consistent 
interfaces, generalizing data management strategies for complex programming needs, 
resolving runtime issues such as thread safety, addressing language interoperability, and 
providing long term support for evolving research software.  As a result of the effort 
funded under this initiative, the two ACTS toolkits described in this paper, Global Arrays 
and TAO, provide state-of-the art capabilities in the areas of distributed data management 
and large-scale optimization, respectively.  In this paper, we show how GA and TAO 
have been designed and integrated to assist computational scientists working in projects 
that involve the advanced management of dense distributed arrays, dynamic load 
balancing, and large-scale optimization.  These projects typically involve many variables, 
each of which is coupled to the others in a nonlinear fashion.  The combined use of GA 
and TAO as a result of this integration effort has proven valuable for large-scale quantum 
chemistry simulations, where benchmarking of molecular geometry problems that use 
NWChem and MPQC, along with GA for parallel data management and TAO for 
numerical optimization, has demonstrated reduced run times up to 43% compared to the 
stand-alone chemistry packages [Kenny et al. 2004].  Such capabilities have potentially 
broad applicability, as the discovery of molecular geometries corresponding to stable and 
reactive chemical species is a fundamental step in computational processes, including 
combustion modeling, catalyst design, and the simulation of biological processes. 

A second example of problems targeted by the combined use of GA and TAO is a classic 
application kernel known as the Lennard-Jones problem [Averick et al. 1991].  The 
determination of the minimum energy configuration of a cluster of particles or molecules 
is known as the molecular conformation problem. This problem is central to the study of 
cluster statistics.  For additional background on this problem, see, for example, [Hoare 
1979]. More formally, given the positions nppp ,...,, 21  of n particles (atoms or 

molecules) in ℜd, the function V on the set of particles p is defined as  
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where v:ℜ→ℜ is the potential function on the distance between a pair of particles.  The 
Lennard-Jones potential function is defined by  

,2)( 612 −− −= rrrv  

where r is the distance between the particles.  The molecular conformation problem is to 
determine the positions of the n particles that minimize the energy potential function, V,  
which is invariant with respect to permutations, translations, and rotations of the n 
molecules.  Translating the cluster so that the center of gravity is at the origin can 
eliminate invariance with respect to translations.  While relatively simple with a concise 
problem statement, this example serves as an excellent test for optimization software 
[Averick et al. 1991] because it can be made arbitrarily large, and its key features are 
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similar to our target applications (see, e.g., [Kenny et al. 2004]).   Small instances of this 
problem involving fewer than a thousand particles have been solved many times, but 
larger instances mandate efficient capabilities to manage dense, distributed data and 
effective optimization solvers to compute molecular configurations with as few energy 
evaluations as possible. 

Various software packages are available for solving optimization problems [Moré and 
Wright 1993].  Most of these packages are restricted to single processors, but excellent 
efforts in parallel optimization software include OPT++ [Meza 1994], APPSPACK 
[Hough et al. 2001, Kolda 2005], and Dakota [Dakota 2005]. The latter two packages, in 
particular, achieve parallelism through simultaneous evaluations of the objective 
function.  This approach is very efficient when an optimization solver needs to evaluate 
the objective function at multiple points before determining the next step.  In contrast, 
TAO includes a set of numerical optimization solvers whose parallelism is achieved in 
the function evaluations and the linear algebra operations.  This approach is appropriate 
when a large number of variables that can be distributed over multiple processors.  To 
compute a minimum, TAO solvers require users to provide first derivatives in the form of 
gradient vectors (and sometimes second derivatives in the form of Hessian matrices).  
These derivative evaluations should also work in parallel. 

Because in the Lennard-Jones problem each particle pj exerts a force on each of the 
other particles to create a dense coupling among variables, distributed data structures for 
dense arrays are important for the efficient parallel computation of the derivatives of the 
energy function.  The Global Arrays toolkit [Nieplocha et al. 1994; 1996] presents to the 
application developer a distributed data structure as a single object and allows operations 
on distributed-memory architectures as though the data resided in shared memory. In 
addition, the availability of one-sided (put/get) communication and atomic operations is 
valuable for implementing effective dynamic load balancing, as shown in Section 6 in the 
context of the Lennard-Jones problem.  These features help application scientists to work 
at higher levels of abstraction and increase code reuse.  This strategy reduces the amount 
of new code that must be written and enables scientists to program in terms of physically 
meaningful concepts rather than manipulating low-level distributed data structures and 
handling explicit interprocessor communication.  Thus, this approach can help to make 
scientists more productive and permit more time to be spent improving performance-
critical algorithms and application kernels [Bernholdt et al. 2004]. 

Both TAO and GA offer functionality that can reduce the complexity of solving 
minimization problems, and the design of each toolkit determines how easily they can 
used together.  With applications such as the Lennard-Jones cluster in mind, GA and 
TAO have been developed to enable interoperability with other packages through the 
Common Component Architecture (CCA) as well as using more traditional interfaces. 

The remainder of this paper is organized as follows. Section 2 describes the parallel 
data management capabilities of the GA toolkit.  Section 3 outlines the optimization 
solvers in TAO and highlights the abstractions used for vector and matrix operations, 
which enable TAO to use the data structures provided by GA.   Section 4 describes the 
integration of these two toolkits as conventional libraries, while Section 5 discusses their 
use as components that support the CCA.  Section 6 presents numerical results using GA 
and TAO to solve large instances of the Lennard-Jones problem.  Section 7 summarizes 
our experiences in interfacing between these two toolkits. 

 

 

 

2. GLOBAL ARRAYS 
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Global Arrays can be used as a toolkit for managing dense distributed arrays in  
applications based on message passing (e.g., MPI) or as a complete parallel programming 
environment based on a shared-memory paradigm. Although a class of operations for 
sparse data management was recently added [Nieplocha et al. 2001], the core capabilities 
of GA focus on managing dense distributed arrays.  The  original version of the GA 
package offered explicit support for two-dimensional arrays that was based on one-sided 
communication in the Aggregate Remote Memory Copy Interface [Nieplocha and 
Carpenter 1999, Nieplocha and Ju 2000]. One-sided communication allows a process to 
access remote data owned by another process without explicit cooperation by that 
process.  (Depending on the platform, one-sided access can be implemented using shared 
memory, threads, network hardware, Remote Direct Memory Access (RDMA), or other 
vendor-specific mechanisms.)  The current version of GA supports n-dimensional array 
capabilities involving integer, floating point, double precision, and character data types.  
The maximum number of dimensions is a compile time option;  the default is  seven, the 
maximum number of dimensions supported by Fortran. 

 
Figure 1 illustrates the concept of shared-memory access to distributed arrays, that is,  

global arrays.  The Global Arrays toolkit strives to combine the better features of the 
shared and distributed-memory programming models [Nieplocha et al. 2002, Nieplocha 
et al. 1994] by implementing a shared-memory programming approach in which the user 
has the ability to manage data locality. Explicit calls to GA functions transfer data 
between a global address space (a distributed array) and local storage.  In this respect, the 
GA model is similar to distributed shared-memory (DSM) models that provide an explicit 
acquire/release protocol (see, e.g., [Zhou et al. 1996]).  However, unlike DSM systems 
[Cox et al. 1997] that rely on virtual memory to facilitate access to remote shared data, 
GA is implemented as a library with specific user interfaces for accessing shared data 

Physically distributed data 

Single, shared data structure 

1 

2 4 6 8 

3 5 7 

e.g., A(4,3) rather than buf(7) on task 2 
 

Process X 
ga_get (a,100, 200, 17, 20, buf, 100) 

Process Y 
ga_get (a,180, 210, 

23, 40, buf, 30) 

Figure 1: Left: GA manages a distributed array as a single shared data object. As shown, 
any process can access the distributed data using global indexing (e.g., using global index 
A(4,3)). Right: Any part of the array can be accessed noncollectively as if it is located in 
shared memory (e.g., Process X gets a block of the global array with global indices 
starting at (100,17) and blocksize=100x3). 

Process Z 
ga_get (a,175, 185, 

19, 70, buf, 10) 
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based on multidimensional array APIs. In addition, the GA model acknowledges that 
remote data is slower to access than is local data and allows applications optionally to 
specify and manage data locality when allocating GA arrays or accessing data. These 
capabilities are supported through explicit library calls. Although they can be ignored by 
the programmer in most parts of the application code, they can be quite useful for 
optimizing performance and scalability in communication intensive parts of the 
applications [Zhang et al. 2005].  By using communication operations in ARMCI that 
were optimized to maximize transfer rates of sections of multidimensional arrays, and 
moving only the data requested by the user rather than full memory pages or cache lines 
like in DSM, GA also avoids issues such as false sharing or redundant data transfers 
present in some DSM solutions.  See, for example, [Bershad et al. 1993, Cox et al. 1997, 
Freeh and Andrews 1996].  GA provides a relaxed consistency for the shared data  
equivalent to the location consistency model [Gao and Sarkar 2000]. The toolkit can be 
used in C, C++, Fortran 77, Fortran 90, and Python programs.  

The GA toolkit provides extensive support for controlling array distribution and 
accessing locality information, which is important for some applications [Zhang et al. 
2005]. Applications can create global arrays by allowing the toolkit to determine the 
array distribution, specifying a decomposition only for one array dimension and allowing 
the toolkit to determine the others, specifying the distribution block size for all 
dimensions, or specifying an irregular distribution as a Cartesian product of irregular 
distributions for each axis.  The distribution and locality information available through 
toolkit operations specify the array section held by a process, indicate which process 
owns a particular array element, and return a list of processes and the blocks of data 
owned by each process corresponding to a given section of an array.  

The GA toolkit supports both task and data parallelism. Task parallelism uses one-
sided copy operations that transfer data between global memory (distributed/shared 
array) and local memory. In addition, each process can access data held in a section of a 
global array that is logically assigned to that process. The one-sided communications 
used by Global Arrays eliminate the need for the programmer to manage responses by 
remote processors.  Only the process issuing the data request is involved, thereby 
considerably reducing algorithmic complexity compared to the programming effort 
required to move data around in a two-sided communication model. Copying data from a 
local buffer to a distributed array requires a single call. Based on the data distribution, the 
GA toolkit decomposes the call into point-to-point data transfers to each of the different 
processors. 

The data parallel computing model, as employed in Section 4 of the TAO-GA-
Application Object, relies on a set of collective functions that operate on either entire 
arrays or sections of global arrays.  This set of functions includes BLAS-like operations 
(for example, copy, addition, transpose, dot product, and matrix-vector multiplication). 
These are collective data-parallel operations that are called by all processes in the parallel 
job. For example, data between different arrays can be moved by using a single function 
call. Provided two patches of data have the same number of elements, that function call 
can move a patch of data, identified by a set of lower and upper indices in the global 
index space, from one global array to another global array. The array distributions do not 
have to be identical, and the implementation can perform the necessary data 
reorganization (i.e., “MxN” problem [CCA-Forum 2005]). 

Some data parallel operations, such as addition, are defined and supported for all 
array dimensionality.  Other operations, such as matrix-vector multiplication, are limited 
to one- and two-dimensional arrays (matrix-vector multiplication is also offered on two-
dimensional subsections of higher-dimensional arrays).  GA extends its capabilities in the 
area of linear algebra by offering interfaces to third-party libraries such as ScaLAPACK 
[Blackford et al. 1997] for linear equation solvers and PeIGS [PeIGS 2005] for standard 
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and generalized real symmetric eigensolvers.  Additional atomic operations,1 executed 
serially, allow applications to synchronize processes and verify computations. As 
discussed in the context of the Lennard-Jones example in Section 6, the atomic fetch-and-
increment operation proved valuable for implementing dynamic load-balancing schemes 
and updating a shared counter (stored in a global array) representing the number of 
outstanding tasks.  This capability, in combination with the shared-memory access 
supported by GA, simplifies the development of applications requiring dynamic load 
balancing and exhibiting irregular communication patterns.  Other implementations 
relying on the traditional message-passing model require explicit coordination between 
the sender and receiver of data. 

 
3.  THE TOOLKIT FOR ADVANCED OPTIMIZATION 

The Toolkit for Advanced Optimization [Benson et al. 2005, Benson et al. 2001] focuses 
on the solution of large-scale optimization problems of the form  

minimize {F(x): subject to l ≤ x ≤ u}, 

where the bounds l, u ∈ nR  and F:ℜn→ℜ is the objective function of the variables 

x∈ℜn. The vectors l and u define lower and upper bounds on the variables.  When lower 
or upper bounds on the problem do not exist, the bounds may be set to negative or 
positive infinity, respectively.  Problems of particular interest can be characterized by a 
large number of variables and an objective function that is differentiable, expensive to 
evaluate, and decomposable over multiple processors.  

Optimization problems of this form pervade many areas of science and engineering. 
The finite-element formulation of many elliptic partial differential equations, for 
instance, can be expressed as a minimization problem. The obstacle problem, which 
minimizes the area of a surface over a closed domain subject to boundary conditions and 
obstacle constraints [Rodrigues 1987], is a common example of a bound-constrained 
optimization problem. Considered in more detail in this paper is another example that 
arises in molecular dynamics, where a stable molecular configuration minimizes the 
potential energy function associated with it.  As introduced in Section 1, the Lennard-
Jones potential function v(⋅) is a nonconvex function that is bounded below.  Since v(r) is 
not defined at r=0, the distance between two particles must always be positive.  Indeed, 
v(r) approaches +∞ as r approaches 0, while v(r) converges to zero as r approaches +∞. 
The global minimum of v occurs at r=1. Because each particle pj exerts a force on each of 
the other particles, the second partial derivative d2V(p)/ dpi dpj is nonzero for all i and j.  
The solution of such problems demands robust and flexible solution strategies, including 
efficient algorithms and implementations that allow scientists to exploit problem-specific 
structure to improve solver performance. 

The collection of solvers in TAO includes Newton-based methods, which use first- 
and second-derivative information from the objective function and are well known for 
their fast local convergence properties.  Global convergence of these methods is enforced 
by using one of two techniques.  First, a line search can ensure that each iteration of the 
algorithm provides a better solution than the previous iteration.  The GPCG solver [Moré 
and Toraldo 1991], in particular, uses a projected line search that can add or remove 
multiple variables from the set of variables fixed to the lower or upper bound.  This 
technique makes GPCG especially suitable for large-scale problems.  Second, a trust 
                                                      
1 Atomic operations in GA are guaranteed to be executed serially, in an uninterrupted 
manner with respect to atomic operations targeting the same memory and issued by the 
same or other processors. The library does not guarantee that atomic operations called by 
different processors will be completed in the exactly the same order as they were issued. 
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region can be designed to represent regions near the current iteration where the quadratic 
model is sufficiently accurate.  The TRON solver [Lin and Moré 1999] implemented in 
TAO, for example, uses a trust region in conjunction with approximate solutions to the 
linearized Newton systems provided by iterative solvers.   

Other solvers in TAO do not require second-derivative information.  Nonlinear 
conjugate gradient solvers use the first-order derivatives of the objective function to 
compute a step direction.  The use of these methods originated in solving linear systems 
involving a symmetric, positive definite matrix.  Several variants, including Fletcher-
Reeves, Polak-Ribiérre, and Hestenes-Stiefel [Nocedal and Wright 1999], extend linear 
conjugate gradient techniques to unconstrained minimization and are available in TAO.  
Limited-memory variable-metric (also known as quasi-Newton) solvers use first-order 
derivatives at several points to approximate second-order information.  Each iteration of 
these solvers uses relatively little time and memory compared with full Newton methods.  
These solvers have proven successful for unconstrained problems and have been adapted 
to bound-constrained optimization [Benson and Moré 2001].  

Although multiple implementations of these various optimization techniques exist, 
TAO has carefully addressed issues of portability, versatility, and scalability within 
parallel environments.  Even on single-processor architectures, TAO does not make rigid 
assumptions about the way mathematical objects such as vectors and matrices are 
represented by the computer.  Therefore, users can employ a natural representation of 
data for a particular application instead of one imposed by the optimization library.  
These benefits are magnified by the nature of multiprocessor architectures, as robust and 
efficient implementations of mathematical functions involves the added considerations of 
parallel data structures and communication among processors.   

The optimization methods in TAO employ abstractions for vector and matrix objects.  
These abstractions include about fifty well-defined operations, such as duplication and 
destruction of these objects, vector sums, inner products, norms, and matrix-vector 
products.  The subroutines that implement these operations are the only routines whose 
implementation is particular to a specific representation of the data.  Because these 
subroutines perform most of the floating-point operations and data manipulation 
associated with the optimizations algorithm, efficient implementations are of paramount 
importance.  These subroutines constitute the interface between TAO and other packages 
that support vector and matrix operations.  The design of TAO allows users to implement 
these interfaces, but the amount of effort required to write these subroutines from scratch 
may discourage all but the most ambitious of users.  Therefore, it is important for the 
developers of TAO to write and support interfaces to other popular toolkits. 

The use of object-oriented techniques in TAO allows scientists and engineers to 
employ the toolkit in the context of data structures and data management packages 
appropriate for their applications.  This design decision is strongly motivated by the 
challenges inherent in the use of large-scale distributed memory architectures and the 
reality of working with large scientific codes. For example, the initial versions of TAO 
supported the parallel sparse vector and matrix objects within PETSc [Balay et al. 2005, 
Balay et al. 1997].  This interface is appropriate for discretizations of many continuous 
optimization problems.  The current effort has extended the availability of TAO to 
optimization problems using GA and components compliant with the Common 
Component Architecture.   More explanation of the CCA is given in Section 5. 

 
 
4.  INTEGRATING AN APPLICATION WITH GLOBAL ARRAYS AND TAO 

While TAO and GA were designed so that users can employ the packages together, the 
joint work among both project teams has facilitated the simultaneous use of the two 
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packages by implementing an interface that combines their complementary capabilities. 
Through the component model discussed in the next section, interfaces between GA and 
TAO are available in several different programming languages and styles.  For users 
more comfortable with traditional software libraries, we also provide a procedural 
interface in the C programming language.  The choice of a procedural over an object-
oriented C++ interface was made to be consistent with the original GA and TAO 
interfaces, which are familiar and preferable to the packages’ current users, who are a 
primary target for employing these new capabilities.  This section provides an overview 
of this interface between GA and TAO, which is described in full detail in the 
documentation that accompanies this freely available software[Benson et al. 2005]. 

As illustrated by Figure 2, the interface among GA, TAO, and the application-specific 
code is contained in a TAO-GA-Application object, which is an input argument to the 
user-defined routines for evaluating the objective function and its derivatives.  This 
object wraps the GA implementations of vectors and matrices into objects whose 
methods are defined in the abstract classes in TAO, thereby encapsulating the interface 
between the two packages without exposing users to details.  There are about fifty of 
these vector and matrix methods, including sums, products, norms, and several operations 
specific to optimization solvers in TAO, such as elementwise addition of two arrays and 
shifting the diagonal of a two-dimensional array. 

  

 
The routine that evaluates the objective function to be minimized and its gradient 

must be written by the application developer.  The name of the routine is arbitrary, but a 
set of arguments must match the following declaration 

       FormFunctionGradient(TAO_GA_APPLICATION taogaapp, GAVec X, 

         double *f, GAVec G, void *ptr); 

The first argument is the TAO-GA-Application object, which encapsulates details about 
TAO and GA.  The second argument is a GA vector with the current approximate 
solution.  The newly computed objective value and gradient vector should be returned by 
using the third and  fourth arguments, respectively.  The coupling of objective value and 
gradient evaluations improves performance in some problems. The final argument is a 
pointer to a user-defined structure or object that this user-defined routine may use to 
perform the function and gradient computations.  Neither TAO nor GA will access this 
data, so the application developer is free to define this structure in a manner appropriate 

Figure 2: Applications involving TAO and GA require the coupling of an objective 
function and its derivatives, an optimization solver, and linear algebra capabilities.  
 

Application Driver 

 

Vectors, Matrices 

Optimization Solvers 

Objective Function and 
Derivative Information 

Data Management 

 GA  TAO-GA-Application  TAO  User Code 
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for the application.  Although it can point to a specific type of object, it will be passed 
through the solver as a (void*) type in order to maintain generality in the software.   

The code fragment in Figure 3 shows how we pass the optimization problem to the 
solver.  In particular, line 6 calls a subroutine that creates a TAO-GA-Application object. 
The subroutine in line 8 creates a GA vector that we pass to the application object in line 
9. In lines 11--12, we pass a function pointer to the subroutine 
FormFunctionGradient to the application object. We also cast the address of a 
structure containing application-specific information, AppCtx, to a (void*) type and 
pass it to the solver in line 12 with the function pointer.  The address of this structure will 
be passed back to the application as the fifth argument of FormFunctionGradient.   
We pass lower and upper bounds on the variables, in the form of GA Vector objects, to 
the application object in another routine.  Line 14 calls a routine that creates a TAO 
solver that implements the limited-memory variable-metric (“tao_lmvm”) method.  Line 
15 passes the TAO-GA-Application object to the TAO solver, which computes a 
minimizer of the objective function.  Additional routines may be necessary to generate 
the data, set various options, and save the solution, but this snippet of code indicates how 
the application can interact with the software libraries. 

 
When Newton methods are employed, the application must also provide a routine that 

evaluates the Hessian matrix.  GA has implemented a dense matrix class and supports the 
necessary operations on these structures, such as matrix-vector products and linear 
solves.  Like the routine that evaluates the objective and gradient, the arguments for this 
routine are the TAO-GA-Application object, a GA vector containing the variables, a GA 
matrix for the Hessian, and a pointer to application-specific data.   

As Figure 3 shows, the interface between the application and optimization toolkit is 
minimal.  It consists of creating an object, giving it an objective function and initial 
variable vector, and passing the object to a TAO solver to compute a minimum.  Most 
details underlying parallel data structures are embedded within the objects, insulating the 
user from many of the complications of distributed-memory computing.  The most 

 
1   GAVec X;                      /* solution vector */ 

2   TAO_SOLVER tao;               /* TAO optimization solver */ 

3   TAO_GA_APPLICATION taogaapp;  /* TAO application using GA */ 

4   AppCtx user;                  /* user-defined data structure */ 

5 

6   TaoGAApplicationCreate (MPI_COMM_WORLD, &taogaapp); 

7 

8   X = NGA_Create (C_DBL,1,&n,"GA_X", NULL); 

9   TaoGAAppSetInitialSolutionVec(taogaapp, X); 

10 

11  TaoGAAppSetObjectiveAndGradientRoutine (taogaapp,  

12                         FormFunctionGradient, (void *)&user);  

13 

14  TaoCreate(MPI_COMM_WORLD, "tao_lmvm", &tao); 

15  TaoSolveGAApplication(taogaapp,tao); 

 

Figure 3: Code fragment in C illustrating the use of  TAO and GA. 
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computationally intensive aspect of solving the application is evaluating the objective and 
gradient, and the details of these operations presumably lie within the application 
developer’s realm of expertise.   

 

5. COMMON COMPONENT ARCHITECTURE 

An alternative to linking to external libraries through a procedural interface, as described 
for GA and TAO in Section 4, is the use of the Common Component Architecture (CCA) 
[Armstrong et al. 1999, CCA-Forum 2005].  The CCA is a component model specifically 
designed to address the needs of high-performance scientific computing by the CCA 
Forum, which originated as a grass-roots undertaking by some of the participants of the 
DOE-2000 ACTS initiative [DOE-ACTS 1998].  Currently a subset of CCA Forum 
members continue development of component-based scientific software and tools[DOE-
SciDAC 2005]. From an application scientist’s perspective, components allow software 
developers to describe the calling interfaces of libraries and applications in a manner that 
hides low-level details, such as implementation language, compiler, parallelism, or 
location on a network. Components encapsulate the knowledge, experience, and work of 
other scientists, and they provide building blocks that speed application development. To 
provide these benefits to applications, we have developed CCA component interfaces for 
both the GA and TAO toolkits. We expect that the advantages offered by the CCA 
interfaces will be of particular interest to computational science research projects that 
require the coordinated use of a variety of independently developed software capabilities, 
such as multimodel chemistry and physics implementations, tools for numerical 
computing, parallel data management and  input/output, and visualization, which 
naturally may evolve over the lifetime of the projects.  In other words, the component 
approach to GA and TAO facilitates their interoperability both with each other and with a 
variety of additional external software packages. 

While the details of the CCA specification are beyond the scope of this paper, we 
highlight the key points that are most pertinent for the combined parallel use of GA and 
TAO components in the single-program multiple-data (SPMD) mode; see [Bernholdt et 
al. 2005, CCA-Spec 2005, McInnes et al. 2005] for further details.  The CCA approach 
consists of three main elements: components, ports, and frameworks. Briefly, components 
are basic units of software functionality that can be composed together at runtime to form 
applications; ports are the abstract interfaces through which components interact, and 
frameworks manage components as they are assembled into applications and executed. 
One of the fundamental assumptions in the CCA is that components may be written in 
different programming languages. In order to facilitate language interoperability, the 
Scientific Interface Definition Language (SIDL) has been adopted to describe component 
interfaces [Cleary et al. 1999, Kohn et al. 2001]. 

Components may provide ports, meaning that they implement the functionality 
expressed in a port (called provides ports), or they may use ports, meaning that they 
make calls on a port provided by another component (called uses ports). This 
uses/provides paradigm allows components in the same process address space to be 
invoked directly, without intervention by the framework, and with data passed by 
reference if desired (also referred to as “direct connect” or “in-process” components). 
Figure 4 shows an example of components based on  GA and TAO interfacing through 
ports.  
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For an SPMD application, such as the Lennard-Jones model introduced in Section 1, 

each parallel process would be loaded with the same set of components, with their ports 
connected in the same way. Interactions within a given parallel process occur through 
normal CCA port mechanisms.  These would generally use the “direct connect’’ 
approach to minimize the CCA-related overhead.  Interactions within the parallel cohort 
of a given component are free to use the parallel programming model they prefer, and in 
this case we employ MPI. 

We developed the Global Array and TAO components by adding thin wrappers 
around the libraries described in Sections 2 and 3 to manage port registration and 
framework interactions.  While the details of this process are beyond the scope of this 
paper, we refer interested readers to [CCA-Forum 2005, McInnes et al. 2005, Sarich 
2004] for examples and code.  The TAO component provides the port 
“OptimizationSolver,” and the Global Array component provides the ports 
“GlobalArrayPort,” “DADFPort,” and “LAPort.” “GlobalArrayPort” has interfaces for 
creating and accessing distributed arrays.   “DADFPort” offers interfaces for defining 
and querying array distribution templates and distributed array descriptors following the 
API proposed by the CCA Forum Distributed Data Working Group. “LAPort” provides 
TAO the core linear algebra support for manipulating vectors, matrices, and linear 
solvers. 

Figure 5 illustrates the composition of the Lennard-Jones energy optimization using 
the graphical user interface of Ccaffeine, a CCA-compliant framework that supports the 
SPMD paradigm [Allan et al. 2002].  The TaoSolver component in this snapshot has been 
configured to use a limited-memory variable-metric method, which requires an 
application-specific component (implementing the Lennard-Jones model) to evaluate the 
model's function and gradient, as well as a linear algebra component (based on GA) to 
manipulate vectors, matrices, and linear solvers. The model uses a distributed array 
component (based on GA) for managing distributed data structures. The boxes in the 
wiring diagram show components for the distributed array, optimization solver, linear 
algebra, visualization, and application-specific driver and model. The connector lines in 
this diagram represent connections between uses and provides ports. For example, the 
TaoSolver’s optimization component's “OptimizationModel” uses port is connected to 
the GA_LJMDModel's “OptimizationModel” provides port; hence, the optimization 
solver component can invoke the interface methods for function and gradient 
computation that the GA_LJMDModel component has implemented.  The special 
“GoPort” (named Optimize in this application) is used to start the execution of the 
application. 

Figure 4: Example of two components interfacing through ports. The port LA is 
provided by the GA component and used by the TAO component. 

    GA TAO 

addProvides Port RegisterUses Port 

    
    
    

GetPort  
(“LA”)   

GA 
DADF   

LA LA 

CCA Services CCA Services 
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6.  COMPUTATIONAL RESULTS 

The combined use of GA and TAO resulting from this integration effort has already 
proven valuable for large-scale quantum chemistry simulations in molecular geometry 
optimization [Kenny et al. 2004].  These simulations, which involved MPQC and 
NWChem to evaluate energy functions, reduced run times up to 43% compared to the 
solvers implemented in stand-alone chemistry packages.   

In this paper, we demonstrate computational results of the software for Lennard-Jones 
problems with the limited-memory variable-metric and nonlinear conjugate gradient 
methods. To measure component overhead and demonstrate efficient runtime 
performance, we consider both the traditional procedural interface to GA and TAO 
introduced in Section 4 and the CCA component approach highlighted in Section 5. We 
employ up to 170 processors for several problem sizes to demonstrate the combined 
capabilities and scalability of GA and TAO for large-scale optimization problems.  

We store the particle coordinates in a global array distributed over the processors.  
Each processor computes a fixed set of interatomic forces [Plimpton and Heffelfinger 
1992].  Symmetry of forces between two particles halves the amount of computation, and 
a centralized task list maintains another global array that stores the information about the 
order in which forces will be computed. 

 Load imbalance is a serious concern for force decomposition molecular dynamics 
algorithms [Plimpton 1995]. To address the potential load imbalance in our test problem, 
we use a simple and effective dynamic load-balancing technique called fixed-size 
chunking [Kruskal and Weiss 1985].  Initially, all the processes get a block from the task 
list.  When a process finishes computing its block, it gets the next available block from 
the task list.  Computation and communication overlap by issuing a nonblocking “get” 
call to the next available block in the task list, while computing a block [Tipparaju et al. 
2003]. This implementation of the dynamic load-balancing technique takes advantage of 
the atomic and one-sided operations in the GA toolkit (see Figure 6). The GA one-sided 
operations eliminate explicit synchronization between a processor that executes a task 
and a processor that has the relevant data; see Figure 1.  Atomic operations reduce the 
communication overhead in the traditional message-passing implementations of  dynamic  

Figure 5: CCA component wiring diagram for Lennard-Jones energy optimization. 
 

TaoSolver 
OptimizationSolver 

cProps 
OptimizationModel 

LinearAlgebra 
GA_LAFactory 

LinearAlgebra 
cProps 

Visualization 
VisualizePort 

cProps 

GA_Classic 
GAClassicPort 

cProps 

GA_DADFFactory 
GADADescriptorFactory 

cProps 
GADATemplateFactory 

Petsc_LAFactory 
LinearAlgebra 

cProps 

GA_LJMDModel 

OptimizationSolver 
cProps 

GAClassicPort 
VisualizePort 

GADADescriptorFactory 
GADATemplateFactory 

ApplicationDriver 
Optimize 
cProps OptimizationSolver 

Legend 

Connection Component B 
Provides Port 

cProps 
Component A 

Uses Port 

Driver 
GAClassic 
GADADFactory 
GALAFactory 
LinearAlgebra_Petsc 
LinearAlgebra_GA 
LJMDModel 
TAOSolver 
Visualization 

TaoSolver 
OptimizationSolver 

cProps 
OptimizationModel 

LinearAlgebra 
TaoSolver 

OptimizationSolver 
cProps 

OptimizationModel 
LinearAlgebra 

GA_LAFactory 
LinearAlgebra 

cProps 
GA_LAFactory 

LinearAlgebra 
cProps 

Visualization 
VisualizePort 

cProps 
Visualization 

VisualizePort 
cProps 

GA_Classic 
GAClassicPort 

cProps 
GA_Classic 

GAClassicPort 
cProps 

GA_DADFFactory 
GADADescriptorFactory 

cProps 
GADATemplateFactory 

GA_DADFFactory 
GADADescriptorFactory 

cProps 
GADATemplateFactory 

Petsc_LAFactory 
LinearAlgebra 

cProps 
Petsc_LAFactory 
LinearAlgebra 

cProps 

GA_LJMDModel 

OptimizationSolver 
cProps 

GAClassicPort 
VisualizePort 

GADADescriptorFactory 
GADATemplateFactory 

GA_LJMDModel 

OptimizationModell 
cProps 

GAClassicPort 
VisualizePort 

GADADescriptorFactory 
GADATemplateFactory 

ApplicationDriver 
Optimize 
cProps OptimizationSolver 

ApplicationDriver 
Optimize 
cProps OptimizationSolver 

Legend 

Connection Component B 
Provides Port 

cProps 
Component A 

Uses Port Legend 

Connection Component B 
Provides Port 

cProps 
Component B 

Provides Port 
cProps 

Component A 
Uses Port 

Driver 
GAClassic 
GADADFactory 
GALAFactory 
LinearAlgebra_Petsc 
LinearAlgebra_GA 
LJMDModel 
TAOSolver 
Visualization 



 13 

 
load balancing based on the master-worker strategy. This strategy has associated 
scalability issues, because with the increased  number of processors, management of the 
task list by a single master processor becomes a bottleneck.    Hierarchical master-worker 
implementations (with multiple masters) [Matthey and Izaguirre 2001] address that part 
of the problem; however, the introduced synchronization between multiple masters 
degrades the performance. Moreover, the message-passing implementation of this 
strategy can be quite complex. On the other hand, the implementation of dynamic load 
balancing using GA atomics (fetch-and-increment operation) involves only a few lines of 
code, while the overall performance of the simulation is competitive with the MPI-1 
version [Tipparaju et al. 2003].  

As explained in Section 3, through a single interface TAO provides access to both 
nonlinear conjugate gradient (CG) and limited-memory variable-metric (LMVM, also 
known as L-BFGS) methods. Although Newton-type methods are also supported, large-
scale problems with dense Hessian matrices easily exhaust the available computing 
resources.  For example, a matrix with 64,000 rows and columns would require over 32 
GB of RAM and O(64,0003) floating-point operations to factor.  Therefore, CG and 
LMVM methods, which do not require the Hessian matrix, offer an appealing alternative 
for the Lennard-Jones application, which has global connectivity among its variables.  
The ability of variable-metric methods to create a coarse approximation to the Hessian 
[Nocedal and Wright 1999] has meant that they can often find solutions to minimization 
problems by  using   fewer  function  evaluations  than  do  CG  methods.     Figure 7 
demonstrates  this 

Get task (i.e., block info) to be computed (atomic fetch-and-add) 
Issue nonblocking get call for the first block 
do (until last block/task) 
    determine what the next block/task is 
    issue nonblocking get call for the next block 
    wait for previously issued get call 
    compute Function-Gradient 

 (overlapping communication with computation. 
i.e., receiving next block while computing previous 
block) 

    accumulate function and gradient into respective Arrays 
done 

Figure 6: Function and gradient evaluation using GA for parallel data management. 
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situation for a sample Lennard Jones problem with 2,048 particles on 16 and 64 
processors, where we used the Polak-Ribière version of CG as well as LMVM with the 
default value of five correction pairs. 

 
Molecular configurations with a relative residual (defined to be the norm of the 

gradient divided by the absolute value of the objective function) less than 0.001 were 
considered sufficiently optimal to terminate the solver.  The experiments were performed 
on the 2.4 GHz Pentium-4 Linux cluster with Myrinet-2000 at the State University of 
New York at Buffalo. Figure 8 shows the energy after each iteration of the LMVM 
method (left) and the final configuration for a 256-particle system in the computational 
domain (right) with periodic boundary conditions.  

Figure 9 shows the parallel speedup of the LMVM algorithm, which is defined as the 
ratio of the time required to solve a problem using a single processor and the time needed 

Figure 7: Comparison of the CG and LMVM algorithms for 2,048 particles. 
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to solve the problem using n processors.  Sixty-four processors achieved speedups of 59.4 
and 61.5 for the 32,768 and 65,536 particle examples, respectively.  For these large 
problems, the cost of the parallel computations dominates the cost of passing messages 
among processors.  When run on 128 processors, the LMVM solver employed 939 
function/gradient evaluations for the 32,768 particle example and 1,084 function/gradient 
evaluations for the 65,536 particle example.  The number of function evaluations using 
other processor counts was nearly identical, which indicates that the algorithms is 
numerically stable with respect to multiple processors.  While in exact arithmetic the 
number of iterations should be the same, in our experience, small changes in the iteration 
numbers for the LMVM method are to be expected and are not a cause for concern. We 
also note that the nonlinear conjugate gradient algorithm scaled comparably. 

Additional tests were performed to evaluate the overhead of the CCA component 
version with respect to the noncomponent (library-approach) C interface version. We 
measured the overall wall-clock times of the C and CCA versions and repeated each test 
five times.  Denoting the average wall-clock times over five runs of the C and CCA 
versions as tc and tcca respectively, we measure the overhead of CCA as (tcca - tc)/tc.  As 
shown in Figure 10, the performance overhead due to the CCA approach is less than 
0.2% in most cases, a negligible amount when compared to the total execution time.  For 
example, when a minimization of 32,768 particles was run on 64 processors, each 
iteration of LMVM used about 1 second, and the 0.002 seconds overhead incurred by the 
CCA was about the same as the time for a global reduction. 

Figure 9: Speedup in the Lennard-Jones potential energy optimization for 32,768 and 
65,536 particles. 
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7.  CONCLUSIONS 

This paper highlights key features of two complementary toolkits within the ACTS 
collection, namely, the Global Arrays library and the Toolkit for Advanced Optimization.  
In combination they provide state-of-the art capabilities for distributed data management 
and optimization for large-scale computational science problems. The GA toolkit 
provides efficient vector and matrix classes, support for dynamic load balancing using 
one-sided and atomic operations, and an easy-to-use interface for efficiently managing 
dense distributed arrays. TAO provides first- and second-order optimization methods that 
are portable, robust, and efficient, with a common interface for each class of problems 
(such as unconstrained and  bound-constrained), so that applications can switch from 
classic methods to recently developed techniques without restructuring their code. 

Performance results of molecular configuration computations with a Lennard-Jones 
model demonstrate the combined effectiveness of the two toolkits using both 
conventional libraries and components compliant with the Common Component 
Architecture (CCA).  Advantages for applications developers include (1) efficient and 
scalable performance achieved by leveraging highly tuned implementations of modern 
algorithms written by experts in the field and (2) reduced overall application 
development time by focusing users’ code development on application-specific phases, 
where their primary interest and expertise reside. The latter feature is important even on 
single processor machines, and the complexities of multiprocessor systems magnify its 
advantages. 

We also discuss some general principles in high-performance software integration that 
not only are important to this work with the GA and TAO libraries but are also broadly 
applicable to large-scale computational science projects. Such software interoperability, 
which promotes the reuse of well-tested and tuned software throughout the scientific 
computing community, is one of the key goals of the ACTS project [DOE-ACTS 1998]. 
Indeed, the fact that fundamental changes to the original toolkits were not needed and the 
CCA specification to enable them to function well together on a practical level is a 
testament to the careful thought and design that have gone into their development. 

These features have already attracted the attention of computational scientists solving 
large-scale problems. In particular, efforts involving quantum chemistry packages MPCQ 
[Janssen 2003] at Sandia National Laboratories and NWChem [Bernholdt et al. 1995] at 
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Pacific Northwest National Laboratory have incorporated the CCA-compliant 
components based on GA and TAO into their applications [Kenny et al. 2004].  Both GA 
and TAO are freely available to the public and portable to a wide variety of modern 
parallel architectures. 
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