
BCFG: A Configuration Management Tool for Heterogeneous
Environments

Narayan Desai
Andrew Lusk

Rick Bradshaw
Rémy Evard

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439
{desai,alusk,bradshaw,evard }@mcs.anl.gov

Since clusters were first introduced[5], node
counts have increased rapidly. Currently, a va-
riety of clusters with more than one thousand
nodes are listed on the TOP500 list. In the next
three years, clusters with more than four thou-
sand nodes are expected. Cluster management
functionality has lagged behind all areas of sys-
tem software. In order to effectively manage the
clusters of today and tomorrow, the basic clus-
ter management software model must change. Cur-
rent techniques focus on the management of single
nodes, as opposed to complete cluster configu-
rations. This approach typically leads to auto-
matic management of compute nodes, while using
ad-hoc techniques to manage service nodes.

Configuration management is the process where
software configurations on clients are installed, up-
dated and verified. Scalability in this context ap-
plies not only to node count, but also to numbers of
administrators and discrete configurations. Another
important area is that of cluster-aware configura-
tion description languages. We believe these con-
cerns will impact large cluster operations greatly if
not addressed.

To address these issues, we have begun devel-
opment of BCFG, a symbolic configuration man-
agement tools for heterogeneous clusters. It uses
a multi-tiered configuration description, allowing
high levels of reuse among differing configurations.
BCFG is intended as a vehicle for research into
system management problems, and experimenta-
tion with new techniques. This effort was also mo-

tivated by our experiences on Chiba City[2], our
testbed cluster. Testbed users can specify the soft-
ware configuration for nodes; this allows the auto-
matic replacement of any portion of the default clus-
ter OS. Chiba City’s configuration management re-
quirements are complex, due to this testbed usage
model. However, we feel that these problems trans-
late to large scale computational clusters as well; as
the size of these clusters grows, the numbers of dis-
creet configurations employed will grow as well.

1. Motivation

Many configuration management tools are
widely used. These tools fit into two basic cate-
gories: those that are metadata based, and those that
are binary image based. Metadata based configura-
tion tools use an abstract configuration description
to create an on-disk configuration correspond-
ing to the test description. Examples of this ap-
proach are Redhat’s Kickstart[4] or Cfengine[1].
A simple text file configuration is used by the
tool to provide automated installation. The end re-
sult is an on-disk configuration that corresponds
to the specified configuration. In binary imag-
ing systems, like SystemImager,[3] the server side
configuration consists of a binary image. This im-
age is not abstract, and contains the verbatim
data to be installed on the client. The client’s fi-
nal on-disk configuration will be identical to the
image on the server.

Metadata based systems use configurations that



can be decomposed into smaller usable pieces. In
many cases, these fragments can be combined to
form new configurations. This allows new config-
urations to be created quickly. Multi-administrator
systems can assign modification privileges to con-
figuration fragments so that administrator roles are
enforced. Metadata based configurations are fre-
quently portable between operating system releases
and platforms. For example, simple Kickstart con-
figurations can be moved between minor OS up-
grades unchanged. Structurally, metadata configu-
rations are usually formatted as a set of details about
a client. This structure causes an important short-
coming; most metadata configurations are not com-
prehensive. Administrator interactions in these sys-
tems typically occur at an extremely abstract level.
This can cause problems for administrators with
specific problem solving styles.

Image based systems have a different feature set.
Binary image configurations are comprehensive; all
files included in any client are contained in the bi-
nary image. However, there is one caveat; because
all clients contain host-specific data, binary imag-
ing tools are insufficient to completely configure
a client. Typically, a metadata-based configuration
tool is used to complete the configuration process.
With this addition, the formerly comprehensive bi-
nary image only describes a portion of the config-
uration. Due to the binary image format, configu-
rations cannot be decomposed in any way. Because
of the binary content of the image, data cannot be
easily reused when changing platform or operating
system version. Because the configuration descrip-
tion used by binary imaging systems is identical to
a file system hierarchy, administrator interactions
with imaging systems are similar to those with a sin-
gle system. For this reason, administrators are eas-
ily able to start using these systems.

As shown above, both metadata and imag-
ing based configuration management systems pro-
vide useful administrative functionality. The com-
posability and reusability of metadata based sys-
tems dramatically reduce the creation time and size
of different configurations. Imaging systems pro-
vide a comprehensive configuration description
and an appealing user interaction model. As all of
these properties are desirable, we have taken an ap-
proach with BCFG that attempts to blend useful
features from both systems.

2. Approach

BCFG has been designed as a metadata based
configuration system. While this approach ex-
poses it to common metadata based system pit-
falls, we have designed a configuration language
that avoids many of these problems. Other impor-
tant features, validation and change detection, and
generators ease the integration process into ex-
isting administrative groups and environments.
First we discuss the requirements, then the ap-
proach taken with BCFG.

2.1. Configuration Language

Metadata based configuration management sys-
tems use symbolic descriptions to construct a literal
configuration. This construction process is at the
heart of many problems with these systems. How-
ever, care has been taken when designing BCFG’s
configuration language to allow for extensive con-
figuration composability, reusability, and verifica-
tion. This goal impacts the configuration language
in a number of ways. First, imperative operations
must not be directly exposed to the user. This lim-
itation is required because validation becomes dif-
ficult, if not impossible to achieve if users are al-
lowed to specify arbitrary, opaque operations as a
part of a client configuration. Second, a client con-
figuration description must be comprehensive. By
this, we mean that all files on the system must be
accounted for in some way. Comprehensiveness is
prerequisite for useful validation; if the entire sys-
tem configuration isn’t captured by the configu-
ration management system, the validation domain
will be severely limited. Consequently, the utility of
validation is greatly reduced, as changes to unspec-
ified regions of the system configuration cannot be
detected. Third, the system must be extensible, as
configuration patterns vary greatly from site to site.
If a pattern isn’t describable using the configuration
language of a tool, then another tool will be written
to handle the specific task. This will lead to multi-
ple tools maintaining parts of system configuration,
and ultimately to validation problems. Next, con-
figurations need to be easily decomposable and re-
combinable. This ability allows configuration frag-
ments to be flexibly recombined in order to create
new configurations quickly. Finally, a binary con-
figuration on a client needs to be invertible. It must
be possible to generate the server side configura-



tion using the client’s running configuration. The in-
version process can be used to generate a symbolic
description of detected changes in client configura-
tion.

In satisfying these requirements, the configura-
tion language used by BCFG took on some pecu-
liar properties. Only client state is described. This
means that client configurations consist of configu-
ration fragments that capture the totality of client
configuration. Configuration fragments are high-
level abstract types common to all system con-
figurations. Examples of these are packages, ser-
vices and configuration files. Configuration frag-
ments are grouped into bundles, groups of inter-
dependent fragments that achieve a common task.
Bundles can be arbitrarily combined to form new
configurations. Client state correction logic is con-
tained in the BCFG client executable. BCFG config-
uration descriptions are treated as comprehensive.
Extensibility is implemented using the generator in-
terface. (See 2.3 for details) The only configura-
tion language requirement for generators is that au-
tomatic generation of configuration description can
occur. Finally, inversion is enabled by BCFG’s state
description style configuration language. Configu-
ration fragments can individually be verified and
changes can be detected. (See Section 2.2 for de-
tails) If imperative actions were exposed to users,
this would not be feasible.

2.2. Validation and Change Detection

The single weakest point of metadata based sys-
tems is the administrative model. Operations are
complex, and in many cases abstracted away from
desired results. Administrators spend time working
on a configuration to fix a particular problem, and
then will need to install their changes properly into
the configuration management system. This can be
a very error-prone process, as it is easy to miss
necessary changes if the reconfiguration was com-
plex. The addition of rigorous validation and change
management and detection features would dramati-
cally improves usability. This in turn enables a va-
riety of new system interaction models.

Ideally, the configuration management system
would be able to detect and incorporate changes
made to a client configuration, as in imaging sys-
tems. It would then need to interrogate the user in
order to properly incorporate this reconfiguration
symbolically into the configuration description on

the server. For example, if an administrator config-
ured a client as a web server, the changes would
need to be associated with a “web server” attribute.

The primary user interface to BCFG remains di-
rect modification to the configuration description.
However, automatic change detection functional-
ity is also available. With the addition of a strin-
gent verification process, changes can be reliably
detected. Many metadata based system incorpo-
rate some type of configuration verification. This
process usually consists of independent verifica-
tion of all configuration aspects contained in the
configuration description. The result of this check
is to ensure that the client configuration contains
the entire configuration specified by the configura-
tion description. BCFG adds an additional step to
this verification process. As the BCFG configura-
tion language allows a client configuration to be in-
verted into configuration description, extra config-
uration fragments can be detected. This process is
called two-way verification, as it first verifies that
the client configuration contains no less than the
configuration description specifies, and also veri-
fies that the client configuration contains no more
than specified. This capability allows BCFG to be
effectively used in larger administrator groups, as
all changes can be detected, even if systems have
become configuration-skewed.

Change detection is enabled by a few system
management features supported by most operating
system distributions. Many systems use software
packaging tools which store checksums of files con-
tained in packages. This data can be used to detect
reconfigurations of packages on the system. These
packaging systems can export a list of currently in-
stalled packages. This list can be trivially compared
to the configuration description to ensure that the
correct list of packages is installed. Most systems
have some manner of service startup control sys-
tem. This system can be used to ensure that the
proper services are started at boot time. Detecting
changes in the aforementioned areas is an easy pro-
cess. This leaves two important types of configura-
tion fragments that are harder to automatically de-
tect: configuration file changes and filesystem op-
erations. Heuristics are used to detect changes in
these two areas. Configuration file changes are the
easier of the two to detect; partial detection is pro-
vided by package checksums. Files not owned by
any package that are located in/etc are also de-
tected. Similarly, filesystem changes, like directory



creation or permission changes, need to incorporate
information from the packaging system database as
well as manual searches of the client filesystem.
/etc and /var are checked currently for new
entries. While we may eventually scan other filesys-
tem locations for configuration files as well, scan-
ning a single location has proven sufficient for now.

The second part of automated change integration
is the process of serializing changes and incorporat-
ing them into the configuration description. While
changes can be detected, automatic incorporation is
not yet functional.

2.3. Generators

Frequently, sources external to the configuration
management system are canonical for certain types
of data. This may be the case because of site de-
sign; a user management or host management sys-
tem may already be in use. It may also be the
case because of complex, dynamic configuration re-
quirements. In either of these cases, the configura-
tion management system must provide an interface
for external access.

BCFG provides an interface in which gen-
erators can be implemented. A generator is
program that can construct a configuration frag-
ment based on task-specific logic. The genera-
tor API is a calling convention; generators are
called during the client configuration genera-
tion process, and are given all available client
metadata. As generators are treated as opaque ex-
ecutables, (that construct well-formed configu-
ration fragments) they can access arbitrary data
sources appropriately without configuration man-
agement system modification.

3. Results

BCFG has been deployed on a 320 node testbed
cluster. Basic configuration description reusability
has been verified by producing a redhat 9.0 im-
age based largely on a redhat 7.3 image. Robust
configuration verification has proven very useful.
When developing a complete image for the first
time, BCFG located a number of client reconfigu-
rations that occurred as a result of automated in-
stallation processes. Formerly, these sort of changes
would have remained undetected. The generator in-
terface has also worked very well in our dynamic
environment. Rapidly changing configurations can

be easily modelled, and data from external systems
can be easily integrated into client configurations.
For example, generators have been used to main-
tain dynamic user access to nodes, in conjunction
with divisional user account management facilities.
Cryptographic key management facilities have also
been implemented using the generator interface.

4. Future Work

A number of useful features remain to be de-
veloped. The most important of these is automated
configuration change integration. Undoubtedly,
our configuration change detection heuristics will
need improvement. The addition of a change re-
porting interface will allow the calculation of
clients affected by configuration changes. This en-
ables sparse client reconfiguration when configura-
tion changes occur.

Acknowledgements

This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, SciDAC Program, Office of
Science, U.S. Department of Energy, under Con-
tract W-31-109-ENG-38.

References

[1] M. Burgess. Cfengine: a site configuration engine.
USENIX Computing systems, 8(3), 1995.

[2] R. Evard, N. Desai, J. P. Navarro, and D. Nurmi.
Clusters as large-scale development facilities. InPro-
ceedings of IEEE International Conference on Clus-
ter Computing (CLUSTER02), pages 54–66, 2002.

[3] B. E. Finley. VA SystemImager. In USENIX, edi-
tor, Proceedings of the 4th Annual Linux Showcase
and Conference, Atlanta, October 10–14, 2000, At-
lanta, Georgia, USA, pages ??–??, Berkeley, CA,
USA, 2000. USENIX.

[4] Redhat linux customization guide,
chapter 7, kickstart installations.
http://www.redhat.com/docs/manuals/linux/RHL-9-
Manual/custom-guide/.

[5] T. Sterling, D. Savarese, D. J. Becker, J. E. Dor-
band, U. A. Ranawake, and C. V. Packer. BEOWULF
: A parallel workstation for scientific computation.
In International Conference on Parallel Processing,
Vol.1: Architecture, pages 11–14, Boca Raton, USA,
Aug. 1995. CRC Press.


	Motivation
	Approach
	Configuration Language
	Validation and Change Detection
	Generators

	Results
	Future Work

