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� Introduction

The Computational Singular Perturbation �CSP� method is one of several
so�called reduction methods developed in chemistry to systematically decrease
the size and complexity of systems of chemical kinetics equations� The method
was �rst proposed by Lam and Goussis ��� 	� 
� �� � and is widely used� for
example� in combustion modeling ��� ��� ��� ��� ��� ���

The CSP method is generally applicable to systems of nonlinear ordi�
nary di�erential equations �ODEs� with simultaneous fast and slow dynamics
where the long�term dynamics evolve on a low�dimensional slow manifold in
the phase space� The method is essentially an algorithm to �nd successive

�



approximations to the slow manifold and match the initial conditions to the
dynamics on the slow manifold�

In a previous paper ���� we focused on the slow manifold and the ac�
curacy of the CSP approximation for fast�slow systems of ODEs� In such
systems� the ratio of the characteristic fast and slow times is made explicit by
a small parameter �� and the quality of the approximation can be measured in
terms of �� By comparing the CSP manifold with the slow manifold found in
Fenichel�s geometric singular perturbation theory �GSPT� ��� ��� we showed
that each application of the CSP algorithm improves the asymptotic accuracy
of the CSP manifold by one order of ��

In this paper� we complete the analysis of the CSP method by focusing
on the fast dynamics� According to Fenichel�s theory� the fast�slow systems
we consider have� besides a slow manifold� a family of fast stable �bers along
which initial conditions tend toward the slow manifold� The base points of
these �bers lie on the slow manifold� and the dynamics near the slow manifold
can be decomposed into a fast contracting component along the fast �bers
and a slow component governed by the motion of the base points on the slow
manifold� By comparing the CSP �bers with the tangent spaces of the fast
�bers at their base points� we show that each application of the CSP algorithm
also improves the asymptotic accuracy of the CSP �bers by one order of ��

Summarizing the results of ��� and the present investigation� we conclude
that the CSP method provides for the simultaneous approximation of the slow
manifold and the tangents to the fast �bers at their base points� If one is
interested only in the slow manifold� then it su�ces to implement a reduced
�one�step� version of the algorithm� On the other hand� if one is interested in
both the slow and fast dynamics� then it is necessary to use the full �two�step�
CSP algorithm� Moreover� only the full CSP algorithm allows for a linear
matching of any initial data with the dynamics on the slow manifold�

This paper is organized as follows� In Section �� we recall the relevant
results from Fenichel�s theory and set the framework for the CSP method� In
Section �� we outline the CSP algorithm and state the main results� Theo�
rem ��� concerning the approximation of the slow manifold� which is a verbatim
restatement of ���� Theorem ���� and Theorem ��� concerning the approxima�
tion of the tangent spaces of the fast �bers� The proof of Theorem ��� is given
in Section �� In Section �� we revisit the Michaelis�Menten�Henri mechanism
of enzyme kinetics to illustrate the CSP method and the results of this article�
Section 	 is devoted to a discussion of methods for linearly projecting initial
conditions on the slow manifold�
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� Slow Manifolds and Fast Fibers

Consider a general system of ODEs�

dx

dt
� g�x�� �����

for a vector�valued function x � x�t� � Rm�n in a smooth vector �eld g�
For the present analysis� we assume that n components of x evolve on a time
scale characterized by the �fast� time t� while the remaining m components
evolve on a time scale characterized by the �slow� time � � �t� where � is
a small parameter� �The explicit identi�cation of a small parameter � is not
necessary for the applicability of the CSP method� a separation of time scales
is su�cient�� We collect the slow variables in y � Rm and the fast variables
in z � Rn� Thus� the system ����� is equivalent to either the �fast system�

y� � �g��y� z� ��� �����

z� � g��y� z� ��� �����

or the �slow system�

�y � g��y� z� ��� �����

� �z � g��y� z� ��� �����

�A prime � denotes di�erentiation with respect to t� a dot � di�erentiation
with respect to � �� The fast system is more appropriate for the short�term
dynamics� the slow system for the long�term dynamics of the system ������

In the limit as � tends to �� the fast system reduces formally to a single
equation for the fast variable z�

z� � g��y� z� ��� ���	�

where y is a parameter� while the slow system reduces to a di�erential equation
for the slow variable y�

�y � g��y� z� ��� ���
�

with the algebraic constraint g��y� z� �� � ��

We assume that there exist a compact domainK and a smooth function h�
de�ned on K such that

g��y� h��y�� �� � �� y � K� �����

The graph of h� de�nes a critical manifoldM��

M� � f�y� z� � Rm�n � z � h��y�� y � Kg� �����
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and with each point p � �y� h��y�� � M� is associated a fast �ber Fp
� �

Fp
� � f�y� z� � Rm�n � z � Rng� p � M�� ������

The points of M� are �xed points of Eq� ���	�� If the real parts of the eigen�
values of Dzg��y� h��y�� �� are all negative� as we assume� then M� is asymp�
totically stable� and all solutions on Fp

� contract exponentially toward p�

If � is positive but arbitrarily small� Fenichel�s theory ��� � guarantees
that there exists a function h� whose graph is a slow manifoldM��

M� � f�y� z� � Rm�n � z � h��y�� y � Kg� ������

This manifold is locally invariant under the system dynamics� and the dynam�
ics on M� are governed by the equation

�y � g��y� h��y�� ��� ������

as long as y � K� Fenichel�s theory also guarantees that there exists an
invariant family F��

F� �
�

p�M�

Fp
� � ������

of fast stable �bers Fp
� along which solutions relax toM�� The family is invari�

ant in the sense that� if �t denotes the time�t map associated with Eq� ������
then

�t�F
p
� � � F

�t�p�
� � p � M�� ������

The collection of fast �bers Fp
� foliates a neighborhood of M�� Hence� the

motion of any point on Fp
� decomposes into a fast contracting component

along the �ber and a slow component governed by the motion of the base
point of the �ber� Also� M� is O����close to M�� with

h��y� � h��y� � �h��y� � ��h��y� � � � � � � � �� ������

and Fp
� is O����close to Fp

� in any compact neighborhood of M��

Remark ���� Typically� the manifold M� is not unique� there is a family of
slow manifolds� all having the same asymptotic expansion ������ to all orders
in � but di�ering by exponentially small amounts �O�e�c���� c � � ��

� The CSP Method

The CSP method focuses on the dynamics of the vector �eld g�x�� rather than
on the dynamics of the vector x itself�
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Writing a single di�erential equation like ����� as a system of equations
amounts to choosing a basis in the vector space� For example� in Eqs� ������
������ the basis consists of the ordered set of unit vectors in Rm�n� The
coordinates of g relative to this basis are �g� and g�� If we collect the basis
vectors in a matrix in the usual way� then we can express the relation between
g and its coordinates in the form

g �

�
Im �
� In

��
�g�
g�

�
� �����

Note that the basis chosen for this representation is the same at every point
of the phase space� The CSP method is based on a generalization of this idea�
where the basis is allowed to vary from point to point� so it can be tailored to
the local dynamics near M��

Suppose that we choose� instead of a �xed basis� a �point�dependent�
basis A for Rm�n� The relation between the vector �eld g and the vector f of
its coordinates relative to this basis is

g � Af� �����

Conversely�
f � Bg� �����

where B is the left inverse of A� BA � I on Rm�n� In the convention of the
CSP method� A is a matrix of column vectors �vectors in Rm�n� and B a
matrix of row vectors �functionals on Rm�n��

The CSP method focuses on the dynamics of the vector f � Along a
trajectory of the system ������ f satis�es the ODE

df

dt
� �f� �����

where � is a linear operator ���� ���

� � B�Dg�A�
dB

dt
A � B�Dg�A �B

dA

dt
� B�A� g� �����

Here� Dg is the Jacobian of g� dB�dt � �DB�g� dA�dt � �DA�g� and �A� g is
the Lie bracket of A �taken column by column� and g� The Lie bracket of any
two vectors a and g is �a� g � �Dg�a � �Da�g� see ����

It is clear from Eq� ����� that the dynamics of f are governed by �� so
the CSP method focuses on the structure of ��
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Remark ���� It is useful to see how � transforms under a change of basis� If
C is an invertible square matrix representing a coordinate transformation in
Rm�n� and �A � AC and �B � C��B� then

�� � �B�Dg� �A� �B
d �A

dt
� C��B�Dg�AC � C��B

d�AC�

dt

� C��B�Dg�AC � C��B

�
dA

dt
C �A

dC

dt

�

� C���C � C��
dC

dt
� ���	�

Hence� � does not transform as a matrix� unless C is constant�

��� Decompositions

Our goal is to decompose the vector f into its fast and slow components� Sup�

pose� therefore� that we have a decomposition of this type� f �

�
f�

f�

�
� where

f� and f� are of length n and m� respectively� but not necessarily fast and
slow everywhere� The decomposition suggests corresponding decompositions

of the matrices A and B� namely A � �A�� A�� and B �

�
B�

B�

�
� where A� is

an �m�n��n matrix� A� an �m�n��m matrix� B� an n� �m�n� matrix�
and B� an m� �m� n� matrix� Then� f� � B�g and f� � B�g�

The decompositions of A and B lead� in turn� to a decomposition of ��

� �

�
��� ���

��� ���

�
�

�
B��A�� g B��A�� g
B��A�� g B��A�� g

�
� ���
�

The o��diagonal blocks ��� and ��� are� in general� not zero� so the equations
governing the evolution of the coordinates f� and f� are coupled� Conse�
quently� f� and f� cannot be identi�ed with the fast and slow coordinates of
g globally along trajectories� The objective of the CSP method is to construct
local coordinate systems �that is� matrices A and B� that lead to a block�
diagonal structure of �� We will see� in the next section� that such a structure
is associated with a decomposition in terms of the slow manifold and the fast
�bers�

Remark ���� Note that the identity BA � I on Rm�n implies four identities�
which are summarized in the matrix identity�

B�A� B�A�

B�A� B�A�

�
�

�
In �
� Im

�
� �����

	



��� Block�Diagonalization of �

In this section we analyze the properties of � relative to a fast�slow decompo�
sition of the dynamics near M��

Let TpF� and TpM� denote the tangent spaces to the fast �ber and the
slow manifold� respectively� at the base point p of the �ber on M�� �Note
that dimTpF� � n and dimTpM� � m�� These two linear spaces intersect
transversally� because M� is normally hyperbolic and compact� so

Rm�n � TpF� � TpM�� p � M�� �����

Let Af be an �m�n��nmatrix whose columns form a basis for TpF� and As an
�m�n��mmatrix whose columns form a basis for TpM�� and letA � �Af � As��
�We omit the subscript p�� Then A is a �point�dependent� basis for Rm�n that
respects the decomposition ������ We recall that TM� �

S
p�M�

�p�TpM�� and
T F� �

S
p�M�

�p�TpF�� are the tangent bundles of the slow manifold and the
family of the fast �bers� respectively� �A general treatment of tangent bundles
of manifolds is given in ��� Section ��
��

The decomposition ����� induces a dual decomposition�

Rm�n � NpM� �NpF�� p � M�� ������

where NpM� and NpF� are the duals of TpM� and TpF�� respectively� in
Rm�n� �Note that dimNpM� � n and dimNpF� � m�� The corresponding

decomposition of B is B �

�
Bs�

Bf�

�
� where the rows of Bs� form a basis for

NpM� and the rows of Bf� a basis for NpF�� Furthermore��
Bs�Af Bs�As

Bf�Af Bf�As

�
�

�
In �
� Im

�
� ������

The decompositions of A and B lead� in turn� to a decomposition of ��

� �

�
Bs��Af � g Bs��As� g
Bf��Af � g Bf��As� g

�
� ������

This decomposition is similar to� but di�erent from� the decomposition ���
��
The following lemma shows that its o��diagonal blocks are zero�

Lemma ��� The o��diagonal blocks in the representation ������ of � are zero
at each point p � M��






Proof� Since Bs�As � � on M� and M� is invariant� we have

d

dt

�
Bs�As

�
� D�Bs�As�g � �DBs���g�As� �Bs���DAs�g� � �� ������

�DBs� is a symmetric bilinear form� its action on a matrix must be understood
as column�wise action��

Also� g � TM�� so Bs�g � � on M�� Hence� the directional derivative
along As �taken column by column� at points on M� also vanishes�

D�Bs�g�As � �DBs���As� g� �Bs��Dg�As � �� ������

Subtracting Eq� ������ from Eq� ������� we obtain the identity

Bs��As� g � Bs� ��Dg�As � �DAs�g� � �� ������

The proof for the lower left block is more involved� since the fast �bers are
invariant as a family� Assume that the �ber Fp

� at p � M� is given implicitly
by the equation F �q� p� � �� q � Fp

� � Then the rows of �DqF ��q� p� form a basis
for NqF�� so there exists an invertible matrix C such that Bf� � C�DqF ��

Since the rows of �DqF ��q� p� span NqF�� we have �DqF ��q� p�Af�q� � ��
This identity holds� in particular� along solutions of ������ so

d

dt
��DqF ��q� p�Af�q�� �

�
�D�

qF ��q� p�
�
�g�q�� Af�q��

� ��DpqF ��q� p�� �g�p�� Af �q��

� ��DqF ��q� p�� �DAf �q�� g�q�

� �� ����	�

The family of the fast �bers is invariant under the  ow associated with ������
so if F �q� p� � �� then also F �q�t�� p�t�� � � and� hence�

dF �q� p�

dt
� ��DqF ��q� p�� g�q� � ��DpF ��q� p�� g�p� � �� ����
�

Next� we take the directional derivative of both members of this equation along
Af � keeping in mind that �Dg��p�Af �q� � � because the base point p does not
vary along Af � �Recall that the columns of Af�q� span TqF��� We �nd�

�D�
qF ��q� p�

�
�Af �q�� g�q�� � ��DqF ��q� p�� �Dg�q��Af�q�

� ��DpqF ��q� p�� �Af�q�� g�p�� � �� ������

But the bilinear formsD�
qF and DpqF are symmetric� so subtracting Eq� ����	�

from Eq� ������ and letting q � p� we obtain the identity

�DqF ��p� p� ��Dg�Af � �DAf �g� �p� � �� ������

�



Hence� Bf��Af � g�p� � C�DqF ��p� p��Af � g�p� � �� and the proof of the
lemma is complete�

The lemma implies that the representation ������ is block�diagonal�

� �

�
Bs��Af � g �

� Bf��As� g

�
� ������

Consequently� the decomposition ����� reduces �� In summary� if we can
construct bases Af and As� then we will have achieved a representation of �
where the fast and slow components remain separated at all times and the
designation of fast and slow takes on a global meaning�

��� The CSP Algorithm

The CSP method is a constructive algorithm to approximate Af and As� One
typically initializes the algorithm with a constant matrix A����

A��� �
�
A
���
� � A

���
�

�
�

�
A
���
�� A

���
��

A
���
�� A

���
��

	
� ������

Here� A���
�� is an m�nmatrix�A���

�� an n�mmatrix� and the o��diagonal blocks

A
���
�� and A

���
�� are full�rank square matrices of order m and n� respectively� A

common choice is A
���
�� � �� We follow this convention and assume� henceforth�

that A���
�� � ��

A��� �
�
A
���
� � A

���
�

�
�

�
� A

���
��

A
���
�� A

���
��

	
� ������

�Other choices are discussed in ����� The left inverse of A��� is

B��� �

�
B�
���

B�
���

�
�

�
B��
��� B��

���

B��
��� �

�

�

�
��A���

�� �
��A

���
�� �A

���
�� �

�� �A
���
�� �

��

�A���
�� �

�� �

	
� ������

The algorithm proceeds iteratively� For q � �� �� � � � � one �rst de�nes the
operator ��q� in accordance with Eq� ������

��q� � B�q��Dg�A
�q� �B�q�

dA�q�

dt
�

�
���
�q� ���

�q�

���
�q� ���

�q�

�
� ������
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and matrices U�q� and L�q��

U�q� �

�
� ����

�q��
�����

�q�

� �

�
� L�q� �

�
� �

���
�q���

��
�q��

�� �

�
� ������

Then one updates A�q� and B�q� according to the formulas

A�q��� � A�q��I � U�q���I � L�q��� ����	�

B�q��� � �I � L�q���I � U�q��B�q�� ����
�

and returns to Eq� ������ for the next iteration�

Remark ���� Lam and Goussis �	 perform the update ����	������
� in two
steps� The �rst step corresponds to the postmultiplication of A�q� with I�U�q�

and premultiplication of B�q� with I � U�q�� the second step to the subsequent
postmultiplication of A�q��I�U�q�� with I�L�q� and premultiplication of �I�
U�q��B�q� with I � L�q��

��� Approximation of the Slow Manifold

After q iterations� the CSP condition

B�
�q�g � �� q � �� �� � � � � ������

identi�es those points where the fast amplitudes vanish with respect to the
then current basis� These points de�ne a manifold that is an approximation
for the slow manifoldM��

For q � �� B�
��� is constant and given by Eq� ������� Hence� the CSP

condition ������ reduces to the constraint g��y� z� �� � �� In general� this
constraint is satis�ed by a function z � �����y� ��� The graph of this function

de�nes K���
� � the CSP manifold �CSPM� of order zero� Since the constraint

reduces at leading order to the equation g��y� z� �� � �� which is satis�ed by

the function z � h��y�� K
���
� may be chosen to coincide with M� to leading

order� see Eq� ������

For q � �� �� � � � � the CSP condition takes the form

B�
�q��y� ��q����y� ��� ��g�y� z� �� � �� q � �� �� � � � � ������

The condition is satis�ed by a function z � ��q��y� ��� and the manifold

K�q�
� � f�y� z� � z � ��q��y� ��� y � Kg� q � �� �� � � � ������

��



de�nes the CSP manifold �CSPM� of order q� which is an approximation of
M�� The following theorem regarding the quality of the approximation was
proven in ����

Theorem ��� 	�
� Theorem ���� The asymptotic expansions of the CSP man�

ifold K�q�
� and the slow manifoldM� agree up to and including terms of O��q��

��q��� � �� �
qX

j��

�jhj �O��
q���� � � �� q � �� �� � � � � ������

��� Approximation of the Fast Fibers

We now turn our attention to the fast �bers� The columns of Af�y� h��y�� span
the tangent space to the fast �ber with base point p � �y� h��y��� so we expect

that A�q�
� de�nes an approximation for the same space after q applications of

the CSP algorithm� We denote this approximation by L�q�
� �y� and refer to it

as the CSP �ber �CSPF� of order q at p�

L�q�
� �y� � span �cols �A

�q�
� �y� ��q��y� ��� ����� ������

We will shortly estimate the asymptotic accuracy of the approximation� but
before doing so we need to make an important observation�

Each application of the CSP algorithm involves two steps� see Remark ����
The �rst step involvesU and serves to push the order of magnitude of the upper
right block of � up by one� the second step involves L and serves the same
purpose for the lower left block� The two steps are consecutive� At the �rst
step of the qth iteration� one evaluates B�

�q� on K
�q���
� to �nd K�q�

� by solving

the CSP condition ������ for the function ��q�� One then uses this expression

in the second step to update A and B� thus e�ectively evaluating A�q�
� on K�q�

�

rather than on K�q���
� �

The following theorem contains our main result�

Theorem ��� The asymptotic expansions of L�q�
� �y� and TpF�� where p �

�y� h��y�� � M�� agree up to and including terms of O��q�� for all y � K and
for q � �� �� � � � �

Theorem ��� implies that the family L�q�
� �

S
p�M�

�p�L�q�
� �y�� is an O��q��

approximation to the tangent bundle T F��

��



The proof of Theorem ��� is given in Section �� The essential idea is to
show that� at each iteration� the asymptotic order of the o��diagonal blocks
of ��q� increases by one and A

�q�
� and B�

�q� become fast and fast�� respectively�
to one higher order� As a consequence� in the limit as q 	 
� ��q� 	 ��
A�q� 	 A� and B�q� 	 B� where �� A� and B are ideal in the sense described
in Section ����

Remark ���� If� in the second step of the CSP algorithm� A�q�
� were evaluated

on K�q���
� instead of on K�q�

� � the approximation of T F� might be only O��q����
accurate� However� see Section � for an example where the approximation is
still O��q��

� Proof of Theorem ���

The proof of Theorem ��� is by induction on q� Section ��� contains an auxil�
iary lemma that shows that each successive application of the CSP algorithm
pushes � closer to block�diagonal form� The induction hypothesis is formu�
lated in Section ���� the hypothesis is shown to be true for q � � in Section ����
and the induction step is taken in Section ����

��� Asymptotic Estimates of �

As stated in Section �� the goal of the CSP method is to reduce � to block�
diagonal form� This goal is approached by the repeated application of a two�
step algorithm� As shown in ���� the �rst step of the algorithm is engineered
so that each application increases the asymptotic accuracy of the upper�right
block ���

�q� by one order of �� in particular� �
��
�q� � O��q� on K�q�

� ���� Eq� �������
We now complete the picture and show that each application of the second
step increases the asymptotic accuracy of the lower�left block ���

�q� by one order
of �� when the information obtained in the �rst step of the same iteration is
used� In particular� ���

�q� � O��
q��� on K�q���

� � where K�q���
� has been obtained

in the �rst step of the �q � ��th re�nement�

Lemma ��� For q � �� �� � � ��

��q� �

�
���
������O��� �q���

�q�q�

�q�����
�q�q��� ����

������O��
��

�
� �����

when ��q� is evaluated on K
�q���
� �

��



Proof� The proof is by induction� The desired estimates of ���
�q�� �

��
�q�� and

���
�q� on K

�q�
� were established in ���� Eqs� ������� ������� ����
�� Since the

asymptotic expansions of K�q���
� and K�q�

� di�er only at terms of O��q��� or
higher ����� Theorem ����� these estimates of ���

�q�� �
��
�q�� and ���

�q� are true also

on K�q���
� � It only remains to estimate ���

�q��

Consider the case q � �� Let ���
���j� be the coe�cient of �j in the asymptotic

expansion of ���
����y� �����y�� ��� The estimate ���

��� � O��� on K���
� follows if we

can show that ���
����� � �� It is already stated in ���� Eq� ������ that ���

����� � �

on K���
� � Furthermore� ���� Theorem ��� implies that the asymptotic expan�

sions of ���� and ���� agree to leading order� Thus� the asymptotic expansions
of ���

����y� �����y�� �� and ���
����y� �����y�� �� also agree to leading order� and the

result follows�

Now� assume that the asymptotic estimate holds for �� �� � � � � q� From
Eq� ���	� we obtain

���
�q��� � ���

�q� � L�q��
��
�q� � ���

�q�L�q� � L�q��
��
�q�L�q� � ���

�q�U�q�L�q�

� L�q�U�q��
��
�q� � L�q��

��
�q�U�q�L�q� � L�q�U�q��

��
�q�L�q�

� L�q�U�q��
��
�q�U�q�L�q� �

�
DL�q�

�
g � L�q�

��
DU�q�

�
g
�
L�q�� �����

The �rst two terms in the right member sum to zero� by virtue of the de�ni�
tion ������ of L�q�� The next seven terms are all O��q��� or higher� by virtue
of the induction hypothesis� Finally� the last two terms are also O��q��� or
higher� by the induction hypothesis and ���� Lemma A���

��� The Induction Hypothesis

The CSPF of order q� L�q�
� �y�� is de�ned in Eq� ������ to be the linear space

spanned by the columns of the fast component�A�q�
� �y� ��q�� ��� of the basis A

�q��
Thus� to prove Theorem ���� it su�ces to show that the asymptotic expansions
of A

�q�
� �y� ��q�� �� and the space tangent to the fast �ber� TpF�� agree up to and

including terms of O��q�� for p � �y� h��y�� and for q � �� �� � � � � The central
idea of the proof is to show that each successive application of the CSP method
pushes the projection of A�q�

� on TM� along T F� to one higher order in ��

We express A�q�� generated after q applications of the CSP algorithm� in
terms of the basis A�

A�q��y� z� �� � A�y� h�� ��Q
�q��y� z� ��� q � �� �� � � � � �����

��



Since B�q� and B are the left inverses of A�q� and A� respectively� we also have

B�q��y� z� �� � R�q��y� z� ��B�y� h�� ��� q � �� �� � � � � �����

where R�q� � �Q�q����� Introducing the block structure of Q�q� and R�q��

Q�q� �

�
Q
�q�
�f Q

�q�
�f

Q
�q�
�s Q

�q�
�s

	
� R�q� �

�
R�s�
�q� R�f�

�q�

R�s�
�q� R�f�

�q�

	
� �����

we rewrite Eqs� ����� and ����� as

A
�q�
� � AfQ

�q�
�f �AsQ

�q�
�s � A

�q�
� � AfQ

�q�
�f �AsQ

�q�
�s � ���	�

and

B�
�q� � R�s�

�q� B
s� �R�f�

�q� B
f�� B�

�q� � R�s�
�q� B

s� �R�f�
�q� B

f�� ���
�

for q � �� �� � � � �

Equation ���
� shows that AsQ
�q�
�s is the projection of A�q�

� on TM�� Thus�

to establish Theorem ���� we only need to prove the asymptotic estimateQ�q�
�s �

O��q���� The proof is by induction on q� where the induction hypothesis is

Q�q��� � ��q�� �� �

�
O��� O��q�
O��q��� O���

�
� �����

R�q��� � ��q�� �� �

�
O��� O��q�
O��q��� O���

�
� q � �� �� � � � � �����

Remark ���� Although the estimate of Q
�q�
�s is su�cient to establish Theo�

rem ���� we provide the estimates of all the blocks in Eqs� ����������� because
they will be required in the induction step�

The validity of Eqs� ����������� for q � � is shown in Section ���� The
induction step is carried out in Section ����

��� Proof of Theorem ��� for q � �

We �x q � � and verify the induction hypothesis for Q��� and R���� By Eq� �����

Q��� � BA���� ������

whence

Q��� �

�
Bs�A

���
� Bs�A

���
�

Bf�A
���
� Bf�A

���
�

	
� ������

��



It su�ces to show that the lower�left block is zero to leading order� since the
other blocks are allO���� We do this by showing that Q

�����
�s � �� By Eq� �������

Q
�����
�s � Bf�

� A
�����
� � ������

Bf�
� spans NpF� for every p � K���

� � Also� z is constant on NpF�� so Bf�
� �

�B�f�� ��� where B�f� is a full�rank matrix of size m� Last� A
�����
� � A

���
� ��

�

A
���
��

�
� by Eq� ������� Substituting these expressions for Bf�

� and A
�����
�

into Eq� ������� we obtain that Q�����
�s � ��

The induction hypothesis on R��� can be veri�ed either by a similar argu�
ment� or by recalling that R��� � �Q������� where Q��� was shown above to be
block�triangular to leading order�

��� Proof of Theorem ��� for q � �� �� � � �

We assume that the induction hypothesis ����������� holds for �� �� � � � � q and
show that it holds for q � �� The proof proceeds in four steps� In step �� we
derive explicit expressions for R�q��� and Q

�q��� in terms of R�q� and Q
�q�� these

expressions also involve U�q� and L�q�� In step �� we derive the leading�order
asymptotics of U�q�� and in step � the leading�order asymptotics of L�q�� Then�
in step �� we substitute these results into the expressions derived in step � to
complete the induction�

Step �� We derive the expressions for Q�q��� and R�q���� Equations �����
and ������ together with the update formulas ����	� for A�q� and ����
� for
B�q�� yield

Q�q��� � Q�q��I � U�q���I � L�q��� ������

R�q��� � �I � L�q���I � U�q��R�q�� ������

In terms of the constituent blocks� we have

Q
�q���
�f � Q

�q�
�f �Q

�q�
�f L�q� �Q

�q�
�f U�q�L�q�� ������

Q
�q���
�f � Q

�q�
�f �Q

�q�
�f U�q�� ����	�

Q
�q���
�s � Q

�q�
�s �Q

�q�
�s L�q� �Q

�q�
�s U�q�L�q�� ����
�

Q
�q���
�s � Q

�q�
�s �Q

�q�
�s U�q�� ������

and

R�s�
�q��� � R�s�

�q� � U�q�R
�s�
�q� � ������

��



R�f�
�q��� � R�f�

�q� � U�q�R
�f�
�q� � ������

R�s�
�q��� � R�s�

�q� � L�q�R
�s�
�q� � L�q�U�q�R

�s�
�q� � ������

R�f�
�q��� � R�f�

�q� � L�q�R
�f�
�q� � L�q�U�q�R

�f�
�q� � ������

Step �� We derive the leading�order asymptotics of the matrix U�q��

Recall that U�q� � ����
�q��

�����
�q�� Moreover� ���

�q� is strictly O��� and ���
�q� is

strictly O��q� by Lemma ���� Hence� U�q� � U�q�q��
q �O��q���� with U�q�q� �

����
�q����

�����
�q�q�� Therefore� it su�ces to derive the leading order asymptotics

of these blocks of ��

By de�nition� ��q� � B�q��A�q�� g� Therefore�

��q� �

�
B�
�q��A

�q�
� � g B�

�q��A
�q�
� � g

B�
�q��A

�q�
� � g B�

�q��A
�q�
� � g

	
� ������

The individual blocks of ��q� are obtained by substituting Eqs� ���	� and ���
�
into Eq� ������� We observe that one�half of all the terms would vanish� were
they to be evaluated onM�� by virtue of Lemma ���� Since they are evaluated
on K�q���

� � instead� which is O��q����close toM�� these terms are O��q��� and
therefore of higher order for each of the blocks� recall Lemma ���� Thus�

���
�q� � R�s�

�q� B
s��AfQ

�q�
�f � g �R�f�

�q� B
f��AsQ

�q�
�s � g� ������

���
�q� � R�s�

�q� B
s��AfQ

�q�
�f � g �R�f�

�q� B
f��AsQ

�q�
�s � g� ������

���
�q� � R�s�

�q� B
s��AfQ

�q�
�f � g �R�f�

�q� B
f��AsQ

�q�
�s � g� ����	�

where the remainders of O��q��� have been ommited for brevity� Recalling the
de�nition of the Lie bracket� we rewrite Eq� ������ as

���
�q� � R�s�

�q� B
s�

�
�Dg�AfQ

�q�
�f �

d

dt

�
AfQ

�q�
�f

��

�R�f�
�q� B

f�

�
�Dg�AsQ

�q�
�s �

d

dt

�
AsQ

�q�
�s

��
� ����
�

where we recall that all of the quantities are evaluated at �y� ��q���� ��� Next�
�Dg�As and the two time derivatives in Eq� ����
� are zero to leading order
by Lemma A�� and ���� Lemma A��� respectively� Therefore� to leading order
Eq� ����
� becomes

���
�q��� � R�s�

�q���B
s�
� �Dg��A

�
fQ

�q���
�f � ������

�	



Here� ���
�q��� stands for the leading�order term in the asymptotic expansion of

���
�q��y� ��q����y�� ��� and the right member is the leading order term in the

asymptotic expansion of �R�s�
�q� B

s��Dg�AfQ
�q�
�f ��y� h��y�� ���

We derive a similar formula for ���
�q�q�� First� we rewrite Eq� ������ as

���
�q� � R�s�

�q� B
s�

�
�Dg�AfQ

�q�
�f �

d

dt

�
AfQ

�q�
�f

��

�R�f�
�q� B

f�

�
�Dg�AsQ

�q�
�s �

d

dt

�
AsQ

�q�
�s

��
� ������

Next� Q�q�
�f � O��q�� Q�q�

�s � O���� R�s�
�q� � O���� and R�f�

�q� � O��q�� by the

induction hypothesis ������������ Thus� ���� Lemma A�� implies that the two
terms in Eq� ������ involving time derivatives are O��q��� and therefore of
higher order� Also� �Dg�As is zero to leading order by Lemma A��� and thus

���
�q�q� � R�s�

�q���B
s�
� �Dg��A

�
fQ

�q�q�
�f � ������

We now substitute ���
�q��� and ���

�q�q� from Eqs� ������ and ������ in the

expression U�q�q� � ����
�q����

�����
�q�q� to �nd the desired expression for U�q�q� in

terms of Q�q��

U�q�q� �
�
Q
�q���
�f

���
Q
�q�q�
�f � ������

We also need an expression for U�q�q� in terms of blocks of R�q�� which we
will use in Eqs� �������������� Since R�q� has the near block�diagonal structure
given by the induction hypothesis ����������� and Q�q� is its inverse� we �nd

Q�q��

�
�R�s�

�q����
�� ��q�R�s�

�q����
��R�f�

�q�q��R
�f�
�q����

��

��q���R�f�
�q����

��R�s�
�q�q����R

�s�
�q����

�� �R�f�
�q����

��

	
�������

to leading order for each of the blocks and for q � �� �� � � � � Equations ������
and ������ lead to the desired expression for U�q�q� in terms of R�q��

U�q�q� � �R�f�
�q�q�

�
R�f�
�q���

���
� ������

Step �� We derive the leading�order asymptotics of the matrix L�q��

Recall that L�q� � ���
�q���

��
�q��

��� Moreover� by Lemma ���� ���
�q� is strictly

O��� and ���
�q� is strictly O��

q���� Hence� L�q� � L�q�q����
q�� �O��q���� with

�




L�q�q��� � ���
�q�q����

��
�q����

��� An expression for ���
�q��� was derived in Eq� �������

so here we focus on ���
�q�q����

Equation ����	� and the de�nition of the Lie bracket imply that

���
�q� � R�s�

�q� B
s�

�
�Dg�AfQ

�q�
�f �

d

dt

�
AfQ

�q�
�f

��

�R�f�
�q� B

f�

�
�Dg�AsQ

�q�
�s �

d

dt

�
AsQ

�q�
�s

��
� ������

Next� Q�q�
�f � O���� Q�q�

�s � O��q���� R�s�
�q� � O��q���� and R�f�

�q� � O���� by

the induction hypothesis� Also� the time derivatives are O��� by ���� Lemma
A��� and thus the two terms in Eq� ������ that involve time derivatives are
O��q���� Last� �Dg�As � O��� by Lemma A��� Thus� we �nd

���
�q�q��� � R�s�

�q�q���B
s�
� �Dg��A

�
fQ

�q���
�f � ������

Equations ������ and ������ yield the desired formula for L�q�q��� in terms of
the blocks of R�q��

L�q�q��� � ���
�q�q���

�
���
�q���

���
� R�s�

�q�q���

�
R�s�
�q���

���
� ����	�

Next� we recast Eq� ����	� in terms of blocks of Q�q�� in order to use it
in Eqs� �������������� The matrix R�q� is the inverse of Q

�q� and has the near
block�diagonal form given in ������ Thus�

R�q��

�
�Q�q���

�f ��� ��q�Q�q���
�f ���Q�q�q�

�f �Q�q���
�s ���

��q���Q�q���
�s ���Q

�q�q���
�s �Q

�q���
�f ��� �Q

�q���
�s ���

	
�����
�

to leading order for each block and for q � �� �� � � � � Equations ����	� and ����
�
lead to the desired expression for L�q�q��� in terms of the blocks of Q�q��

L�q�q��� � �
�
Q
�q���
�s

���
Q
�q�q���
�s � ������

Step �� We substitute the results obtained in Step � and Step � into the
formulas ������������� derived in Step ��

Equations ������ and ������� together with the induction hypothesis and

the estimates U�q� � O��q� and L�q� � O��q���� imply that Q�q���
�f and Q

�q���
�s

remain O���� This concludes the estimation of these blocks�

Next� we show that Q�q���
�f � O��q���� First� Q�q���

�f and Q
�q�
�f are equal

up to and including terms of O��q���� by Eq� ����	� and the estimate on U�q��

��



Thus� Q
�q���i�
�f � � for i � �� �� � � � � q� �� by the induction hypothesis on Q

�q�
�f �

It su�ces to show that Q
�q���q�
�f � �� Equation ����	� implies that

Q
�q���q�
�f � Q

�q�q�
�f �Q

�q���
�f U�q�q�� ������

The right member of this equation is zero� by Eq� ������� and the estimation

of Q�q���
�f is complete�

Finally� we show that Q
�q���
�s � O��q��� to complete the estimates on

the blocks of Q�q���� First� Q�q���
�s and Q

�q�
�s are equal up to and including

terms of O��q�� by Eq� ����
� and the order estimates on U�q� and L�q�� Thus�

Q
�q���i�
�s � � for i � �� �� � � � � q� by the induction hypothesis on Q

�q�
�s � It su�ces

to show that Q
�q���q���
�s � �� Equation ����
� implies that

Q
�q���q���
�s � Q

�q�q���
�s �Q

�q���
�s L�q�q���� ������

where the right member of this equation is zero by Eq� ������� The estimation

of Q�q���
�s is complete�

The blocks of R�q� may be estimated in an entirely similar manner� using
Eqs� �������������� instead of Eqs� �������������� and Eqs� ������ and ����	��
instead of Eqs� ������ and ������� The proof of Theorem ��� is complete�

� The Michaelis�Menten�Henri Model

In this section� we illustrate Theorem ��� by applying the CSP method to the
Michaelis�Menten�Henri �MMH� mechanism of enzyme kinetics ���� �	� We
consider the planar system of ODEs for a slow variable s and a fast variable c�

s� � ���s� �s� 	 � 
�c�� �����

c� � s� �s� 	�c� �����

The parameters satisfy the inequalities � � � � � and 	 � 
 � �� Only
nonnegative values of s and c are relevant� The system of Eqs� ����������� is of
the form ����������� with m � �� n � �� y � s� z � c� g� � �s� �s� 	� 
�c�
and g� � s� �s� 	�c�

��



��� Slow Manifolds and Fast Fibers

In the limit as � � �� the dynamics of the MMH equations are con�ned to the
reduced slow manifold

M� � f�c� s� � c �
s

s� 	
� s � �g� �����

The manifold M� is asymptotically stable� so there exists a locally invariant
slow manifoldM� for all su�ciently small � that is O��� close to M� on any
compact set� Moreover�M� is the graph of a function h��

M� � f�c� s� � c � h��s�� s � �g� �����

and h� admits an asymptotic expansion� h� � h� � �h� � ��h� � � � � � The
coe�cients are found from the invariance equation�

s� �s� 	�h��s� � �h���s���s� �s� 	� 
�h��s��� �����

The �rst few coe�cients are

h��s� �
s

s� 	
� h��s� �

	
s

�s� 	��
� h��s� �

	
s��	
 � �
s � 	s � 	��

�s� 	�	
�

���	�

In the limit as � � �� each line of constant s is trivially invariant under
Eqs� ������������ These are the �one�dimensional� fast �bers Fp

� with base
point p � �s� h��s�� � M�� All points on F

p
� contract exponentially fast to p

with rate constant ��s � 	�� The fast �ber Fp
� perturbs to a curve Fp

� that
is O��� close to Fp

� in any compact neighborhood of M�� The fast �bers Fp
� �

p � M�� form an invariant family�

��� Asymptotic Expansions of the Fast Fibers

To derive asymptotic information about the fast �bers� we look for general
solutions of Eqs� ����������� that are given by asymptotic expansions�

s�t� �� �
X
i��

�isi�t�� c�t� �� �
X
i��

�ici�t�� ���
�

where the coe�cients si and ci are determined order by order�

Consider the fast �ber Fp
� with base point p � �s� h��s��� and let �sA� cA�

and �sB� cB� be two points on it� let !s�t� � sB�t� � sA�t� and !c�t� �

��



cB�t� � cA�t�� The distance between any two points on the same fast �ber
will contract exponentially fast towards zero at the O��� rate� as long as both
points are chosen in a neighborhood of M�� We may write

!s�t� �� �
X
i��

�i!si�t�� !c�t� �� �
X
i��

�i!ci�t�� �����

where !si�t� � sBi �t� � sAi �t� and !ci�t� � cBi �t� � cAi �t�� The condition on
fast exponential decay of !s�t� and !c�t� translates into

!si�t� � O�e
�Cst�� !ci�t� � O�e

�Cct�� t	
� �����

for some positive constants Cs and Cc� We let �sA� cA� and �sB� cB� be in�
�nitesimally close� since we are interested in vectors tangent to the fast �ber�

����� O��� Fast Fibers

Substituting the expansions ���
� into Eqs� ����������� and equating O���
terms� we �nd

s�� � �� ������

c�� � s� � �s� � 	�c�� ������

The equations can be integrated�

s��t� � s���� � s�� ������

c��t� �
s�

s� � 	
�

�
c�����

s�
s� � 	

�
e��s����t� ������

Hence�

!s��t� � !s����� ������

!c��t� � !c����e
��s����t � ��s�c��t��!s���� �O��!s�����

��� ������

The points A and B lie on the same �ber if and only if

!s���� � �� ����	�

Thus� Eq� ������ simpli�es to

!c��t� � !c����e
��s����t� ����
�

and !c��t� decays exponentially towards zero� irrespective of the choice of
!c����� Hence� !c���� is a free parameter�

We conclude that� to O���� any vector

�
�


�
with  constant � � �� is

tangent to every fast �ber at the base point�

��



����� O��� Fast Fibers

At O���� we obtain the equations

s�� � �s� � �s� � 	� 
�c�� ������

c�� � s� � �s� � 	�c� � s�c�� ������

Using Eqs� ������ and ������� we integrate Eq� ������ to obtain

s��t� � s�����

s�

s� � 	
t�

s� � 	� 


s� � 	

�
c�����

s�
s� � 	

�
��� e��s����t�� ������

Therefore� at O����

!s��t� � !s���� �
s� � 	� 


s� � 	
!c������ � e��s����t�� ������

For the two points to have the same phase asymptotically� it is necessary that
limt��!s��t� � �� This condition is satis�ed if and only if

!s���� � �
s� � 	� 


s� � 	
!c����� ������

Next� c��t� follows upon integration of Eq� �������

c��t� � c����e
��s����t

�
	

�s� � 	��

�
s���� �

s� � 	� 


s� � 	

�
c�����

s�
s� � 	

��
�� � e��s����t�

�

�
c���� �

s�
s� � 	

��
s���� �

s� � 	� 


s� � 	

�
c���� �

	 � s�
s� � 	

��
te��s����t

�
s� � 	� 


�s� � 	��

�
c�����

s�
s� � 	

��

�e���s����t � e��s����t�

�

s�

��s� � 	�

�
c�����

s�
s� � 	

�
t�e��s����t

�
	
s�

�s� � 	��
�e��s����t � �s� � 	�t� ��� ������

We infer from this expression that limt��!c��t� � �� as long as Eqs� ������
and ����	� hold� Hence� !c���� is a free parameter� just like !c����� and the
only condition that arises at O��� is ������ on !s�����

We conclude that any vector�
�


�
� �

�
�
�
�� �

s���

�


�

	
� ������

��



with  and � constant � � ��� is tangent to every fast �ber at the base point
up to and including terms of O���� Any such vector may be written as the
product of a free parameter and a constant vector ��xed by s���

� � ���

�
��
�
�� �

s���

�
�

	
�O����� ������

����� O���� Fast Fibers

At O����� we obtain the equation

s�� � s��c� � �� � �s� � 	� 
�c�� ����	�

Direct integration yields

s��t� � s���� �






�s� � 	��

�
c�����

s�
s� � 	

�
�
	�s� � 	� 
�

�s� � 	�


�
s����

�



	�s� � 	� 
��s� � 	� �
� � 
�s�

�s� � 	��

��
c�����

s�
s� � 	

�

�

�s� � 	 � 
�

��s� � 	�


�
c���� �

s�
s� � 	

��

�

�
��




s� � 	

��
c���� �

	
s�
�s� � 	��

�

�
	


�s� � 	��



s���� �

s� � 	� 


s� � 	

�
c�����

�s�
s� � 	

��
t

�
	
�s�

��s� � 	�

t� �R�t�� ����
�

where the remainderR�t� involves the functions e��s����t� te��s����t� t�e��s����t�
and e���s����t� From this expression we �nd

!s��t� � !s���� � ��s�s��t��!s���� � ��c�s��t��!c����

� ��s�s��t��!s���� � ��c�s��t��!c���� �O��� �O�e
�Ct��������

for some C � �� Here� �c� is an abbreviation for the partial derivative �c�����
and so on� and O��� denotes quadratic terms in the multivariable Taylor ex�
pansion� First� we recall that !s���� � � by Eq� ����	�� Next� we calculate
the partial derivatives in each of the three remaining terms�

�c�s��t� �

s����

�s� � 	��
�
	�s� � 	� 
��s� � 	� �
� � 
�s�

�s� � 	��

��



�

�s� � 	� 
�

�s� � 	�


�
c���� �

s�
s� � 	

�
�
	
�s� � 	� 
�

�s� � 	�

t� ������

�s�s��t� �



�s� � 	��

�
c���� �

s�
s� � 	

�
�
	�s� � 	 � 
�

�s� � 	�


�
	


�s� � 	��
t� ������

�c�s��t� � ��



s� � 	
� ������

We substitute these expressions into Eq� ������� recall Eq� ������� and carry
out the algebra to obtain

!s��t� � !s���� �

�
��




s� � 	

�
!c����

�



�s� � 	��

�
s���� �

	�s� � 	� 
�� 
s�
�s� � 	��

�
!c����

�O��� �O�e�Ct�� C � �� ������

In the limit t	
� Eq� ������ yields the condition

!s���� � �

�
� �




s� � 	

�
!c����

�



�s� � 	��

�
s���� �

	�s� � 	� 
�� 
s�
�s� � 	��

�
!c����� ������

Finally� !c��t� vanishes exponentially� as follows directly from the conditions
������ and ������� Thus� no further conditions besides ������ arise at O�����

We conclude that any vector

�
�


�
� �

�
�
�
� � �

s���

�


�

	

� ��

�
�
�
�� �

s���

�
� � �

�s�����

�
s���� �

��s��������s�
�s�����

�


�

	
�������

with � �� and � constant � � ��� is tangent to every �ber at the base point�
up to and including terms of O�����

��



��� CSP Approximations of the Fast Fibers

We choose the stoichiometric vectors as the basis vectors� so

A��� � �A
���
� � A

���
� � �

�
� �
� �

�
� B��� �

�
B�
���

B�
���

�
�

�
� �
� �

�
� ������

The CSP condition B�
���g � � is satis�ed if c � h��s�� so the CSP manifold

K���
� coincides with M�� With this choice of initial basis� we have

���� � B����Dg�A
��� �

�
��s� 	� ��c� ��

��s� 	� 
� ��c� ��

�
� ����	�

����� First Iteration

At any point �s� c�� we have

A
���
� �

�
�
�

�
� �

s� 	� 


s� 	

�
��
c��
s��

�
� A

���
� �

�
�

� c��
s��

�
� ����
�

B�
��� �

�
�A���

�� � A
���
��

�
� B�

��� �
�
A
���
�� � �A

���
��

�
� ������

In the �rst step� we evaluate A
���
� and B�

��� on K
���
� to obtain

A
���
� �

�
�
�

�s����

�
� B�

��� �

�
�

	

�s� 	��
� �

�
� ������

Hence� the CSP condition�

B�
���g � s� �s� 	�c� �

	��s� �s� 	� 
�c�

�s� 	��
� �� ������

is satis�ed if

c �
s

s� 	
� �

	
s

�s� 	��
� ��

	�
s�s� 	� 
�

�s� 	�	
�O��
�� ������

Equation ������ de�nes K���
� � the CSPM of order one� which agrees with M�

up to and including terms of O���� recall Eq� ���	��

Then� in the second step� the new fast basis vector� A���
� � and its comple�

ment� B�
���� in the dual basis are evaluated on K

���
� �

A
���
� �

�
�
�

�
� �

�
�

��s�����
�s����

	
� ��

�
�

��s�s�����
�s����

	
�O��
�� ������

B�
��� �

�
A
���
�� � �A

���
��

�
������

��



Thus� we see that A
���
� is tangent to the fast �bers at their base points up to

and including terms of O��� as Eq� ������ �with  � �� � � ���s�����
�s���� � implies�

As a result� L���
� approximates T F� also up to and including terms of O����

Remark ���� If� in this particular example� one evaluates A
���
� on K���

� as op�

posed to K���
� as we did above� then the approximation of T F� is also accurate

up to and including terms of O����

����� Second Iteration

The blocks of ���� are

���
��� � ��s� 	� � �

�s� 	 � 
�

s� 	



�c� �� � �c�

s

s � 	
�

�

� ��
�c� ���s � 	� 
�

�s� 	�


h
� 
�c � �� � ��s� 	� 
�c� s

i
� ������

���
��� �

s

s� 	
� c� �

c� �

�s� 	��

h

�c� �� � ��s� 	� 
�c� s

i
� ������

���
��� �

��

�s� 	��



�c� ���s� 	� 
��s � 	� �
�

� 
��s� 	� 
�c� s � �s� 	� 
��
�
c�

s

s� 	

��
� ����	�

���
��� �

�

s� 	




�c � �� � �s� 	� 
��

s

s � 	
� c�

�

� ��
�c� ���s � 	� 
�

�s� 	�


h

�c � ��� ��s� 	� 
�c � s

i
� ����
�

with remainders of O��
��

In the �rst step� we update A
���
� and B�

��� and evaluate the updated quan�

tities on K���
� � to obtain

A
���
�� � � � ��

	
��s � 	��s� 	� 
�

�s� 	��
� ������

A
���
�� �

	

�s� 	��
� �

	
�	� �s�

�s� 	��

� ��
	�
�
s � �	��s� 	 � 
� � 	
�s�s� �	�

�s� 	�
� ������

B�
��� �

�
�A���

�� � A
���
��

�
� ������

�	



up to and including terms of O�����

The CSP condition

B�
���g � s� �s� 	�c� �

	��s� �s� 	� 
�c�

�s� 	��

� ��	


�
��s � 	���s� �s� 	� 
�c�

�s� 	��

�
��s � 	��s� 	� 
��s� �s� 	�c�

�s� 	��

�
�O��
�

� �� ������

is satis�ed if

c �
s

s� 	
� �

	
s

�s� 	��
� ��

	
s��	
 � �
s� 	s� 	��

�s� 	�	
�O��
��������

Equation ������ de�nes K���
� � the CSPM of order two� which agrees with M�

up to and including terms of O����� recall Eq� ���	��

Then� in the second step� we update A���
� and B�

��� to obtain

A
���
�� � � �

s� 	� 


s� 	
� ��

�

�s� 	�

��s� 	� 
��s � 	� �
��c � ��

��s� 	 � 
��
�
c �

s

s� 	

�
� 
��s� 	� 
�c � s

�
� ������

A
���
�� � � � �

�s� 	 � 
��c � ��

�s� 	��
� ��

�

�s� 	��



�s� 	� 
�

h
�s� 	� �
��c� ��

� �s� 	� 
�

�
c�

s

s � 	

�
� 
c

i
� 
s

��
�c�

�s � 	

s� 	

�
� ������

B�
��� �

�
A
���
�� � �A

���
��

�
� ������

with remainders of O��
�� Evaluating these expressions on K���
� � we obtain

A
���
�� � � �

s� 	� 


s� 	
� ��

	�s� 	� �
��s � 	� 
� � 
�s

�s� 	��
� ����	�

A
���
�� � � � �

	�s� 	� 
�

�s� 	�


� ��
�s� 	� 
��	��s� 	� �
� � 	
s� � 	
�s

�s� 	��
� ����
�

B�
��� �

�
A
���
�� � �A

���
��

�
� ������

�




with remainders of O��
�� Therefore� A
���
� is tangent to the fast �bers at

their base points up to and including terms of O����� according to Eq� ������

�with  � �� � � ���s�����
�s���� � � � �s���������s���������s�����s

�s���� �� and L���
� is an

O�����accurate approximation to T F��

Remark ���� If one evaluates� in this particular example�A���
� on K���

� instead

of on K���
� as we did above� then the approximation of T F� is also accurate up

to and including terms of O�����

� Linear Projection of Initial Conditions

The main result of this article� Theorem ���� states that after q iterations
the CSP method successfully identi�es T F� up to and including terms of
O��q���� where this approximation is given explicitly byA�q�

� � This information
is postprocessed to project the initial conditions on the CSPM of order q� In
this section� we discuss the accuracy and limitations of this linear projection�

Geometrically� one knows from Fenichel�s theory that any given initial
condition x� su�ciently close to M� lies on a �generally nonlinear� �ber Fp

�

with base point p on M�� Hence� the ideal projection would be �F �x�� � p
�the subscript F stands for �ber or Fenichel� and this is� in general� a nonlinear
projection�

Within the framework of an algorithm that yields only linearized infor�
mation about the fast �bers� one must ask how best to approximate this ideal�
A consistent approach is to identify a point on the slow manifold such that
the approximate linearized �ber through it also goes through the given initial
condition� This approach was used� for example� by Roberts ��
 for systems
with asymptotically stable center manifolds� where we note that a di�erent
method is �rst used to approximate the center manifold� Also� this approach
is exact in the special case that the perturbed fast �bers are hyperplanes which
need not be vertical� In general� if x� lies on the linearized �ber Lp�

� and if
�F �x�� � p�� then the error kp� � p�k made by projecting linearly is O��� and
proportional to the curvature of the �ber �see also ��
��

For fast�slow systems� there is yet another way to linearly project initial
conditions on the slow manifold� One projects along the approximate CSPF
to the space TpF�� where p is the point on the CSPM that lies on the same
� � � �ber as the initial condition� This type of projection is also consistent�
in the sense that it yields an exact result for � � �� but has an error of O���
for � � �� Moreover� it is algorithmically simpler� since it does not involve a

��



search for the base point of the linearized �ber on which the initial conditions
lie� However� it has the disadvantage that the projection is not exact in the
special case that the fast �bers are �non�vertical� hyperplanes�

A The Action of the O��� Jacobian on TpM�

The spaces TpF� and TpM� depend� in general� on both the point p � M� and
�� As a result� the basis A also depends on p and �� and hence Af and As

possess formal asymptotic expansions in terms of ��

Af �
X
i��

�iAi
f � As �

X
i��

�iAi
s� �����

Next� we compute the action of the Jacobian on As to leading order�

Lemma A�� Ker�Dg�p��� � TpM�� for p � M�� In particular� �Dg��A�
s � ��

Proof� The Jacobian is a linear operator� so it su�ces to show that every col�
umn vector of a basis for TpM� vanishes under the left action of the Jacobian�

We choose this basis to be the matrix

�
Im
Dyh�

�
�

We compute

Dg�

�
Im
Dyh�

�
�

�
� �

Dyg� Dzg�

��
Im
Dyh�

�
�

�
�

Dyg� �Dzg�Dyh�

�
� �����

Di�erentiating both members of the O��� invariance equation g��y� h��y�� �� �
� with respect to y� we obtain

Dyg��y� h��y�� �� �Dzg��y� h��y�� ��Dyh��y� � �� �����

Equations ����� and ����� yield the desired result

Dg�

�
Im
Dyh�

�
�

�
�
�

�
� on M�� �����

Finally� the identity �Dg��A
�
s � � follows from the fact that A�

s spans
TpM�� since A�

s � Asj��� by Eq� ������

��
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