
Capability Matching of Data Streams with Network Services

Han Gao•, Ivan R. Judson♦, Thomas Uram♦, Terry L. Disz♦, Michael E. Papka•♦, Rick L. Stevens•♦
•Department of Computer Science

University of Chicago
{hangao,papka, stevens}@cs.uchicago.edu

♦Mathematics and Computer Science Department
Argonne National Laboratory

{judson, turam, disz}@mcs.anl.gov

Abstract

Distributed computing middleware needs to support

a wide range of resources, such as diverse software
components, various hardware devices, and
heterogeneous operating systems and architectures.
Current technologies are unable to implement a
maintenance-free platform to be compatible with such
different computing environments. This situation is
presenting an increasing challenge as Grid computing
becomes more widespread.

The infrastructure of network services (CENSA and
CENSI) has been proposed to address this challenge. A
seamless Grid computing environment, supported by
network services, is composed of various streams such
as data, video, audio, and text. We define a
mathematical model of capability matching for three-
party agreements: requests from users, resources, and
network services. Based on the mathematical model, we
provide a general approach for capability matching. We
also present a new language schema for capability
description. As an example, we embed the general
matchmaker in the architecture of the Access Grid.
Several tests of accuracy and performance are
discussed.

1. Introduction

Many achievements [1–5] have been accomplished in
distributed-computing resource management, such as
resource description, resource discovery, resource
registration, and resource selection. Most matching
infrastructures are based on a two-party agreement
model: resources and requests from users. According to
the requisitions from users, the matcher allocates the
corresponding resource to each client properly and
precisely. However, today’s work force is more mobile
and distributed than ever before, with diverse software
components and hardware devices used in
heterogeneous computing environments. Current

technologies are unable to implement a universal
infrastructure that is compatible with emerging research
results while maintaining existing features. For example,
a collaborative bioinformatics project may involve
several geophysically distributed research teams,
including biology scientists, computer scientists, and
statisticians. Some of these teams may be hampered
from participating fully because of diverse formats and
versions of data streams, various computing abilities,
distinct scientific views, geophysical limitations, or
social restrictions. Therefore, novel concepts of Web
services [6,7], Grid services [8–10], and network
services [11] are being explored, with the aim of
enabling the seamless integration of a wide range of
resources (in this paper, “resource” includes software,
hardware, operating system, database, and all kinds of
data streams).

We focus in this paper on network services. The
speed of today’s high-performance networks provides
an opportunity to support distributed computing. Indeed,
more and more applications are being developed and
deployed for data streams with network services [12].
These services are self-contained, self-describing,
modular applications that can be published, located, and
invoked across the Internet. They perform functions
that range from simple requests to complicated research
and business processes. For example, some network
services transfer different data streams into one standard
format accepted by a specific computing environment.
Some services either provide users routes to previously
unreachable distributed resources or minimize the cost
of accessing those resources. Unfortunately, no suitable
matchmaker model exists for selecting network services
properly and precisely.

To address this issue, we propose a three-party
(resources, requests from users, and network services)
agreement matching infrastructure, based on a rigorous
mathematical model and a set of strict mathematical
definitions. A matchmaker not only selects the proper
resources whose capabilities are matched for requests
from users, but it also introduces the corresponding

services to allow users to work in heterogeneous
computing environments.

We also define a lightweight language schema for
capability description for users, resources, and network
services. This schema describes both generic and
detailed capability information. Moreover, it can expand
its functionalities to a broader range over the RTP
protocol [13].

This paper includes the following topics:
• We first present a mathematical model and

definitions for a three-party agreement
infrastructure.

• Based on the mathematical description, we use
ClassAds [5] and XML [14] as a backbone to
design a new lightweight language schema for
describing streams and services, which enable
matching with or without network services.

• We propose a general strategy and provide an
algorithm for capability matching.

• We embed the matchmaker architecture in Access
Grid (AG) [15] and implement the matchmaker as a
network service via gSOAP [16].

• We discuss several test results regarding the
accuracy and performance of our model.

2. Mathematical Model and Definitions

Our three-party matching model is based on the
following definitions and properties.

Definition 1: A capability vector space over ℜn is a
set of capability vectors for which the dimension of
any capability vector is n.

Each type of stream capability has its own capability
space.

Definition 2: A capability vector is an element of a
capability vector space. In the commonly
encountered capability vector space ℜn, a capability
vector is given by n coordinates and can be specified
as X = (x1 ,x2 ,...,xn).

One capability vector represents one stream. As
coordinates of the vector, several independent
parameters are used to describe one specified capability
of the stream. The following property should be obeyed.

Property 1: The parameters of a stream are efficient
and independent.

For example, the description of an audio stream
always includes four independent and nonredundant

parameters: sample rate, bit rate (bandwidth), codec, and
mode. An audio stream A , Linear16-18-mono, can be
represented by 1) 16K,Linear 8kbps, (16Khz,A −= ,
which means the audio stream uses Linear-16k
compression codec, the sample rate is 16 KHz, the
bandwidth is 8 Kbps, and it has only one channel.

Definition 3: The operation of a stream
transformation is the operation of a transformation
matrix in capability space that transformed the
stream capabilities. A transformation matrix,
T ∈ ℜn×n, is a concise and useful way of uniquely
representing and working with stream
transformations:
 nnn T Y X,TXY ×ℜ∈ℜ∈= ,

In particular, for each stream capability
transformation, there exists exactly one corresponding
transformation matrix, and every matrix corresponds to
a unique transformation.

Property 2: A network service that transforms
streams by each direction is symmetric:

nnn T Y X,TYXTXY ×ℜ∈ℜ∈== , and

A capability of a stream can be transformed to
another type and also can be transformed back from the
same service.

Property 3: A network service that transforms
streams by only one direction is antisymmetric:

nnn T Y X,TYXTXY ×ℜ∈ℜ∈≠= , and

In most of cases, audio-stream transformations are
symmetric, since one obtains the transformation
algorithm for one way and can obtain the other way
easily. In our example, all audio transformation network
services are assumed to be symmetric.

Definition 4: Exact match of two or more stream
capabilities is isomorphism from two or more vectors
projected into the identical vector in capability
space.

Each capability of a stream can be projected into a
vector in capability space. If all the vectors have the
same coordinates, we have an exact match for all the
members in this session. Hence, a common stream
capability can be shared in this group.

Definition 5: Exact match with network services is
isomorphic from two or more capability vectors

projected into the identical vector in capability space
after transformation by transformation matrices.

With network services, some streams may be
projected into a common capability vector in capability
space by a transformation matrix. Hence, in a group
session, if some users do not have the specified common
capability, they can still interact with a colleague via
network services.

3. General Method and Approach

In Section 2, we presented a mathematical model,
definition, and description of capability matching of
multimedia streams with or without network services.
We now present a heuristic algorithm for capability
matching.

Algorithm 1: Searching for a largest common
capability vector or a set of common capability
vectors from two or more capability vector sets.

In the simple case, without network service, we

match all the possible capabilities and obtain
{ }** maxarg Svvv ∈= ,

where is common capability vector set. Furthermore,
according to the criterion or rule function argmax, we
can obtain the largest common capability vector .

*S

*v

Algorithm 2: Given transformation matrices,
searching for a largest common capability vector or
a set of common capability vectors and a set of
transformation matrices that build the largest
common vector or common vector set.

Given network services, we are able to build a larger
common capability vector set

{ }

{ }TvvTT

Svvv

==

∈=
**

** maxarg

where . In this case, both the capability
vector and transformation matrices are our searching
target. This potentially increases the complexity of the
approach.

nnn T v ×ℜ∈ℜ∈ ,

4. Description Language for Stream
Capabilities and Network Services

Describing the capabilities of multimedia stream and
network services is a challenge for software engineers.
Several languages have been developed for this purpose.
Web Service Description Language (WSDL) [7] is a

standard for service description; it specifies the location
of service and the operations (or methods) the service
exposes. Interface Description Language (IDL) [17] is a
simple syntax for describing the interface of a software
component. Both of these languages, however, lack
important features such as the detailed description of
service capability. On the other hand, the model-based
specification language VDM-SL is able to capture by
creating a system model and defining how a typical state
of the model changes under the effect of operations;
however, it has too many details for effective service
matching. Gao and his colleagues [18] have defined a
finite state model for Web service description, but it has
a description of service only.

In this paper, we propose a language, called XML-
ClassAd-Schema (XCS), for both stream capability and
network service capability. We embed ClassAd [5] in
XML [14] and present a schema for capability
describing, advertising, requesting, and matching
exactly and properly.

4.1 Specification of Stream Capability in CXS

We define a schema of stream capability in CXS as
follows:

• ID: ID of group member who has a set of
stream capabilities.

• TYPE: Multimedia type of the stream.
• DESCRIPTION: Explanation of terms used in

the schema, including the description of stream
and context. This entry is designed to be
understood easily. It is not to be read, parsed,
or compiled by the matchmaker.

• PREFERENCE: List of preferred stream
capabilities. The preference depends on the
conditions and constraints of the user’s
facilities or the user’s personal choice.

• RESOLUTION: List of user-available stream
capabilities. There is no special order for these.
The items in the preference entry are a subset
of those in the resolution entry.

Different multimedia streams should have different

specifications. In an audio stream, each item should
have the following structure:

• NAME: Specified capability name for each

stream.
• CODEC: Name of the encoding or decoding

method for each stream.
• SAMPLE RATE: Number of samples of a

sound taken per second to represent the event
digitally. It decides the precision of continuous
wave reconstruction from samples: the more

samples taken per second, the more accurate
the digital representation of the sound.

• BIT RATE: Number of bits in a bit stream
occurring per unit time. It always indicates the
bandwidth cost for certain stream.

• CHANNEL: Mode of the audio stream. It
provides a means for delivering audio signals
from one point to another.

4.2 Example of Stream Capability Description
in CXS

We give an example of an audio-stream capability
description file in CXS.

<?xml version="1.0"?>

<!-- EXAMPLE FOR AUDIO STREAM -->

<c>
 <s>audio.cs.uchicago.edu</s>
 <s>audio</s>
 <s>audio stream capability …</s>
 <l>
 <c>
 <s>L16-8K-Mono</s>
 <s>Linear-16</s>
 <n>8000</n>
 <n>128.0</n>
 <n>1</n>
 </c></l>

 <l>
 <c>
 <s>L16-8K-Stereo</s>
 <s>Linear-16</s>
 <n>8000</n>
 <n>256.0</n>
 <n>2</n>
 </c>

 <c>
 <s>LPC-8K-Mono</s>
 <s>LPC</s>
 <n>8000</n>
 <n>5.6</n>
 <n>1</n>
 </c></l>

</c>

Given the ID of the user, the type of stream, the
preference list, and the resolution list, this file can
exactly represent the audio stream capability for this
user.

4.3 Specification of Network Service Capability
in CXS

We use audio network service as example. A
specification in CXS is a frame with the following
structure.

• ID: ID of the network service provider.
• TYPE: Type of network service.
• DESCRIPTION: Ontological description of

network service, and explanation of terms used.
• OUTPUT/INPUT: Name of the specified

output or input stream.
• OUTPUT/INPUT CODEC: Encoding or

decoding algorithm for the output or input
stream.

• OUTPUT/INPUT SAMPLE_RATE: Sampling
frequency of the output or input stream.

• OUTPUT/INPUT BIT_RATE: Bandwidth cost
of the output or input stream.

• OUTPUT/INPUT CHANNEL: Sound effect of
the output or input stream. Usually, more
channels produce a better sound effect.

4.4 Example of Network Service Capability
Description in CXS

We next give an example of an audio network
service in CXS.

<?xml version="1.0"?>

<!-- EXAMPLE FOR NETWORK SERVICE -->

<c>
 <s>networkservice1.gawaine.cs.uchicago.edu</s>
 <s>audioService</s>
 <s></s>
 <s>L16-8K-Mono</s>
 <s>Linear-16</s>
 <n>8000</n>
 <n>128.0</n>
 <n>1</n>
 <s>L16-16K-Mono</s>
 <s>Linear-16</s>
 <n>16000</n>
 <n>256.0</n>
 <n>1</n>
</c>

In this example, we assume that the audio network
service is symmetric. Hence, we can exchange each item
for an output and input stream. For convenience in this
example, the higher resolution is put in the output side.

4.5 Specification of Network Service and Stream
in ClassAd and XML

ClassAd [6] is a semi-structured language. As
discussed earlier, we use ClassAd embedded in XML

[5]. We also specify the behaviors of programs using
both ClassAd and XML. See the audio stream example
and audio network service example.

5. Architecture of General Matchmaker

The philosophy of the general matchmaker is
originally from CENSI and CENSA [11] (Figure 1). The
input set includes all kinds of capability description
files—stream capability, network service capability, and
so forth. The rule set provides some parameters and
criteria so that the specified types of capability
description files can be understood by the matcher.

Figure 1: General matc
represents a schema for
description file and rule s

The general matchma
properties:

• Reusability – It
resources are: stre
network services,

• Portability – It
resource matching

• Reconfigurability
matching algorith
affecting other co

We use the Access Grid

to implement this architect

Figure 2: Matchmaker i
capability matching with

The AG virtual venue c
which represent the c

se

ntation

, we use C++ to initialize a
eneric model for matching. Via gSOAP [16], we obtain

a

er
se

rvices, and environment from users whenever they log
into the AG.

6. Impleme

As discussed earlier
g

Web service implementation of this matchmaker
model. The advantage of this tool is that we can develop
the C++ codes without thinking about the restrictions,
type definitions, and syntax matters of SOAP [19].

In our model, for simplicity and efficiency, we have
integrated all the details into one function for match

rver and client. This function is defined in the
matcher.h file: t

A
V
VNetwork

Services

 Rule Set
 Input Se
hmaker: each dark block
 each capability
et file.

ker includes the following

 can match whatever the
am capability (audio, video),
and resources.
can be embedded in any
 or selecting architecture.

 – Its schemas and core
ms can be rewritten without
mponents.

 (AG) as a reference model
ure (Figure 2).

s embedded in the AG for
network services.

ollects all the capability files,
urrent facilities, resources,

_match(list **inputs, int rules)

data input and
le set, and one outcome, result. The data input is a list

of

. Results

cted several experiments to test the
ccuracy and performance of our new tool.

Network
Services

 we have four users in one group session.
he audio capability files for each user are described as

fo

 {(L16-8K-Mono, L16, 8K, 1)(preferred),
 (L16-16K-Mono, L16, 16K, 1)};

The r

s are available:

sers

String* matcher

The function comprises two inputs,
ru

 strings (the capability description files for users,
resource and network services). The rule set is encoded
into integers, each representing a distinct rule set. The
structure of program also follows the philosophy of our
general matchmaker in Figure 1.

7

We condu
a

7.1 Capability Matching without

Suppose

T
llows:

User1:

User2: {(L16-8K-Mono, L16, 8K, 1)(preferred),
 (L16-32K-Mono, L16, 32K, 1)};
User3: {(L16-8K-Mono, L16, 8K, 1)(preferred),
 (L8-8K-Mono, L8, 8K, 1),
 (L8-16K-Mono, L8, 16K, 1)};

)(preferred), User3: {(L16-8K-Mono, L16, 8K, 1
 (G276-32-16K-Mono),
 (LPC-8K-Mono)}

esult is as follows:

The following preferred stream

The stream L16-8K-Mono is available for all 4 u

odec : Linear-16 C
Sample Rate : 8000Hz

G
irtual
enue

Capability
Matchmaker

AG
Node

Matcher

 Result

Bit Rate : 128kbps
Channel : 1

All of the available streams as follows:

r all 4 users
odec : Linear-16

Th btain one standard audio stream: (L16-8K-

pability Matching with Network Services

we have added i

 (L16-8K-Mono, L16, 8K, 1)↔ (L16-16K-Mono, L16, 16K, 1)

red streams are available:

sers
…

rvice1.gawaine.cs.uchi
cago.edu:L16-16K-Mono <--> L16-8K-Mono

rvice1.gawaine.cs.uchi
cago.edu:L16-16K-Mono <--> L16-8K-Mono

rvice2.gawaine.cs.uchi
cago.edu:L16-16K-Mono <--> L8-8K-Mono

ervice1.gawaine.cs.uchi
cago.edu:L16-16K-Mono <--> L16-8K-Mono

all 4 users
…

observe that networkservice1 is able to transfer
be

 (L16-24K-Mono, L16, 24K, 1)↔ (L16-32K-Mono, L16, 32K, 1)

uchicago.edu:
rkservice1.gawaine.cs.uchicago.edu: L16-16K-Mono <--> L16-

erformance Analysis

Hz, 512 MB memory,
e

The stream L16-8K-Mono is available fo
C
Sample Rate : 8000Hz
Bit Rate : 128kbps
Channel : 1

at is, we o

Mono, L16, 8K, 1). It is also the preference of all four
users.

7.2 Ca

e again have four users in one group session, butW

n this test two network services.

Network service 1:

Network service 2:
 (L8-8K-Mono, L8, 8K, 1) ↔ (L16-16K-Mono, L16, 16K, 1

Matching Result:

The following prefe

The stream L16-8K-Mono is available for all 4 u
…
All of the available streams as following:

audio2.gawaine.cs.uchicago.edu:networkse

audio3.gawaine.cs.uchicago.edu:networkse

audio3.gawaine.cs.uchicago.edu:networkse

audio4.gawaine.cs.uchicago.edu:networks

The stream L16-16K-Mono is available for
…
The stream L16-8K-Mono is available for all 4 users
……

We

tween codecs L16-16K-Mono and L16-8K-Mono,
whereas networkservice2 encodes between L16-16K-
Mono and L8-8K-Mono. These two network services
make this group session have one acceptable audio
stream: (L16-8K-Mono, L16, 8K, 1).

We have only one-hop network service in this
example. After adding two more network services, we
implement multihop transcoding.

Network service 3:

Network service 4:

 (L16-16K-Mono, L16, 16K, 1)↔ (L16-24K-Mono, L16, 24K, 1)
Matching Result:
……
audio3.gawaine.cs.
netwo
8K-Mono
networkservice4.gawaine.cs.uchicago.edu: L16-24K-Mono <--> L16-
16K-Mono
networkservice3.gawaine.cs.uchicago.edu: L16-32K-Mono <--> L16-
24K-Mono
……

7.3 P

We use Pentium 4 1.66
R dHat 7.3 as our testbed.

Figure 3: Timing comparison between matching

e

. Conclusions and Future Work

with network service and without network service.
The number of nodes ranges from 2 to 100.

In Section 3, we presented a general algorithm for
th three-party agreement model. The complexity is
O(n). The test result follows the complexity analysis
exactly (see Figure 3, which shows that the time cost
has a linear relationship with the number of user nodes).
Compared with matching without network service, the
overhead of network services with matching is relatively
small.

In a usual group session over the Access Grid, we
have at most 30 user nodes. Thus, the corresponding
time cost of capability matching for this session is
reasonable.

8

Application and data decentralization are becoming a
a

pro

cknowledgments

We thank the entire Futures Laboratory and Access

Reference
 J., Katramatos, D., Karpovish, J., and

lman,
e

ski, K., Foster, I., Karonis, N., Kesselman, C.,
rce

es, J. The Network

overy and Integration (UDDI)."

m jor trend in the industry. We have designed and
developed a matchmaker for the three-party agreement
model: requests from users, resources, and network
services in a distributed computing environment. We
also have proposed a lightweight language based on
ClassAds and XML for capability description.

Implementing the matchmaker over the RTP (a
tocol for real-time data streams) gives us a blueprint

for future development of real-time data streams
matching. We plan to explore ways in which to improve
the generic resource-matching model.

A

Grid team. Funding for this work has been provided by
the National Science Foundation Middleware Initiative,
with additional funding for the Access Grid research
and development provided by the U.S. Department of
Energy under Contract W-31-109-Eng-38 and from
Microsoft Research.

[1] Chapin, S.
Grimshaw, A., Resource Management in Legion. In Proc. 5th
Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP '99), San Juan, Puerto Rico, 1999.

] Czajkowski, K., Fitzgerald, S., Foster, I., and Kesse[2
C., Grid Information Services for Distributed Resourc
Sharing. In 10th IEEE International Symposium on High
Performance Distributed Computing, IEEE Press, 2001,
181–184.

] Czajkow[3
Martin, S., Smith, W., and Tuecke, S., A Resou
Management Architecture for Metacomputing Systems. In
Proc. IPPS/SPDP '98 Workshop on Job Scheduling Strategies
for Parallel Processing, 1998, 62–82.

] Wolski, R., Spring, N., and Hay[4
Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing. Journal of Future
Generation Computing Systems, 15 (5–6), 757–768. 1999.

] Raman, R., Livny, M., and Solomon, M. H. , [5
Matchmaking: Distributed Resource Management for High
Throughput Computing. In High Performance Distributed
Computing. Chicago, IL: IEEE Computer Society, 1998, pp.
140–146.

] Universal Description Disc[6
2001: http://www.uddi.org/.

[7] Christensen, E., Curbera, F., Meredith, G., and
Weerawarana, S., Web Services Description Language
(WSDL) 1.1, 2001: http://www.w3.org/TR/wsdl.

[8] Foster, I., Kesselman, C., Nick, J., and Tuecke, S., The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. Open Grid Service
Infrastructure Working Group, Global Grid Forum, 2002:
http://www.globus.org/research/papers/ogsa.pdf.

[9] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S.,
and Kesselman, C., Grid Service Specification, Open Grid
Service Infrastructure Working Group, Global Grid Forum,
2002: http://www.ggf.org/ogsi-wg/drafts/GS_Spec_draft03_2002-
07-17.pdf.

[10] Foster, I., Kesselman, C., Nick, J., and Tuecke, S., Grid

1] Gao, H., Papka, M. E., and Stevens, R., The Design of

2] WebServices Web page: http://www.webservices.org/

Services for Distributed System Integration, IEEE Computer,
35, 37–46, 2002.

[1
Network services for Advanced Collaborative Environment. In
Proc. 3rd Workshop of Advanced Collaborative Environment,
Seattle, Washington, June 22, 2003.

[1 .

3] RFC 1889 – RTP: A Transport Protocol for Real-Time

4] Brown, A., Fuchs, M., Robie, J., and Wadler, P., XML

[1
Applications: http://www.faqs.org/rfcs/rfc1889.html.

[1
Schema: Formal Description, 2001:
http://www.w3.org/TR/2001/WD-xmlschema-formal/20010925/.

[15] Access Grid Tutorials Web page:
http://webct.ncsa.uiuc.edu:8900/public/AGIB/.

[16] van Engelen, R. A., and Gallivan, K. A., The gSOAP

7] Snodgrass, R., The Interface Description Language:

8] Gao, X., Yang, J., and. Papzoglou, M., The Capability

9] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,

Toolkit for Web Services and Peer-To-Peer Computing
Networks. In Proc. IEEE/ACM International Symposium on
Cluster Computing and the Grid, Berlin, Germany, May 21–
24, 2002.

[1
Definition and Use, Computer Science Press, 1989. ISBN 0-
7167-8198-0.

[1
Matching of Web Services. IEEE Fourth International
Symposium on Multimedia Software Engineering (MSE’02),
IEEE Computer Society, Newport Beach, California,
December 11–13, 2002, pp. 56–63.

[1
Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer, Simple
Object Access Protocol (SOAP) 1.1, 2000:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

http://www.uddi.org/
http://www.w3.org/TR/wsdl
http://www.globus.org/research/papers/ogsa.pdf
http://www.ggf.org/ogsi-wg/drafts/GS_Spec_draft03_2002-07-17.pdf
http://www.ggf.org/ogsi-wg/drafts/GS_Spec_draft03_2002-07-17.pdf
http://www.w3.org/TR/2001/WD-xmlschema-formal/20010925/
http://webct.ncsa.uiuc.edu:8900/public/AGIB/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

	University of Chicago
	(Mathematics and Computer Science Department
	Argonne National Laboratory

