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Abstract  

In distributed heterogeneous Grid environments the protocols used to exchange bits are 
crucial.  As researchers work hard to discover the best new protocol for the Grid, application 
developers struggle with ways to use these new protocols.  A stable, consistent, and intuitive 
framework is needed to aid in the implementation and use of these protocols.  While the 
application must not be burdened with the protocol details some of it may need to be exposed 
to take advantage of potential optimizations.  In this paper we examine how the Globus XIO 
API provides this framework.  We will explore the performance implications of using this 
abstraction layer and the benefits gained in application as well as protocol development.
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Introduction 
It is amazing -- or frustrating, depending on your point of view -- how many I/O problems appear to 
be solvable with simple Open/Close/Read/Write (OCRW) functionality.  The devil is in the details, 
however, and the solutions to these problems are just different enough to result in a variety of API 
models with varying sets of semantics.  From a very broad perspective they all look alike, since they 
all have a source and a sink between which a stream of data flows.  However, a more detailed 
examination shows differences that are extremely significant to the application developer.  For 
example, if the end goal of an application is to transfer files between two locations, HTTP [7] and 
GridFTP [1,2,3,4] may be logical choices.  The choice between them may be based on performance 
and environment characteristics, but the architecture and design of the application is the same.  
However when looked at from the perspective of a developer actually implementing that design, the 
asynchronous push model FTP API, and the synchronous multi-threaded API for HTTP messaging 
is entirely different and drastically affects the design of the application. 
 
The Grid [5,6] is a heterogeneous, dynamic and evolving environment. Development of 
communication protocols to optimize use of and access to the underlying fabric of the Grid is a key 
area of research.  This research turns out protocols that have similar goals but with varying 
properties ideal for different environments.  As researchers develop new transfer and control 
protocols, application developers struggle to update their applications in order to gain the benefits of 
increased network utilization.  In order to make their applications portable to many heterogeneous 
grid environments, the developers may try to integrate as many protocols as possible.  This typically 
means many different APIs all with different semantics, many different programming models, and 
even different sets of bugs to work around.  This issue certainly leads to a longer development cycle 
and inevitably leads to messy code. 
 
On the other end of this problem is the creation of new protocols.  As researchers and developers 
create new protocols the focus of their effort should be on the details of their protocol, yet too often 
a majority of time is spent on side issues.   The development of these new protocols can be 
significantly delayed by issues that have more to do with user interface than they do with the 
protocol itself.  Designing a good intuitive API is a task in itself, and one that is unfortunately often 
neglected.  Further, the majority of bugs and development time in a robust full featured protocol 
library are results of race conditions due to multi-threading and event notification.  These issues are 
paramount to the implementation of a protocol but not central to the protocol itself.  Additionally, 
most new protocols are layered on top of standard transport protocols, like TCP [10].  This leaves 
the developer coding directly to the socket library, which is a difficult art to master. 
 
Overview of Globus XIO 
Globus XIO is a simple OCRW abstraction layer to transport protocols that was designed with these 
problems in mind.  To application developers, Globus XIO is an API that enables different I/O 
problems to be presented uniformly as a simple OCRW interface with a single set of semantics.  To 
network protocol developers, it is a support framework for developing communication protocols.  
To mass storage vendors, it is an interface that enables an existing application written with XIO to 
access their hardware.   
 
Globus XIO does not try to solve every I/O problem by mapping every type of I/O to a single API; 
that is clearly not possible.  Nor does Globus XIO attempt to hide all details of the underlying 
protocol; that is clearly undesirable.  While it is nice to think that all I/O can be lumped into a single 
abstraction, protocols are different for a reason.  They solve different problems and do different 
jobs.  Often a user must be able to control these differences to properly take full advantage of the 
I/O protocol involved. 
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The first problem that Globus XIO addresses is the abstraction of byte stream IO into a simple 
OCRW API.  It is unnatural (and unwise) to attempt to map all I/O types to an OCRW API.  
However, those that can be viewed as streams of bytes, which is a significant number of them, map 
very well.  All the differences cannot be hidden, but the impact on the application code can be 
minimized and the differences isolated.  So whether data is read from a file or a network or an 
electron microscope, whether it is using TCP, UDP [11], or some custom protocol, to the 
application using Globus XIO the interface is simply OCRW. 
 
Globus XIO also helps to minimize the development time and effort involved in creating and 
prototyping new I/O protocols and new device interfaces.  Globus XIO provides a framework that 
handles many of the non-protocol specific ancillary requirements of a protocol developer such as 
event handling, error handling, etc.  The protocol specific functionality is abstracted into a driver, 
where the protocol developer can focus on the interesting details of the protocol they are 
prototyping or producing for production. 
 
The driver must implement a well-defined set of interface functions, with a well-defined set of 
semantics associated with them.  Essentially, these functions consist of Open, Close, Read, and 
Write.  For instance, a driver developer defines an open function, and implements the code specific 
to their protocol for opening.  The same steps are taken for the read, write and close functions.  
When implementing these functions the developer does not need to be concerned with user error 
checking, this has all been done by the framework and all parameters are guaranteed to be good.  
This and all other user interface issues are removed from the concern of the driver developer. 
 
Often, APIs are created according to a blocking model.  This has the advantage of being much 
easier to design and implement, however it will quite possibly have performance issues.  It is likely 
that while an application is waiting for bytes to arrive via some transport that it can perform data 
processing.  If using a blocking API the only way an application can do these parallel tasks is to 
have separate threads for IO and processing.  This can easily lead to complicated synchronization 
issues that a scientific application may not be willing to deal with.  Further, it does not scale well as 
more and more simultaneous IO occurs.  To over come this issue the protocol developer must create 
their own polling loop, which can be very complicated low level code and is nothing more than a 
distraction to the protocol developer.  The Globus XIO framework alleviates this problem from the 
driver developer by providing asynchronous functionality.  A rich set of system polling code is 
distributed with XIO, and an internal API provides the driver with polling and barriers and other 
asynchronous functionality. 
 
One important feature of XIO is that drivers can also use other drivers.  This means that once a TCP 
driver is created (and one is distributed with Globus XIO) no other driver needs to code directly to 
sockets again, they can instead use the TCP driver.  So when creating the HTTP driver, the details 
of framing HTTP messages can be focused on and the work of transporting the messages can 
simply be passed onto the TCP driver. 
 
A Common Usage Scenario 
One of the common Grid computing usage scenarios is referred to as a "DataGrid" problem [1].  
This involves accessing a remote data source, transporting it to a compute node, performing 
computation on it, and then sending the results to a remote destination.  This scenario involves 
multiple IO operations, each of which may involve a different programming model, API, etc.  We 
will examine this scenario in some detail to see how XIO might be applied. 
 
In our scenario, a remote data source is accessed for input data to the computation.  Common access 
methodologies for this data might include GridFTP, HTTP, or a proprietary mass storage system 
such as HPSS [8,9].  However, the source of data could also be something more unusual such as a 
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scientific instrument of some kind or even the output of another computational program.  In all 
these cases, this IO can be easily represented as a byte stream, yet the programming model for each 
could (and likely would) be quite different.  If the application wishes to be able to access all these 
sources, the application must contain code for all these proprietary APIs and deal with all of the 
different programming models. However, if we interpose XIO as an abstraction layer, the 
application sees a uniform programming model, uniform API, uniform error semantics, etc.  
Obviously, the differences are still present, but they have been isolated to the driver, making the 
application logic much cleaner and localizing the location of source specific issues. 
 
Our scenario also calls for sending the results of the computation to a remote destination.  It might 
be the same or similar access methods as already described, but what if it were a visualization 
display of some kind?  This case is much less clear and it depends on the characteristics of the 
display.  If the display were some sort of movie viewer and expected a simple video stream, then 
XIO might well be appropriate.  However, if complex windowing operations were required, XIO 
would definitely NOT be appropriate. 
 
Basic Architecture 
There are two important concepts in the architecture of Globus XIO, the driver and the stack.  We 
discussed the driver above; it is the abstracted component where all the protocol specific 
implementation exists.  There are two types of drivers, transform drivers and transport drivers.  
Transport drivers are those that actually move data into or out of the process space.  Examples of 
this are TCP and UDP.  Transform drivers are those that manipulate, examine, frame, or change the 
data, or in other words, drivers that take any action other than moving the data across the process 
boundary.  Examples would be compression, logging, and HTTP. 
 
A particular protocol implementation can involve many drivers; this is where the concept of a stack 
of drivers comes into play.  In a stack there must only be one transport driver, and it must be at the 
bottom of the stack.  This stands to reason since the transport driver is what actually moves the bits 
on a wire.  There can be any number of transform drivers on a driver stack.  As data is written it 
moves from the user to the first driver on the stack.  The data is moved down the stack, through the 
effects of each transform driver (if any are used) to the transport driver.  The transport driver then 
ships the data over the wire.  Data follows a similar path for reads, only in the opposite direction, 
from wire to transport driver, and up the stack to the user. 
 
Driver stacks can be mixed and matched.  An HTTP driver has been created as a transform driver, 
and typically it sits in a stack directly above TCP.  For example, if a driver is created implementing 
UDT (a reliability layer over UDP) a stack can be formed of HTTP on top of UDT without a single 
code change to any of the drivers involved. 
 
The Globus XIO User API 
Our discussion up to this point has been fairly abstract.  At this point we will give a brief overview 
of the status of Globus XIO and some code snippets demonstrating the use of the user API. 
 
At the time of this writing, Globus XIO is available in the alpha version of version 3.2 of the Globus 
Toolkit.  By publication, GT3.2 should have reached final release.  Documentation for the entire 
API is available at [12].  Globus XIO is a C library.  Since the core API is simply OCRW, the user 
API is fairly straightforward.  We provide synchronous calls (globus_xio_read()), asynchronous 
calls (globus_xio_register_read()) and have vector variants of each 
(globus_xio_[register]_readv()). The best way to become familiar with Globus XIO is by looking at 
some code snippets. 
 
Step 1: Activate Globus 

4 



XIO was developed by the Globus Alliance and so inherits some Globus Toolkit semantics.  
Accordingly, as with all Globus Toolkit programs, you must first activate the Globus module. Until 
activation is complete, no XIO function calls can be successfully executed. The module is activated 
with the following line: 
 
globus_module_activate(GLOBUS_XIO_MODULE); 
 
Step 2: Load Driver 
The next step is to load all the drivers needed to complete the I/O operations in which you are 
interested. The function globus_xio_load_driver() is used to load a driver. To successfully call this 
function, you must know the name of all the drivers you wish to load. For this example we want to 
load only the file io driver. The prepackaged file io drivers name is "file." This driver is loaded with 
the following code: 
 
globus_result_t        res;  
globus_xio_driver_t    driver; 
res = globus_xio_load_driver(&driver, "file"); 
 
If upon completion of the above function call, the variable res is equal to GLOBUS_SUCCESS, 
then the driver was successfully loaded and can be referenced with the variable "driver." 
 
Step 3: Create Stack 
Once globus_xio is activated and a driver loaded, you need to build a driver stack. In our example 
the stack  consists of only one driver, the file driver.  The stack is established with the following 
code (building from the above code snips): 
 
globus_xio_stack_t              stack; 
globus_xio_stack_init(&stack);  
globus_xio_stack_push_driver(stack, driver); 
 
Step 4: Opening the Handle 
Once the stack is created, you can open a handle to the file, in one of two ways.  The first way is a 
passive open. An example is a TCP listener. The open is performed passively and then it waits for 
some other entity to act on it. The other alternative is an active open.  An example is a TCP connect.  
The user, who initiates the open, performs the open actively.  Our example has an active open.   To 
create a handle for an active open, you first initialize the handle object and then open it with the 
contact information. The following code illustrates this: 
 
globus_xio_handle_t             handle; 
 
globus_xio_handle_create(&handle, stack); 
res = globus_xio_open(handle, "/tmp/junk.txt", NULL); 
 
Step 5: The Payoff 
Now that you have an open handle to a file, you can read or write data to it with either: 
globus_xio_read() or globus_xio_write().  Once you are finished performing I/O operations on the 
handle, you should call globus_xio_close(handle). 
 
All this may seem like a lot of effort for simply reading a file.  The advantages become clear, 
however, when you wish to use other drivers. In the above example, it would be trivial to change 
the I/O operations from file I/O to TCP, HTTP, or FTP. All you would need to do is change the 
driver name string passed to globus_xio_load_driver() and change the contact string passed to 
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globus_xio_[register]_open(). Both can be done easily at runtime, as the program 
globus_xio_example.c [12] demonstrates. 
 
The UDT Driver 
In network protocol research a common goal is optimal bandwidth utilization, while still being 
network friendly. The drawback of TCP inherent in its AIMD based congestion control mechanism 
[13] is well known [14].  Furthermore, if the bandwidth-delay product is very high, it  takes a very 
long time for TCP to recover from a packet loss. Researchers have come up with numerous 
alternatives. These solutions include improvements to TCP [15,16,17], new transport protocols such 
as XCP [18], XTP [19] and reliable layers on top of UDP [20,21,22]. 
 
Globus XIO is the perfect framework for researching reliability layers on top of UDP. A UDP 
driver already exists, so all of the socket code is taken care of and the framework assists greatly in 
quick prototyping of protocols.  Further, since the user API does not change based on the driver 
used, a single set of performance measuring tools can be used to compare many drivers. 
 
One particular protocol in this category is UDT (developed at the Laboratory for Advanced 
Computing at University of Illinois Chicago) [23, 24].  A UDT driver was implemented for the 
Globus XIO framework.  Globus XIO allows the driver developer to load and control the desired 
protocol underneath the driver.  This feature is very useful for developing drivers that are in an 
evolving state like SABUL/UDT.  SABUL was the first iteration of UDT and used TCP for 
exchanging control messages and UDP for transferring the data.  Later, an improved version of 
SABUL, namely UDT, which use UDP for transferring both control and data, was proposed. These 
changes were made easily in Globus XIO by simply altering the driver loaded.  This would have 
been a much more substantial effort if the development were done using the socket library. 
 
The provision of both synchronous and asynchronous API and the framework handling the 
technicalities of that made the development of UDT easier.  There was little worry of synchronizing 
processing by waiting and signaling.  Instead the framework abstracted user requests for data into 
operations.  When a request to read data from UDT was made it was given an operation.  UDT then 
checks its read buffer and if it had already read the requested amount of data, it finishes the 
operation immediately. Otherwise it puts the operation in the read operation queue. Similarly, when 
a request to write is made, the buffer and the operation would be put in the queue. It then will split 
the data into multiple packets, add header and send it to the destination.  Whenever an operation 
was complete, the driver simply notified the framework and the framework took care of all 
functionality necessary to safely notify the user. 
 
Additionally, the Globus XIO framework allows the drivers to initiate new asynchronous operations 
that are performed in parallel to user initiated operations.  This is an important feature for UDT, and 
any UDP based reliable transport protocols as they need to allow for the protocol layer to 
continuously read the data.  Without this feature of Globus XIO the protocol developer would have 
to use synchronous operations and manage threads internally. 
 
Also, when the user initiates a close, the XIO framework makes sure all the outstanding operations 
complete/cancel and its callback called before the close callback is called. This makes the driver 
developer's job easier by relieving him from worrying about canceling or waiting for the 
outstanding operations while performing the close operation. 
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Performance Results 
In computer science there is the old adage that there is no problem you cannot solve by adding a 
layer of abstraction, and there is no optimization you cannot make by removing one.  Since Globus 
XIO is an abstraction layer to protocols it is important to look at its performance characteristics.  
We have conducted several performance tests bench marking Globus XIO against Globus IO (an 
API with similar features, yet it has been coded directly against the socket library), and the standard 
socket library. We did both latency and bandwidth tests on a local host, between two different hosts 
on a LAN, between two hosts connected over a wide area link. 
 
Latency Tests 
The latency tests were carried out in a ping-pong fashion. The sender sends a message with a certain 
data size to the receiver and waits for a reply from the receiver. The receiver receives the message 
from the sender and sends back a reply with the same data size. Each ping-pong test was carried out 
1000 times, the total time to complete those iterations was then used to determine an average one-
way latency number. 
 
Figures 1 through 3 show the results of the latency tests.  For tests conducted on the loopback 
interface, shown in Figure 1, the latency of a single byte increased from 20 us for raw socket IO to 
37 us for IO via Globus XIO.  However, the percentage increase in latency decreases as the message 
size increases. For a message of size of 100KB, the percentage increase is 8 % and for a message 
size of 10 MB, it is just 2%. Tests conducted on the LAN provide much better results, as shown in 
figure 2. The percentage increase in latency for Globus XIO is 8% for transferring a 1000 byte 
message and it decreases as the message size increases and it is only 0.003% for a message of size 
of 10MB. Finally, figure 3 shows the latency numbers over a WAN.  It is here that Globus XIO 
comes into its own. The overhead introduced is less than 1.5% for any message size.   
 
In general, for most Globus applications, latency is not a critical issue and the use of Globus XIO 
will be of negligible impact.  In certain latency critical applications, such as MPI application the 
utility of XIO would need to be determined with more exhaustive tests. 
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Figure 1: Comparison of one-way latency for transferring messages of various sizes over the 
loopback interface on a local host. 
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Figure 2: Comparison of one-way latency for transferring messages of various sizes between two 
hosts on a LAN 
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Figure 3: Comparison of one-way latency for transferring messages of various sizes between two 
hosts connected over a wide area link 
 
 
 
 
 
Bandwidth Tests 
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The bandwidth tests were carried out by having the sender sending out a large number (1000) of 
back-to-back messages to the receiver and then waiting for a reply from the receiver. The receiver 
sends the reply only after receiving all (1000) messages. Then the bandwidth was calculated based 
on the elapsed time (from the time sender sends the first message until the time it receives the reply 
back from the receiver) and the number of bytes sent by the sender. 
 
Figures 4 and 5 indicate that the throughput achieved with Globus XIO is nearly the same as that of 
raw sockets. The percentage decrease in the throughput is less than 3% in all cases, and for large 
messages it is less than 1.5%. While some applications may not be able to tolerate this loss in 
bandwidth, in general, the losses are negligible in a real world application. 
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Figure 4: Comparison of throughput achieved over a gigabit link on a local area network. 
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Figure 5: Comparison of throughput achieved over a wide area network where the bottleneck is an 
OC-12 link. 
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All the tests shown in the figures above were conducted with a single XIO driver loaded.  However, 
XIO was designed to have a "stack" of multiple drivers and in some cases this is required to obtain 
equivalent functionality. Figure 6 shows a comparison of Globus IO using GSI authentication 
against Globus XIO using a stack consisting of a TCP driver and a GSI driver. The latency 
overhead is still minimal at less than 5% for small messages and less than 2% for larger messages 
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Figure 6: Comparison of latency for Globus XIO over GSI with Globus IO over GSI over the 
loopback interface on a local host. 
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Summary 
Globus XIO provides a framework that implements a simple Open/Close/Read/Write interface that 
is appropriate for most byte stream oriented IO applications.  The framework user API presents a 
uniform API, semantics, and error handling to the application.  Variations in programming models 
due to the different underlying protocols and APIs are isolated in drivers and drivers may be 
"stacked" to get composite functionality. Our early performance tests show that the overhead 
associated with this abstraction and the resulting benefits is minimal, particularly in most real world 
situations, generally less than 3%. 
 
The primary benefits to be gained from using Globus XIO include: 
 
A uniform IO API that developers can learn and be comfortable with: 
A single, rational set of APIs, semantics, error responses, as well as problems and work arounds.  
Differences due to different network protocols or data access methods are isolated in the drivers 
making the application more stable and minimizing the programmer involvement with these 
differences. 
 
Ability to quickly adapt to different transport protocols: 
Applications written with XIO can switch from TCP to other protocols with minimal changes to the 
application. 
 
Ability to quickly adapt to different data access mechanisms: 
Files stored behind GridFTP servers, on HPSS or UniTree mass storage devices or any number of 
other vendor proprietary storage systems can all be accessed in uniform manner.  This also provides 
providers of these access mechanisms a convenient vehicle for providing this access and 
immediately makes their access mechanisms available to any application utilizing XIO. 
 
Provides a convenient framework for research and development: 
Researchers in new protocols and data access mechanisms can utilize the XIO framework during 
their research and development cycles. The XIO framework provides many of the facilities required 
to successfully conduct their research, but outside their interest and expertise. 
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