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Abstract

We present a method for improving the accuracy and efficiency of interpolation

methods, in which an analytical zeroth-order potential energy surface is employed

as a reference surface. To investigate and test the method, we apply it to HOOH

where there exists an accurate analytical surface which we take as the “exact”

surface for obtaining the energies and derivatives for fitting and assessing the

accuracy. Examples are given for four-dimensional and six-dimensional surfaces

interpolated by using either the modified Shepard or second-degree interpolating

moving least squares (IMLS) approach, with comparisons for cases with and

without using the zeroth-order potential.
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I. INTRODUCTION

In spite of rapid advances in quantum electronic structure theory and computational

power, generating a reliable potential energy surface (PES) entirely using ab initio calcu-

lations is still not feasible for most practical applications, especially for studying reaction

dynamics. One alternative approach is to perform ab initio calculations at a set of points in

the configuration space and then interpolate them using some sort of fitting scheme. Exam-

ples of such fitting methods include the modified Shepard method proposed by Ischtwan and

Collins1 and the IMLS method recently investigated by us2,3. However, even with the use of

a fitting method, the computational cost becomes increasingly demanding with the increase

in the size of the system. The number of data points needed to achieve a given accuracy

increases rapidly with dimension, leading to higher cost in both ab initio calculations and

the fitting scheme. Thus, applications of these interpolating methods to large systems are

hindered by the high computational cost and hence difficulty in achieving good accuracy.

To reduce the computational cost and improve the accuracy, a dual-level approach has

been proposed by Nguyen at al,5 in which a correction function is defined as the difference

between a high-level and a lower-level electronic structure calculations and interpolated

using the modified Shepard method. The potential advantage of the approach is that a

fewer number of higher-level points may be needed than that required by using the single-

level approach to achieve the same level of accuracy, thus providing a cost saving means for

constructing a PES using high-level ab initio data.

Inspired by the idea of this dual-level approach, we present here a computational scheme

that has the potential to significantly reduce the computational cost and improve the ac-

curacy of an interpolated surface. The basic idea, as illustrated in Fig. 1, is as follows.

Suppose V is the potential function to be fitted. If an analytical zeroth-order potential V0

can be easily found which is a good approximation to V , then the difference

∆V = V − V0 (1)

should be much easier to fit than the potential V itself and can be interpolated by using
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any fitting method of choice. The total interpolated potential is then

Vfitted = V0 + ∆Vfitted. (2)

This analytical zeroth-order potential can be a simple form such as a valence force field

potential or a more sophisticated one. Clearly, introducing V0 adds negligible computational

time to the overall cost of computing an interpolated surface. In addition, since fitting

∆V may require less data points than fitting the potential V itself for a given accuracy,

the method could provide cost savings in both ab initio calculations at the data points

and the use of the interpolation method for constructing the PES. Furthermore, since ab

initio and experimental information can be incorporated in the zeroth-order PES in regions

such as near the equilibrium, around the barrier, and the asymptotic regions, the method

may provide the potential energies in these chemically important regions with much greater

accuracy. For regions we do not wish to fit, such as regions where the zeroth-order potential

is already accurate enough or regions far away from one’s interest, ∆Vfitted can be damped

to zero and the total potential is just equal to the zeroth-order one.

To test this computational scheme and assess its accuracy, we apply it to hydrogen perox-

ide (HOOH), which is a prototype system for studying spectroscopic and kinetic properties

of small polyatomic molecules. Since our purpose is to investigate the method, instead of

performing ab initio calculations to generate data points and assess accuracy, we choose

to use the 6D analytical PCPSDE potential developed by Kuhn et al4 with one modifica-

tion (detailed in Sec. III) as the “exact” potential to fit. Numerical examples are given for

cases with and without using the zeroth-order potential, with ∆V or V fitted by using the

modified Shepard and second-degree IMLS methods.

II. INTERPOLATING METHODS

In principle, the difference function ∆V defined in Eq. (1) can be fitted by using any

interpolating method. Because the modified Shepard or second-degree IMLS interpolating

methods are used here, brief descriptions of them are given. Details of the two methods are

in the literature.1–3
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A. The modified Shepard method

Consider a data set consisting of N symmetry distinct points {Z(1), Z(2), . . . , Z(N)}. In

the modified Shepard method, the potential function Vfitted(Z) is represented by a weighted

sum of Taylor expansion about each data point

Vfitted(Z) =
∑
g∈G

N∑
i=1

wg◦i(Z)Tg◦i(Z). (3)

Here G = {g1, g2 . . . , gnG
} denotes the symmetry group of the molecule, g◦i denotes the

data point transformed from the ith data point by the group element g, Z is a vector of

internal coordinates, Ti(Z) is the Taylor expansion of the potential about each data point

Ti(Z) = V (Z(i)) +
∑

j

(Zj − Z
(i)
j )

∂V

∂Zj

∣∣∣∣
Z=Z(i)

+
1

2

∑
j

∑

k

(Zj − Z
(i)
j )(Zk − Z

(i)
k )

∂2V

∂Zj ∂Zk

∣∣∣∣
Z=Z(i)

+ . . . , (4)

and wi(Z) is the normalized weight function,

wi(Z) =
vi(Z)

∑
g∈G

N∑
j=1

vg◦j(Z)

, (5)

where vi(Z) is the un-normalized weight function with behavior such that it has a larger

value if Z is closer to Z(i).

In practice, the energies and first and second derivatives at the data points are obtained

from ab initio calculations. The expansion in Eq. (4) is confined to second order because

higher than second order analytical derivatives are difficult to obtain routinely for any level of

ab initio calculations. In this study, since we use a modified version of the 6D analytical PES

from Ref. 4 as the “exact” PES, the energies and derivatives used in the Taylor expansion

are computed from the “exact” PES.
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B. The IMLS method

In the IMLS method, the fitted potential Vfitted(Z) is represented by a linear combination

of the basis functions:

Vfitted(Z) = aT b, (6)

where b(Z) = (b1(Z), b2(Z), . . . , bm(Z))T is the vector of basis functions with m being the

total number of basis functions, and a = (a1, a2, . . . , am)T is the coefficient vector which is

determined by minimizing the sum of the weighted squared-deviations

D[Vfitted(Z)] =
∑
g∈G

N∑
i=1

wg◦i(Z)[Vfitted(gZ(i))− V (gZ(i))]2

=
∑
g∈G

N∑
i=1

wg◦i(Z)[Vfitted(gZ(i))− V (Z(i))]2 (7)

that is, by the conditions ∂D/∂ak = 0. This yields the following weighted normal equation

BT ·W ·B · a = BT ·W · V (8)

where B is a (nG N)×m matrix

B =




b1(g1Z
(1)) b2(g1Z

(1)) · · · bm(g1Z
(1))

b1(g2Z
(1)) b2(g2Z

(1)) · · · bm(g2Z
(1))

...
...

. . .
...

b1(gnG
Z(1)) b2(gnG

Z(1)) · · · bm(gnG
Z(1))

b1(g1Z
(2)) b2(g1Z

(2)) · · · bm(g1Z
(2))

b1(g2Z
(2)) b2(g2Z

(2)) · · · bm(g2Z
(2))

...
...

. . .
...

b1(gnG
Z(2)) b2(gnG

Z(2)) · · · bm(gnG
Z(2))

...
...

. . .
...

b1(g1Z
(N)) b2(g1Z

(N)) · · · bm(g1Z
(N))

b1(g2Z
(N)) b2(g2Z

(N)) · · · bm(g2Z
(N))

...
...

. . .
...

b1(gnG
Z(N)) b2(gnG

Z(N)) · · · bm(gnG
Z(N))




, (9)
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W is a diagonal matrix:

W = diag
(
wg1◦1(Z), wg2◦1(Z), . . . , wgnG

◦1(Z),

wg1◦2(Z), wg2◦2(Z), . . . , wgnG
◦2(Z), . . . ,

wg1◦N(Z), wg2◦N(Z), . . . , wgnG
◦N(Z)

)
, (10)

and V is a column vector:

V =
(
V (Z(1)), . . . , V (Z(1))︸ ︷︷ ︸

nG’s

,

V (Z(2)), . . . , V (Z(2))︸ ︷︷ ︸
nG’s

, . . . ,

V (Z(N)), . . . , V (Z(N))︸ ︷︷ ︸
nG’s

)T
. (11)

For the second-degree IMLS method employed in this study, the basis functions bk’s are

of the form
∏

i Z
li
i , where {li} are non-negative integers satisfying

∑
i li ≤ 2. For the 4D and

6D systems considered here, the total number of basis functions m is 15 and 28, respectively.

Once the coefficient vector a is obtained by solving Eq. (8), the interpolated energy at

a given point Z is evaluated via Eq. (6). The QR factorization method was used to solve

Eq. (8).

III. APPLICATION TO HOOH

For the “exact” surface to be fitted, we use the analytical PCPSDE potential developed

by Kuhn et al.4 with one modification. The original potential, denoted by Vorig, is not

invariant under the permutation of the two hydrogens or two oxygens. Therefore, we employ

a symmetrized function as the “exact” function:

Vexact(Z) = s(Z)
Vorig(Z) + Vorig(gZ)

2

+ [1− s(Z)] min[Vorig(Z), Vorig(gZ)] (12)
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with

s(Z) = exp

[
−

(
Vorig(Z)− Vorig(gZ)

b

)2
]

, (13)

where g is the permutation operator and b is a parameter determining the smoothness of

the connection between the two surfaces. b is chosen as 0.5 kcal mol−1. This function has

the following property:

Vexact(Z) → min[Vorig(Z), Vorig(gZ)] as |Vorig(Z)− Vorig(gZ)| → ∞, (14a)

Vexact(Z) → Vorig(Z) + Vorig(gZ)

2
as |Vorig(Z)− Vorig(gZ)| → 0. (14b)

The accuracy of fitted potentials strongly depends on the locations of the data points.

In practical applications, one should use available ab initio and experimental information to

place some data points in the regions of interest, such as around the equilibrium and along

the reaction coordinate(s). For the 6D calculations presented below, a set of 89 symmetry

distinct predetermined data points were used. They were placed along the six internal

coordinates (rOH1, rOH2, rOO, α1, α2, τ), where α1 and α2 are the HOO angles and τ is the

dihedral angle. The 89 points are determined by finding the symmetry distinct points in the

following data sets

{
(r0

OH, r0
OH, r0

OO, α0, α0, τ 0) + (b1∆1, b2∆2, b3∆3, c1∆4, c2∆5, c3∆6) |
∆i ∈ {−1, 0, 1},

∑
|∆i| ≤ 2

}
, (15a)

{ (r0
OH an

1 , r0
OH, r0

OO, α0, α0, τ 0) | n = −3, . . . , 10}, (15b)

{ (r0
OH, r0

OH an
1 , r0

OO, α0, α0, τ 0) | n = −3, . . . , 10}, (15c)

{ (r0
OH, r0

OH, r0
OO, α0 + n a3, α0, τ 0) | n = −5, . . . , 9}, (15d)

{ (r0
OH, r0

OH, r0
OO, α0, α0 + n a3, τ 0) | n = −5, . . . , 9}, (15e)

{ (r0
OH, r0

OH, r0
OO an

2 , α0, α0, τ 0) | n = −3, . . . , 8}, (15f)

{ (r0
OH, r0

OH, r0
OO, α0, α0, n a4) | n = 0, . . . , 9}, (15g)
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where the equilibrium values of the coordinates (denoted by the superscript “0”) are taken

from Ref. 4 and where a1 = a2 = 1.1, a3 = 10◦, a4 = 20◦, b1 = b2 = b3 = 0.05a0, and

c1 = c2 = c3 = 3◦. Equation (15a) is a small amplitude expansion about the equilibrium

configuration. Equations (15b)-(15e) explore large amplitude deviations from equilibrium

in each of four coordinates separately. Equations (15f) and (15g) are highly approximate

representations of the two reaction paths on the HOOH surface below 100 kcal/mol, namely

the O-O bond fission (Eq. (15f)) and the hindered rotation that connects the two rotomers

of HOOH (Eq. (15g)). Equation (15) is arbitrarily designed to fit the whole surface for

energies below a given limit. Obviously, more intelligent chioces could be found with some

effort to achieve greater accuracy in fitting. Since our main purpose here was to demonstrate

the benefits of employing a zeroth-order reference surface, we did not make great effort on

the initial point selection. More efficient fitting would be possible if the point selection is

tailored to a particular application of the PES. If there is a specific application of interest,

one should place initial data points in the regions of greatest influence on that application,

such as low-energy regions for computing low-level bound states or vicinity of the reaction

path for obtaining rate constants.

A. The zeroth-order PES

The zeroth-order PES employed for HOOH is a valence force field potential with the

bending motions described by trigonometric functions to better describe the regions where

the bend angles are far away from their equilibrium values and also to properly account for

the periodicity. It has the following form:

V0(rOH1, rOH2, rOO, α1, α2, τ) = VOH(rOH1) + VOH(rOH2) + VOO(rOO)

+ S1(rOO) [Vbend(α1) + Vbend(α2)]

+ S2(rOO, α1, α2) Vdihedral(τ), (16)
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where

VOH(rOH) = C1{1− exp[−C2(rOH − r0
OH)]}2, (17)

VOO(rOO) = C3{1− exp[−C4(rOO − r0
OO)]}2, (18)

Vbend(α) = C5[cos(α)− cos(α0)]3 + C6[cos(α)− cos(α0)]2, (19)

Vdihedral(τ) = C7[cos(τ)− cos(τ 0)]3 + C8[cos(τ)− cos(τ 0)]2, (20)

S1(rOO) = exp[−C9 (rOO − r0
OO)], (21)

S2(rOO, α1, α2) =
{1− tanh[C10(rOO − C11)]} sin2(α1) sin2(α2)

{1− tanh[C10(r0
OO − C11)]} sin2(α0) sin2(α0)

. (22)

The switching function S1 is employed to gradually reduce the bending terms as the O-O

bond distance increases and S2 is employed to gradually reduce the dihedral term as the

O-O bond distance increases or the bending angles approach 0 or π.

In practice, the constants {Ci} are usually determined by ab initio and experimental

information on dissociation energies and the quatities (geometries, energies, and frequencies)

at the equilibrium and transition state structures. For HOOH, the data points given by

Eq. (15) and a set of 100 randomly selected points are used. Except C7 and C8, the {Ci} are

determined by least-squares fitting of the zeroth-order potential to the “exact” one; C1 and

C2 are determined by least-squares fitting at the points given by Eq. (15b), C3 and C4 by

Eq. (15f), C5 and C6 by Eq. (15d), and C9, C10, and C11 on randomly selected 100 points.

C7 is determined by the condition Vdihedral(0
◦) = Vexact(r

0
OH, r0

OH, r0
OO, α0, α0, 0◦) and C8 by

Vdihedral(180◦) = Vexact(r
0
OH, r0

OH, r0
OO, α0, α0, 180◦). The values of the {Ci} are: C1 = 106.9

kcal mol −1, C2 = 1.257 a−1
0 , C3 = 55.54 kcal mol −1, C4 = 1.261 a−1

0 , C5 = 7.117 kcal mol

−1, C6 = 86.62 kcal mol −1, C7 = 0.5895 kcal mol −1, C8 = 3.628 kcal mol −1, C9 = 0.82

a−1
0 , C10 = 0.28 a−1

0 , and C11 = 2.5 a0.

In later sections of this paper, the global accuracy of the fitted surface with respect to the

number of ab initio points used in the fit will be displayed. In every case where a contrast

is drawn in fitting accuracy between using V0 or not, the cost of the additional 100 ab initio

points used to construct this V0 will not be explicitly included in the discussion. As these

results will show, the ab initio cost of determining V0 is essentially inconsequential. To

the degree that this V0 is representative of the many ways of determining V0 functions, the
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general conclusion will stand that the cost of predetermining a V0 is marginal in the overall

fitting process.

The zeroth-order PES given by the above equations is also not invariant under the per-

mutation of the two hydrogens or two oxygens. Thus, the same symmetrization technique

used to generate the “exact” PES is employed here.

Representative contour plots showing the comparison of the zeroth-order PES (solid

curves) with the “exact” one (dotted curves) are given in Fig. 2. The potential is plot-

ted as a function of (a) the OH and OO bond lengths and (b) the HOO bend angle and

OO bond length. The other coordinates are fixed at their equilibrium values. The interval

of the contour lines is 10 kcal/mol and the maximum energy is 100 kcal/mol. It is seen

that the zeroth-order PES is a poor approximation to the “exact” one as a function of the

HOO bending angles. This is because the bending angles are highly coupled to the other

coordinates, thus their contributions to the PES cannot be well represented by a simple form

like Eq. (16) which does not have proper coupling terms between the coordinates. There-

fore, to demonstrate how much improvement can be obtained in the fitted PES if a good

zeroth-order PES is available, we first carried out calculations for a 4D system by fixing the

two HOO bending angles at their equilibrium values. We then performed calculations for

the full 6D system.

B. Four-dimensional calculations

For the 4D calculations, a set of 53 symmetry distinct predetermined data points were

selected the same way as in the 6D case described in the preceding section. Their locations

are determined from the data sets of Eqs. (15b), (15c) and (15f) along the three bond lengths,

Eq. (15g) along the dihedral angle with n = 1 to 8, and Eq. (15a) with the additional

restriction that ∆4 = ∆5 = 0.

The rest of the data points were selected randomly. The two OH distances, the OO

distance, and the torsional angle were chosen from four independent random numbers dis-

tributing uniformly between 1.0a0 to 5.0a0, 1.5a0 to 6.0a0, and 5◦ to 175◦, respectively. The

planar or near-planar geometries were excluded to avoid a singularity problem8–10 associated
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with the angular coordinate Z4 defined below in Eq. (23d). If the “exact” potential energy at

the point is lower than the selected upper limit of energy Eupper, then the point was accepted

and included in the data set. Since a complete random sampling will yield a distribution

of points concentrated in the high-energy regions, we chose to pick the randomly selected

N − 53 data points from the following two sets: 2(N − 53)/3 data points were sampled

with Eupper = 100 kcal mol−1, and (N − 53)/3 data points with Eupper = 50 kcal mol−1.

The second ensemble was used to enhance the density of the data point distribution in the

low-energy regions.

The internal coordinate Z = (Z1, Z2, Z3, Z4) for the 4D system is chosen as

Z1 =
1

rOH1/a0

, (23a)

Z2 =
1

rOH2/a0

, (23b)

Z3 =
1

rOO/a0

, (23c)

Z4 = cos(τ). (23d)

The un-normalized weight function is chosen similarly as in the work of Collins and

coworkers1,6

vi(Z) =
1

(‖ρ− ρ(i)‖2 + ε2)p
, (24)

where ε = 0.001 for both modified Shepard and IMLS methods, and ρ =

(rOH1/a0, rOH2/a0, rOO/a0, b cos(τ)). The fitting accuracy, especially for the modified Shep-

ard, is quite sensitive to the coefficient b. After a few tests, b = 0.5 is seen to yield the least

rms errors in fitting and is thus used. The exponent p is chosen as 7 and 4 for the modified

Shepard and IMLS methods, respectively. Our tests show that the rms errors of the fitted

energies using IMLS are weakly dependent of p for p ≥ 4 for both 4D and 6D systems

considered here, thus p = 4 is used in both cases. Our tests also show that the rms errors

are insensitive to p for p = 9− 12 for the 6D system using the modified Shepard, thus p = 9

is used for the 6D system. Since the smallest p one can use for the modified Shepard is

linearly proportional to the number of degrees of freedom, p = 7 is used for the 4D system.
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We have done some tests using the bond lengths {Ri}, instead of the inverse bond lengths,

as the first three coordinates Z1, Z2 and Z3 for fitting. Tests were performed for using either

the bond lengths or inverse bond lengths in the expression for the weight function Eq. (24),

and the results are all worse; the rms errors are increased by about a factor of two to five

for the Modified Shepard and 10% to a factor of four for the IMLS. This is consistent with

the conclusion of Collins and coworkers that using the inverse bond lengths as the fitting

coordinates yields more accurate fits (for example, see Ref. 6). We have also done tests using

Eq. (23) as the fitting coordinates but the inverse bond lengths in the weight function, and

contrary to the conclusion in Ref. 6, the results are worse; the rms errors are increased by

about a factor of 2 for the modified Shepard and 10% to a factor of two for the IMLS.

Table I shows comparisons of the root-mean-square (rms) errors of the fitted energies

obtained with and without using the zeroth-order PES for the IMLS and modified Shepard

methods. The rms errors were obtained using ten independent ensembles. In each ensemble

a new set of N − 53 randomly selected data points was used for fitting, and a new set of

3000 randomly sampled points, with 2000 points sampled with Eupper = 100 kcal mol−1 and

1000 points with Eupper = 50 kcal mol−1, was used for computing the rms error. Thus the

results should reflect the fitting quality of the whole surface with E < 100 kcal/mol for a

given N . The same sets of points were used for calculations using the modified Shepard

and the IMLS methods. The average values and the rms deviations of the ten ensembles

are listed in Table I. It is clear that the rms errors of energy when the zeroth-order PES

is used are smaller than those computed without using the zeroth-order PES. Depending

on the number of data points used in fitting, the rms errors are reduced by 7% to 41%

for the modified Shepard method and 40% to 68% for the IMLS method. Generally, the

improvement gradually decreases with increasing N . This is likely because as direct fitting of

the potential gets more accurate with increasing N , using a zeroth-order potential becomes

less effective.

To illustrate the fitting quality with respect to energy, we plot in Fig. 3 the rms errors as

a function of energy obtained with (filled diamonds) and without (squares) employing the

zeroth-order PES. The data were taken from the same sets of calculations with the number
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of data points N = 113 as listed in Table I. The calculations were performed by binning the

energies at an interval of 5 kcal/mol. The results in panels (a) and (b) are for the modified

Shepard and IMLS methods, respectively. Clearly, using the zeroth-order PES provides

more accurate fits for the entire energy range considered here. Again, the improvement is

more significant for the IMLS method.

Representative contour plots showing the comparison of the fitted 4D surface (solid

curves) with the “exact” one (dotted curve) are given in Fig. 4 for the modified Shepard and

Fig. 5 for the IMLS scheme. The potentials are plotted as a function of the OH and OO bond

lengths with the other OH bond length fixed at 2.0a0 and the torsional angle at 150◦. The

results in panels (a) and (b) are for the fits without and with using the zeroth-order PES,

respectively. The intervals of the contour lines is 10 kcal/mol. The number of unique data

points used for fitting is 113. The “+” signs in the plots represent the projection of all data

points whose OO and OH bond lengths fall within the range of the figures. This includes

those connected by symmetry to the unique points. The rms errors for the surface sections

shown in Figs. 4 and 5 with and without using the zeroth-order PES are 0.621 kcal/mol

and 1.76 kcal/mol for the IMLS and 0.311 kcal/mol and 0.551 kcal/mol for the modified

Shepard, respectively, which are smaller than the results for N = 113 listed in Table I.

C. Six-dimensional calculations

A set of 89 symmetry distinct predetermined data points given by Eq. (15) was used

for the 6D calculations. The rest of the data points were sampled by using the efficient

microcanonical sampling (EMS) method7 for E = 100 kcal mol −1 with no restriction to

the total angular momentum. All the atoms were moved in the Cartesian coordinates in

each Markov step with a step size of 0.5a0, which gives an acceptance/rejection ratio of

approximately unity. To reduce the correlation of the sampled points, one point was picked

from the Markov sequence in every one hundred steps. The OO distance was restricted to

rOO < 6a0 during the walk.

As in the 4D case, planar or near-planar geometries were excluded in selecting the data

points to avoid a singularity problem.8–10 The “distortion” technique proposed by Yonehara
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et al.10 was used to move the location of the data points in near-singular regions.

Similar as in the 4D case, the reciprocal interatomic distances, {Zk = 1/Rk}, are used as

the fitting coordinates, and the un-normalized weight function is chosen as

vi(Z) =
1

(‖R−R(i)‖2 + ε2)p
, (25)

where R is a vector of interatomic distances, p is 9 for the modified Shepard and 4 for the

IMLS, and ε = 0.001a0 for both methods.

We have also performed same tests as in the 4D case using the bond lengths as the fitting

coordinates or inverse bond lengths in the expression for the weight function, the results are

either similar or worse.

We list in Table II the rms errors for energy with and without using the zeroth-order

PES for the IMLS and modified Shepard methods. The results were obtained using ten

independent ensembles. As in the 4D calculations, each ensemble consists of a new set of

data points for fitting and a new set of 5000 points selected by using the EMS method for

calculating the rms error. The average values and the corresponding rms deviations are given

in Table II. Again, using the zeroth-order PES gives better results for both the modified

Shepard and IMLS methods, and the improvement is more significant for the IMLS method.

The rms errors are reduced by approximately 20% for the modified Shepard and 50% for the

IMLS. The improvement is not as significant as in the 4D case for the same level of accuracy

because the 6D zeroth-order PES employed here is a more crude representation of the real

potential.

Figure 6 shows the rms errors as a function of energy obtained from 6D calculations

with (filled diamonds) and without (squares) employing the zeroth-order PES. The number

of unique data points used is 889. As in the 4D case, the calculations were performed by

binning energies at intervals of 5 kcal/mol. The results shown in panels (a) and (b) are for

the modified Shepard and IMLS methods, respectively. Again, using the zeroth-order PES

gives more accurate fits for the entire energy range for both methods, and the improvement

is greater for the IMLS.

Representative contour plots showing the comparison of the fitted 6D surface (solid

curves) with the “exact” one (dotted curves) are given in Fig. 7 for the modified Shep-
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ard and Fig. 8 for the IMLS. The potentials are plotted as functions of the OO bond length

and one of the HOO bend angles with the other coordinates fixed at their equilibrium values.

The interval of the contour lines is again 10 kcal/mol. The number of unique data points is

889. The “+” signs in the plots are the projection of all data points whose OO and OH bond

lengths fall within the range of the figures. This includes those connected by symmetry to

the unique data points. The results shown in panels (a) and (b) are for the fits without

and with using the zeroth-order PES, respectively. The rms errors for the surface sections

shown in Figs. 7 and 8 with and without using the zeroth-order PES are 2.35 kcal/mol and

4.12 kcal/mol for the IMLS and 3.36 kcal/mol and 3.46 kcal/mol for the modified Shepard,

respectively, which are comparable to the results listed in Table II.

Table III shows the rms errors for the IMLS and modified Shepard methods in the vicinity

of paths along the O-O bond and the torsional coordinate with the other coordinates fixed

at their equilibrium values. These paths approximately correspond to the minimum energy

paths for the O-O bond breaking and the hindered torsional rotation, respectively. The

number of unique data points used is 889. The rms errors were estimated using points

selected as follows. We first pick a set of points from the two paths along the O-O bond

and the torsional angle according to {rOO = (r0
OO + n ∆OO)a0 | ∆OO = (6− r0

OO)/1000, n =

0, 1, . . . , 999} and {τ = n ∆τ (degree) | ∆τ = 180/1000, n = 0, 1, . . . , 999}. Each Cartesian

coordinate of the point is then perturbed to add a Gaussian-distributed random number

with the standard deviation of 0.1a0. A narrow tube along each path was generated this

way. For calculations along the O-O bond breaking path, the maximum value of the O-O

distance considered is 6 bohr, which is already near the minimum of the hydrogen bonded

hydroxyl dimer. For the modified Shepard method, using the zeroth-order PES provides

improvement for the region around the torsional path, but not for that close to the O-O

path. On the other hand, the method provides about 50% improvement along both paths for

the IMLS method. The modified Shepard works very well along the torsional path because

a Taylor expansion to the second order is quite accurate in this region. Overall, the rms

errors in the vicinity of the two reaction paths are smaller than the corresponding ones listed

in Table II which are for the entire energy range considered. Note that the fitting quality
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along the two reaction paths can be improved by placing more data points in the region.

This will be addressed in detail in a subsequent work.

IV. SUMMARY AND CONCLUSIONS

We have presented a computational scheme for improving the accuracy of interpolation

methods for constructing a PES. The basic idea is to employ a zeroth-order analytical

potential V0 which is a reasonably good approximation to the real potential V , and fit

the difference V − V0 instead of V . We have tested the method on HOOH for which an

accurate analytical PES is available and used as the “exact” PES for obtaining the energies

and derivatives for fitting and assessing the accuracy. Calculations were performed for two

interpolating methods: the modified Shepard and second-degree IMLS.

The zeroth-order PES employed in this study is a simple form which does not contain the

proper coupling terms, especially between the bending angles and the rest of the coordinates.

To see the effectiveness of the method if a good zeroth-order PES is available, we first carried

out 4D calculations with the two bending angles fixed at their equilibrium values. We then

carried out full 6D calculations. The rms errors for energy are considerably reduced by

employing the zeroth-order PES. For energies below 100 kcal/mol, depending on the number

of data points used for fitting, the rms errors are reduced by 7% to 41% for the modified

Shepard and 40% to 68% for the IMLS for the 4D calculations, and by approximately 20%

for the modified Shepard and 50% for the IMLS for the 6D calculations. In general, the

method works better for the IMLS than for the modified Shepard. This is likely due to the

fact that the modified Shepard scheme also requires good quality of the first and second

derivatives of the zeroth-order PES, while the IMLS explicitly uses only the energies.

The accuracy of a fitted surface depends on the selections of the coordinate system,

the weight function, and the locations of the data points. The optimized choices of these

quantities are often different for different fitting methods and different systems. For the

calculations presented here, the accuracies are generally better for the modified Shepard for

a given N . Comparison of efficiency of the two methods depends on the type of applications.

If frequent calculations of the PES are not required, IMLS is generally more efficient than
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modified Shepard for most electronic structure methods because differences in accuracy are

not substantial but calculating the gradients and Hessians generally requires an order of

magnitude more cpu time than calculating only the energy. However, if one wants to do

trajectory calculations, the time required to repeatedly generate the derivatives also needs

to be taken into account. The main purpose of this paper is to demonstrate the effectiveness

of this technique of employing a zeroth-order function. In a subsequent work, we will provide

more detailed studies on improving the accuracy of fitting, the accuracy of the trajectory

calculations, and the comparison of the IMLS and modified Shepard methods.

In summary, the results presented here demonstrate the effectiveness of this approach for

fitting PES’s. Since a reasonably accurate analytical PES can often be written, especially

in the chemically important regions, the scheme may provide a useful tool toward the goal

of developing an automated procedure to construct accurate PES for practical applications.
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TABLE I: Comparisons of the rms errors for energy from the 4D calculations with and without

using the zeroth-order PES for the modified Shepard and IMLS methodsa.

N b rms(E) (kcal mol−1) rms(E) (kcal mol−1)

fitting ∆V fitting V

Modified Shepard method

83 0.750 ± 0.159 1.28 ± 0.08

113 0.545 ± 0.082 0.919 ± 0.079

173 0.376 ± 0.036 0.611 ± 0.093

293 0.246 ± 0.017 0.337 ± 0.026

533 0.157 ± 0.010 0.200 ± 0.012

1013 0.103 ± 0.008 0.118 ± 0.007

1973 0.0611± 0.0045 0.0659± 0.0042

IMLS method

83 1.35 ± 0.22 4.24 ± 0.84

113 0.916 ± 0.090 2.38 ± 0.31

173 0.612 ± 0.053 1.52 ± 0.14

293 0.421 ± 0.038 0.965 ± 0.072

533 0.281 ± 0.014 0.598 ± 0.059

1013 0.199 ± 0.015 0.361 ± 0.034

1973 0.138 ± 0.013 0.229 ± 0.016

aThe results are obtained using ten different ensembles and the average values and their

rms deviations are listed here.

b N is the number of symmetry distinct data points.
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TABLE II: Comparisons of the rms errors for energy from the 6D calculations with and without

using the zeroth-order PES for the modified Shepard and IMLS methodsa.

N b rms(E) (kcal mol−1) rms(E) (kcal mol−1)

fitting ∆V fitting V

Modified Shepard method

189 3.15 ± 0.52 3.71 ± 0.58

289 2.10 ± 0.32 2.54 ± 0.36

489 1.44 ± 0.18 1.88 ± 0.29

889 1.04 ± 0.13 1.31 ± 0.18

1689 0.727± 0.11 0.918± 0.061

3289 0.508± 0.037 0.634± 0.030

6489 0.372± 0.036 0.466± 0.031

IMLS method

189 3.40 ± 0.68 6.88 ± 1.17

289 2.19 ± 0.54 4.49 ± 0.61

489 1.64 ± 0.22 3.21 ± 0.17

889 1.19 ± 0.06 2.42 ± 0.09

1689 0.897± 0.058 1.78 ± 0.07

3289 0.695± 0.047 1.43 ± 0.15

6489 0.546± 0.031 1.08 ± 0.05

aThe results are obtained using ten different ensembles and the average values and their

rms deviations are listed here.

b N is the number of symmetry distinct data points.
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TABLE III: The rms errors in the vicinity of the IRC for the O-O bond fission and torsional

isomerization from the 6D calculations using 889 symmetry distinct points.

1

rms error of energy (kcal mol−1)

fitting ∆V fitting V

Modified Shepard method

Along O-O 0.697 0.664

Torsional 0.069 0.127

IMLS method

Along O-O 0.382 0.742

Torsional 0.620 1.38
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FIGURE CAPTIONS

Fig. 1: A 1D illustration of the basic idea of the fitting scheme. The solid curve V is the

potential to be fit and the long-short dashed curve V0 is the zeroth-order approximation to

V . The lower dashed curve ∆V = V − V0 is the curve that is actually fit.

Fig. 2: Representative contour plots showing the comparisons of the zeroth-order PES

(solid curves) with the “exact” one (dotted curves). The potentials are plotted as a function

of (a) OO and OH bond lengths and (b) OO bond length and HOO bend angle. The

other coordinates are fixed at their equilibrium values. The interval of the contour lines is

10 kcal/mol.

Fig. 3: The rms errors as a function of energy obtained from 4D calculations with (filled

diamonds) and without (squares) employing the zeroth-order PES. The results in panels (a)

and (b) are for the modified Shepard and IMLS methods, respectively.

Fig. 4: Representative Contour plots showing the comparison of the fitted 4D surface (solid

curves) with the “exact” one (dotted curves) by using the Modified Shepard. The results in

panels (a) and (b) are for the fits without and with using the zeroth-order PES, respectively.

The “+” signs represent the projection of all the data points in the region. The interval of

the contour lines is 10 kcal/mol.

Fig. 5: Same as figure 5 except for the IMLS method.

Fig. 6: The rms errors as a function of energy obtained from 6D calculations with (filled

diamonds) and without (squares) employing the zeroth-order PES. The results in panels (a)

and (b) are for the modified Shepard and IMLS methods, respectively.

Fig. 7: Representative Contour plots showing the comparison of the fitted 6D surface (solid

curves) with the “exact” one (dotted curves) by using the Modified Shepard. The results in

panels (a) and (b) are for the fits without and with using the zeroth-order PES, respectively.

The “+” signs represent the projection of all the data points in the region. The interval of

the contour lines is 10 kcal/mol.
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Fig. 8: Same as figure 7 except for the IMLS method.
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