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Abstract
A procedure is presented for the computation of bounds to eigenvalues of the

generalized hermitian eigenvalue problem and to the standard hermitian eigenvalue

problem.  This procedure is applicable to iterative subspace eigenvalue methods and to
both extremal and interior eigenvalues.  The Ritz values and their corresponding residual

norms, all of which are computable quantities, are needed by the procedure.  Knowledge

of the exact eigenvalues is not needed by the procedure, but it must be known that the
computed Ritz values are isolated from exact eigenvalues outside of the Ritz spectrum

and that there are no skipped eigenvalues within the Ritz spectrum range.  A multipass
refinement procedure is described to compute the bounds for each Ritz value.  This

procedure requires O(m) effort where m is the subspace dimension for each pass.
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1. Background
The generalized hermitian eigenvalue problem

€ 

(H − λ jM)z j = 0 1.1

occurs in many applications.  In this equation, H=H†, M=M†, and M is positive definite.

An important special case is the standard hermitian eigenvalue problem for which M=1.

All of the results in this manuscript apply to both the generalized and the standard
problems.  One approach to the numerical solution of Eq. 1.1 is to expand the

approximate eigenvectors in a linearly independent basis {xi;i=1…m}.  These vectors
may be collected into the matrix

  

€ 

X = x1 | x2 |K | xm[ ]  . 1.2

The projected subspace representation of the matrices H and M are denoted 〈H〉=X†HX

and 〈M〉=X†MX.  In many cases, the basis vectors in X will be chosen such that 〈M〉=1,

but we consider the general case hereafter.  An approximation y to an eigenvector will be

written as a linear combination of the basis vectors, y=Xc (for simplicity, the vector norm
relation y†My=1 is assumed hereafter).  A measure of the error of the vector y is the

residual vector

€ 

r = H − ρM( )y  . 1.3

r=0 if and only if y is an exact eigenvector and ρ is the corresponding exact eigenvalue.

Otherwise, as discussed in more detail in Appendix A, the quantity (r†M-1r), hereafter

called the residual norm,  is a measure of the error in both the vector and the eigenvalue.
The expansion coefficients c are usually determined from the subspace eigenvalue

equation

€ 

( H − ρ j M )c j = 0   . 1.4

It is convenient to assume that the subspace eigenvalues {ρj; j=1…m}, called the Ritz

values, and the exact eigenvalues {λk; k=1…N} are indexed in increasing order.  This is

not a requirement in order to apply the results of this manuscirpt, but this assumption
simplifies the subsequent notation.  Furthermore, it is convenient to use the Parlett index

convention[1] for which negative integers are used to index eigenvalues ordered from
highest to lowest (i.e. λ–1≡λN, λ–2≡λN–1,…λ–(N–1)≡λ2, λ–N≡λ1).
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The above choice for the expansion coefficients c and approximate eigenvalue ρ

is optimal in several respects[1,2].  In particular, this choice minimizes the residual norm

with respect to variations in ρ and in the vector coefficients.  Iterative subspace methods

solve Eq. 1.4 several times as the subspace dimension m is increased or decreased and as
the basis vectors are expanded, changed, or contracted during the iterative procedure.

The various subspace methods differ in how the individual basis vectors xj are generated,

in how the basis vectors are contracted in order to satisfy various resource limitation
constraints, and in how preconditioners are used in order to accelerate the convergence of

the iterative procedures for the particular eigenpairs of interest.   The bounds relations
examined in this manuscript apply to all of these various hermitian subspace methods

(including the Lanczos[3], Davidson[4], SPAM[5], Generalized Davidson Inverse

Iteration[6], Jacobi-Davidson[7], and Generalized Jacobi-Davidson[8] methods).
The present work focuses on assessing the accuracy of the computed eigenvalues.

Lower and upper bounds, bj
– and bj

+ respectively, are desired that satisfy
bj

– ≤ λk ≤ bj
+  . 1.5

As discussed in more detail below, the mapping of the Ritz eigenvalue index j and the
eigenvalue index k depends on whether the eigenvalues are interior or extremal or

whether the highest or lowest eigenvalues are computed.  The further goal is that these
bounds may be computed during the iterative procedure, so that they may be used to

assess the accuracy of the final results and also to allow the iterative procedure to be

terminated when a predetermined accuracy has been achieved in order to avoid
unnecessary computation effort.

Several standard inequalities are used to this end.  The first is the Ritz variational
principle[1,9] (see Eqs. A3-A16).

€ 

λ j ≤ ρ j

ρ− j ≤ λ− j
       for j=1…m.

1.6

This bound places strict upper bounds on the lowest m exact eigenvalues and it places

strict lower bounds on the highest m exact eigenvalues.  No additional information
beyond the Ritz values themselves is required, so these bounds are computable.

 The second inequality used is the Residual Norm Bound[1] (see Eqs. A17-A28),
which requires the Ritz values along with the corresponding residual norms.
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€ 

r j†M−1r j ≥ λk − ρ j . 1.7

Thus, these bounds are computable, but they are often very conservative.
The  next inequality used in this procedure is the Gap Theorem Bound[1,10] (see

Eqs. A29-A46).

€ 

r j†M−1r j
γ j

≥ λk − ρ j .
1.8

The gap theorem bound is tighter than the residual norm bound when 

€ 

r j†M−1r j < γ j , but

it requires knowledge of the exact eigenvalues, and therefore it cannot be computed
during the iterative process.  However, if a Ritz value of interest ρj is separated in the

following sense

€ 

δ j
− < ρ j − r j( ) 1.9

€ 

ρ j + r j( ) < δ j
+

with

€ 

δ j
− = Max

k< j
bk

+{ } 1.10

€ 

δ j
+ = Min

k> j
bk
−{ }

and if it is further assumed that there are no skipped eigenvalues within the computed

spectrum range, then

€ 

γ j
− ≡ Min{ρ j −δ j

−,δ j
+ − ρ j} ≤ γ j 1.11

is a lower bound to the exact gap γj. This separation is shown in Fig. 1.  This separation is

equivalent to the condition that there exists no expansion vector, or set of expansion
vectors, that would move the Ritz value of interest outside of the range [ρj-|rj|,ρj+|rj|], or

that would move some other Ritz value inside the range [δj
–,δj

+]. This computable value

γj
– may be combined with Eq. 1.8,

€ 

r j†M−1r j
γ j
− ≥

r j†M−1r j
γ j

≥ λ j − ρ j    .
1.12

When it is necessary to distinguish which bound is being discussed, Eq. 1.8, with the

exact eigenvalue gap will be called the exact gap bound, whereas Eq. 1.12 with γj
– will be

called the computed gap bound.  With the above separation conditions, the computed gap
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bound is tighter than the residual norm bound, although it is not as tight as the exact gap

bound.
A fourth bound that will be used is the Spread theorem bound[1].  This applies

only to the lowest or highest eigenvalues (see Eqs A49-A53).

€ 

rk†M−1rk
σ

≤ λk − ρk        for k=±1.
1.13

The Spread theorem requires knowledge of the exact matrix spread, σ=(λN–λ1), which,

although computable in some situations, is usually not available.  However, if an upper
bound σ+ is available such that σ≤σ+, then useful inner bounds can be computed for the

two most extreme eigenvalues.  For example, when computing the largest eigenvalue of a

positive definite matrix, the upper bound to the eigenvalue is itself an upper bound to the
matrix spread.  Combining this upper bound with Eq. 1.13 results in the computable

bound

€ 

rk†M−1rk
σ + ≤

rk†M−1rk
σ

≤ λk − ρk        for k=±1.
1.14

Subspace methods are often used in situations in which the matrices H and M are
not explicitly computed and stored; instead, the products of these matrices with the basis

vectors X are computed in operator form.  Bounds that require information about
individual matrix elements could not be used in these important applications because

these individual matrix elements are either not available or they would be prohibitively

expensive to extract from the matrix-vector product operation.  The goal of the present
work is to find the best computable eigenvalue bounds given a set of Ritz values, their

residual norms, some knowledge of the eigenvalue spacings, and, optionally, an estimate

of the matrix spread.  This information is available for subspace methods even when the
individual matrix elements are not explicitly available for examination.  There are several

issues that must be addressed toward this goal.
1) Under what conditions will the skipped eigenvalue condition be satisfied?

2) The error bounds for the different eigenvalues are coupled in the sense that bj

depends on the other bk bounds for k≠j.  How can all bounds be converged self
consistently without violating the bound conditions at intermediate steps during the

optimization process or at the final values for these bounds?
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3) For interior eigenvalues, the upper and lower error bounds on the eigenvalues

are symmetric about the computed Ritz value ρj.  For extremal eigenvalues, the upper and

lower error bounds are not symmetric.  How can this be addressed during the bounds
calculations?

These issues are addressed in order.  In general, given only the computed Ritz
values and their corresponding residual norms, it cannot be guaranteed that there is no

skipped eigenvalue.  The skipped eigenvalue depends on information outside of the

current subspace X.  However, in many applications, the general qualitative structure of
the eigenvalues of interest is known beforehand.  For example, the eigenpairs may be

known at a lower approximation level, on a coarser grid, with a smaller underlying model

basis set, at nearby values of some set of external parameters, or from other physical
insights known to the user.  In addition, the eigenvalue spacings may be known more

accurately than the actual eigenvalues themselves.  The matrix may be known to be, for
example, positive semidefinite, or positive definite, or negative definite, or other upper or

lower bounds may be known based on physical insights of the model upon which the

numerical eigenproblem is derived.  Furthermore, the rank of any degeneracies may be
known for the eigenvalue spectrum based on, for example, physical or mathematical

invariance properties, group theory, or other physical or mathematical insights.  In these
situations, the goal of the numerical calculation is to compute quantitatively the

eigenpairs, the qualitative values being already known to some extent.  This additional

knowledge of the eigenvalue spectrum may be used to allow application of the Gap and
the Spread bounds even though the exact eigenvalues are not known.

When computing the initial bounds from the residual norms, two situations occur
for each of the Ritz values: either a Ritz value is separated from the other values, or it is

not separated.  If it is separated, and if there are no skipped eigenvalues, then one and

only one exact eigenvalue will occur in the range [ρk–|rk|, ρk+|rk|].  If two (or more) Ritz

values are not separated, then in the general case it is known only that a single eigenvalue
exists in the combined residual norm value range.  That is, the approximate eigenvectors

associated with the two Ritz values may either both be approximating the same exact

eigenpair, or they may be approximating two distinct eigenpairs.  Consider, for example,
the standard eigenvalue problem with



Draft 2-Apr-04

8

€ 
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1.15

For this problem λ={–

€ 

1+ ε2 ,0,

€ 

1+ ε2 }, ρ={–ε,ε}, and |r1|=|r2|=

€ 

1 2 .  Consider first

the situation with ε≈0.1.  Both Ritz values are near the single λ2=0 exact eigenvalue, and

it is only for this single exact eigenvalue that the residual norm bound, for either Ritz
value, is seen to apply.   The two Ritz values are not separated by the residual norm

bound, thus the eigenvalue bounds cannot be refined with the computed gap bound.
Furthermore, λ1<(ρ1–|r1|) and λ–1>(ρ–1+|r–1|), so it is clear that this subspace representation

does not satisfy the skipped eigenvalue condition for either of the nonzero eigenvalues.
On the other hand, consider this same problem with ε≈10.  In this case the Ritz values are

separated by the residual norm bound, and the two Ritz values are good approximations

to the two nonzero extremal exact eigenvalues.  However, there is a skipped eigenvalue
in this case, and the gap bounds cannot be computed because lower bounds to the exact

gaps cannot be determined from the subspace information.  As noted above, it cannot be

known simply by examining the residual norms or the subspace eigenvalues that an
eigenvalue has been skipped, this information must be determined separately.

The coupling of the bounds for one eigenvalue to the computed bounds for other,
usually adjacent, eigenvalues results in the necessity to compute a sequence of bound

values.  At present, a closed-form solution to this problem is not known to the authors.

Consequently, we adopt a straightforward bootstrap approach to this problem.  We begin
the procedure by assigning residual norm bounds to each of the eigenvalues (along with

the Ritz bounds if appropriate). Then, given the current bounds, all of the bounds for each
isolated eigenvalue are refined if possible, and any improvements to the bounds are

retained for subsequent passes.  Depending on the eigenvalue spacings and  the

corresponding bounds, the final bounds may be computed in a single refinement pass or
they may require multiple passes.  The bounds that are computed in this process are valid

at any intermediate step, and this allows the process to be truncated will still returning

rigorous bounds.  For example, once the bounds are below a given threshold, indicating
convergence to some level of accuracy of the eigenvalue, the process could be terminated

if desired.  The application of Eqs. 1.9-1.12 appears to require a scan of m elements to
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compute the upper and lower gap bounds for each Ritz value; this in turn implies O(m2)

effort to refine the bounds for all m Ritz values each pass.  We avoid this effort by
precomputing the δ+ array before the process begins, and then updating these elements,

along with the corresponding element of δ–, in decreasing order as each eigenvalue bound

is refined.  This results overall in only O(m) effort for each pass.

Because the extremal  eigenvalue bounds are not symmetric about the computed

Ritz values, this introduces an asymmetry into the calculation procedure.  Consider, for
example, the computation of bounds for the lowest few m eigenvalues.  First note that the

gap associated with ρm cannot be estimated.  This is because there is no ρm+1 estimate

available that could be used to approximate this gap.  The refinement process therefore
begins with ρm–1 and proceeds down, in some order, eventually to the bounds for ρ1.

Secondly, note that the computed gap for ρ1 depends only on the bound δ1
+ whereas the

gaps for the remaining eigenvalues must be estimated by examining both the lower
bounds to the higher eigenvalues and the upper bounds for the lower eigenvalues.  Finally

the upper bounds are given by the Ritz variational principle for all of the eigenvalues
except for λ1, and for λ1 the computed spread theorem may be applied optionally

(provided that an upper bound to the matrix spread is available), resulting in the situation

in which the Ritz value lies outside of the computed eigenvalue range [b1
–, b1

+].  The

same considerations apply also to the computation of the highest m eigenvalues.

2. Examples
In this section a few examples are given to demonstrate the use of the bounds

computations described in Section 1.  The first example is a model with m=5.  The model

Ritz values correspond to the lowest five eigenvalues.  The model residual norms are

sufficiently small for the Ritz values to be isolated from each other, and it is assumed that
these Ritz values are also isolated from any other exact eigenvalues.  The specific

numerical values are chosen to allow easy computation by hand in order to understand
the refinement process in detail.  Table I summarizes the upper and lower bounds during

the refinement process.  During Pass 0, the lower bounds are initialized with the residual

norm bounds. The upper bound of the lowest eigenvalue is set with the spread bound with
σ+=10.0.  The remaining upper bounds are initialized with the Ritz bound.  During Pass
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1, the lower bounds for the lowest four eigenvalues are refined using the gap bound

expression.  Only the bounds that are changed each pass are displayed in the table.  All of
the bounds are converged after Pass 1; in the subsequent pass all of the bounds are

checked and the refinement process is terminated.  It is clear that the final gap theorem
and spread theorem bounds are a significant improvement to the residual norm bounds.

Table I. Bound Refinement for the Lowest Five Ritz Values.

j 1 2 3 4 5

ρj 1.000000 2.000000 3.000000 4.000000 5.000000

|rj| 0.010000 0.010000 0.010000 0.010000 0.010000

Pass 0 bj
–
0.990000(1) 1.990000(1) 2.990000(1) 3.990000(1) 4.990000(1)

bj
+
0.999990(3) 2.000000(0) 3.000000(0) 4.000000(0) 5.000000(0)

Pass 1 bj
–
0.999900(2) 1.999900(2) 2.999900(2) 3.999899(2) —

bj
+

— — — — —

(0) Ritz bound, (1) Residual bound, (2) Gap bound, (3) Spread bound with σ+=10.0

Table II shows the refinement process for the same model problem except the

Ritz values are assumed to correspond to interior exact eigenvalues.  There are assumed

to be an undermined number of eigenvalues below the first Ritz value and above the fifth
Ritz value.  In Pass 0 both the upper and lower bound for each Ritz value are initialized

with residual norm bound.  As discussed in Section 1, the gap bounds cannot be applied
to the highest and lowest Ritz values because there is no information available about

eigenvalues outside of the Ritz range, so no lower bounds to the gaps for these Ritz

values can be computed.  Consequently, during Pass 1 only the eigenvalue bounds
corresponding to the three middle Ritz values are refined.  In contrast to the first example

in Table 1, another pass is required to refine the middle eigenvalue bound. All of the
bounds are converged after Pass 2; in the subsequent pass all of the bounds are checked

and the refinement process is terminated. It is clear that the final gap theorem bounds are

a significant improvement over the original residual norm bounds for the three interior
Ritz values for which they can be applied.
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Table II. Bound Refinement for Five Interior Ritz Values.

j 1 2 3 4 5

ρj 1.000000 2.000000 3.000000 4.000000 5.000000

|rj| 0.010000 0.010000 0.010000 0.010000 0.010000

Pass 0 bj
–
0.990000(1) 1.990000(1) 2.990000(1) 3.990000(1) 4.990000(1)

bj
+
1.010000(1) 2.010000(1) 3.010000(1) 4.010000(1) 5.010000(1)

Pass 1 bj
–

— 1.999900(2) 2.999900(2) 3.999899(2) —

bj
+

— 2.000101(2) 3.000101(2) 4.000101(2) —

Pass 2 bj
–

— — 2.999900(2) — —

bj
+

— — 3.000100(2) — —

(1) Residual bound, (2) Gap bound

Table III shows a practical application of the bounds calculations to each iteration
of a subspace iterative procedure.  The matrix has dimension N=197,655,128.  This is the

real symmetric representation of the quantum mechanical electronic Hamiltonian for the

ethylene molecule, C2H4, using a cc-pVTZ orbital basis set computed with the
COLUMBUS Program System[11].  The expansion basis consists of all single and

double replacements from an MCSCF reference expansion with 12 active valence orbitals
and two frozen-core orbitals (the 1s core orbitals of the two carbon atoms).  A

preliminary approximate Bk calculation was performed on the lowest two eigenpairs in

order to generate two qualitatively accurate starting vectors for the Ritz procedure using
the exact matrix. With these two starting vectors, the lowest Ritz value is isolated as

shown in Table III.  The expansion vectors used during the iterative procedure are
calculated using the usual Davidson preconditioned residual[4] approach.  As can be

seen, these expansion vectors improve the lowest Ritz value selectively, and the second

Ritz value and its corresponding residual norm, are modified very little during the
iterative procedure.  The subspace dimension m is two for the first iteration, increases to

six on the fifth iteration, then is contracted to three on the sixth iteration, then increases
up to six on the ninth iteration, and is contracted to three on the 10 iteration.  These

contractions of the expansion subspace (sometimes called restarts) are performed in
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order to reduce the resource requirements (e.g. memory and external disk space), but as

seen in Table III they do not affect significantly the convergence rate.
b1

+ is computed from the Ritz bound and b1
– is computed from the Gap bound.  As

seen in the last two columns, the expected relation b1
–≤λ1≤ b1

+ is satisfied throughout the

procedure.  The exact eigenvalue λ1 is available only at the end of the iterative

procedure, so the last two columns in Table III cannot be computed during the iterative
procedure.  For this particular calculation, the upper bound is always closer to the exact

eigenvalue than the lower bound.  It is also interesting to compare the Gap bound to the
Residual norm bound each iteration.  In every iteration, the Gap bound is much tighter

than the Residual norm bound, the ratio of the two radii approaching 105 on the last

iteration.
If convergence of the eigenpair to an absolute accuracy of 10–4 in the Ritz value

were required (equivalent to a relative accuracy of a little better than one part in 106 for
the lowest eigenvalue), then, with perfect-hindsight knowledge of the final eigenvalue,

the iterative process could have been terminated after the fourth iteration.  The Gap

theorem bound would allow the iterative procedure to terminate after five iterations,
adding only one extra iteration; in contrast, the Residual norm bound would require more

than 10 iterations in order to guarantee convergence to 10–4 in the Ritz value.  If

convergence to an absolute accuracy of 10-6 in the Ritz value were required, then the Gap
theorem bound would allow the process to terminate after the eighth iteration, which is

again only a single extra iteration beyond the actual accuracy requirements using perfect
hindsight; in contrast, the Residual norm bound requires about 20 iterations to guarantee

convergence  of the Ritz value to 10–6.  For these types of accurate, large-scale, molecular

electronic structure calculations, typical convergence requirements in the Ritz values
range from 10–4 to 10–8 in absolute accuracy.
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Table III. Upper and lower bounds for the lowest eigenvalue† for each subspace iteration.

Sub.

Iter. ρ1 |r1| ρ2 |r2| b1
– b1

+–λ1 λ1–b1
–

1 -78.4232628319 7.307E-02 -78.0877800384 9.372E-02 -78.4453473901 1.528E-03 2.056E-02

2 -78.4244055909 3.657E-02 -78.0877800858 9.372E-02 -78.4299112911 3.857E-04 5.120E-03

3 -78.4247258142 1.594E-02 -78.0877801056 9.372E-02 -78.4257704554 6.547E-05 9.792E-04

4 -78.4247798274 6.168E-03 -78.0877801305 9.372E-02 -78.4249362080 1.146E-05 1.449E-04

5 -78.4247883942 3.243E-03 -78.0877801323 9.372E-02 -78.4248316230 2.894E-06 4.033E-05

6 -78.4247902447 1.583E-03 -78.0877801336 9.372E-02 -78.4248005447 1.044E-06 9.256E-06

7 -78.4247910433 9.545E-04 -78.0877801388 9.372E-02 -78.4247947881 2.453E-07 3.499E-06

8 -78.4247912409 4.337E-04 -78.0877801426 9.372E-02 -78.4247920140 4.770E-08 7.254E-07

9 -78.4247912769 2.107E-04 -78.0877801451 9.372E-02 -78.4247914594 1.170E-08 1.708E-07

10 -78.4247912855 1.066E-04 -78.0877801454 9.372E-02 -78.4247913322 3.100E-09 4.360E-08

† The Ritz values correspond to the lowest two subspace eigenvalues for a matrix of dimension 197,655,128.  The subspace dimension

m changes each iteration and ranges from two to six.  b1
+ is computed from the Ritz bound (i.e. b1

+=ρ1), and b1
– is computed from the

Gap bound (i.e. γ1
–=ρ2–|r2|).  The exact eigenvalue, used to compute the last two columns, is taken as the converged value, so these

columns cannot be determined during the iterative procedure.
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3. Conclusions
A procedure is presented for the computation of bounds to eigenvalues of the

generalized hermitian eigenvalue problem and to the standard hermitian eigenvalue
problem.  This procedure is applicable to iterative subspace eigenvalue methods and to

both extremal and interior eigenvalues.  The Ritz values and their corresponding residual

norms, all of which are computable quantities, are needed by the procedure.  Knowledge
of the exact eigenvalues is not needed by the procedure, but it must be known that the

computed Ritz values are isolated from exact eigenvalues outside of the Ritz spectrum
and that there are no skipped eigenvalues within the Ritz spectrum range. A multipass

refinement procedure is described to compute the bounds for each Ritz value.  This

procedure requires O(m) effort where m is the subspace dimension for each pass.
Application of this bounds computation procedure to model problems and to

actual production problems demonstrates the usefulness of the procedure.  This procedure
can be applied during the subspace iterative procedure in order to truncate the iterative

process and to avoid unnecessary effort when converging results to specific required

target accuracy.

Appendix A: Bounds
In this appendix, several of the eigenvalue bounds that are used in the algorithm

of Section 1 are discussed.  These bounds include the Ritz variational bounds, the

residual norm bound, the gap theorem bound, and the spread theorem bound.  These

bounds are well-known for the standard eigenvalue problem[1,2], and the derivations that
are given in this appendix are included primarily for completeness and also to extend the

bounds to the generalized eigenvalue problem.  To this end, we use the generalized

hermitian eigenvalue equation

€ 

(H − λ jM)z j = 0 A1

or in the equivalent matrix form

HZ = MZλ A2
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with an explicit metric matrix M, but the proofs for the standard hermitian eigenvalue

problem with M=1 follow directly.
Ritz Variational Bounds: Consider first the situation in which a subspace of

dimension m is available.  This subspace results in the projected equation
〈H〉[m] C[m] = 〈M〉[m] C[m] ρ[m] A3

The superscript denotes the subspace dimension.  When a new basis vector is added, the
corresponding projected equation is

〈H〉[m+1] C[m+1] = 〈M〉[m+1 C[m+1] ρ[m+1] A4

We define the transformation matrix T in partitioned form as

€ 

T =
C m[ ] β

0 α

 

 
 

 

 
 

A5

with

€ 

w = M 1:m,(m+1)
[m+1]

q = M [m ]( )
−1
w

α = x −w†q( )
−1

β = −αq

A6

This results in

€ 

T−1 = C m[ ]( )−1 C m[ ]( )−1β α

0 1 α

 

 
  

 

 
  

A7

Eq. A4 may be transformed as
(T† 〈H〉[m+1] T) (T-1 C[m+1]) = (T† 〈M〉[m] T) (T-1C[m+1]) ρ[m+1] A8

and written in partitioned form as

€ 

ρ m[ ] h
h† g

 

 
 

 

 
 
U
v
 

 
 
 

 
 =

U
v
 

 
 
 

 
 ρ

m+1[ ]
 A9

Eq. A9 has the same eigenvalues as the original Eq. A4.  The matrix T has transformed

the generalized eigenvalue equation into a standard eigenvalue equation.  There are, of

course, an infinite number of such transformations that would achieve that goal.  The
particular T chosen above also transforms the first m-dimensional leading subblock to

diagonal form.  An arbitrary eigenpair from Eq. A9 may then be written
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€ 

ρ m[ ] h
h† g

 

 
 

 

 
 
u
v
 

 
 
 

 
 =

u
v
 

 
 
 

 
 ρ

m+1[ ]
 A10

The first row can be solved for the vector u in terms of the scalar v.  When

substituted into the second row to eliminate u, the result is

€ 

g −h† ρ m[ ] − ρ1( )−1h = ρ A11

The left hand side of Eq A11 may be written

€ 

L ρ( ) = g −
h j
2

ρ j
[m ] − ρ( )j=1

m

∑
A12

It is easily verified that L(ρ) has horizontal asymptotes

€ 

lim
ρ→−∞

L ρ( ) = lim
ρ→+∞

L ρ( ) = g A13

Furthermore

€ 

dL ρ( )
dρ

= −
h j
2

ρ j
[m ] − ρ( )2j=1

m

∑ ≤ 0     for –∞<ρ<∞ and ρ≠ρj
[m]

A14

Thus L(ρ) is a decreasing function everywhere that it is analytic (differentiable).  The

vertical asymptotes are the result of the simple pole structure of L(ρ).  The analytic

segment of L(ρ) that lies between two of the poles is a branch of the function L(ρ), and

there are m+1 such branches.  An example of this function is plotted for m=3 in Figure 2.

According to Eq. A11, the eigenvalues ρk
[m+1] for k=1…m+1 are those special values of

this function for which L(ρ)=R(ρ) where R(ρ)=ρ is a simple linear function with positive

unit slope.  The intersections of these two functions are shown in Figure 2.  Because the

branches of L(ρ) are decreasing functions, and R(ρ) is an increasing function, there is one

and only one intersection for each of the branches.  These intersections must therefore
satisfy

€ 

ρ1
[m+1] ≤ ρ1

[m ]

ρ j
[m ] ≤ ρ j+1

[m+1] ≤ ρ j+1
[m ]    for  j =1… m −1( )

ρm
[m ] ≤ ρm+1

[m+1]

A15

This is the Cauchy interlace relation[1].  Consider this inequality applied to a particular
eigenvalue index  j (or –j, using the Parlett index convention) as the subspace dimension

m approaches the matrix dimension N.
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€ 

λ j = ρ j
[N ] ≤ ρ j

[N−1] ≤Kρ j
[m+2] ≤ ρ j

[m+1] ≤ ρ j
[m ]

ρ− j
[m ] ≤ ρ− j

[m+1] ≤ ρ− j
[m+2] ≤K ≤ ρ− j

[N−1] ≤ ρ− j
[N ] = λ− j

A16

This is the Ritz variational principle.  In words, the m ordered Ritz values from a
subspace of dimension m are each upper bounds to the corresponding lowest m exact

eigenvalues of the full matrix, and those Ritz values are simultaneously lower bounds to
the highest m exact eigenvalues of the full matrix.

For brevity, we do not consider the special cases individually that require detailed

attention.  These include the situations in which v=0 for a particular eigenvector and the
situations in which either or both ρ[m] and ρ[m+1] contain degeneracies.  We note only that

these situations are straightforward to analyze  and that the general Ritz variational

principle holds in these special situations just as it does in the typical case discussed
above.

Residual Norm Theorem: Given an hermitian matrix H, a positive-definite

metric hermitian matrix M, and vector y, normalized as y†My=1, the Rayleigh quotient is

€ 

ρ y,H,M( ) ≡ y
†Hy
y†My

= y†Hy  .
A17

For brevity in this appendix, we use hereafter the short notation ρ≡ρ(y,H,M).  The

residual vector r≡r(y) is

€ 

r = H − ρM( )y  . A18

Note that y†r=0.  The vector y may be expanded in the basis of the exact eigenvectors

{zj;j=1…N}, which may be chosen to be orthonormal, z†
jMzk=δjk.

€ 

y = z jα j
j
∑

A19

with

€ 

1= y†My = z j†Mzkα jαk
j ,k
∑ = α j

2

j
∑  . A20

This allows the residual to be written in the eigenvector basis in terms of the exact

eigenvalues λj.

€ 

r = H − ρM( )z jα j
j
∑ = λ j − ρ( )α jMz j

j
∑  .

A21

Let λk be the exact eigenvalue closest to ρ
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€ 

λk − ρ = Min λ j − ρ ; j =1KN{ } A22

and let zm be the corresponding eigenvector.  The quantity (r†M-1r) may be written

€ 

r†M−1r = λ j − ρ( )
2
α j
2

j
∑  .

A23

Each term in this summation is nonnegative.   The inequality

€ 

r†M−1r ≥ λk − ρ( )2α j
2

j=1

N

∑ = λk − ρ( )2 α j
2

j=1

N

∑ = λk − ρ( )2
A24

follows by replacing each nonnegative term in the summation in Eq. A23 by a

nonnegative value of lesser or equal magnitude.  This results in the bound

€ 

r†M−1r ≥ λk − ρ
A25

which may be written in the form

€ 

ρ − r†M−1r ≤ λk ≤ ρ + r†M−1r  . A26

In the special case of the standard eigenvalue equation, M=1,  these inequalities result in

the familiar residual norm bounds

€ 

r ≥ λk − ρ A27

€ 

ρ − r ≤ λk ≤ ρ + r  .       QED A28

There are several other interesting proofs of the residual norm bound (see, for example,
Chapter 4 of Parlett[1]).  The above proof was chosen for this appendix because it is in

the same spirit as the following proof of the gap theorem bound.
It should be emphasized that although the above residual norm bound is rigorous,

this does not imply immediately that 

€ 

ρk − rk
†M−1rk ≤ λk ≤ ρk + rk

†M−1rk  for a given

eigenpair index k.  The bound only states that, given a Rayleigh quotient ρ, there is at

least one eigenvalue index k that satisfies the bound.  Additional knowledge that there are

no skipped eigenvalues, or knowledge of exactly which eigenvalues are skipped, is

required in order to match up the index of a Ritz valueρj with an exact eigenvalue λk.

The Gap Theorem: The gap bound is slightly more involved.  We present here
the proof given by Parlett[1], but extended in a straightforward manner to the generalized

eigenvalue problem.  For the Rayleigh quotient ρ(y,H,M), the gap γ≡γ (ρ) is defined as
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€ 

γ = Min λ j − ρ ; j =1KN, j ≠ k{ } . A29

In words, the gap γ is the distance from the Rayleigh quotient ρ to the nearest exact

eigenvalue other than λk, the eigenvalue that is being approximated by ρ.  It is assumed

hereafter that λk is a nondegenerate eigenvalue and that the gap is strictly positive.  The

vector y can be decomposed in the y-zk plane as

€ 

y = zkCosφ + wSinφ  . A30

with w†Mw=1 and w†Mzk=0.  We note that the phases of the vectors zk and w are not

specified in any way, and the quadrant of the plane rotation angle φ is arbitrary to within

these phases, but this is unimportant to the proof at hand.  This plane decomposition

allows the residual to be written

€ 

r = λk − ρ( )MzkCosφ + H − ρM( )wSinφ  . A31

This results in the relation

€ 

0 = y†r
= λk − ρ( )Cos2φ + w† H − ρM( )wSin2φ  .

A32

It is clear from this expression that the two factors (λk-ρ) and (w†(H–ρM)w) have

opposite signs. Eq. A32 can be solved for Cos2φ to give

€ 

Cos2φ = −
w† H − ρM( )w

λk − ρ( )
Sin2φ  .

A33

Substitution of the identity Cos2φ+Sin2φ=1 into Eqs. A32 or A33 results in

€ 

Sin2φ =
− λk − ρ( )

w† H − ρM( )w− λk − ρ( )
=

− λk − ρ( )
w† H − ρM − λkM + ρM( )w

=
− λk − ρ( )

w† H − λkM( )w

=
λk − ρ

w† H − λkM( )w
  .

A34

The quantity (r†M-1r) may be written

€ 

r†M−1r = λk − ρ( )2Cos2φ + w† H − ρM( )M−1 H − ρM( )wSin2φ  . A35

Substitution of Eq. A33 gives
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€ 

r†M−1r = −w† H − ρM( )w λk − ρ( )Sin2φ

      + w† H − λkM + λkM − ρM( )M−1 H − ρM( )wSin2φ

= w† H − λkM( )M−1 H − ρM( )wSin2φ   .

A36

Expanding the vector w in the eigenvector basis gives

€ 

r†M−1r = Sin2φ z j† H − λkM( )M−1 H − ρM( )z jχ j
2

j(≠k )
∑

A37

€ 

= Sin2φ λ j − λk( ) λ j − ρ( )χ j
2

j(≠k )
∑

A38

€ 

= Sin2φ λ j − λk ⋅ λ j − ρ χ j
2

j(≠k )
∑  .

A39

Eq. A39 holds because the two factors (λj-λk) and (λj-ρ) are always the same sign for

each term in the summation.  Replacing each of the positive terms |λj-ρ| by the smaller

value γ results in the inequality

€ 

r†M−1r ≥ γSin2φ λ j − λk χ j
2

j(≠k )
∑  .

A40

The inequality

€ 

λ j − λk χ j
2

j(≠k )
∑ ≥ λ j − λk( )χ j

2

j(≠k )
∑ = w† H − λkM( )w

A41

results in the relation

€ 

r†M−1r ≥ γ w† H − λkM( )wSin2φ   . A42

Substitution using Eq. A34 gives the inequalities

€ 

r†M−1r
γ

≥ λk − ρ
A43

€ 

ρ −
r†M−1r
γ

≤ λk ≤ ρ +
r†M−1r
γ

  .
A44

In the special case of the standard eigenvalue equation, M=1,  these inequalities result in

the familiar gap theorem bounds

€ 

r 2

γ
≥ λk − ρ

A45
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€ 

ρ −
r 2

γ
≤ λk ≤ ρ +

r 2

γ
  .     QED

A46

As for the previous residual norm bound, this relation only states that, given a Rayleigh
quotient ρ, there is at least one eigenvalue index k that satisfies the bound.  Additional

knowledge that there are no skipped eigenvalues, or knowledge of exactly which

eigenvalues are skipped, is required in order to match up a Ritz valueρj with an exact

eigenvalue λk.  Compared to the residual norm bound in Eq. A25, it may be verified that

the gap bound is tighter than the residual norm bound when 

€ 

r†M−1r < γ .  The gap

bound may be computed even when this relation is not satisfied, but such a bound would

be looser than the residual norm bound in this case.
The Spread Theorem: The Spread theorem applies only to the special cases k=1

or k=N (or equivalently to k=–1 or k=–N using the Parlett index convention), that is, to

each of the two most extreme eigenvalues only.  Replace each of the nonnegative terms
|λj–ρ| in Eq. by A39 the larger quantity σ=(λN–λ1).  This quantity σ is called the Spread

of the pencil (H,M).  This results in the inequality

€ 

r†M−1r ≤σ ⋅ Sin2φ λ j − λk χ j
2

j(≠k )
∑  .

A47

The equality (compare Eq. A41)

€ 

λ j − λk χ j
2

j(≠k )
∑ = λ j − λk( )χ j

2

j(≠k )
∑ = w† H − λkM( )w

A48

follows from the fact that each of the terms (λj–λk) has the same sign for an extreme

eigenvalue.  Combining Eqs. A34, A47, and A48 results in the inequality

€ 

r†M−1r
σ

≤ λk − ρ   .
A49

For k=1 we have  |λk–ρ|=ρ–λ1 which results in an upper bound to the lowest eigenvalue

€ 

λ1 ≤ ρ −
r†M−1r
σ

 .
A50

For k=N we have |λk–ρ|=λN–ρ which results in a lower bound to the highest eigenvalue

€ 

ρ +
r†M−1r
σ

≤ λN  .
A51



Draft 2-Apr-04

22

We therefore refer to the Spread theorem as providing inner bounds to the two most

extreme eigenvalues.  In the special case of the standard eigenvalue equation, M=1,
these inequalities result in the inner bounds

€ 

λ1 ≤ ρ −
r 2

σ
 .

A52

and

€ 

ρ +
r 2

σ
≤ λN  .    QED

A53

From these expressions it is clear than the spread bound is always superior to the Ritz

bound for any finite value of the matrix spread σ.  If no information about the matrix

spread is available, then in the limit σ→∞, the spread bound approaches the simple Ritz

variational bound.  In this sense, the Spread theorem may be thought of as an
improvement to the Ritz bound that utilizes additional information about the matrix

structure.
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Fig. 1 The Ritz value ρj is isolated from the other Ritz values within the subspace.  The

exact gap is γ, and the computed lower bound to that gap is γ–.  When the Ritz value is

isolated in this manner, the upper and lower bounds to the exact eigenvalue λk computed

by the gap theorem are tighter than the residual norm bounds.
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0

0

Cauchy Interlace Relation

ρ

L(ρ)

R(ρ)

ρ
1
[3]

ρ
2
[3]

ρ
3
[3]

g

Fig. 2.  This is an example of the Cauchy Interlace Relation for a matrix of dimension

four and for a submatrix of dimension three.  The vertical asymptotes (dashed lines) are

located at the eigenvalues of the submatrix.  The eigenvalues of the full matrix of
dimension four are indicated by the open circles, and are the intersections of the

decreasing branches of the function L(ρ) and of the increasing function R(ρ)=ρ.  The

eigenvalues of the full matrix interlace those of the submatrix.
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