
Agreement-Based Interactions for Experimental Science

Katarzyna Keahey,1 Takuya Araki, 1,2 Peter Lane1

1 Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 USA
2 NEC Internet Systems Research Laboratories, Kanagawa 216-8555, Japan

keahey@mcs.anl.gov, araki@mcs.anl.gov, lane@mcs.anl.gov

Abstract. Enabling quality of service in Grids requires not only resource
management strategies but also the development of protocols enabling
structured negotiation for the use of resources. In this paper, we describe
design, implementation, and application of an agreement-based infrastructure.
We then discuss its use in the virtual control room developed for the National
Fusion Collaboratory.

1 Introduction

Computational Grids are of proven usefulness to scientific community. However,
in order to make Grid computing a viable model for experimental science, capabilities
enabling it to respond to QoS requirements, such as real-time execution, are needed.
For example, the National Fusion Collaboratory (NFC) project [1] wants to enable
scientists to run analysis codes on the Grid in the roughly 20-minute period between
the pulses of a fusion experiment. In addition to developing sophisticated resource
management strategies and algorithms, enabling this capability requires the
development of protocols enabling structured negotiation for the use of resources.

An agreement-based services infrastructure combines information, negotiation, and
execution services that allow clients to query the availability of a particular service in
the context of their priority needs, as well as to compare offers from different
providers. Once a service agreement is achieved, the service provider can use it to
drive resource management. Combining subsidiary agreements allows for the creation
of agreements of arbitrary complexity, and automatic management allows providers to
both leverage and counteract the changing conditions on the Grid. We see this flexible
formalism as underlying the future development of the Grid.

In this paper we describe an implementation of an agreement-based infrastructure
based on the WS-Agreement specification [2] currently developed at the Global Grid
Forum (GGF). We describe terms for specific applications including combined
agreements, dependency-based agreements, and agreement templates. To manage
uncertainty, we associate agreements with confidence levels representing the quality
of agreement to the client. Finally, we demonstrate the use of our implementation in
practice, working under to constraints of a virtual control room developed by the
National Fusion Collaboratory for use in fusion experiments.

2

2 Agreements: Architecture and Implementation

In this section, we describe the architecture and implementation of our agreement
negotiation structure used by the services described in Section 3.

2.1 Overview of WS-Agreement

WS-Agreement [2] is a draft specification developed at the GRAAP working group
of the GGF describing a negotiation approach to service management. The
negotiation process can be viewed as a discovery phase in which clients advertise
their needs to the providers and the providers represent what capabilities they can
provide. This phase ends when both sides commit. A complete agreement represents a
concretization of use policy representing an agreed to relationship between a client
and a provider.

According to the specification, agreements are represented as Grid services [3] and
inherit all the properties of a Grid service. They are created by factories, subject to
soft-state lifetime management, and enable access to state exposed as service data
elements (SDEs). In particular, one of the SDEs exposes the agreement terms. A new
agreement service can be requested by a client and created whenever a factory
determines that the requested terms are suitable for beginning a negotiation. If the
requested terms are unacceptable, an exception is returned.

The WS-Agreement specification defines a term type (wsa:TermType) for
describing agreement terms, but it does not provide a term language for any domain.
It is assumed that such term languages to describe domain-specific concepts (data
transfer, resource management, application-specific concepts) will be developed
separately through complementary work in other working groups.

The current focus of the working group is on architecture and the negotiation
model. The negotiation model allows renegotiating agreements after creation and
concludes in a commit stage that can be triggered by either side. The negotiation is
fine grained and proceeds on the level of specific terms.

2.2 Our Implementation

We implemented agreement-based interactions using the Globus Toolkit 3 (GT3).
While our implementation was heavily influenced by WS-Agreement [2] and Web
Service Level Agreement (WSLA) [4], our use case did not require a full
implementation of it. Instead, we focused on defining terms and functionality required
by the application and practical experiences with the system.

Instead of representing each agreement as a service, the factory creates and
maintains a table of current “agreement entries” exposed as factory SDEs and
managed as factory state. Our negotiation process is simplified and emphasizes
discovery. An agreement factory allows a client to retrieve an “agreement template”
(based on the AgreementTermType in the section below) advertising some initial
values of the agreements it supports (for example, a factory may support only services
of a fixed description). The clients can then fill out some or all fields in this template

3

and propose an agreement. By filling out more or fewer fields, the client can
effectively ask a more or less concrete question about the availability of a specific
service. The agreement may be rejected (if the terms specified by the client cannot be
satisfied) by returning an exception. Alternatively, the factory can supply values for
fields not filled out by the client and return it as provider’s precommitted offer
together with an agreement handle identifying the agreement. Precommitment on the
provider’s side results in creating an “agreement entry” with a short expiration time
that can be extended if the client commits. After receiving factory response, the client
can either commit to the proposed agreement or try again. Our negotiation model is
simpler than WS-Agreement as it does not implement multi-phase negotiations or
support renegotiation once an agreement has been created. Further, it allows
negotiation on the level of the whole agreement only. We also support a simpler
commitment model: only the provider can precommit and client commit. Client’s
commitment extends the agreement time to the end of availability time.

A committed agreement causes the factory to automatically instantiate the requisite
application service when the availability period of the service described by the
agreement starts. This is done to reduce the impact of service creation overhead on
agreement claiming. The client can then obtain the handle to the application service
from the factory and claim the agreement from the application service which triggers
the execution of desired actions.

2.3 Agreement Term Type

An agreement represents a commitment that services described by the service
description will be provided during a specified time of service availability with a
specified QoS (whenever applicable). At most one such service will be provided at a
time, but it may be claimed multiple times as the availability period allows. Our
agreement terms are described as follows:
<xsd:complexType name="AgreementTermType">
 <xsd:sequence>
 <xsd:element name="parties" type="tns:AgreementPartiesType"/>
 <xsd:element name="serviceInstanceHandle" type="xsd:anyURI"/>
 <xsd:element name="dependency" type="xsd:anyURI"
 minOccurs="0"
 maxOccurs="unbound"/>
 <xsd:element name="availability" type="tns:ScheduleType"/>
 <xsd:element name="expirationTime" type="xsd:dateTime"/>
 <xsd:element name="serviceLevel" type="tns:serviceLevelType"/>
 <xsd:element name="serviceDescription" type="xsd:anyType"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AgreementPartiesType">
 <xsd:sequence>
 <xsd:element name="client" type="xsd:anyURI"/>
 <xsd:element name="provider" type="xsd:anyURI"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ScheduleType">
 <xsd:sequence>

4

 <xsd:element name="startTime" type="xsd:dateTime"/>
 <xsd:element name="endTime" type="xsd:dateTime"/><
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="serviceLevelType">
 <xsd:sequence>
 <xsd:element name="timeBound" type="xsd:duration"/>
 <xsd:element name="confidenceLevel" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

The first three items of the schema correspond to the wsa:ContextType of the
specification. They describe the parties of the agreement and include the Grid Service
Handle (GSH) of the client and the provider. The serviceInstanceHandle
element holds the GSH of the application service created as a result of the agreement.
The dependency element contains the agreement handle(s) which the agreement is
dependent on (see Section 3.2 and Section 3.4 for illustration).

The availability element defines the time period when the services specified
in the agreement are available. The expirationTime element corresponds to the
lifetime of the agreement (not the created service).

The serviceLevel element refers to QoS guaranteed by the agreement. The
timeBound element describes guaranteed execution time. While some entities can
be managed in a deterministic fashion (CPU reservation for example), others are not
(for example, data transfer over the Internet). In order to account for this uncertainty,
the service provider accompanies the agreement terms with a confidence level with
which it can provide the terms.

The serviceDescription element is a domain-specific element; its content
depends on the service. Examples will be described in the next section.

3 Services

3.1 CPU Reservation Service

The CPU reservation service is used for reserving a CPU resource. The
serviceDescription element is as follows:
<xsd:sequence>
 <xsd:element name="CPUUtilization" type="xsd:int"/>
 <xsd:element name="hostname" type="xsd:string"/>
</xsd:sequence>
Our assumption is that we will be reserving only one CPU per host and possibly
timesharing that CPU with other jobs. Thus, CPUUtilization describes the percentage
of CPU to be used. The implementation of the resource reservation service is similar
to GARA [5]: to implement resource reservation, this service uses DSRT [6], which
has functionality to allocate specified percentage of CPU cycles to a certain process.
The service maintains a reservation table; when an agreement is proposed, the table is
first consulted to make sure there is a slot available, and if a specified percentage of
CPU cycles is free during the period of availability, the proposed agreement is
accepted.

5

When the agreement is claimed, the job ID of a job to which the reservation should
be applied is passed as an argument to the claim. Note, that the services description
here is not related to QoS: the agreement simply states that a certain service will be
provided.

3.2 Job Execution Service

The job execution service can be customized to represent the execution of a
program. The service description represents the name of the program and concrete
arguments. The serviceDescription element for this specific application is as
follows:
<xsd:sequence>
 <xsd:element name="application" type="xsd:string"/>
 <xsd:element name="timeSteps" type="xsd:int"/>
 <xsd:element name="executionMode" type="xsd:string"/>
</xsd:sequence>
The agreement for this service guarantees execution of a specific service description
with QoS. It is important that the service description externalize all the arguments that
QoS may depend on; in this example both executionMode and timeSteps
influence the execution time of our application.

To meet the QoS, this service reserves CPU resources using the CPU reservation
service. In the current implementation, resource reservation is made by a job
execution agreement factory when the level of the execution service is negotiated, but
we also envision scenarios where the client can use a preexisting reservation as input
to negotiation. The GSH of CPU reservation service is stored as the dependency
element of AgreementTermType. Based on this reservation, the service uses
prediction to estimate execution time for the service and its confidence level modeled
as prediction error. It should be noted that the agreement does not indicate in what
way or to what extent the service depends on the dependency agreement; the
knowledge of how to “consume” the dependency in terms of both estimating
confidence levels and claiming the dependency is application specific and contained
in the implementation of agreement service and application service respectively.
Another point to note is that although the terms of the agreement are based on
resource management, they are to some extent advisory; that is, the estimate of
execution time is based on prediction rather than adaptive management of the
application.

When the agreement is claimed, the service starts executing the job using GT3’s
Grid Resource and Allocation Manager (GRAM) service. The CPU is claimed by
associating the job ID of the job started in this way with the reservation.

3.3 Data Transfer Service

The data transfer service is implemented based on the GT3 reliable file transfer
(RFT) [7] service and uses RFT’s transferRequest as part of its service
description. Among other qualities, transferRequest contains information about

6

the source and destination of the transfer, needed to calculate QoS. The exact
parameters are as follows:
<xsd:sequence>
 <xsd:element name="transferRequest"
 type="rft-types:TransferRequestType"/>
 <xsd:element name="size" type="xsd:int"/>
</xsd:sequence>

Estimates of execution time (transfer time, in this case) are based on prediction
depending on historical data for this transfer and confidence level on associated error.

Since fusion codes produce multiple files as a result of a run, the data transfer
service has been customized to operate on directories of data rather than individual
files: the data is tarred before RFT is invoked and untarred at destination.

3.4 Workflow Service

The workflow service is used to provide end-to-end application service by
coordinating several subsidiary services. In our case the workflow is very simple and
consists of application execution and data transfer of output data. The
serviceDescription of Workflow Service is as follows:
<xsd:sequence>
 <xsd:element name="application" type="xsd:string"/>
 <xsd:element name="timeSteps" type="xsd:int"/>
 <xsd:element name="executionMode" type="xsd:string"/>
 <xsd:element name="outputDestination" type="xsd:string"/>
</xsd:sequence>

As before, the service description externalizes arguments on which the QoS
depends; in this case we add the argument describing the destination of the data to
those on job execution.

The workflow service directly depends on the job execution and data transfer
services for guarantees given to its QoS. We currently store those dependencies as the
dependency element of AgreementTermType, although in principle a stronger
dependency should be expressed: the workflow service depends on having these
services executed in sequence.

Negotiating a composite agreement based on a workflow is more complex as it
requires the workflow service in turn to negotiate subsidiary agreements. Further,
dependencies between the elements of the workflow may impose an order on
negotiating subsidiary agreements. The end-to-end time is calculated by combining
execution times of the services in ways appropriate to workflow (in our case by
adding, but in general we could use min/max) and using the confidence level of
subsidiary services to calculate a weighted error. As with the other services, the
workflow and its subsidiary services are instantiated when the availability period
starts. Claiming an agreement on an application service will trigger claims on
subsidiary services.

7

4 Case Study: Interactions in the Virtual Control Room

Our prototype infrastructure and services were put to the test in the virtual control
room experiment at SC03 illustrating how Grids can be used in fusion science
experiments. Fusion experiments operate in a pulsed mode, producing plasmas of up
to 10 seconds duration every 15 to 20 minutes, with multiple pulses per experiment.
Decisions for changes to the next plasma pulse are made by analyzing measurements
from the previous plasma pulse (hundreds of megabytes of data) within roughly 15
minutes between pulses. This mode of operation could be made more efficient by the
ability to leverage Grid resources to do more analysis and simulation in the short time
between pulses. Hence, the ability to do time-bounded execution in the Grids is of
critical importance.

The virtual control room experiment followed the script of typical experiment
preparation and interaction. Before an experiment, a scientist can negotiate an
agreement for the execution of a remote fusion code and request for data to be
delivered to a specific location. This process allows the scientist to experiment with,
and fine-tune the parameters for the execution of the code. Thus, the agreement-based
system is used not only to perform management actions but also to structure and
automate experimental process that has grown more complex with the use of Grids.

The agreement formed in this way promises to deliver an end-to-end QoS on
execution time of the service as long as the execution is requested within a certain
availability window. Delivering the QoS entails combining data transfers with
application execution and CPU management. At the time of the experiment, the client
can request service execution against a previously formed agreement and expect it to
be satisfied with the agreed on QoS.

In the experiment our implementation and services discussed earlier were used to
obtain agreements and claim execution of the to the EFIT code performing
equilibrium fitting on the results of fusion experiment. The code runs were initiated
from the SC03 show floor in Phoenix, Arizona; EFIT execution was performed at
Princeton Plasma Physics Lab (PPPL); and the end results were transferred to the
control room team at General Atomics in California.

 Job Execution

Service
Data Transfer
Service

Total
Execution

Time
Measured 95 sec 54 sec 173 sec
Agreement 95 sec, 90% 53 sec, 93% 172 sec, 92%

The table above shows how our actual execution values compared with what was

promised in the agreement. The “measured” row shows the mean of 10 values for
each quality measured. The “agreement” row shows promised value and the level of
confidence with which it is promised. The results show good agreement with
estimated values. The overhead is large mainly because, while the time spent on the
respective services was measured locally, the end-to-end execution time was
measured from the SC show floor, accumulating the high latencies of

8

acknowledgement messages from the services. Nevertheless, the overall execution
time was satisfactory and the infrastructure deemed acceptable for experimental use.

5 Conclusions and Future Work

Although our implementation provides only a simple negotiation model, we found
that it fulfilled the needs of our use case very well. The negotiation phase worked well
as a discovery capability customized to the needs of a client. In fact, some of our
current agreements are used in “advisory” capacity and enable the scientist to do, in a
structured way, what was previously done in an ad hoc manner: estimate times for
codes that will be run during the experiment. Underpinning this interaction are the
resource management actions ensuring the success of such preparations.

Given the dynamic and unreliable nature of a Grid environment, any guarantee
must be qualified: resources may become unavailable, or policies and priorities may
change at any moment. Furthermore, while some qualities in the Grid can be managed
(CPU reservations, for example), others cannot: we cannot reserve bandwidth on the
Internet or predict exactly the runtime of an application. For this reason, we have
introduced levels of confidence used by the provider to represent the strength of a QoS
guarantee. We modeled them as the probability that a certain QoS will be achieved.
While this measure is correct from a provider’s perspective, it is not very helpful for
the client because it does not give the client the means of verifying failure rate. With
the addition of resource management, however, it is possible to convert a provider’s
failure rate into a failure rate for a specific user. Such a guarantee would be more
appropriate from the perspective of our use case.

Finally, the potential of agreements stems from the fact that they constitute a target
to guide adaptive actions. More research will have to be done to fulfill their promise.

Acknowledgments

This work was supported by the Mathematical, Information and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, SciDAC Program, Office of Science, U.S. Department of Energy, under
Contract W-31-109-ENG-38.

References

[1. Keahey, K., T. Fredian, Q. Peng, D.P. Schissel, M. Thompson, I. Foster, M.
Greenwald, and D. McCune, Computational Grids in Action: the National
Fusion Collaboratory. Future Generation Computing Systems (to appear),
October 2002. 18(8): p. 1005-1015.

2. Czajkowski, K., A. Dan, J. Rofrano, S. Tuecke, and M. Xu, Agreement-
based Grid Service Management (OGSI-Agreement) Version 0.

9

https://forge.gridforum.org/projects/graap-wg/document/Draft_OGSI-
Agreement_Specification/en/1/Draft_OGSI-Agreement_Specification.doc,
2003.

3. Foster, I., C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration.
2002: Open Grid Service Infrastructure WG, Global Grid Forum,.

4. Ludwig, H., A. Keller, A. Dan, and R.P. King, A Service Level Agreement
Language for Dynamic Electronic Services. IBM Research Report RC22316
(W0201-112), January 24, 2002.

5. Foster, I., C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A
Distributed Resource Management Architecture that Supports Advance
Reservations and Co-Allocation. in Proc. International Workshop on Quality
of Service. 1999.

6. Nahrstedt, K., H. Chu, and S. Narayan. QoS-aware Resource Management
for Distributed Multimedia Applications. in Journal on High-Speed
Networking, IOS Press. December 1998.

7. Madduri, R., C. Hood, and W. Allcock, Reliable File Transfer in Grid
Environments. LCN, 2002: p. 737-738.

The submitted manuscript has been created by the University of Chicago as
Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-
109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of the Government.

