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understanding of influential factors in the cell environment, 
and the dynamics of cell interconnections. Electrical 
simulations augmented with physics to describe the detailed 
interaction of a probe with contact membrane will enable us 
to understand exactly what we are measuring, cementing the 
relationship between simulations and EEGs. 

A key question is this: Will we be able to carry out 
these simulations at all? Such complex computational 
problems solved at scales that are clinically significant will 
require computing power well beyond what is currently 
available. The original question has three distinct angles 
from which it must be considered: 

 
• Is the problem itself too complex to tackle? 
• Is the code (algorithms and data structures) up to the 

task: do its resource requirements scale favorably? 
• Is a given computer architecture appropriate to solve 

the problem—memory, compute power, 
communication bandwidth, and the like? 

 
In the rest of the paper we present our simulation of 

epileptiform electrical activity in the neocortex, describe 
experiments and models of its scaling behavior in large 
cluster supercomputers, and identify tight spots in this 
behavior. We then project the performance onto next-
generation computing platforms to answer the original 
question, Will we be able to carry out these simulations at 
all? The answer will be, Not with the current 
implementation of the code. We then discuss remedies that 
will change the answer to Yes. 

 
II. THE NEOCORTEX PROBLEM 

 
We assume that the problem is indeed too complex to 

tackle as is. Thus, our only avenue is to rescope the problem 
or relax fidelity requirements until the problem can be 
solved, in principle. Here, then, we outline the problem in 
terms of its abstract components: various classes of neurons, 
the topology of the interconnect between cells, and the 
equations describing the evolution of the simulation model. 

Our model is constructed to allow simulation of the 
electrical activity across a patch of the neocortex and to 
study the effects of parametric changes on behavior of the 
network. The model includes compartmental submodels of 
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several cell types of varying internal complexity. Each 
spike-generating source on each cell is then wired to 
thousands of other cells with both fast and slow connections, 
distributed randomly over an annular region centered on the 
spiking element. The connection probability density 
typically falls off exponentially with distance from the 
driving cell. The result is a densely interconnected network 
of cells. The electrical state of the cells is modeled by a 
number of variables corresponding to the effective potential 
at points within the cell and along its extended extremities, 
as well as conductances characterizing the cell itself and the 
state of its synaptic channels. Intercell connections are 
characterized by both speed and weight. Most of the state 
variables evolve according to simple first-order differential 
equations, with variable coefficients, describing the flow of 
current into and out of the cell components. On the other 
hand, spike events occur when a potential exceeds a 
threshold value, introducing a highly nonlinear mechanism 
into the system. Additional details of the neural model used 
for these experiments were described first in [1], with results 
from the model simulation presented in an accompanying 
paper [2].  

Fig. 1. Schematic of the patch of neocortex cells.  

These features of the problem are diagrammed in Fig. 1. 
The small circles scattered throughout represent individual 
cells. The cross and dashed annulus are a spike generator 
and the area that it can signal. The black cells are 
synaptically driven by the spike generator. Every cell has at 
least one spike generator, so this annular connection 
template is replicated all over the patch, except that the 
connections are determined randomly for each instance of 
the annulus. The entire patch is partitioned uniformly into 
square subpatches such as the one highlighted with hash 
marks. Each processor is responsible for one subpatch.  

 
III. ALGORITHMS AND DATA STRUCTURES 
 
We now address the suitability of the code, specifically 

by measuring and modeling its scaling properties. We focus 
on five properties of the code: algorithms, data structures, 
message passing, memory, and scaling.  

 
A. Scaling Experiments 

 
We have studied the performance scaling of this 

neocortex model for a range of configurations of processor 
count and number of cells..  

The production code, built using pGENESIS [3] as the 
simulation engine, was run at Argonne National Laboratory 
on the large cluster computer “Jazz” in the Laboratory 
Computing Resource Center. Each of Jazz’s 350 compute 
nodes has a 2.4 GHz Pentium Xeon processor. Half of the 

nodes have 2 GB of local memory, and half have 1 GB. We 
ran our simulation for 0.1 seconds with 10-microsecond 
time steps on 256 nodes. The square patch of neurons was 
partitioned uniformly into a 16x16 array of processing 
nodes. Execution time was recorded for the simulation of 
increasingly large numbers of cells. The processor 
interconnect was limited to Fast Ethernet, 100 Mbps, for all 
of these measurements. 

Memory consumption became the limiting resource for 
these simulations. Consequently, our largest simulations on 
the cluster were limited to approximately 100K cells. 

We supplemented these full-scale experiments with 
standard profiling measurements to understand the fine-
grained execution timing of the simulation. With these test 
measurements we are able to separately track integration 
time and spike-processing time, for example. 

Table I summarizes the results of these measurements.  
 

B. Modeling the Performance of the Code 
 
We used the results of these experiments to determine 

the scaling behaviors of the execution time and memory 
consumption and to identify parameters of the performance 
model. Where appropriate, measurements from different-
speed processors are scaled to a common basis. 

Consider first the computation required to advance the 
state of each cell compartment. This involves a simple 
integration of the first-order ordinary differential equation 
governing its response to its inputs using the exponential 
Euler method. The total time spent carrying out this 
calculation (TINTEG) is proportional to the time to integrate 
the equations of a single cell (tINTEG) normalized to the target 
processor (f0 / fCPU) and scaled by the number of cells (N) 
and the number of steps in the entire simulation (TSIM/TSTEP): 
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TABLE I 
MEASURED PERFORMANCE  MODEL PARAMETERS 

 
Parameter Value Units Meaning 
    
MBASE 355 KB baseline memory  
MCELL 2063 KB / cell space for cell state 

MCONN 48 B / conn. space for synaptic 
connection 

NCONN   4,800 conn / cell mean number of 
connections per cell 

fSPIKE 10-3 events / sec 
/ gen / step 

event rate for single 
spke generator 

NGEN 0.4 gen / cell mean number of 
generators per cell 

tSPIKE 38 x 10-6 seconds 

time to process one 
spike event at one 
synaptics channel on 
the calibration 
processor 

tINTEG 63 x 10-6 seconds 
time to integrate the 
cell state forward by 
one sim step 

    

 

 TINTEG = (tINTEG  * f0 / fCPU) * N * (TSIM / TSTEP). (1) 
 
The time spent tending to spike events includes both 

computation (incorporating the effect of the spike into the 
cell state) and communication components (disseminating 
the event to all affected synaptic channels). Furthermore, the 
time depends on the spike rate, which in turn depends on 
details of the state of the simulation—fewer spike events per 
cell during normal activity, for example, compared to 
periods of epileptiform spiking. We use an average over all 
spike generators over all time during the calibration 
experiments. To estimate the time it takes to process spikes, 
we calculate the number of spike events to be processed per 
simulation step (NEVENT) from the number of cells, the mean 
spiking frequency (fSPIKE), the number of spike generators 
per cell (NGEN), and the size of the time step in seconds 
(NGEN). To get the total computational expense, we scale this 
by the time it takes to process a single spike event at a 
synaptic channel (tSPIKE) normalized to the target processor 
and scaled by number of steps in the entire simulation: 

 
 NEVENT = N * fSPIKE * NGEN / TSTEP, (2) 

 
 TSPIKE = (tSPIKE  * f0 / fCPU) * NEVENT * (TSIM / TSTEP). (3) 

 
The total execution time is the sum of TINTEG and TSPIKE 
calculated in (1) and (3). 

The memory required to store the cell objects, apart 
from the network, is also proportional to N. 

The network is represented as individual connections 
between a spiking element and a synaptic channel. The 
modeled cells have between one and a few spiking elements 
and synaptic channels. Each spike generator has a list of the 
thousands of synaptic channels that it drives. Likewise, each 
synaptic channel has a list of the thousands of spike 
generators that drive it. For the very large simulations we 
are considering, the patch of cells is significantly larger than 
the diameter of the connection template, as shown in Fig. 1. 
In this regime, memory consumption by the data structures 
describing the network (these lists of connections) is linearly 
dependent on N. The coefficient of proportionality is large, 
however, because the lists are large. The actual number of 
connections depends on parameters of the neocortex model 
that set the area of the annulus and the connection 
probability. We model the amount of memory required to 
contain the neocortex data structures as 

 
 MTOT  = MBASE + (MCELL + NCONN  * MCONN) * N. (4) 
 

The last term is proportional to both N and NCONN. 
Clearly, this code has a significant problem: scaling of the 
data structures that represent the interconnection network. 
Even processors with substantial local memory, such as the 
Jazz cluster machines, are soon overwhelmed by the 
memory requirements of the network representation.  

 

IV. PERFORMANCE PREDICTIONS AND FUTURE 
MACHINES 

 
Using the performance model, we now consider 

whether a given architecture is appropriate to the task. 
Today’s supercomputers are typically built from thousands 
of processors capable, in aggregate, of computing 1013 
operations per second or more. Scaling these approaches to 
supercomputing by a factor of ten to a thousand is, however, 
not practical for reasons of power consumption, space 
requirements, and reliability, at the very least. 

A candidate architecture now under development at 
IBM is the BlueGene series, of which BlueGene/L (BG/L) is 
one configuration [4]. This machine will have 64K nodes, 
each having two separate processors clocked at 700 MHz 
(each with a dual FPU) and 256 MB of DDR. The nodes are 
attached to several networks with different topologies and 
purposes, one of them a Gigabit Ethernet. In this 
configuration an application might achieve a peak 
computation rate of 180 TF/s, or 180 x 1012 floating-point 
operations per second. If the application can take advantage 
of the two processors in each node, complicated because 
they share resources on the compute chip, then it might 
achieve a peak rate of 360 TF/s. 

 
A. Results  
 
Plugging these machine configuration parameters into 

our model lets us estimate the maximum number of cells 
that we can simulate and the time it will take to carry out a 
simulation of a given size. We consider a 10-second 
simulation (the approximate length of a typical EEG page) 
with a simulation resolution of 10 microseconds. Table II 
reports the estimated memory required and execution time 
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(in millions of seconds) for problems in the range of 1 
million to 1 billion cells. The largest problem that will fit 
into memory on BG/L has 8 million cells, which is 
approximately the scale of our EEG probe problem. 

Note that communication cost is fixed as the number of 
processors increases. The overall execution will increase 
linearly as processors are added until the computation and 
communication costs are equal. Beyond that point, adding 
more processors won’t improve the total execution time at 
all, and in practice performance will actually degrade. This 
crossover point occurs at 24,000 processors on BG/L, which 
is only a third of the machine. 

 
B. Remedies 

 
Clearly, the performance and scalability of this 

simulation depend critically on some of the basic 
configuration characteristics of cluster supercomputers. In 
particular, memory consumption scales badly with 
simulation size. Several avenues are open to us to reduce, 
perhaps radically, the memory demands of this application. 
Here are the most promising, including possible 
improvements to the execution speed:  

• Reduce the size of spike event data structures by 
culling, refactoring, or generating connection lists 
algorithmically on the fly (at some added expense of 
compute time). 

• Consider out-of-core methods. 
• Move to an event-driven simulation engine to reduce 

time spent integrating during lulls in activity of each 
cell or compartment.  

Time is stepped synchronously and uniformly across all 
processing nodes in the pGENESIS simulation. On the other 
hand, event-driven simulations can be significantly faster 
[5–6]. 

 
V. CONCLUSION 

 
We have introduced clinically interesting classes of 

neural simulation that will require radically new 
performance from computer systems—namely, electrical 
simulations of tens of millions of cells and more, and multi-
biophysics codes that simulate systems from the molecular 
to the network levels.  

We have presented results from our scaling studies and 
modeling results aimed at understanding the requirements 

for a large-scale neocortex simulation developed as an aid to 
epilepsy research. As coded, execution time scales linearly 
with the number of cells in the problem, as does memory 
consumption. Although only linear, memory quickly 
becomes the limiting resource for typical machine 
configurations. 

TABLE II 
PROJECTIONS FOR BLUEGENE/L 

 
 100K Procs 1M Procs 

Cells 
MB/ 
Node 

Texec 
[Msec] 

MB/ 
Node 

Texec 
[Msec] 

1 M 3 0.002 0.6 0.0002 
10M 24 0.021 3 0.002 

100M 230 0.21 24 0.021 
1G 2300 2.1 230 0.21 

 

Without significant modification or simplification, this 
code and others like it will not be able to provide results for 
problems with many more than 100K cells In particular, we 
have presented evidence that BG/L nodes might not have 
sufficient memory to provide scalable performance beyond 
about 10K nodes.  

Guided by our modeling we have identified several 
ways to improve the performance of the code that may 
enable the neural simulations to perform at scale. 
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