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Abstract

Typical scientific software designs make rigid assumptions regarding programming language

and data structures, frustrating software interoperability and scientific collaboration. Component-

based software engineering is an emerging approach to managing the increasing complexity of

scientific software. Component technology facilitates code interoperability and reuse. Through

the adoption of methodology and tools developed by the Common Component Architecture Fo-

rum, we have developed a component architecture for molecular structure optimization. Using

the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chem-

istry components that provide capacity for energy and energy derivative evaluation. We have

constructed geometry optimization applications by integrating the Toolkit for Advanced Optimiza-

tion, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which

provide optimization and linear algebra capabilities. We present a brief overview of the compo-

nent development process and a description of abstract interfaces for chemical optimizations. The

components conforming to these abstract interfaces allow the construction of applications using

different chemistry and mathematics packages interchangeably. Initial numerical results for the

component software demonstrate good performance and highlight potential research enabled by

this platform.
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1 Introduction

Computational chemistry codes are becoming increasingly complex, not only in the types of com-

putation available, but also in the software architectures used in code development. Today’s pro-

duction software may encompass millions of lines of code with an infrastructure many years (some-

times decades) old. Incorporating into legacy codes algorithms that rely on new mathematics or

computer science can be a challenge. This challenge frustrates collaboration; scientists addressing

the same problems are often unable to benefit easily from advances made by colleagues, and devel-

opment efforts are repeatedly duplicated. For example, several classic methods for unconstrained

optimization have been described in the literature.1–8 While some of these methods are well known

and easily implemented, subtle techniques that improve efficiency and robustness are usually em-

ployed only by experts in the community. Most computational chemistry codes use one or more of

these methods to optimize wavefunctions or molecular geometries. Developing proper interfaces

with optimization solvers enables chemists to leverage current research in the area of optimization

without duplicating the efforts of experts in the field.

As the complexity of scientific models continues to increase, today’s problems in computa-

tional chemistry benefit greatly by collaborations among chemists, mathematicians, and computer

scientists. These collaborations can increase the level of expertise and new science that can be

applied to these problems. Toward that end, we are participating in a project designed to enable

multiple research groups to build multidisciplinary software for high-performance computational

science. This project, the Common Component Architecture (CCA),9–11 is dedicated to the use of

component technology to enable new and efficient high-performance software capabilities.
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In this paper, we present our current research into developing component-based applications

in chemistry. In the next section, we provide a brief overview of CCA concepts and tools that are

used. We then describe the chemistry, optimization, and linear algebra components used to solve

a sample chemical problem: molecular structure optimization. We examine several optimization

examples and draw conclusions from our experience in component development.

2 The Common Component Architecture

The Common Component Architecture specification9–11 has arisen in response to the need for a

modular programming model that addresses the requirements of high-performance scientific codes.

In particular, software interoperability and reuse are facilitated in an environment that emphasizes

performance and parallel execution. The CCA community, of which we are a part, is developing

a software suite, including support tools, components, and frameworks for management of these

components, that enables researchers to build high-performance programs conforming to compo-

nent standards.

The design of suitable interfaces that link different software packages is often complicated

by the use of many programming languages, such as Fortran 77, Fortran 90, C, C++, Python,

and Java. Differences, for example in namespaces and memory access, make the compilation and

subsequent linking of heterogeneous codes an onerous task, especially when multiple architectures

must be supported. The Scientific Interface Definition Language (SIDL)12 and a code generation

tool called Babel12,13 address many of the difficulties of language interoperability.

SIDL provides a set of fundamental data types and an object-oriented programming model. A

SIDL interface declares a set of methods using these data types, and a SIDL class is an imple-
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mentation of methods that may belong to one or more interfaces. Scientists can implement a class

using any of the supported programming languages and can use applications written in other lan-

guages by employing code generated from Babel. The production of the required SIDL interface

definitions effectively separates design and implementation tasks, encouraging focus on high-level

design concepts during initial stages of development. The use of Babel is not specifically required

by the formal CCA specification, but it has been widely adopted by CCA developers.

The CCA specification itself is defined as a set of SIDL interfaces. In this context, a compo-

nent is a SIDL class that implements the Component interface provided in the CCA specification

and usually one or more specialized interfaces. Component interactions take place between inter-

faces, termed uses ports and provides ports. Instantiation of components, mediation of interactions

between ports, and composition of a working application are the primary tasks of a framework.

The CCA Component interface includes only the setServices() method, which the

framework uses to provide Services objects to instantiated components. The Services ob-

ject provides access to a set of framework services, which includes the capability to register ports

that a component provides or uses. Beyond employing our existing codes to provide implemen-

tations of the SIDL interfaces that we have developed, the only additional programming work in-

volved the use of a small set of these services methods to handle the description and acquisition of

ports. In this work, we have used Ccaffeine,14 one of several frameworks14–18 that comply with the

CCA specification. The Ccaffeine framework currently supports both single-program, multiple-

data (SPMD) and multiple-program, multiple-data (MPMD) parallel models and is available for

multiple platforms.

The Common Component Architecture is distinguished from other component technologies

in its avoidance of both added performance overhead and interference with parallel programming

4



models. Low overhead in component interaction is achieved by loading components from dynam-

ically loaded libraries into the same process. The overhead associated with a method call over a

connected port is similar to that of a C++ virtual function call. Parallel execution within individual

components proceeds without hindrance from the framework.

3 Chemistry Optimization Architecture

In nearly all cases of chemical interest, the large differences between the masses of nuclei and

electrons allow the treatment of electronic motion independent of nuclear motion. Under this

simplification, termed the Born-Oppenheimer approximation, the electronic wavefunctions and,

therefore, energies are parameterized by the nuclear coordinates.19 The resulting potential energy

surface (PES) for nuclear motion is determined by summing the nuclear and electronic energies

for a given nuclear configuration. Local minima and saddle points on the PES correspond to

possible stable chemical species and reaction transition states, respectively, and are therefore of

great interest to chemical researchers.

In the following sections, we describe the interfaces and components that we have devised to

perform geometry optimization, wherein the total molecular energy is minimized. The software

packages that we have integrated to perform this task include two quantum chemistry packages,

Massively Parallel Quantum Chemistry (MPQC)20–22 and NWChem,23,24 an optimization solver

package, the Toolkit for Advanced Optimization (TAO),25,26 and two parallel data management

packages, Global Arrays (GA)27,28 and the Portable Extensible Toolkit for Scientific Computation

(PETSc).29,30 All these packages are designed for high performance on parallel hardware.
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The general architecture for our component based application is shown in Figure 1. The appli-

cation is composed of several components that together accomplish the task of molecular geometry

optimization. Each of the components in the architecture implements ports that are based on SIDL

interface specifications. The interface specifications will be partially described in this paper; the

full descriptions are available from the authors.

1. Although not a component, the model object is a Babel class implementation of the quantum

chemistry Model interface for the particular code of interest. The model provides the core

quantum chemistry capabilities: evaluation of molecular energies and energy derivatives.

NWChem and MPQC implementations are currently available.

2. The model factory component uses information concerning the molecular system and calcu-

lation options to instantiate a model object. Connected components request a model via the

provided ModelFactory port.

3. The coordinate model component provides a ModelPort and uses the ModelFactory

port to obtain a model object. This additional chemistry layer performs optimization tasks

that either are specific to the chemical domain or require knowledge of operational details

for the chemistry models.

4. The solver component implements various optimization algorithms. It provides a SolverPort

to applications, and it uses an LAFactoryPort to instantiate required linear algebra ob-

jects and a ModelPort to compute energy, gradient, and Hessian information.

5. The linear algebra component, currently available as either a PETSc or a GA implementa-

tion, supports basic and advanced linear algebra computations by providing an LAFactoryPort.
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Each of these components is further described in the following sections.

4 Chemistry Components

The fundamental task in adapting quantum chemistry packages to provide components is imple-

mentation of the Model interface. A model contains a molecule class, which maintains molecular

structure information and method implementations for molecular energy and energy derivative

evaluations. As derivative properties are calculated in Cartesian coordinates, the arguments and

return values for chemistry models are restricted to Cartesian quantities. Provided the chemistry

models return quantities in the same reference frame as the given coordinates, the details of sym-

metry implementation and molecule reorientation will not cause conflicts between model imple-

mentations. Thus, fault-tolerant applications can be constructed by using redundant chemistry

models as back-ups. Though the specific implementation of a model will vary based on the design

of the particular quantum chemistry package used, the initialization of a model will generally re-

quire the collection of input parameters such as the level of theory, choice of atomic orbital basis

set, and molecular structure. An implementation of the ModelFactory interface must be pro-

vided to collect input parameters and provide them to the initialization member of the model class,

returning the initialized model via its provides port.

We have implemented models and model factories for both NWChem and MPQC, and it

should be a straightforward task to add components based on other electronic structure programs.

NWChem is a computational chemistry code created for massively parallel computations. It has

many theoretical and algorithmic methods available for electronic structure calculations with Gaus-

sian and plane-wave basis sets as well as classical molecular dynamics capabilities.23,24 While
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NWChem uses object-oriented principles, it is implemented in a combination of Fortran, C, and

Python (with Python used mostly for prototyping capabilities). Therefore, the model factory in-

stantiates essentially the same NWChem object for all initializations. This is in contrast to the

MPQC implementation, where the model factory instantiates a different object depending on the

input parameters. The first implementation of the NWChem model factory and model functional-

ity used C++ and C++ wrappers because the Ccaffeine framework initially worked only with C++

components. However, the latest versions of the framework are Babel aware and allow the compo-

nent developer to use languages supported by Babel. We have now implemented these functionali-

ties with native Fortran, which makes our development much more straightforward. This approach

will also enable other components that rely on lower-level routines to be implemented easily.

The MPQC package provides parallel implementations of Hartree-Fock, density functional,

and various perturbative methods. The object-oriented design is implemented in C++ and runs ef-

ficiently on a wide range of computer architectures.20–22 Adaptation of the MPQC code to provide

the core quantum chemistry components primarily involved utilization of the MPQC wavefunc-

tion class. The model contains an MPQC wavefunction object, which is constructed using an

input string provided by the model factory. Property evaluation methods in the model simply call

corresponding methods of the MPQC wavefunction object.

Implementation of the Model and ModelFactory interfaces provides the basic functional-

ity of quantum chemical codes. The paradigm followed here is to build higher-level application-

specific component systems on top of these core chemistry components, using existing general-

purpose components when possible. The optimization architecture additionally includes mathe-

matics components, which provide optimization capabilities, and a component that handles chem-

istry domain-specific tasks. The chemistry-specific coordinate model hides operational details of
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the chemistry model, such as the updating of molecular structures via the molecule class, from the

mathematics layer. Inclusion of a chemistry-specific optimization layer also allows internal co-

ordinate implementations to be provided independent of the chemistry model, maintaining model

interchangeability.

The coordinate model also supports run-time molecular visualization via a viewer interface.

Combining viewer and builder interfaces, we have created a prototype graphical user interface

(GUI). The GUI uses framework services to construct and run the appropriate component appli-

cations based on user input. This prototype front-end demonstrates that component technology

can provide a familiar and user-friendly interface to all quantum codes that adopt a component

architecture.

5 Numerical Optimization Component

The Toolkit for Advanced Optimization (TAO)25,26 provides optimization software for the solution

of scientific applications on high-performance architectures. These applications include minimiz-

ing energy functionals that arise in differential equations31 and molecular geometry optimization.

As surveyed by Moré and Wright,32 various software packages are available for solving these

problems; however, their portability, versatility, and scalability are restricted within parallel en-

vironments. Even on uniprocessor architectures, numerical software has traditionally made rigid

assumptions about the data structures used for mathematical objects such as vectors and matrices.

Use of optimization software within complex applications involving several research groups

and multiple software packages demands robust and flexible solution strategies. TAO includes a

variety of algorithms, and its implementations of these algorithms allow scientists to customize
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solvers to improve their performance. In particular, the choice of data structures and linear solvers

can significantly affect the usage of optimization solvers and their performance.

Within the Common Component Architecture, TAO provides the SolverPort, which allows

applications to use its optimization solvers. Its interface allows applications to specify the algo-

rithm and set a variety of options. The applications under consideration have the following form:

minimize ������� subject to �	��
��� . The objective function � is assumed to be differentiable, and

the lower and upper bounds on the variables, � and  , may be set to negative and positive infinity

to make the application unconstrained.

The following optimization solvers are implemented in TAO for unconstrained and bound con-

strained minimization problems.

1. Newton methods,33 which use the first- and second-derivative information from the objective

function, are well known for their fast local convergence properties. Global convergence of

these methods is enforced using either a line search or a trust region.3

2. Variable metric methods use the first-order derivatives at several points to approximate the

Hessian matrix of second derivatives. These methods are also known as quasi-Newton and

preconditioned conjugate gradient methods. Each iteration uses relatively little time and

memory compared to full Newton methods. The methods have proven successful for un-

constrained problems and have been adapted to bound-constrained optimizations.7,8 These

methods are particularly useful when the matrix of second derivatives is fully dense and

expensive to compute.
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A similar interface to each of these solvers allows applications to switch the algorithm used without

restructuring their code. The implementation of these algorithms in TAO reduces to a handful of

well-defined operations on the objective function and the vectors and matrices.

The TAO solver component uses the ModelPort for operations on the objective function. A

component that provides the ModelPort must implement the energy function, provide derivative

information, and define bounds when they exist.

The vector and matrix operations used in the optimization solvers involve sums, inner prod-

ucts, and a variety of more specialized linear algebra operations. Objects that implement these

operations can be instantiated through the LAFactoryPort. TAO uses this port to create objects

suitable for its algorithms. Both Global Arrays and PETSc provide this port and offer implemen-

tations of these data structures for the solvers in TAO.

The TAO design philosophy is to use object-oriented techniques of data and state encapsulation,

abstract classes, and limited inheritance to create a flexible optimization toolkit. The algorithms

in the toolkit strongly emphasize the reuse of external tools where appropriate. Its design enables

bidirectional connection to lower-level linear algebra support provided in toolkits such as PETSc

and Global Arrays as well as higher-level application packages such as MPQC and NWChem.

6 Linear Algebra Components

Parallel implementations of mathematical operations involving vectors and matrices can be found

in several packages which can be used as components.
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6.1 Global Arrays Component

The Global Arrays (GA) toolkit27,28 provides a shared-memory programming interface allowing

distributed-memory computers to access dense multidimensional arrays. An array created with the

GA toolkit is a distributed array that can be accessed in a fashion similar to accessing an array in

shared memory. The GA model exposes to the programmer the hierarchical memory of modern

high-performance computer systems and, by recognizing the communication overhead for remote

data transfer, it promotes data reuse and locality of reference. Global arrays allow the programmer

to flexibly decompose and distribute the arrays among the processors, as well as to determine

distribution and locality information through library operations. Since GA is compatible with

MPI,34 programmers can use full MPI functionality in addition to GA functionality.

The GA toolkit offers support for both task and data parallelism. Task parallelism is sup-

ported through the one-sided (noncollective) copy operations that transfer data between global

memory (distributed/shared array) and local memory. The data-parallel computing model is sup-

ported through the set of collectively called functions that operate on either entire arrays or sec-

tions of global arrays. The set includes BLAS-like operations such as copy, addition, transpose,

dot product, and matrix multiplication. The set of data-parallel operations has been enlarged to

support the requirements of the LAFactoryPort, which includes elementwise operations on ar-

rays (e.g., elementwise addition of two arrays or shifting a diagonal). The GA toolkit also extends

its capabilities in the area of linear algebra by offering interfaces to third party libraries, for exam-

ple, standard and generalized real symmetric eigensolvers (PeIGS35) and linear equation solvers

(ScaLAPACK36).
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The GA component provides the GlobalArrayPort and LAFactoryPort, of which only

the latter is used in this application. The GA ports are the set of public interfaces that can be used

by other components. The GlobalArrayPort provides public interfaces for creating and ac-

cessing distributed arrays. The GlobalArrayPort offers a set of operations for one-sided data

transfer operations (get, put, scatter, gather, etc.), collective array operations, and supportive opera-

tions for data locality control, data distribution, and queries. The LAFactoryPort provides TAO

(and other components) with core linear algebra support for manipulating vectors, matrices, and

linear solvers. While GA already has interfaces for Fortran 77, C, Python, and C++, developing a

CCA component version of GA further increases its usability with other programs.

6.2 PETSc Component

PETSc29,30 is a suite of data structures and routines for the scalable solution of scientific applica-

tions. The software includes linear and nonlinear equation solvers as well as distributed-memory

implementations of vectors and matrices that use MPI34 for interprocess communication. Effi-

cient methods for the assembly of these structures hide many details of MPI, and a large library of

operations involving these structures facilitates their use within large-scale applications.

Given an objective function and derivative information, many nonlinear solvers are defined as

a sequence of vector and matrix operations similar to the ones found in the BLAS and LAPACK

libraries. The parallel implementations of these methods in PETSc can be used by these solvers to

achieve scalable performance on large-scale applications.
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Used within a component framework, PETSc provides the LAFactory port. This port con-

sists of an interface for creating vector and matrix objects of appropriate size and distribution over

processors.

7 Optimization Examples

The chemistry, optimization, and linear algebra components described in the preceding sections

comprise a toolkit for large-scale quantum chemistry computations on high-performance architec-

tures. A review of our early numerical results demonstrates the flexibility and potential for future

research made possible by component applications.

Figure 2 illustrates speedup for the first five energy and gradient evaluations of an RHF/6-

311G(2df,2pd)37–39 optimization of isoprene performed with MPQC-based applications using up

to 64 processors. The strong correlation between speedup for the stand-alone and component soft-

ware indicates that parallel performance and scalability do not suffer from component overhead,

thus meeting one of the goals of this work.

Since most software designs make rigid assumptions regarding programming language and

data structures, the ability to compare packages has traditionally been very limited. A significant

benefit of component software is that developers can more easily compare different techniques for

solving the same problem. By offering a more uniform interface to some of their functionality,

NWChem and MPQC can be used interchangeably within the component framework. Similarly,

different optimization solvers implementing the SIDL interface can be tested and benchmarked.

As an example of this flexibility, we compared the optimization solvers in NWChem, MPQC,

and TAO. These optimization solvers each implement variations of a quasi-Newton algorithm.3,7
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Quasi-Newton algorithms use differences in coordinates and gradients between consecutive iter-

ations, termed correction pairs, to create a quadratic model. The minimizer of this model deter-

mines the step direction. Several features, however, distinguish the three solvers. The MPQC

and NWChem solvers perform the traditional Hessian update of Broyden, Fletcher, Goldfarb, and

Shanno (BFGS),3 where the approximate Hessian is explicitly updated at each optimization step

using the current correction pair. The limited-memory variable-metric (LMVM) method7 in TAO

implicitly updates an initial approximation to the Hessian using a limited collection of correction

pairs. The operation count and memory requirement of this method scale linearly with the number

of variables. The component-based optimizations presented here used the TAO solver component

with the LMVM algorithm storing at most twenty correction pairs. For a steplength, MPQC always

uses a unit multiple of the step direction, whereas NWChem may minimize a second quadratic

model, and TAO applies cubic interpolation to adjust the steplength when the unit size does not

achieve sufficient reduction in the energy function.

The initial Hessian approximations also differ among the three solvers. Whereas TAO uses

a multiple of the identity matrix to approximate the initial Hessian matrix, MPQC can transform

a diagonal matrix in internal coordinates, for which force constants can be more accurately ap-

proximated, into a full matrix in Cartesian coordinates. While NWChem can also approximate the

Hessian in internal coordinates, a diagonal scaled by 1/2 in Cartesian coordinates was used for this

research. The LMVM algorithm used in the TAO package requires a guess Hessian as input for

each iteration.

The performance of the available solvers on different classes of chemical structures contrasts

the strengths of each solver. Tables I and II provide the number of function and gradient eval-

uations required to determine a converged structure for glycine (C � H � NO � ), isoprene (C � H ��� ),

15



phosphoserine (C � H � NO � P), acetylsalicylic acid (C � H � O � ), and cholesterol (C ��� H � � O) using the

various software programs. Each molecule was optimized at the RHF/6-31G level of theory37,40,41

using a starting structure obtained at the RHF/STO-3G level of theory.37,42,43 Since the purpose

of these computations is to show the differences between optimization methods, this level of the-

ory provides reasonable results without using significant resources. Energies were computed to an

accuracy of 10 �
� Hartrees in MPQC. For NWChem the value for the SCF convergence criterion

(the norm of the orbital gradient) was set to 10 �
� �

, yielding an accuracy of at least 10 �
�

Hartrees.

The NWChem integral screening threshold was set to 10 �
� �

. The optimizations were performed

in Cartesian coordinates with convergence tolerances of 0.00045 (0.00030) and 0.00180 (0.00120)

for maximum (RMS) gradients and displacements, respectively (atomic units).

Table I presents results for the stand-alone NWChem package and the NWChem/TAO component-

based package. The stand-alone NWChem results, generated both with and without line searching,

demonstrate that line minimization frequently produces moderate decreases in iteration counts (the

number of iterations corresponds to the number of gradient evaluations for the NWChem solver).

Though the NWChem solver with line searching does at times yield the lowest number of itera-

tions, the high number of function evaluations required for the line searches causes total execution

times to exceed those obtained without line searching for all examples.

While the accompanying differences in Hessian approximations do not allow direct compari-

son of line searches in NWChem and TAO, the backtracking line search7 implemented in TAO is

able to avoid undue overhead and is therefore an appropriate algorithm to use in quantum chem-

istry optimization. Line searching is not currently available with the stand-alone MPQC package.

From the standpoint of algorithms, the availability of a modern, efficient line search is one clear

advantage that quantum chemistry packages may gain through adoption of the CCA architecture.
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The results for the chemistry and TAO solvers using diagonal guess Hessians (Tables I and

II), show that performance benefits are seen with the LMVM solver. As Cartesian coordinates

are strongly coupled, Hessians in these coordinates contain large off-diagonal elements and are

poorly approximated by diagonal matrices. Regardless, the TAO solver shows considerable per-

formance enhancements in several instances. Factors including the Hessian update and line search

schemes contribute in varying degrees to the increased performance observed with the TAO solver

component.

The results in Table II emphasize the importance of Hessian approximation quality. Comparing

the results obtained with stand-alone MPQC using the transformed internal guess with those for

the MPQC/TAO component software, it is apparent that the traditional BFGS algorithm with a

good guess Hessian significantly outperforms the current LMVM algorithm. Whether the BFGS

or LMVM method is preferred when both use a good guess Hessian is an interesting question

that is driving further code development. To improve performance in the chemistry discipline,

TAO developers plan to modify the LMVM algorithm to use a dense guess Hessian provided via

the ModelPort. Since the number of stored correction pairs can be varied, the LMVM method

may produce better Hessian approximations, particularly for long optimizations in which BFGS

Hessian contributions accumulated in early iterations could be detrimental.

The integration of software packages brought about by this project has enabled a range of obser-

vations. Use of the LMVM method is relatively new in computational chemistry, but preliminary

results show that further exploration of the algorithm should be pursued. Beyond the examination

of solver algorithm performance, valuable insight has been gained into the sensitivity of quantum

calculations to numerical issues. Surprisingly, we have observed that the path to a minimum can
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be extremely sensitive to not only Hessian updates and line searches, but also SCF convergence

criteria and even round-off error.

8 Conclusions

The optimization architecture and example calculations described in this work demonstrate several

benefits of component technology. The component concept naturally encapsulates useful software

entities and encourages generic interface definitions. With standard component architectures in

place, the programming language issue is of concern only at the well-defined component bound-

aries where tools such as Babel can be employed. As illustrated by our optimization examples,

component frameworks allow developers to easily compare techniques. The example calculations,

demonstrating performance enhancements and suggesting routes to further improve the TAO solver

component for chemical applications, show that component toolkits offer the potential for new re-

search and collaborations between otherwise isolated researchers.

Although work remains to provide the optimization capabilities and efficiency expected by

typical users, a component geometry optimization architecture has been developed that allows the

leveraging of external solver packages. The greatest potential for benefit lies in more complicated

applications of constrained optimization, transition state searching, and reduced density matrix

optimization. Solution strategies for such problems are not as well understood, and the complexity

of these strategies implies considerable effort in their implementations. The availability of robust

and efficient implementations of these strategies in a component framework will provide greater

incentive for chemists to use specialized mathematics packages. With the imminent developments

in TAO that will allow it to use additional information from chemists and other application groups,
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chemical scientists who adopt component technology will be provided a solver that leverages up-

to-date optimization technology. In addition to building further capabilities using the existing

model components, we will explore the potential for low-level integration within chemistry models.

The flexibility of component technology does come at a cost. Software development best prac-

tices are still emerging as the community gains experience, and a fair investment of time is required

for software developers wishing to adopt CCA technology. Building functioning component-based

applications is considerably complex, requiring installation not only of each software package con-

tributing components, but also of several middleware packages. Currently, the users of component

software are primarily those who develop it. Adoption of component technology by the wider

chemical community will depend on improvement of the deployment process.

The components that we have developed form the foundation of a flexible toolkit for quantum

chemical computations. Through the adoption of technologies developed by the CCA commu-

nity, our component applications are able to seamlessly incorporate software packages spanning

multiple scientific disciplines, development groups, software architectures, and programming lan-

guages. Comprising software and middleware designed with a focus on performance, these appli-

cations take full advantage of modern parallel computing capabilities. This component platform

eliminates barriers that discourage code reuse and collaborative development, thereby facilitating

interaction among research groups.
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[7] Benson, S.; Moré, J. A Limited-Memory Variable-Metric Algorithm for Bound-Constrained
Minimization, Technical Report ANL/MCS-P909-0901, Mathematics and Computer Science
Division, Argonne National Laboratory, 2001.

[8] Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C. Y. SIAM J Sci Comp 1995, 16, 1190-1208.

[9] Armstrong, R.; Gannon, D.; Geist, A.; Keahey, K.; Kohn, S.; McInnes, L.; Parker, S.;
Smolinski, B. in Proceedings. The Eighth International Symposium on High Performance
Distributed Computing; IEEE Press: Santa Fe, 1999.

[10] Bernholdt, D. E.; Allan, B. A.; Armstrong, R.; Bertrand, F.; Chiu, K.; Dahlgren, T. L.;
Damevski, K.; Elwasif, W. R.; Epperly, T. G. W.; Govindaraju, M.; Katz, D. S.; Kohl, J. A.;
Krishnan, M.; Kumfert, G.; Larson, J. W.; Lefantzi, S.; Lewis, M. J.; Malony, A. D.;
McInnes, L. C.; Nieplocha, J.; Norris, B.; Parker, S. G.; Ray, J.; Shende, S.; Windus, T. L.;
Zhou, S. Intl J High-Perf Computing Appl 2004, submitted.

[11] CCA Forum; CCA Forum homepage; http://www.cca-forum.org/.

[12] Dahlgren, T.; Epperly, T.; Kumfert, G. Babel User’s Guide, version 0.9.0, 2004.

[13] Lawrence Livermore National Laboratory; Babel homepage;
http://www.llnl.gov/CASC/components/babel.html.

[14] Allan, B. A.; Armstrong, R. C.; Wolfe, A. P.; Ray, J.; Bernholdt, D. E.; Kohl, J. A.
Concurrency and Computation: Practice and Experience 2002, 14, 1-23.

[15] Govindaraju, M.; Krishnan, S.; Chiu, K.; Slominski, A.; Gannon, D.; Bramley, R. in 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid; IEEE Press: Santa
Fe, 2003.

[16] Zhang, K.; Damevski, K.; Venkatachalapathy, V.; Parker, S. in Proceedings of the 9th
International Workshop on High-Level Parallel Programming Models and Supportive Envi-
ronments (HIPS 2004); IEEE Press: Santa Fe, 2004, to appear.

21



[17] Grimshaw, A.; Ferrari, A.; Knabe, F.; Humphrey, M. Computer 1999, 32, 29-37.

[18] Lewis, M.; Ferrari, A.; Humphrey, M.; Karpovich, J.; Morgan, M.; Natrajan, A.; Nguyen-
Tuong, A.; Wasson, G.; Grimshaw, A. J Parallel and Distributed Comp 2003, 63, 525-538.

[19] Levine, I. N. Quantum Chemistry; Allyn and Bacon: Boston, 1974; Chapter 13.

[20] Janssen, C.; Seidl, E.; Colvin, M. in ACS Symposium Series, Parallel Computing in Com-
putational Chemistry, Vol. 592; American Chemical Society: Washington, D.C., 1995.

[21] Janssen, C. L.; Nielsen, I. M. B.; Colvin, M. E. in Encyclopedia of Computational Chem-
istry; John Wiley & Sons: Chichester, UK, 1998; Chapter Parallel Processing for ab Initio
Quantum Mechanical Methods.

[22] Sandia National Laboratories; MPQC homepage; http://aros.ca.sandia.gov/˜cljanss/mpqc.

[23] Kendall, R. A.; Apra, E.; Bernholdt, D. E.; Bylaska, E. J.; Dupuis, M.; Fann, G. I.;
Harrison, R. J.; Ju, J. L.; Nichols, J. A.; Nieplocha, J.; Straatsma, T. P.; Windus, T. L.;
Wong, A. T. Comput Phys Commun 2000, 128, 260-270.

[24] Pacific Northwest National Laboratory; NWChem homepage;
http://www.emsl.pnl.gov/docs/nwchem/.
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Table I. Numbers of energy and gradient evaluations required for Cartesian structure optimizations

at the HF/6-31G level of theory. Results are provided for the stand-alone version of NWChem

using a line search and no line search and for the NWChem/TAO component-based application.

NWChem (no line search) NWChem (line search) NWChem/TAO

Molecule Energy Gradient Energy Gradient Energy Gradient

glycine 33 33 65 33 19 19

isoprene 56 56 89 45 45 45

phosphoserine 79 79 121 61 67 67

acetylsalicylic acid 43 43 83 42 51 51

cholesterol 33 33 � 194 � 98 30 30
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Table II. Numbers of energy and gradient evaluations required for Cartesian structure optimiza-

tions at the HF/6-31G level of theory. Results are provided for the stand-alone version of MPQC

using transformed internal and unit guess Hessians and for the MPQC/TAO component-based ap-

plication.

MPQC (transformed) MPQC (unit) MPQC/TAO

Molecule Energy Gradient Energy Gradient Energy Gradient

glycine 17 17 26 26 19 19

isoprene 18 18 75 75 43 43

phosphoserine 45 45 85 85 62 62

acetylsalicylic acid 24 24 54 54 48 48

cholesterol 25 25 27 27 30 30
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Figure Captions:

Figure 1. A schematic representation of the component optimization architecture.

Figure 2. Parallel speedup for the first five function and gradient evaluations of isoprene RHF/6-

311G(2df,2pd) optimizations using MPQC in stand-alone (MPQC) and component (MPQC/TAO)

applications.
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Figure 1.
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Figure 2.
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