
On the Implementation of Automatic Differentiation Tools

Christian H. Bischof (bischof@sc.rwth-aachen.de)
Institute for Scientific Computing
Aachen University of Technology
Seffenter Weg 23
52074 Aachen, Germany

Paul D. Hovland (hovland@mcs.anl.gov) and Boyana Norris
(norris@mcs.anl.gov)
Mathematics and Computer Science Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439-4844

Abstract. Automatic differentiation is a semantic transformation that applies the rules of
differential calculus to source code. It thus transforms a computer program that computes a
mathematical function into a program that computes the function and its derivatives. Deriva-
tives play an important role in a wide variety of scientific computing applications, including
numerical optimization, solution of nonlinear equations, sensitivity analysis, and nonlinear
inverse problems. We describe the forward and reverse modes of automatic differentiation
and provide a survey of implementation strategies. We describe some of the challenges in
the implementation of automatic differentiation tools, with a focus on tools based on source
transformation. We conclude with an overview of current research and future opportunities.

Keywords: Semantic Transformation, Automatic Differentiation

1. Introduction

Derivatives play an important role in a variety of scientific computing appli-
cations, including optimization, solution of nonlinear equations, sensitivity
analysis, and nonlinear inverse problems. Automatic, or algorithmic, differ-
entiation technology provides a mechanism for augmenting computer pro-
grams with statements for computing derivatives (Griewank, 1989; Griewank,
2000). In general, given a subprogram that computes a function

��������	��
�� � �	�
with � inputs and � outputs, automatic differentiation tools

provide a subprogram that computes
������� �� ���

, or the derivatives of the
outputs

with respect to the inputs

�
. In order to produce derivative compu-

tations automatically, automatic differentiation tools systematically apply the
chain rule of differential calculus at the elementary operator level.

The basic ideas of automatic differentiation date back to the 1950s (Nolan,
1953; Kahrimanian, 1953; Beda et al., 1959). Over the past decade, however,
the use of automatic differentiation increased in popularity, as robust tools
such as ADIFOR (Bischof et al., 1992; Bischof et al., 1996) and ADOL-

2

subroutine foo(s,A,n)

integer i,n
double precision f,g,s,A(n)

g = 0
do i = 1,n

g = g + A(i)*A(i)
enddo
g = sqrt(g)

s = 0
do i = 1,n

call func(f,A(i),g)
s = s + f

enddo

return
end

subroutine func(f,x,y)

double precision f,x,y,a,b

if (x .gt. y) then
a = sin(y)
b = log(x)*exp(x-y)

else
a = x*sin(x)/y
b = log(y)

end if
f = exp(a*b)

return
end

Figure 1. An example subprogram.

C (Griewank et al., 1996) became available. These tools have been applied
to many applications with several hundred thousand lines of source code,
including one (FLUENT) with over a million lines of source code (Bischof
et al., 2001). Because automatic differentiation computes derivatives analyti-
cally and sytematically, it does not incur the numerical errors inherent in finite
difference approximations, nor does it exhibit the propensity for mistakes
characteristic of hand-coding. Also, if a program changes, as often occurs
during code development, an up-to-date version of the derivative computation
is immediately available.

The rest of the paper is organized as follows. Section 2 provides an in-
troduction to automatic differentiation. Section 3 surveys the various imple-
mentation strategies for automatic differentiation tools. Section 4 describes
the implementation of one compiler-based tool. Section 5 reviews the imple-
mentation of automatic differentiation tools and summarizes current research
and future opportunities.

2. Introduction to Automatic Differentiation

Automatic differentiation is a family of methods for obtaining the derivatives
of functions computed by a program (see (Griewank, 2000) for a detailed
discussion). automatic differentiation couples rule-based differentiation of
language built-ins (elementary operators and intrinsic functions) with deriva-
tive accumulation according to the chain rule of differential calculus. The
associativity of the chain rule leads to many possible “modes” of combining
partial derivatives. Consider, for example, the function func given in Fig-
ure 1, evaluated at

������ � �"!
. If we follow the false branch (since

�$#
)

and reduce to three address code, we have the following.

3

t0 = sin(x)
t1 = x*t0
a = t1/y
b = log(y)
t2 = a*b
f = exp(t2)

Then,%'&%�(*) +-,/.10 %'&%325476 %�254%98:6 %98%32<;=6 %32>;%32-? %32@?%A(*) +-,B.�C %D2>;%�(*) +@,/.FEGC %98%A(*) +H,/.IEJC %D2@4%3K %3K%�(*) +@,/.FEML
So, N& 0 & 6 K 6 ;, (O)QPSRSTFUV)QP N) C 2@?WP N) .YX 8, N, EGC 8�P ;, P N, E +

where Z� , Z , and Z� are total derivatives. Evaluating at
�[� � � � �\!

, and
assuming the vectors Z� and Z have been initialized appropriately,1 one can
compute Z� asN& 0^] _=`badc (_ . ` ;_ ` _ 4 PS?9P N) C ;�P N)fe X ;4 _ N, e C

;4 P ;_ P N, e L (1)

The forward mode combines partial derivatives starting with the input vari-
ables and propagating forward to the output variables, or, in the parenthesized
form of Equation 1, from the inside out. Thus, Z� could be computed as
follows:

t0 = sin(x) {1.0000, 1}
prtl0 = cos(x) {0.0000, 1}
t0dot(1:n) = prtl0 * xdot(1:n) {0*xdot, N}
t1 = x*t0 {1.5708, 1}
t1dot(1:n) = t0*xdot(1:n) + x*t0dot(1:n) {xdot, 3N}
a = t1/y {0.5000, 1}
prtl0 = 1.0/y {0.3183, 1}
prtl1 = -a/y {-0.1591, 1}
adot(1:n) = prtl0*t1dot(1:n) + prtl1*ydot(1:n)

{0.3182*xdot - 0.1591*ydot, 3N}
b = log(y) {1.1447, 1}
prtl0 = 1.0 / y {0.3183, 1}
bdot(1:n) = prtl0*ydot(1:n) {0.3183*ydot, N}
t2 = a*b {0.5724, 1}
t2dot(1:n) = b*adot(1:n) + a*bdot(1:n)

{0.3644*xdot - 0.02303*ydot, N}
f = exp(t2) {1.7725, 1}
fdot(1:n) = f*t2dot(1:n) {0.6458*xdot - 0.04083*ydot, N}

with each statement annotated with the approximate numerical value at
�g�� � � �"!

and the number of floating point operations. The reverse mode com-
bines partial derivatives starting with the output variables and propagating
backward to the input variables, or, in the parenthesized form of Equation 1,
for the outside in. The reverse mode computes h�i�[� � � ���

and h �j� � � �
,

which can be combined with Z� and Z according to the chain rule to yield Z� .
The reverse mode can be implemented as follows.

1 For the k th invocation of func, xdot should be initialized to the k th unit vector and ydot to
(1/g)A.

4

t0 = sin(x) {1.0000, 1}
prtl0 = cos(x) {0.0000, 1}
t1 = x*t0 {1.5708, 1}
prtl1 = t0 {1.0000, 0}
prtl2 = x {1.5708, 0}
a = t1/y {0.5000, 1}
prtl3 = 1.0/y {0.3183, 1}
prtl4 = -a/y {-0.1591, 1}
b = log(y) {1.1447, 1}
prtl5 = 1.0 / y {0.3183, 1}
t2 = a*b {0.5724, 1}
prtl6 = b {1.1447, 0}
prtl7 = a {0.5000, 0}
f = exp(t2) {1.7725, 1}
prtl8 = f {1.7725, 0}
fbar = 1.0 {1.0000, 0}
t2bar = prtl8 * fbar {1.7725, 1}
bbar = prtl7 * t2bar {0.8862, 1}
abar = prtl6 * t2bar {2.0290, 1}
ybar = prtl5 * bbar {0.2821, 1}
ybar = ybar + prtl4 * abar {-0.04083, 2}
t1bar = prtl3 * abar {0.6458, 1}
t0bar = prtl2 * t1bar {1.0145, 1}
xbar = prtl1 * t1bar {0.6458, 1}
xbar = xbar + prtl0 * t0bar {0.6458, 2}
fdot(1:n) = xbar*xdot(1:n) + ybar*ydot(1:n)

{0.6458*xdot - 0.04083*ydot, 3N}

The forward mode has a total cost of 12N+10 operations, and the reverse
mode has a total cost of 3N+21 operations. For large N, therefore, the reverse
mode is significantly cheaper than the forward mode. This is true for all func-
tions with a single output variable, not just the example shown. This feature
makes the reverse mode extremely attractive for computing the derivatives
of scalar functions, especially functions with a large number of input vari-
ables (Griewank, 1989). A disadvantage of the reverse mode, however, is
that (in a naive implementation), the storage requirements grow in proportion
to the number of operations in the function evaluation. This is because par-
tial derivatives (and the intermediate variables used in computing the partial
derivatives) are used in the reverse order of that in which they are computed.
Except for small programs or code segments, this cost is too high. Conse-
quently, practical implementations of the reverse mode rely on checkpointing
strategies (Griewank, 1992; Restrepo et al., 1998; Grimm et al., 1996; Faure,
2001) or use interprocedural dataflow analysis to determine what quantities
need to be stored.

In the preceding discussion of the forward and reverse modes, we ignored
the control flow and the differentiation of subroutine foo. We also simplified
the presentation of the forward and reverse modes by relying on the fact that
the three address code was in single assignment form. Figure 2 shows the code
generated by the TAPENADE automatic differentiation tool (TAPENADE,

5

C Generated by TAPENADE (INRIA, Tropics team)
C Version 2.0.6 - (Id: 1.14 vmp Stable -
Thu Sep 18 08:35:47 MEST 2003)
C
C Differentiation of func in reverse (adjoint) mode:
C gradient, with respect to input variables: x y
C of linear combination of output variables: f x y
C

SUBROUTINE FUNC_B(f, fb, x, xb, y, yb)
DOUBLE PRECISION f, fb, x, xb, y, yb
DOUBLE PRECISION a, ab, arg1, arg1b, b, bb
INTEGER branch
INTRINSIC EXP, SIN, LOG

C
C

IF (x .GT. y) THEN
a = SIN(y)
arg1 = x - y
b = LOG(x)*EXP(arg1)
CALL PUSHINTEGER4(0)

ELSE
a = x*SIN(x)/y
b = LOG(y)
CALL PUSHINTEGER4(1)

END IF
CALL PUSHREAL8(arg1)
arg1 = a*b
f = EXP(arg1)
arg1b = EXP(arg1)*fb
CALL POPREAL8(arg1)
ab = b*arg1b
bb = a*arg1b
CALL POPINTEGER4(branch)
IF (branch .LT. 1) THEN

arg1b = LOG(x)*EXP(arg1)*bb
xb = xb + EXP(arg1)*bb/x + arg1b
yb = yb + COS(y)*ab - arg1b

ELSE
yb = yb + bb/y - x*SIN(x)*ab/y**2
xb = xb + (x*COS(x)/y+SIN(x)/y)*ab

END IF
END

Figure 2. Reverse mode for subroutine func.

2002) for the subroutine func. The complete code for foo and func using
the forward and reverse modes is included in the Appendix.

The automatic differentiation community has developed its own terminol-
ogy for concepts that may have other names in other research communities.
We provide a few definitions to help guide the reader of this survey and other
papers on automatic differentiation.

Independent variables A subset of the input variables for a program or sub-
program and the set of variables with respect to which one wishes to

6

differentiate. By convention, we denote the number of independent vari-
ables using l .

Dependent variables A subset of the output variables for a program or sub-
program and the set of variables whose derivatives we wish to compute.
By convention, we denote the number of dependent variables using m .

Computational graph The directed acyclic graph (DAG) for a statement,
basic block, or execution trace. Vertex labels are operators or functions
and optionally variable names. This graph is often called the “DAG for
an expression” or “DAG of a basic block” in the compiler literature
(Muchnick, 1997; Aho et al., 1986). Figure 3 shows the computational
graph for the simple example.

Linearized computational graph The computational graph with symbolic
or numeric edge weights equal to the partial derivative of the target
with respect to the source vertex. The derivative of a root vertex with
respect to a leaf vertex is the sum over all paths of the product of the
edge weights along that path (Rote, 1990). Figure 3 shows the linearized
computational graph for the simple example.

Derivative accumulation Application of the chain rule, typically using ei-
ther forward or reverse mode.

Preaccumulation Computing the partial derivatives for a statement, basic
block, or other program subunit. The local partial derivatives are then
used in the overall derivative accumulation. If the number of in or out
variables for the subunit is significantly smaller than the number of total
or directional derivatives being accumulated via the forward or reverse
mode, preaccumulation can result in significant time savings.

Cross-country preaccumulation Combining the partial derivatives in an or-
der other than forward or reverse. In terms of the linearized computa-
tional graph, this corresponds to multiplying edge weights in some order
other than topological or reverse topological. There are exponentially
many possibilities.

Activity analysis Identifying the relevant set of variables (and possibly state-
ments) in the program chop from the independent variables to the depen-
dent variables (Reps and Rosay, 1995; Binkley and Gallagher, 1996),
that is, identifying the set of variables lying along a dataflow path from
the independent variables to the dependent variables. Variables along
a path are termed active, and variables not along any path are termed
passive. There is no need to compute or store derivatives for passive vari-
ables, and automatic differentiation tools that can identify passive vari-

7

no o o o o o o o�pq q q q qYrs s s s-tvu u uYw>x x x y x x x y
z z z { n|x

|y |b
log

|sin |*
t1 | /

a |* | exp
f no o o o o o o o�pq q q q qYrs s s s-t}u u uYw>x x x y x x x y

z z z { n|
| |

| | | | |
1/y

-a/y

t1
cos(x)

x

1/y

b

a
f

Figure 3. Computational graph and linearized computational graph for the simple example.

ables are able to achieve significant memory and time savings (Bischof
et al., 1996).

3. Brief Taxonomy of Automatic Differentiation Tools

Many implementation strategies exist for automatic differentiation. The var-
ious strategies frequently trade off simplicity, performance, elegance, and
versatility. Furthermore, because automatic differentiation is inexorably tied
to a function implemented in some programming language, the implementa-
tion strategy must be compatible with that language. For example, prior to
Fortran 90, there was no way to implement automatic differentiation via op-
erator overloading in Fortran. We discuss the various implementation strate-
gies, using roughly the same taxonomy as Juedes (Juedes, 1991). We provide
examples of each implementation strategy; additional information on avail-
able automatic differentiation software can be found at http://www.-
autodiff.org/Tools/. We also note that several languages and en-
vironments, including AMPL (Fourer et al., 1993), GAMS (Brooke et al.,
1988), and Maple (Monagan and Rodoni, 1996) provide built-in support for
automatic differentiation.

3.1. ELEMENTAL APPROACHES

The first automatic differentiation tools (Wengert, 1964; Wilkins, 1964; Law-
son, 1971; Jerrell, 1989; Hinkins, 1994; Hill and Rich, 1992; Neidinger, 1989)
required the user to replace arithmetic operations (and possibly calls to intrin-
sic functions) with calls to a differentiation library. For example, the state-
ment a = x*sin(x)/ywould be rewritten as

call adsin(t1,t1dot,x,xdot)
call adprod(t2,t2dot,x,xdot,t1,t1dot)
call addiv(a,adot,t2,t2dot,y,ydot)

8

The library computes partial derivatives and applies the chain rule. For
example, addiv might be implemented as

subroutine addiv(q,qdot,n,ndot,d,ddot)
double precision q,n,d,qdot,ndot,ddot
double precision t1,t2

t1 = 1.0/d
t2 = n/d ! alternatively, n*t1
q = t2
qdot = t1*ndot - t1*t2*ddot
return

This strategy is invasive and not well suited to functions defined by large
programs. For languages without operator overloading, however, it is the
simplest strategy to implement.

3.2. OPERATOR OVERLOADING

For languages that support operator overloading, automatic differentiation
may be implemented by using either a simple forward mode approach or a
trace-based approach.

3.2.1. Forward Mode
In its simplest form, operator overloading introduces a new class that carries
function values and derivatives (collectively called Rall numbers (Barton and
Nackman, 1996) or doublets (Bartholomew-Biggs et al., 1995)). The arith-
metic operators and intrinsic functions are overloaded to compute partial
derivatives and apply the chain rule. An abbreviated example of such a class
and its usage appears in Figure 4. Because the forward mode is very easy
to implement with operator overloading, it is frequently used as an example
in classrooms and textbooks (Barton and Nackman, 1996) and has been im-
plemented in many different languages, including Ada (Huss, 1990; Maany,
1989), C++ (Martins et al., 2001; I. Tsukanov, 2003; Bendtsen and Stauning,
1996; Michelotti, 1991; Kalman and Lindell, 1991), Fortran 90 (Stamatiadis
et al., 2000), Haskell (Karczmarczuk, 2001; Nilsson, 2003), MATLAB (Forth,
2001), and Python (Hinsen, 2003). Because automatic differentiation can
be implemented in a few hours for most languages with operator overload-
ing, there are probably countless “throwaway” implementations written for
a single application or for the needs of an individul researcher. Many of
the tools described in Section 3.2.2 also provide a simple implementation
of the forward mode. The performance of operator overloading can be im-
proved through a variety of standard techniques, including expression tem-
plates (Aubert and Di Césaré, 2001; Veldhuizen, 1995) and lazy evaluation
(Christianson et al., 1996).

9

class adouble{
private:

double value, grad[GRAD_LENGTH];
public:

/* constructors omitted */
friend adouble operator*(const
adouble &,const adouble &);

/* similar decs for other ops */
}
adouble operator*(const adouble &g1,

const adouble &g2){
int i;
double newgrad[GRAD_LENGTH];
for(i=0;i<GRAD_LENGTH;i++){

newgrad[i] =
(g1.value)*(g2.grad[i])+
(g2.value)*(g1.grad[i]);

}
return

adouble(g1.value*g2.value,newgrad);
}

main(){
double temp[GRAD_LENGTH];
adouble y;

/* initialize
x1 to (3.0,[1.0 0.0]),
x2 to (4.0,[0.0 1.0])*/

temp[0] = 1.0; temp[1] = 0.0;
adouble *x1 =
new adouble(3.0,temp);

temp[0] = 0.0; temp[1] = 1.0;
adouble *x2 =
new adouble(4.0,temp);

y = (*x1)*(*x2);

cout << y;
/* prints (12.0,[4.0 3.0])*/

}

Figure 4. A simplified example of operator overloading.

3.2.2. Trace-Based Techniques
An alternative strategy to computing derivatives directly with the forward
mode is to use operator overloading to generate an execution trace (frequently
called a “tape”) of all mathematical operations and their arguments. This
trace can subsequently be traversed in reverse order, accumulating derivatives
with the reverse mode. Using this strategy, researchers have developed re-
verse mode tools for Ada (Christianson, 1991),C++ (Bendtsen and Stauning,
1996; Bell, 2003; Griewank et al., 1996), Fortran 90 (Bartholomew-Biggs,
1995; Brown, 1995; Pryce and Reid, 1998), MATLAB (Coleman and Verma,
2000), and Python (Frazier, 2003). Alternatively, the trace can be used to con-
struct and linearize the computational graph of the function. The linearized
computational graph can be reduced to bipartite form, yielding the Jacobian
matrix, with a variety of heuristics (Griewank and Reese, 1991).

3.2.3. Related Techniques
Many early source transformation tools approximated the behavior of opera-
tor overloading by translating arithmetic operations into calls to an elemental
differentiation library. Juedes (Juedes, 1991) used the term extensional to
describe such tools.

In languages with complex arithmetic, a similar effect can be achieved
through small, imaginary perturbations (Martins et al., 2000; Martins et al.,
2001). These cause the complex numbers to behave like Rall numbers, carry-
ing function values in the real field and (scaled) derivatives in the imaginary
field (Griewank, 1998; Martins et al., 2001). Lesk proposed overloading the
complex type to implement automatic differentiation directly (Lesk, 1967)

10

3.3. COMPILER-BASED STRATEGIES

Source-to-source transformation strategies rely on compiler technology to
transform source code for computing a function into source code for com-
puting the derivatives of the function (as a side effect of the automatic dif-
ferentiation mechanism, the function itself is also computed). This approach
offers the advantage of static analyses, such as identifying the active variables
that lie along the computational path from independent variables to dependent
variables. Also, because the analysis is performed at precompile time, the
search for an effective cross-country ordering for combining partials can use
expensive (polynomial time) algorithms that could not be used at run time.

Most source-to-source transformation tools (Bischof et al., 1996; Ros-
taing et al., 1993; Giering and Kaminski, 1998; Giering and Kaminski, 2002;
TAPENADE, 2002; Tadjouddine et al., 2003; NAG-AD, 2003) have targeted
Fortran, but tools have also been developed for C (Bischof et al., 1997),
MATLAB (Bischof et al., 2002), and Mathematica (Korelc, 2001). These
tools typically implement forward mode with statement-level reverse-mode
preaccumulation, and several also implement reverse mode accumulation.
They frequently use interprocedural dataflow analysis to identify active vari-
ables. Recent tools have added new analyses (Faure and Naumann, 2001;
Naumann, 2002) or incorporated cross-country preacummulation at the basic
block level.

Contemporary tools typically employ a modular architecture that decou-
ples the language-specific parsing, analysis, and unparsing from the language-
independent differentiation algorithms. The first attempt at such an architec-
ture was based on the Automatic Differentiation Intermediate Form (Bischof
and Roh, 1996), used by ADIC version 1.1 and ADIFOR version 3 to share
a Hessian module for computing second derivatives (Abate et al., 1997). The
modular architecture facilitated experimentation with a variety of differenti-
ation algorithms, an important capability because the best algorithm was not
known a priori. However, the AIF representation suffered from many limi-
tations, including a poorly defined syntax and no mechanism for describing
control flow. Its successor, the XAIF (Hovland et al., 2002), is described in
Section 4.5.1. At present, the XAIF is used by research groups at Argonne
National Laboratory (USA), Rice University (USA), and the University of
Hertfordshire (UK). The Argonne and Rice groups have developed proto-
type frontends/unparsers for Fortran 90, based on Open64, and C/C++, based
on EDG (Edison Design Group, 2003) and Sage 3. The Argonne and Hert-
fordshire groups have developed differentiation modules implementing the
forward mode, an optimal statement level preaccumulation algorithm (Nau-
mann, 2003), and various basic block level cross-country preaccumulation
strategies (Naumann and Gottschling, 2003). We anticipate support for the
XAIF in the TAPENADE frontend/unparser for Fortran 95 developed by

11

INRIA (France); the Fortran 95 frontend/backend developed by NAG, the
Numerical Algorithms Group (UK); and the EliAD transformation modules
developed by the University of Shrivenham (UK).

3.4. HYBRID OPERATOR-OVERLOADING, SOURCE TRANSFORMATION

Because operator overloading works at the level of individual operations (or,
when expression templates are used, single statements), certain performance
optimizations are not available. Preaccumulation at the statement, basic block,
or subroutine level must be deferred until run time, because the structure
of the computational graph is not available to the automatic differentiation
tool at compile time. Heuristics for cross-country preaccumulation must be
cheap or able to be amortized over many executions of the same code seg-
ment. Because static dependence analysis is not available to the automatic
differentiation tool, opportunities may be missed to avoid storing interme-
diate function values that can be cheaply recomputed or are not needed for
derivative computations.

On the other hand, source-to-source transformation may fail (or become
extremely difficult) for highly modular programs. For example, deferral of
template instantiation until link time, as through the export keyword in
C++, can interfere with the source-to-source transformation strategy. Precise
dataflow analysis of programs with unconstrained pointers and reversal of
control flow (as required in the reverse mode) must include a runtime compo-
nent. Furthermore, the development of a complete infrastructure for parsing,
analyzing, and unparsing a new programming language can be extremely time
consuming.

For these reasons, automatic differentiation tools traditionally based on
source-to-source transformation (such as ADIC) and operator overloading
(such as ADOL-C) are evolving toward a hybrid strategy that mixes (the best
of) both strategies. This strategy can be interpreted as falling back to operator
overloading when source-to-source transformation fails or as using source-to-
source transformation to improve the performance of operator overloading.
Another interpretation is that source-to-source automatic differentiation tools
are a sort of domain-specific compiler for a telescoping language (Guyer and
Lin, 2001; Quinlan, 2000; Kennedy et al., 2001). This interpretation suggests
that the implementation of automatic differentiation tools could be simplified
through the use of tools such as Broadway (Guyer and Lin, 2001), Code-
Boost (Bagge et al., 2003) and ROSE (Quinlan, 2000), especially as these
technologies mature.

12

4. Implementation of ADIC 2.0

To illustrate the implementation of a source transformation automatic dif-
ferentiation tool, we describe the implementation of ADIC 2.0, a second-
generation tool for ANSI-C currently under development. ADIC 2.0 uses the
following steps.

1. Preprocess

2. Parse

3. Canonicalize

4. Analyze

5. Convert to XAIF

6. Transform XAIF

7. Convert from XAIF

8. Unparse to C

We describe each of these steps, with the greatest emphasis on steps 5–7,
since the XAIF is an automatic differentiation-specific program representa-
tion.

4.1. PREPROCESS

The C preprocessor expands macros and handles other directives embedded
in source code. Preprocessing provides flexibility and enhances portability
by isolating platform-dependent functions and data structures in include files.
Unfortunately, preprocessing can significantly complicate source-to-source
transformation systems, since directives and macro usage are normally lost in
the preprocessed source file. Thus, to maintain portability of AD-generated
code, we need to retain some of the C preprocessor directives and macros em-
bedded in the original source code whose expansions are necessary to parse
the program. Tools such as ADIC achieve this by marking up the locations of
system includes with no mathematically relevant functions (e.g., stdio.h). The
original directives are restored during the unparsing stage. See (Bischof et al.,
1997) for a more detailed description of how the C preprocessor is handled
by ADIC.

4.2. PARSE AND UNPARSE

ADIC 2.0 uses version 3 of the SAGE compiler toolkit, developed as part of
the ROSE project (Quinlan, 2000). SAGE 3 is based on the robust and widely
used EDG C++ Front End (Edison Design Group, 2003). SAGE 3 builds an

13

AST and provides mechanisms for traversing and modifying the tree. SAGE
3 also provides an unparser that can be used to generate C or C++ from the
modified AST.

4.3. CANONICALIZE

Just as isolation of side effects can simplify the implementation of an optimiz-
ing compiler (Allen and Kennedy, 2002, p. 614), so can it simplify the task
of a source transformation system, especially one that must introduce new
semantics into a program. Therefore, ADIC and other automatic differentia-
tion tools (Bischof et al., 1992) employ a canonicalization phase. During this
phase, ADIC hoists all lvalue updates that may cause side effects out of ex-
pressions. The transformations are structured so as to not change the semantic
meaning of the program. Figure 5 shows an example of canonicalization to
isolate side effects.

Original Code:

(*f(i)) *= x[i++];

Canonicalized Code:

add1 = f(i);
(*add1) = (*add1) * x[i];
i++;

Figure 5. Isolating side effects

4.4. ANALYZE

At present, the analysis capabilities of ADIC 2.0 are quite primitive. How-
ever, we are developing a dataflow and alias analysis infrastructure that will
enable activity analysis and other types of analyses that will improve the
performance of the derivative code.

4.5. CONVERSION TO AND FROM XAIF

Experience has shown that the development of algorithms that exploit the
chain rule can be decoupled from the infrastructure that deals with the lan-
guage and the user interface. We have recently introduced a new, XML-
based intermediate format, the XAIF (Hovland et al., 2002), that can express
program structure at multiple granularities, from individual assignment state-
ments to collections of subroutines. The XAIF attempts to represent the math-
ematically relevant program elements in XML. This representation is not in-
tended as a replacement for SUIF (Amarasinghe et al., 1995), WHIRL (SGI,

14

1999), or other intermediate formats but rather as a special-purpose notation
for the development of mathematics-based transformation algorithms.

Transformation modules operate at different levels of the graph hierarchy.
For example, a forward-mode module using statement-level reverse mode
needs access only to the XAIF for assignment statements. Other modules
may implement strategies that require basic block-level XAIF, while some
reverse-mode tools may need access to control flow or call graph information.
The XAIF is flexible enough to allow the independent processing of different
levels of the graph hierarchy.

4.5.1. XAIF Definition
The XAIF representation consists of a series of nested graphs. Figure 6 shows
a high-level overview of the XAIF structure. All vertex and edge elements
have identifiers that are unique within the scope defined by the parent graph
element. Uniqueness of vertex and edge identifiers, as well as correctness of
key references, is verified automatically by most validating parsers.

At the highest level, the program is represented by a CallGraph ele-
ment, whose children are vertices corresponding to subroutines and edges
signifying subroutine calls. The CallGraph element contains a hierarchy
of variable scopes represented as trees. Each scope can have an associated
symbol table containing information on symbols defined within that scope.
The root node of the scope tree contains information on global symbols, in
this case, the subroutines head and comp. Symbol table entries can contain
a number of attributes, such as kind (default is variable), type (default is real),
and shape (default is scalar). In addition to the scope hierarchy, the call graph
also contains a specification of the independent and dependent variables by
referring to the arguments of the top-level subroutine.

The vertices of the call graph are control flow graphs corresponding to
subroutine definitions. In the rest of this section, we focus on the XAIF repre-
sentation of the head subroutine and its derivatives. The vertices and edges
of ControlFlowGraph elements represent the control flow of the pro-
gram. Each ControlFlowVertex can contain a BasicBlock, a For-
Loop, an If, or the graph corresponding to any other statement that affects
the flow of control in the computation. ControlFlowEdge elements rep-
resent the flow of control between code fragments encapsulated in Con-
trolFlowVertex or equivalent elements. The substitution group of the
ControlFlowVertexelement consists of BasicBlock,Entry,Exit,
If, ForLoop, PreLoop, and PostLoop.

The portions of the code that are actually augmented with derivative com-
putations are contained within BasicBlock elements, which correspond to
basic blocks in the code. A basic block consists of a sequence of assignment
statements or subroutine calls. Each statement has a unique identifier and
can optionally contain frontend-specific annotations in an annotation at-

15

Figure 6. XAIF structure. Root vertices of key subgraphs, such as ControlFlowGraph and
Expression, are outlined with a box shape different from that of other vertices.

tribute. These annotations can be used for storing information that would aid
in the parsing of the XAIF and conversion to the source language. For exam-
ple, in ADIC, frontend annotations are used to store the address of the AST
node corresponding to the statement. When new statements are introduced
by a transformation module, they are annotated with either the attribute of
the originating statement or a special new attribute; this makes it possible to
incorporate statements computing the derivatives in the correct location in the
original AST.

16

Only the assignment statements containing active variables (or loop in-
dices) are included in the XAIF as AssignmentStatement elements.
The left-hand side of an assignment vertex is limited to a VariableRef-
erence (which can be used to define array references), while the right-hand
side is in the equivalence class of Expression. Expression graph edges
are annotated with a position attribute, which is used to specify operator
precedence explicitly.

The representation of expressions in the Expression graph is straight-
forward, including both Boolean and arithmetic operators. Expression
graph vertices can be variable or constant references, intrinsic operations, and
subroutine calls. Intrinsic operations are subdivided into two main categories:
inlinable and noninlinable. The difference between inlinable and noninlinable
operations is that code computing the partials for the former can be inlined,
while the code computing the derivatives of the latter requires one or more
subroutine calls. The definition of the partials for these intrinsics is contained
in a separate XAIF file, which generally includes all the standard intrinsic
functions available in a given language.

4.5.2. Transformation Modules
ADIC 2.0 includes several differentiation algorithms and can interface to
other modules based on the XAIF. The default transformation module imple-
ments forward mode overall with optimal statement level preaccumulation
(Naumann, 2003). Other transformation modules implement reverse mode
or forward mode with basic block-level preaccumulation. All transformation
modules use the XAIF to communicate with the frontend/backend. Typically,
a transformation module parses the XAIF, builds an internal representation
of the linearized computational graph, implements an accumulation strategy
in terms of the linearized computation graph, and generates XAIF corre-
sponding to the derivative computation. The generated XAIF may include
calls to a runtime library, an implementation of which must be provided for
whatever language the frontend/backend supports. In the future, we antici-
pate the development of second derivative (Hessian) modules and a simple
forward-mode module that can be used for teaching or as a foundation for
more sophisticated transformations.

5. Conclusions

The need for accurate and fast derivatives for models presented as computer
codes is ubiquitous in computational science. Automatic differentiation pro-
vides a mechanism for computing those derivatives accurately with minimal
human effort. In this paper, we described the implementation of automatic
differentiation tools in general, and the ADIC tool in particular. Current and

17

future research in automatic differentiation will lead to new heuristics for
the combinatorial problem of how to combine partial derivatives, static and
dynamic analyses to reduce storage costs for the reverse mode, new imple-
mentations for new programming languages, and new applications for the
analytic derivatives that automatic differentiation can provide.

Acknowledgments

This work was supported in part by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of Advanced Scien-
tific Computing Research, U.S. Department of Energy, Office of Science,
under Contract W-31-109-Eng-38. Christian Bischof’s work was partially
supported by the Deutsche Forschungsgemeinschaft within SFB 401 “Mod-
ulation of flow and fluid–structure interaction at airplane wings,” Aachen
University of Technology, Germany.

We are grateful to the anonymous reviewers, whose detailed recommenda-
tions substantially improved this article. We thank Gail Pieper and Michelle
Mills Strout for their comments on drafts of this paper. We thank the many
members of the automatic differentiation community whose work is reported
here and inspired much of our own work.

Appendix

The full forward-mode code generated by TAPENADE for the simple exam-
ple is as follows.

C Generated by TAPENADE (INRIA, Tropics team)
C Version 2.0.6 - (Id: 1.14 vmp Stable - Thu Sep 18 08:35:47 MEST 2003)
C
C Differentiation of foo in forward (tangent) mode: (multi-directional mode)
C variations of output variables: s
C with respect to input variables: a

SUBROUTINE FOO_DV(s, sd, a, ad, n, nbdirs)
INCLUDE ’DIFFSIZES.inc’

C Hint: NBDirsMax should be the maximum number of differentiation directions
INTEGER n, nbdirs
DOUBLE PRECISION a(n), ad(NBDirsMax, n), s, sd(NBDirsMax)
DOUBLE PRECISION f, fd(NBDirsMax), g, gd(NBDirsMax)
INTEGER i, nd
INTRINSIC SQRT

C
C

g = 0
DO nd=1,nbdirs

gd(nd) = 0.D0
ENDDO
DO i=1,n

DO nd=1,nbdirs

18

gd(nd) = gd(nd) + ad(nd, i)*a(i) + a(i)*ad(nd, i)
ENDDO
g = g + a(i)*a(i)

ENDDO
DO nd=1,nbdirs

IF (gd(nd) .EQ. 0.0) THEN
gd(nd) = 0.D0

ELSE
gd(nd) = gd(nd)/(2.0*SQRT(g))

END IF
ENDDO
g = SQRT(g)

C
s = 0
DO nd=1,nbdirs

sd(nd) = 0.D0
ENDDO
DO i=1,n

CALL FUNC_DV(f, fd, a(i), ad(1, i), g, gd, nbdirs)
DO nd=1,nbdirs

sd(nd) = sd(nd) + fd(nd)
ENDDO
s = s + f

ENDDO
C

RETURN
END

C Differentiation of func in forward (tangent) mode: (multi-directional mode)
C variations of output variables: f
C with respect to input variables: x y
C

SUBROUTINE FUNC_DV(f, fd, x, xd, y, yd, nbdirs)
INCLUDE ’DIFFSIZES.inc’

C Hint: NBDirsMax should be the maximum number of differentiation directions
INTEGER nbdirs
DOUBLE PRECISION f, fd(NBDirsMax), x, xd(NBDirsMax), y, yd(

+ NBDirsMax)
DOUBLE PRECISION a, ad(NBDirsMax), arg1, arg1d(NBDirsMax), b, bd(

+ NBDirsMax)
INTEGER nd
INTRINSIC EXP, SIN, LOG

C
C

IF (x .GT. y) THEN
a = SIN(y)
arg1 = x - y
DO nd=1,nbdirs

arg1d(nd) = xd(nd) - yd(nd)
ad(nd) = yd(nd)*COS(y)
bd(nd) = xd(nd)*EXP(arg1)/x + LOG(x)*arg1d(nd)*EXP(arg1)

ENDDO
b = LOG(x)*EXP(arg1)

ELSE
DO nd=1,nbdirs

ad(nd) = ((xd(nd)*SIN(x)+x*xd(nd)*COS(x))*y-x*SIN(x)*yd(nd))/y
+ **2

bd(nd) = yd(nd)/y

19

ENDDO
a = x*SIN(x)/y
b = LOG(y)

END IF
arg1 = a*b
DO nd=1,nbdirs

arg1d(nd) = ad(nd)*b + a*bd(nd)
fd(nd) = arg1d(nd)*EXP(arg1)

ENDDO
f = EXP(arg1)

C
RETURN
END

The full reverse-mode code generated by TAPENADE for the simple ex-
ample is as follows.

C Generated by TAPENADE (INRIA, Tropics team)
C Version 2.0.6 - (Id: 1.14 vmp Stable - Thu Sep 18 08:35:47 MEST 2003)
C
C Differentiation of foo in reverse (adjoint) mode:
C gradient, with respect to input variables: s a
C of linear combination of output variables: s

SUBROUTINE FOO_B(s, sb, a, ab, n)
INTEGER n
DOUBLE PRECISION a(n), ab(n), s, sb
INTEGER adto, i, ii1
DOUBLE PRECISION f, fb, g, gb
INTRINSIC SQRT

C
C

g = 0
DO i=1,n

g = g + a(i)*a(i)
ENDDO
CALL PUSHINTEGER4(i - 1)
CALL PUSHREAL8(g)
g = SQRT(g)

C
s = 0
DO i=1,n

CALL PUSHREAL8(g)
CALL FUNC(f, a(i), g)
s = s + f

ENDDO
CALL PUSHINTEGER4(i - 1)
DO ii1=1,n

ab(ii1) = 0.D0
ENDDO
gb = 0.D0
CALL POPINTEGER4(adTo)
DO i=adTo,1,-1

fb = sb
CALL POPREAL8(g)
CALL FUNC_B(f, fb, a(i), ab(i), g, gb)

ENDDO
CALL POPREAL8(g)
gb = gb/(2.0*SQRT(g))
CALL POPINTEGER4(adTo)

20

DO i=adTo,1,-1
ab(i) = ab(i) + (a(i)+a(i))*gb

ENDDO
sb = 0.D0
END

C Differentiation of func in reverse (adjoint) mode:
C gradient, with respect to input variables: x y
C of linear combination of output variables: f x y
C

SUBROUTINE FUNC_B(f, fb, x, xb, y, yb)
DOUBLE PRECISION f, fb, x, xb, y, yb
DOUBLE PRECISION a, ab, arg1, arg1b, b, bb
INTEGER branch
INTRINSIC EXP, SIN, LOG

C
C

IF (x .GT. y) THEN
a = SIN(y)
arg1 = x - y
b = LOG(x)*EXP(arg1)
CALL PUSHINTEGER4(0)

ELSE
a = x*SIN(x)/y
b = LOG(y)
CALL PUSHINTEGER4(1)

END IF
CALL PUSHREAL8(arg1)
arg1 = a*b
f = EXP(arg1)
arg1b = EXP(arg1)*fb
CALL POPREAL8(arg1)
ab = b*arg1b
bb = a*arg1b
CALL POPINTEGER4(branch)
IF (branch .LT. 1) THEN

arg1b = LOG(x)*EXP(arg1)*bb
xb = xb + EXP(arg1)*bb/x + arg1b
yb = yb + COS(y)*ab - arg1b

ELSE
yb = yb + bb/y - x*SIN(x)*ab/y**2
xb = xb + (x*COS(x)/y+SIN(x)/y)*ab

END IF
END

References

Abate, J., C. Bischof, A. Carle, and L. Roh: 1997, ‘Algorithms and Design for a Second-Order
Automatic Differentiation Module’. In: Proc. Int. Symposium on Symbolic and Algebraic
Computing (ISSAC) ’97. New York, pp. 149–155, Association of Computing Machinery.

Aho, A. V., R. Sethi, and J. D. Ullman: 1986, Compilers: Principles, Techniques and Tools.
Reading, MA: Addison-Wesley.

Allen, R. and K. Kennedy: 2002, Optimizing Compilers for Modern Architectures: a
Dependence-based Approach. San Mateo, CA: Morgan Kaufmann Publishers.

21

Amarasinghe, S. P., J. M. Anderson, M. S. Lam, and C. W. Tseng: 1995, ‘The SUIF Compiler
for Scalable Parallel Machines’. In: Proceedings of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing.

Aubert, P. and N. Di Césaré: 2001, ‘Expression Templates and Forward Mode Automatic
Differentiation’. In (Corliss et al., 2001), Chapt. 37, pp. 311–315.

Bagge, O. S., K. T. Kalleberg, M. Haveraaen, and E. Visser: 2003, ‘Design of the CodeBoost
Transformation System for Domain-Specific Optimisation of C++ Programs’. In: D.
Binkley and P. Tonella (eds.): Third International Workshop on Source Code Analysis
and Manipulation (SCAM 2003). Amsterdam, The Netherlands, IEEE Computer Society
Press. (To appear).

Bartholomew-Biggs, M.: 1995, ‘OPFAD - A Users Guide to the OPtima Forward Automatic
Differentiation Tool’. Technical report, Numerical Optimization Centre, University of
Hertfordsshire.

Bartholomew-Biggs, M. C., S. Brown, B. Christianson, and L. C. W. Dixon: 1995, ‘The Effi-
cient Calculation of Gradients, Jacobians and Hessians’. Technical Report NOC TR301,
The Numerical Optimisation Center, University of Hertfordshire, Hatfield, U.K.

Barton, J. J. and L. R. Nackman: 1996, ‘Automatic Differentiation’. C++ Report 8(2), 61–63.
Beda, L. M., L. N. Korolev, N. V. Sukkikh, and T. S. Frolova: 1959, ‘Programs for automatic

differentiation for the machine BESM’. Technical Report, Institute for Precise Mechanics
and Computation Techniques, Academy of Science, Moscow, USSR. (In Russian).

Bell, B. M.: 2003, ‘CppAD User Manual’. Available at http://www.seanet.com/ brad-
bell/CppAD/.

Bendtsen, C. and O. Stauning: 1996, ‘FADBAD, a Flexible C++ Package for Automatic
Differentiation’. Technical Report IMM–REP–1996–17, Department of Mathematical
Modelling, Technical University of Denmark, Lyngby, Denmark.

Berz, M., C. Bischof, G. Corliss, and A. Griewank (eds.): 1996, Computational Differentia-
tion: Techniques, Applications, and Tools. Philadelphia, PA: SIAM.

Binkley, D. W. and K. B. Gallagher: 1996, ‘Program Slicing’. Advances in Computers 43,
1–50.

Bischof, C., A. Carle, G. Corliss, A. Griewank, and P. Hovland: 1992, ‘ADIFOR: Generating
Derivative Codes from Fortran Programs’. Scientific Programming 1(1), 11–29.

Bischof, C., A. Carle, P. Khademi, and A. Mauer: 1996, ‘ADIFOR 2.0: Automatic Differ-
entiation of Fortran 77 Programs’. IEEE Computational Science & Engineering 3(3),
18–32.

Bischof, C. and L. Roh: 1996, ‘The Automatic Differentiation Intermediate Form (AIF)’.
Unpublished Information.

Bischof, C., L. Roh, and A. Mauer: 1997, ‘ADIC — An Extensible Automatic Differentiation
Tool for ANSI-C’. Software–Practice and Experience 27(12), 1427–1456.

Bischof, C. H., H. M. Bücker, B. Lang, and A. Rasch: 2001, ‘An Interactive Environment
for Supporting the Paradigm Shift from Simulation to Optimization’. In: 4th Work-
shop on Parallel/High-Performance OO Scientific Computing (POOSC’01) 14 October
2001, at the ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’01) 14–18 October, Tampa Bay, FL. To appear.

Bischof, C. H., H. M. Bücker, B. Lang, A. Rasch, and A. Vehreschild: 2002, ‘Combining
Source Transformation and Operator Overloading Techniques to Compute Derivatives for
MATLAB Programs’. Preprint RWTH-CS-SC-02-04, Institute for Scientific Computing,
Aachen University of Technology.

Brooke, A., D. Kendrick, and A. Meeraus: 1988, GAMS: A User’s Guide. South San Francisco,
CA: The Scientific Press.

Brown, S.: 1995, ‘OPRAD - A Users Guide to the OPtima Reverse Automatic Differentiation
Tool’. Technical report, Numerical Optimization Centre, University of Hertfordsshire.

22

Christianson, B., L. C. W. Dixon, and S. Brown: 1996, ‘Sharing Storage Using Dirty Vectors’.
In (Berz et al., 1996), pp. 107–115.

Christianson, D. B.: 1991, ‘Automatic Hessians by Reverse Accumulation in Ada’. IMA J.
on Numerical Analysis. Presented at SIAM Workshop on Automatic Differentiation of
Algorithms, Breckenridge, CO, January 1991.

Coleman, T. F. and A. Verma: 2000, ‘ADMIT-1: Automatic Differentiation and MATLAB
Interface Toolbox’. ACM Trans. Math. Softw. 26(1), 150–175.

Corliss, G., C. Faure, A. Griewank, L. Hascoët, and U. Naumann (eds.): 2001, Automatic
Differentiation: From Simulation to Optimization, Computer and Information Science.
New York, NY: Springer.

Edison Design Group: 2003, ‘EDG C++ Front End’. www.edg.com/cpp.html.
Faure, C.: 2001, ‘Adjoining Strategies for Multi-Layered Programs’. Optimisation Methods

and Software. To appear. Also appeared as INRIA Rapport de recherche no. 3781, BP
105-78153 Le Chesnay Cedex, FRANCE, 1999.

Faure, C. and U. Naumann: 2001, ‘Minimizing the Tape Size’. In (Corliss et al., 2001),
Chapt. 34, pp. 293–298.

Forth, S.: 2001, ‘An efficient implementation of AD in MATLAB’. Pre-
sentation at Joint University of Hertfordshire/Cranfield University (RMCS
Shrivenham) Automatic Differentiation Symposium. Available at
http://www.rmcs.cranfield.ac.uk/esd/amor/workshop/alldatastore/ADDAYmay01forth.pdf.

Fourer, R., D. M. Gay, and B. W. Kernighan: 1993, AMPL: A Modeling Language for
Mathematical Programming. South San Francisco, CA: The Scientific Press.

Frazier, Z.: 2003, ‘PyAD User manual’. Available at http://students.washington.edu/zfrazier/-
projects/pyad/pyad-doc/.

Giering, R. and T. Kaminski: 1998, ‘Recipies for Adjoint Code Construction’. ACM TOMS
24(4), 437–474.

Giering, R. and T. Kaminski: 2002, ‘Applying TAF to Generate Efficient Derivative Code of
Fortran 77-95 programs’. In: Proceedings of GAMM 2002, Augsburg, Germany.

Griewank, A.: 1989, ‘On Automatic Differentiation’. In: Mathematical Programming: Recent
Developments and Applications. Amsterdam, pp. 83–108, Kluwer Academic Publishers.

Griewank, A.: 1998. Personal communication.
Griewank, A.: 2000, Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation. Philadelphia, PA: SIAM.
Griewank, A., D. Juedes, and J. Utke: 1996, ‘ADOL-C, A Package for the Automatic Differ-

entiation of Algorithms Written in C/C++’. ACM Transactions on Mathematical Software
22(2), 131–167.

Griewank, A.: 1992, ‘Achieving Logarithmic Growth of Temporal and Spatial Complexity in
Reverse Automatic Differentiation’. Optimization Methods and Software 1, 35–54.

Griewank, A. and G. F. Corliss (eds.): 1991, Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. Philadelphia, PA: SIAM.

Griewank, A. and S. Reese: 1991, ‘On the Calculation of Jacobian Matrices by the Markowitz
Rule’. In (Griewank and Corliss, 1991), pp. 126–135.

Grimm, J., L. Pottier, and N. Rostaing-Schmidt: 1996, ‘Optimal Time and Minimum Space-
Time Product for Reversing a Certain Class of Programs’. In (Berz et al., 1996), pp.
95–106.

Guyer, S. Z. and C. Lin: 2001, ‘Optimizing the Use of High Performance Software Libraries’.
Lecture Notes in Computer Science 2017, 227–243.

Hill, D. R. and L. C. Rich: 1992, ‘Automatic Differentiation in MATLAB’. Applied Numerical
Mathematics 9, 33–43.

Hinkins, R. L.: 1994, ‘Parallel Computation of Automatic Differentiation Applied to Magnetic
Field Calculations’. Master’s thesis, University of California, Berkeley, CA.

23

Hinsen, K.: 2003, ‘Scientific Python collection’. Module Scientific.Functions.Derivatives.
Available at http://starship.python.net/h̃insen/ScientificPython/.

Hovland, P. D., U. Naumann, and B. Norris: 2002, ‘An XML-Based Platform for Semantic
Transformation of Numerical Programs’. Preprint ANL/MCS-P950-0402, Mathematics
and Computer Science Division, Argonne National Laboratory. To appear in Proceedings
of Software Engineering and Applications (SEA 2002).

Huss, R. E.: 1990, ‘An ADA Library for Automatic Evaluation of Derivatives’. Applied
Mathematics and Computation 35(2), 103–123.

I. Tsukanov, M. H.: 2003, ‘Data Structure and Algorithms for Fast Automatic Differentiation’.
International Journal for Numerical Methods in Engineering 56(13), 1949–1972.

Jerrell, M.: 1989, ‘Automatic Differentiation Using Almost Any Language’. ACM SIGNUM
Newsletter pp. 2–9.

Juedes, D. W.: 1991, ‘A Taxonomy of Automatic Differentiation Tools’. In (Griewank and
Corliss, 1991), pp. 315–329.

Kahrimanian, H. G.: 1953, ‘Analytical Differentiation by a Digital Computer’. Master’s thesis,
Temple University.

Kalman, D. and R. Lindell: 1991, ‘Automatic Differentiation in Astrodynamical Modeling’.
In (Griewank and Corliss, 1991), pp. 228–243.

Karczmarczuk, J.: 2001, ‘Functional Differentiation of Computer Programs’. Journal of
HOSC 14, 35–57.

Kennedy, K., B. Broom, K. Cooper, J. Dongarra, R. Fowler, D. Gannon, L. Johnsson, J. Mellor-
Crummey, and L. Torczon: 2001, ‘Telescoping Languages: A Strategy for Automatic
Generation of Scientific Problem-Solving Systems from Annotated Libraries’. Journal
of Parallel and Distributed Computing 61(12), 1803–1826.

Korelc, J.: 2001, ‘Hybrid System for Multi-Language and Multi-Environment Generation of
Numerical Codes’. In: Proceedings of the 2001 International Symposium on Symbolic and
Algebraic Computation. pp. 209–216, ACM Press.

Lawson, C. L.: 1971, ‘Computing Derivatives Using W-Arithmetic and U-Arithmetic’.
Internal Computing Memorandum CM–286, Jet Propulsion Laboratory, Pasadena, CA.

Lesk, A. M.: 1967, ‘Dynamic computation of derivatives’. Communications of the ACM 10(9),
571–572.

Maany, Z.: 1989, ‘Ada Automatic Differentiation Package for the Optimization of Functions
of Many Variables’. Technical Report NOC TR209, The Numerical Optimisation Center,
Hatfield Polytechnic, Hatfield, U.K.

Martins, J. R. R. A., I. M. Kroo, and J. J. Alonso: 2000, ‘An Automated Method for Sensitivity
Analysis Using Complex Variables’. In: Proceedings of the 38th Aerospace Sciences
Meeting, Reno, NV.

Martins, J. R. R. A., P. Sturdza, and J. J. Alonso: 2001, ‘The Connection Between the
Complex-Step Derivative Approximation and Algorithmic Differentiation’. In: Proceed-
ings of the 39th Aerospace Sciences Meeting, Reno, NV. Complexify.h and derivify.h
available at http://mdolab.utias.utoronto.ca/c++.html.

Michelotti, L.: 1991, ‘MXYZPTLK: A C++ Hacker’s Implementation of Automatic Dif-
ferentiation’. In (Griewank and Corliss, 1991), pp. 218–227. Software available at
http://www.netlib.org/c++/mxyzptlk/.

Monagan, M. and R. R. Rodoni: 1996, ‘An Implementation of the Forward and Reverse
Mode of Automatic Differentiation in Maple’. In: M. Berz, C. Bischof, G. Corliss, and
A. Griewank (eds.): Computational Differentiation: Techniques, Applications, and Tools.
Philadelphia, PA: SIAM, pp. 353–362.

Muchnick, S. S.: 1997, Advanced Compiler Design and Implementation. San Mateo, CA:
Morgan Kaufmann Publishers.

24

NAG-AD: 2003, ‘Differentiation Enabled Fortran Compiler Technology’. http://-
www.nag.co.uk/nagware/research/ad overview.asp.

Naumann, U.: 2002, ‘Reducing the Memory Requirement in Reverse Mode Automatic Differ-
entiation by Solving TBR Flow Equations’. In: P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra,
and A. G. Hoekstra (eds.): Proceedings of the International Conference on Computational
Science, Amsterdam, The Netherlands, April 21–24, 2002. Part II, Vol. 2330 of Lecture
Notes in Computer Science. Berlin, pp. 1039–1048, Springer.

Naumann, U.: 2003, ‘Statement Level Optimality of Tangent-Linear and Adjoint Models’.
Preprint ANL-MCS/P1066-0603, Argonne National Laboratory.

Naumann, U. and P. Gottschling: 2003, ‘Simulated Annealing for Optimal Pivot Se-
lection in Jacobian Accumulation’. In: A. Albrecht (ed.): Stochastic Algorithms,
Foundations and Applications – SAGA’03. Berlin, Springer. To appear. See also
http://angellib.sourceforge.net/.

Neidinger, R. D.: 1989, ‘Automatic Differentiation and APL’. College Mathematics J. 20(3),
238–251.

Nilsson, H.: 2003, ‘Functional Automatic Differentiation with Dirac Impulses’. ACM
SIGPLAN Notices 38(9), 153–164.

Nolan, J. F.: 1953, ‘Analytical Differentiation on a Digital Computer’. Master’s thesis,
Massachusetts Institute of Technology.

Pryce, J. D. and J. K. Reid: 1998, ‘ADO1, a Fortran 90 Code for Automatic Differentiation’.
Technical Report RAL-TR-1998-057, Rutherford Appleton Laboratory, Chilton, Didcot,
Oxfordshire, OX11 OQX, England.

Quinlan, D.: 2000, ‘ROSE: Compiler Support for Object-Oriented Frameworks’. Parallel
Processing Letters 10(2/3), 215–??

Reps, T. and G. Rosay: 1995, ‘Precise Interprocedural Chopping’. In: G. E. Kaiser (ed.):
SIGSOFT’95: Proceedings of the Third ACM SIGSOFT Symposium on the Foundations of
Software Engineering. pp. 41–52, ACM Press.

Restrepo, J. M., G. K. Leaf, and A. Griewank: 1998, ‘Circumventing Storage Limitations in
Variational Data Assimilation’. SIAM Journal on Scientific Computing 19, 1586–1605.

Rostaing, N., S. Dalmas, and A. Galligo: 1993, ‘Automatic Differentiation in Odyssee’. Tellus
45a(5), 558–568.

Rote, G.: 1990, ‘Path Problems in Graphs’. In: G. Tinhofer, E. Mayr, H. Noltemeier, and
M. M. S. in cooperation with R. Albrecht (eds.): Computational Graphs Theory, Springer-
Verlag Computing Supplementum 7. Springer.

SGI: 1999, ‘WHIRL Intermediate Language Specification’. Available at
http://open64.sourceforge.net/documentation.html.

Stamatiadis, S., R. Prosmiti, and S. C. Farantos: 2000, ‘AUTO DERIV: Tool for Automatic Dif-
ferentiation of a FORTRAN Code’. Comput. Phys. Commun. 127(2&3), 343–355. Catalog
number: ADLS.

Tadjouddine, M., S. A. Forth, and J. D. Pryce: 2003, ‘Hierarchical Automatic Differentiation
by Vertex Elimination and Source Transformation’. In: V. Kumar, M. L. Gavrilova, C. J. K.
Tan, and P. L’Ecuyer (eds.): Proceedings of the International Conference on Computa-
tional Science and its Applications, Montreal, Canada, May 18–21, 2003. Part II, Vol.
2668 of Lecture Notes in Computer Science. Berlin, pp. 95–104, Springer.

TAPENADE: 2002, ‘TAPENADE Tutorial’. http://www-sop.inria.fr/tropics/tapenade/-
tutorial.html.

Veldhuizen, T.: 1995, ‘Expression Templates’. C++ Report 7(5), 26–31.
Wengert, R. E.: 1964, ‘A Simple Automatic Derivative Evaluation Program’. Comm. ACM

7(8), 463–464.
Wilkins, R. D.: 1964, ‘Investigation of a New Analytic Model for Numerical Derivative

Evaluation’. Commun. ACM 7(8), 465–471.

25

The submitted manuscript has been created by the Uni-
versity of Chicago as Operator of Argonne National
Laboratory (”Argonne”) under Contract No. W-31-
109-ENG-38 with the U.S. Department of Energy. The
U.S. Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf
of the Government.

