
Minimizing Synchronization Overhead in the
Implementation of MPI One-Sided

Communication

Rajeev Thakur, William Gropp, and Brian Toonen

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA

Abstract. The one-sided communication operations in MPI are intended
to provide the convenience of directly accessing remote memory and the
potential for higher performance than regular point-to-point communi-
cation. Our performance measurements with three MPI implementations
(IBM MPI, Sun MPI, and LAM) indicate, however, that one-sided com-
munication can perform much worse than point-to-point communication
if the associated synchronization calls are not implemented efficiently. In
this paper, we describe our efforts to minimize the overhead of synchro-
nization in our implementation of one-sided communication in MPICH-2.
We describe our optimizations for all three synchronization mechanisms
defined in MPI: fence, post-start-complete-wait, and lock-unlock. Our
performance results demonstrate that, for short messages, MPICH-2 per-
forms six times faster than LAM for fence synchronization and 50% faster
for post-start-complete-wait synchronization, and it performs more than
twice as fast as Sun MPI for all three synchronization methods.

1 Introduction

MPI defines one-sided communication operations that allow users to directly
access the memory of a remote process [9]. One-sided communication both is
convenient to use and has the potential to deliver higher performance than reg-
ular point-to-point (two-sided) communication, particularly on networks that
support one-sided communication natively, such as InfiniBand and Myrinet. On
networks that support only two-sided communication, such as TCP, it is harder
for one-sided communication to do better than point-to-point communication.
Nonetheless, a good implementation should strive to deliver performance as close
as possible to that of point-to-point communication.

One-sided communication in MPI requires the use of one of three synchro-
nization mechanisms: fence, post-start-complete-wait, or lock-unlock. The syn-
chronization mechanism defines the time at which the user can initiate one-sided
communication and the time when the operations are guaranteed to be com-
pleted. The true cost of one-sided communication, therefore, must include the
time taken for synchronization. An unoptimized implementation of the synchro-
nization functions may perform more communication and synchronization than
necessary (such as a barrier), which can adversely affect performance, particu-
larly for short and medium-sized messages.

We measured the performance of three MPI implementations, IBM MPI,
Sun MPI, and LAM [8], for a test program that performs nearest-neighbor ghost-
area exchange, a communication pattern common in many scientific applications
such as PDE simulations. We wrote four versions of this program: using point-
to-point communication (isend/irecv) and using one-sided communication with
fence, post-start-complete-wait, and lock-unlock synchronization. We measured
the time taken for a single communication step (each process exchanges data
with its four neighbors) by doing the step a number of times and calculating
the average. Figure 1 shows a snippet of the fence version of the program, and
Figure 2 shows the performance results.

for (i=0; i<ntimes; i++) {

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

for (j=0; j<nbrs; j++) {

MPI_Put(sbuf + j*n, n, MPI_INT, nbr[j], j, n, MPI_INT, win);

}

MPI_Win_fence(MPI_MODE_NOSTORE | MPI_MODE_NOPUT | MPI_MODE_NOSUCCEED, win);

}

Fig. 1. Fence version of the test

With IBM MPI on an SP, one-sided communication is almost two orders of
magnitude slower than point-to-point (pt2pt) for short messages and remains
significantly slower until messages get larger than 256 KB. With Sun MPI on a
shared-memory SMP, all three one-sided versions are about six times slower than
the point-to-point version for short messages. With LAM on a Linux cluster con-
nected with fast ethernet, for short messages, post-start-complete-wait (pscw) is
about three times slower than point-to-point, and fence is about 18 times slower
than point-to-point.1 As shown in Figure 1, we pass appropriate assert values
to MPI Win fence so that the MPI implementation can optimize the function.
Since LAM does not support asserts, we commented them out when using LAM.
At least some of the poor performance of LAM with fence can be attributed to
not taking advantage of asserts.

We observed similar results for runs with different numbers of processes on
all three implementations. Clearly, the overhead associated with synchroniza-
tion significantly affects the performance of these implementations. Other re-
searchers [4] have found similarly high overheads in their experiments with four
MPI implementations: NEC, Hitachi, Sun, and LAM.

Our goal in the design and implementation of one-sided communication in our
MPI implementation, MPICH-2, has been to minimize the amount of additional
communication and synchronization needed to implement the semantics defined
by the synchronization functions. We particularly avoid using a barrier anywhere.
As a result, we are able to achieve much higher performance than do other MPI
implementations. We describe our optimizations and our implementation in this
paper.

1 LAM does not support lock-unlock synchronization.

2

0.1

1

10

16 64 256 1024 4096 16384 65536 262144

T
im

e
 (

m
s
)

message size (bytes)

IBM MPI on SP, 48 processes on six 8-way SMPs

pt2pt
fence
pscw
lock

0.01

0.1

1

10

16 64 256 1024 4096 16384 65536 262144

T
im

e
 (

m
s
)

message size (bytes)

Sun MPI, 24 processes on a single Sun SMP

pt2pt
fence
pscw
lock

0.1

1

10

100

16 64 256 1024 4096 16384 65536 262144

T
im

e
 (

m
s
)

message size (bytes)

LAM, 25 processes, Linux cluster, fast ethernet

pt2pt
fence
pscw

Fig. 2. Performance of IBM MPI, Sun MPI, and LAM for a nearest-neighbor ghost-
area exchange test

2 Related Work

One-sided communication as a programming paradigm was made popular ini-
tially by the SHMEM library on the Cray T3D and T3E [6], the BSP library [5],
and the Global Arrays library [12]. After the MPI-2 Forum defined an interface
for one-sided communication in MPI, several vendors and a few research groups
implemented it, but, as far as we know, none of these implementations specifi-
cally optimizes the synchronization overhead. For example, the implementations
of one-sided communication for Sun MPI by Booth and Mourão [3] and for the
NEC SX-5 by Träff et al. [13] use a barrier to implement fence synchroniza-
tion. Other efforts at implementing MPI one-sided communication include the
implementation for InfiniBand networks by Jiang et al. [7], for a Windows imple-
mentation of MPI (WMPI) by Mourão and Silva [11], for the Fujitsu VPP5000
vector machine by Asai et al. [1], and for the SCI interconnect by Worringen
et al. [14]. Mourão and Booth [10] describe issues in implementing one-sided
communication in an MPI implementation that uses multiple protocols, such as
TCP and shared memory.

3 One-Sided Communication in MPI

In MPI, the memory that a process allows other processes to access via one-
sided communication is called a window. Processes specify their local windows
to other processes by calling the collective function MPI Win create. The three
functions for one-sided communication are MPI Put (remote write), MPI Get (re-
mote read), and MPI Accumulate (remote update). They are nonblocking func-
tions: They initiate but not necessarily complete the one-sided operation. These
three functions are not sufficient by themselves because one needs to know when
a one-sided operation can be initiated (that is, when the remote memory is ready
to be read or written) and when a one-sided operation is guaranteed to be com-

3

Process 0 Process 1
MPI_Win_fence(win)
MPI_Put(1)
MPI_Get(1)
MPI_Win_fence(win)

MPI_Win_fence(win)
MPI_Put(0)
MPI_Get(0)
MPI_Win_fence(win)

a. Fence synchronization

Process 0 Process 1 Process 2
MPI_Win_post(0,2)

MPI_Win_start(1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_complete(1)

MPI_Put(1)
MPI_Win_start(1)

MPI_Get(1)
MPI_Win_complete(1)

MPI_Win_wait(0,2)

b. Post-start-complete-wait synchronization

Process 0 Process 1 Process 2
MPI_Win_create(&win)
MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)
MPI_Win_free(&win)

MPI_Win_create(&win)

MPI_Win_free(&win)

MPI_Win_create(&win)
MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)
MPI_Win_free(&win)

c. Lock-unlock synchronization

Fig. 3. The three synchronization mechanisms for one-sided communication in MPI

pleted. To specify these semantics, MPI defines three different synchronization
mechanisms.

Fence. Figure 3a illustrates the fence method of synchronization (without the
syntax). MPI Win fence is collective over the communicator associated with the
window object. A process may issue one-sided operations after the first call to
MPI Win fence returns. The next fence completes any one-sided operations that
this process issued after the preceding fence, as well as the one-sided operations
other processes issued that had this process as the target. The drawback of the
fence method is that if only small subsets of processes are actually communi-
cating with each other, the collectiveness of the fence function over the entire
communicator results in unnecessary synchronization overhead.

Post-Start-Complete-Wait. To avoid the drawback of fence, MPI defines a
second mode of synchronization in which only subsets of processes need to syn-
chronize, as shown in Figure 3b. A process that wishes to expose its local window
to remote accesses calls MPI Win post, which takes as argument an MPI Group
object that specifies the set of processes that will access the window. A process
that wishes to perform one-sided communication calls MPI Win start, which
also takes as argument an MPI Group object that specifies the set of processes
that will be the target of one-sided operations from this process. After issuing
all the one-sided operations, the origin process calls MPI Win complete to com-
plete the operations at the origin. The target calls MPI Win wait to complete
the operations at the target.

4

Lock-Unlock. In this synchronization method, the origin process calls MPI Win lock
to obtain either shared or exclusive access to the window on the target, as shown
in Figure 3c. After issuing the one-sided operations, it calls MPI Win unlock. The
target does not make any synchronization call. When MPI Win unlock returns,
the one-sided operations are guaranteed to be completed at the origin and the
target. MPI Win lock is not required to block until the lock is acquired, except
when the origin and target are one and the same process.

4 Implementing MPI One-Sided Communication

Our current implementation of one-sided communication in MPICH-2 is layered
on the same lower-level communication abstraction we use for point-to-point
communication, called CH3 [2]. CH3 uses a two-sided communication model
in which the sending side sends packets followed optionally by data, and the
receiving side explicitly posts receives for packets and, optionally, data. The
content and interpretation of the packets are decided by the upper layers. We
have simply added new packet types for one-sided communication. So far, CH3
has been implemented on top of TCP and shared memory, and therefore our
implementation of one-sided communication runs on TCP and shared memory.
Implementations of CH3 on other networks are in progress.

For all three synchronization methods, we do almost nothing in the first syn-
chronization call; do nothing in the calls to put, get, or accumulate other than
queuing up the requests locally; and instead do everything in the second syn-
chronization call. This approach allows the first synchronization call to return
immediately without blocking, reduces or eliminates the need for extra commu-
nication in the second synchronization call, and offers the potential for commu-
nication operations to be aggregated and scheduled efficiently as in BSP [5]. We
describe our implementation below.

4.1 Fence

An implementation of fence synchronization must take into account the following
semantics: A one-sided operation cannot access a process’s window until that
process has called fence, and the next fence on a process cannot return until all
processes that need to access that process’s window have completed doing so.

A näıve implementation of fence synchronization could be as follows. At the
first fence, all processes do a barrier so that everyone knows that everyone else has
called fence. Puts, gets, and accumulates can be implemented either as blocking
or nonblocking operations. In the second fence, after all the one-sided operations
have been completed, all processes again do a barrier to ensure that no process
leaves the fence before other processes have finished accessing its window. This
method requires two barriers, which can be quite expensive.

In our implementation, we avoid the two barriers completely. In the first
call to fence, we do nothing. For the puts, gets, and accumulates that follow,
we simply queue them up locally and do nothing else, with the exception that
any one-sided operation whose target is the origin process itself is performed
immediately by doing a simple memory copy or local accumulate. In the second

5

fence, each process goes through its list of queued one-sided operations and
determines, for every other process i, whether any of the one-sided operations
have i as the target. This information is stored in an array, such that a 1 in
the ith location of the array means that one or more one-sided operations are
targeted to process i, and a 0 means no one-sided operations are targeted to that
process. All processes now do a reduce-scatter sum operation on this array (as in
MPI Reduce scatter). As a result, each process now knows how many processes
will be performing one-sided operations on its window, and this number is stored
in a counter in the MPI Win object. Each process is now free to perform the data
transfer for its one-sided operations; it needs only to ensure that the window
counter at the target gets decremented when all the one-sided operations from
this process to that target have been completed.

A put is performed by sending a put packet containing the address, count,
and datatype information for the target. If the datatype is a derived datatype, an
encapsulated version of the derived datatype is sent next. Then follows the actual
data. The MPI progress engine on the target receives the packet and derived
datatype, if any, and then directly receives the data into the correct memory
locations. No rendezvous protocol is needed for the data transfer, because the
origin has already been authorized to write to the target window. Gets and
accumulates are implemented similarly.

For the last one-sided operation, the origin process sets a field in the packet
header indicating that it is the last operation. The target therefore knows to
decrement its window counter after this operation has completed at the target.
When the counter reaches 0, it indicates that all remote processes that need
to access the target’s window have completed their operations, and the target
can therefore return from the second fence. This scheme of decrementing the
counter only on the last operation assumes that data delivery is ordered, which
is a valid assumption for the networks we currently support. On networks that
do not guarantee ordered delivery, a simple sequence-numbering scheme can be
added to achieve the same effect.

We have thus eliminated the need for a barrier in the first fence and replaced
the barrier at the end of the second fence by a reduce-scatter at the beginning of
the second fence before any data transfer. After that, all processes can do their
communication independently and return when they are done.

4.2 Post-Start-Complete-Wait
An implementation of post-start-complete-wait synchronization must take into
account the following semantics: A one-sided operation cannot access a process’s
window until that process has called MPI Win post, and a process cannot return
from MPI Win wait until all processes that need to access that process’s window
have completed doing so and called MPI Win complete.

A näıve implementation of this synchronization could be as follows. MPI Win start
blocks until it receives a message from all processes in the target group indicating
that they have called MPI Win post. Puts, gets, and accumulates can be imple-
mented as either blocking or nonblocking functions. MPI Win complete waits
until all one-sided operations initiated by that process have completed locally

6

and then sends a done message to each target process. MPI Win wait on the tar-
get blocks until it receives the done message from each origin process. Clearly,
this method involves a great deal of synchronization.

We have eliminated most of this synchronization in our implementation as
follows. In MPI Win post, if the assert MPI MODE NOCHECK is not specified, the
process sends a zero-byte message to each process in the origin group to in-
dicate that MPI Win post has been called. It also sets the counter in the win-
dow object to the size of this group. As in the fence case, this counter will get
decremented by the completion of the last one-sided operation from each origin
process. MPI Win wait simply blocks and invokes the progress engine until this
counter reaches zero.

On the origin side, we do nothing in MPI Win start. All the one-sided op-
erations following MPI Win start are simply queued up locally as in the fence
case. In MPI Win complete, the process first waits to receive the zero-byte mes-
sages from the processes in the target group. It then performs all the one-sided
operations exactly as in the fence case. The last one-sided operation has a field
set in its packet that causes the target to decrement its counter on completion
of the operation. If an origin process has no one-sided operations destined to a
target that was part of the group passed to MPI Win start, it still needs to send
a packet to that target for decrementing the target’s counter. MPI Win complete
returns when all its operations have locally completed.

Thus the only synchronization in this implementation is the wait at the
beginning of MPI Win complete for a zero-byte message from the processes in
the target group, and this too can be eliminated if the user specifies the assert
MPI MODE NOCHECK to MPI Win post and MPI Win start (similar to MPI Rsend).

4.3 Lock-Unlock
Implementing lock-unlock synchronization when the window memory is not di-
rectly accessible by all origin processes requires the use of an asynchronous agent
at the target to cause progress to occur, because one cannot assume that the
user program at the target will call any MPI functions that will cause progress
periodically.

Our design for the implementation of lock-unlock synchronization involves
the use of a thread that periodically wakes up and invokes the MPI progress en-
gine if it finds that no other MPI function has invoked the progress engine within
some time interval. If the progress engine had been invoked by other calls to MPI,
the thread does nothing. This thread is created only when MPI Win create is
called and if the user did not pass an info object to MPI Win create with the key
no locks set to true (indicating that he will not be using lock-unlock synchro-
nization). In MPI Win lock, we do nothing but queue up the lock request locally
and return immediately. The one-sided operations are also queued up locally.
All the work is done in MPI Win unlock.

For the general case where there are multiple one-sided operations, we imple-
ment MPI Win unlock as follows. The origin sends a “lock-request” packet to the
target and waits for a “lock-granted” reply. When the target receives the lock
request, it either grants the lock by sending a lock-granted reply to the origin

7

or queues up the lock request if it conflicts with the existing lock on the win-
dow. When the origin receives the lock-granted reply, it performs the one-sided
operations exactly as in the other synchronization modes. The last one-sided op-
eration, indicated by a field in the packet header, causes the target to release the
lock on the window after the operation has completed. Therefore, no separate
unlock request needs to be sent from origin to target.

The semantics specify that MPI Win unlock cannot return until the one-sided
operations are completed at both origin and target. Therefore, if the lock is a
shared lock and none of the operations is a get, the target sends an acknowl-
edgment to the origin after the last operation has completed. If any one of the
operations is a get, we reorder the operations and perform the get last. Since
the origin must wait to receive data, no additional acknowledgment is needed.
This approach assumes that data transfer in the network is ordered. If not, an
acknowledgment is needed even if the last operation is a get. If the lock is an
exclusive lock, no acknowledgment is needed even if none of the operations is
a get, because the exclusive lock on the window prevents another process from
accessing the data before the operations have completed.

Optimization for Single Operations. If the lock-unlock is for a single short
operation and predefined datatype at the target, we send the put/accumulate
data or get information along with the lock-request packet itself. If the target
can grant the lock, it performs the specified operation right away. If not, it
queues up the lock request along with the data or information and performs the
operation when the lock can be granted. Except in the case of get operations,
MPI Win unlock blocks until it receives an acknowledgment from the target that
the operation has completed. This acknowledgment is needed even if the lock is
an exclusive lock because the origin does not know whether the lock has been
granted.

Similar optimizations are possible for multiple one-sided operations, but at
the cost of additional queuing/buffering at the target.

5 Performance Results

To study the performance of our implementation, we use the same ghost-area
exchange program described in Section 1. Figure 4 shows the performance of the
test program with MPICH-2 on a Linux cluster with fast ethernet and on a Sun
SMP with shared memory.2 We see that the time taken by the point-to-point
version with MPICH-2 is about the same as with other MPI implementations
in Figure 2, but the time taken by the one-sided versions is much lower. To
compare the performance of MPICH-2 with other MPI implementations, we cal-
culated the ratio of the time with point-to-point communication to the time with
one-sided communication and tabulated the results in Table 1.3 For short mes-
2 Since the MPICH-2 progress engine is not yet fully thread safe, we ran the lock-

unlock test without a separate thread for making progress. The MPI calls on the
main thread made progress.

3 Since MPICH-2 does not run on an IBM SP yet, we could not compare with IBM
MPI.

8

0.1

1

10

100

16 64 256 1024 4096 16384 65536 262144

T
im

e
 (

m
s)

message size (bytes)

MPICH-2, 25 processes, Linux cluster, fast ethernet

pt2pt
fence
pscw
lock

0.01

0.1

1

10

16 64 256 1024 4096 16384 65536 262144

T
im

e
 (

m
s)

message size (bytes)

MPICH-2, 24 processes on a single Sun SMP

pt2pt
fence
pscw
lock

Fig. 4. Performance of MPICH-2 on a Linux cluster and Sun SMP

Table 1. Ratio of the time with one-sided communication to the time with point-to-
point communication on the Linux cluster (left) and Sun SMP (right) (the smaller the
ratio, the better).

Size LAM MPICH-2
(bytes) fence pscw fence pscw

16 18.9 3.3 3.5 2.03
64 18.1 3.2 3.28 1.94
256 13.6 2.4 2.35 1.60
1K 5.1 1.52 1.59 1.39
16K 1.40 1.02 1.08 1.05
64K 1.03 0.95 0.85 0.78
256K 1.30 1.21 1.22 1.08

Size Sun MPI MPICH-2
(bytes) fence pscw lock fence pscw lock

16 6.9 6.0 6.5 3.4 2.45 2.24
64 9.2 6.5 8.8 2.94 2.47 2.30
256 7.0 5.3 6.7 3.0 2.55 2.38
1K 2.0 1.55 1.93 2.43 2.06 1.92
16K 1.79 1.44 1.26 0.99 0.82 0.79
64K 1.48 2.16 1.54 1.13 1.06 0.77
256K 2.76 2.59 1.51 0.99 1.01 0.94

sages, MPICH-2 is almost six times faster than LAM for the fence version and
about 50% faster for the post-start-complete-wait version. Compared with Sun
MPI for short messages, MPICH-2 is more than twice as fast for all three syn-
chronization methods. The difference narrows for large message sizes where the
synchronization overheads are less of an issue, but MPICH-2 still performs better
than both LAM and Sun MPI. In some cases, we see that the ratio is less than
one, which means that one-sided communication is actually faster than point-
to-point communication. We attribute this to the waiting time for the receive to
be called in the rendezvous protocol used in point-to-point communication for
large messages.

6 Conclusions and Future Work

This paper shows that an optimized implementation of the synchronization func-
tions significantly improves the performance of MPI one-sided communication.
Nonetheless, several opportunities exist for improving the performance further,
and we plan to explore them. For example, in the case of lock-unlock synchroniza-
tion for a single put or accumulate, we can improve the performance substantially

9

by not having the origin process wait for an acknowledgment from the target
at the end of the unlock. This optimization, however, breaks the semantics of
unlock, which state that when the unlock returns, the operation is complete at
both origin and target. We plan to explore the possibility of allowing the user
to pass an assert or info key to select weaker semantics that do not require the
operation to be completed at the target when unlock returns. We plan to extend
our implementation to work efficiently on networks that have native support for
remote-memory access, such as InfiniBand and Myrinet. We also plan to cache
derived datatypes at the target so that they need not be communicated each
time and aggregate short messages and communicate them as a single message
instead of communicating them separately.

Acknowledgments
This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. De-
partment of Energy, under Contract W-31-109-ENG-38. We thank Chris Bischof for giving us access
to the Sun SMP machines at the University of Aachen and Dieter an May for helping us in running
our tests on those machines. We also thank Don Frederick for giving us access to the IBM SP at the
San Diego Supercomputer Center.

References

1. Noboru Asai, Thomas Kentemich, and Pierre Lagier. MPI-2 implementation on Fujitsu generic
message passing kernel. In Proceedings of SC99: High Performance Networking and Comput-
ing, November 1999.

2. David Ashton, William Gropp, Rajeev Thakur, and Brian Toonen. The CH3 design for a
simple implementation of ADI-3 for MPICH-2 with a TCP-based implementation. Technical
Report ANL/MCS-P1156-0504, Mathematics and Computer Science Division, Argonne National
Laboratory, May 2004.

3. S. Booth and E. Mourão. Single sided MPI implementations for SUN MPI. In Proceedings of
SC2000: High Performance Networking and Computing, November 2000.

4. Edgar Gabriel, Graham E. Fagg, and Jack J. Dongarra. Evaluating the performance of MPI-2
dynamic communicators and one-sided communication. In Jack Dongarra, Domenico Laforenza,
and Salvatore Orlando, editors, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 10th European PVM/MPI Users’ Group Meeting, pages 88–97. Lecture
Notes in Computer Science 2840, Springer, September 2003.

5. J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel,
T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP programming library. Parallel Computing,
24(14):1947–1980, December 1998.

6. Cray Research Inc. Cray T3E C and C++ optimization guide, 1994.
7. Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda, William Gropp, and

Rajeev Thakur. High performance MPI-2 one-sided communication over InfiniBand. In Proc.
of 4th IEEE/ACM Int’l Symp. on Cluster Computing and the Grid, April 2004.

8. LAM/MPI Parallel Computing. http://www.lam-mpi.org.
9. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, July

1997. http://www.mpi-forum.org/docs/docs.html.
10. Elson Mourão and Stephen Booth. Single sided communications in multi-protocol MPI. In Jack

Dongarra, Peter Kacsuk, and Norbert Podhorszki, editors, Recent Advances in Parallel Virutal
Machine and Message Passing Interface, 7th European PVM/MPI Users’ Group Meeting,
pages 176–183. Lecture Notes in Computer Science 1908, Springer, September 2000.

11. Fernando Elson Mourão and João Gabriel Silva. Implementing MPI’s one-sided communications
for WMPI. In Jack Dongarra, Emilio Luque, and Tomàs Margalef, editors, Recent Advances in
Parallel Virtual Machine and Message Passing Interface, 6th European PVM/MPI Users’
Group Meeting, pages 231–238. Lecture Notes in Comp. Science 1697, Springer, Sept. 1999.

12. Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global Arrays: A non-
uniform-memory-access programming model for high-performance computers. The Journal of
Supercomputing, 10(2):169–189, 1996.

13. Jesper Larsson Träff, Hubert Ritzdorf, and Rolf Hempel. The implementation of MPI-2 one-
sided communication for the NEC SX-5. In Proceedings of SC2000: High Performance Net-
working and Computing, November 2000.

14. Joachim Worringen, Andreas Gäer, and Frank Reker. Exploiting transparent remote memory
access for non-contiguous and one-sided-communication. In Proceedings of the 2002 Workshop
on Communication Architecture for Clusters (CAC), April 2002.

10

