
MPI Cluster System Software

Narayan Desai, Rick Bradshaw, Andrew Lusk, and Ewing Lusk

Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, Illinois 60439

1

Abstract. We describe the use of MPI for writing system software and
tools, an area where it has not been previously applied. By “system
software” we mean collections of tools used for system management and
operations. We describe the common methodologies used for system soft-
ware development, together with our experiences in implementing three
items of system software with MPI. We demonstrate that MPI can bring
significant performance and other benefits to system software.

1 Introduction

In this paper we use the term “cluster system software” to describe the collection
of tools used to manage a parallel machine composed of multiple nodes. Such a
machine typically includes a local file system and perhaps a shared file system.
We are not discussing per node software such as the node OS or compilers.
Rather, the tools we refer to are the programs and scripts, either externally
provided or locally written, that support the management of the cluster as a
parallel machine and the execution of parallel jobs for users.

Research into system software is not by any means a new activity; previous
efforts have been discussed in [8] and [11]. These efforts have focused around
scaling serial unix services to large cluster scale. The approach described in this
paper describes the use of MPI to create scalable, parallel system tools. As clus-
ters have become larger, the lack of scalability in traditional system management
tools is becoming a bottleneck. This situation has led to a gap in the amount and
quality of parallelism used in system support programs as opposed to application
programs.

Parallel applications have embraced MPI as a portable, expressive, scalable
library for writing parallel programs. MPI is already available for applications
on most clusters, but it has seldom been used for writing system programs. (An
exception is the collection of Scalable Unix Tools described in [9]. These are MPI
versions of common user commands, such as ls, ps, and find. In this paper we
focus on a different class of tools, more related to system admainstration and

1 This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, SciDAC Program, Office of Science, under Contract W-
31-109-ENG-38.

operation.) As we hope to show, MPI is a good choice for systems tools because
MPI’s scalability and flexibility, particularly its collective operations, can provide
a new level of efficiency for system software. In this paper we explore the potential
of using MPI in in three different system software tasks:

file staging Applications need both executable and data files to be made avail-
able to the individual nodes before execution, and output data may need
to be collected afterward. This process is awkward and can be painfully
slow when the cluster, for the sake of scalability, has no globally shared file
system.

file synchronization The rsync program is a classical Unix tool for ensuring
that the content of file systems on two nodes is consistent. A cluster may
require many nodes to be synchronized with a “master” node.

parallel shell We have written a parallel shell called MPISH to supervise the
execution of parallel jobs for users. It handles many of the same functions
that a normal shell such as sh or bash does for serial applications (process
startup, environment setup, stdio management, interrupt delivery) but in
a parallel and scalable way.

In Section 2 we discuss the shortcomings of current approaches and elaborate
on the advantages and disadvantage of an MPI-based approach. In Section 3 we
briefly describe the Chiba City [3] cluster at Argonne, where our experiments
took place. In Sections 4, 5, and 6 we describe the three example tasks men-
tioned above. In each case we describe the old and new versions of the tool we
have developed for that task, and we assess the general usefulness of our new ap-
proach. Section 7 describes plans for applying the MPI approach to other system
software.

2 Background

2.1 The Current Situation

The system software community uses various schemes to address scalability con-
cerns. In some cases, large external infrastructures are built to provide resources
that can scale to required levels. In other cases, ad hoc parallelism is devel-
oped on a task-by-task basis. These ad hoc systems generally use tools like rsh
for process management functionality, and provide crude but functional parallel
capabilities.

Such tools suffer from poor performance and a general lack of transparency.
Poor performance can be attributed to naive implementations of parallel algo-
rithms and coarse-grained parallelism. Lack of transparency can be attributed to
the use of “macroscopic” parallelism: that is, the use of large numbers of indepen-
dent processes with only exit codes to connect back to the overall computation,
leading to difficulty in debugging and profiling the overall task.

2.2 Potential of an MPI Approach

The adoption of comprehensive parallelism, such as that provided by MPI, can
provide many benefits. The primary benefit is an improved quality of parallelism.
A complete set of parallel functionality is not only available but already opti-
mized; whereas with ad hoc parallelism collective operations often are not avail-
able. Also, MPI implementations are highly optimized for the high-performance
networks available on clusters. While these networks are available for use by se-
rial tools through TCP, its performance, even over high performance networks,
tends to lag behind the performance provided by the vendor’s MPI implemen-
tation.

The use of MPI for system software does have some potential disadvantages.
Since an MPI approach is likely to utilize collective operations, the simple mech-
anisms available for providing fault tolerance to pairs of communicating process
may not apply. Techniques for providing fault tolerance in many situations are
being developed [7] but are (MPI-)implementation-dependent. In addition, the
manner in which MPI programs are launched (e.g. mpiexec, mpirun in various
forms) is not as portable as the MPI library itself. System scripts that invoke
MPI-based tools may have to be adapted to specific MPI installations.

3 Experimental Environment

Chiba City [3] is a 256-node cluster at Argonne National Laboratory devoted
to scalable software research, although “friendly users” also run applications. It
is not, however, dedicated to applications use and hence is available for parallel
software development and experimentation, particularly in the area of system
software. For the past year, its software stack has consisted largely of components
developed in the context of the SciDAC Scalable System Software project [13].
That is, the scheduler, queue manager, process manager, configuration manager,
and node monitor are all implemented as communicating peer components [4].
Extending these components to include necessary system utilities and support
programs initiated the experiments described in this paper.

In addition to being large enough that scalability of system operation is
an issue, Chiba City presents particular challenges for application use because
of its lack of a global file system. This was a deliberate choice to force the
development of economical, scalable approaches to running user applications in
this environment.

Instead, Chiba City is divided into “towns” consisting of 32 nodes and a
“mayor” node. The eight mayors are connected via gigabit Ethernet to a “pres-
ident” node. The mayors mount the individual file systems of each node and
are connected to them by Fast Ethernet. The nodes all communicate with each
other over both a separate Fast Ethernet connection and Myrinet. The MPI im-
plementation on Chiba City is the latest release of MPICH2 [6]. The experiments
reported here were all carried out using TCP over Fast Ethernet as the under-
lying transport layer for the MPI messages, pending finalization of the Myrinet
version of MPICH2.

4 File Staging

Chiba City has no shared file system for user home directories. Over the past five
years Chiba City has been in operation, we have used two systems that attempt
to provide seamless, on-demand access to home-directory data on nodes. The
first, City Transit, was developed during Chiba City’s initial deployment. The
second system, implemented in MPI, has been in use for the past year. We
will describe each system’s implementation in detail, discuss usage experiences,
compare performance, and assess both systems.

4.1 City Transit

City Transit was implemented in Perl in the style of a system administrator tool.
Parallel program control is provided by pdsh, which executes commands across
nodes. The staging process starts with a request, either from an interactive user
or from a job specification, identifying the data to be staged and the nodes that
need the data. The requested data is archived (uncompressed) into a tar file.
This tar file is copied via NFS from the home directory file server to the cluster
master and then to mayors who manage destination nodes. Finally, the nodes
unarchive the tar file, available via an NFS mount from the mayors. Once this
process has completed, the user has the pertinent portion of his home directory
on all assigned compute nodes.

Chiba City’s management infrastructure (the president and mayors) is con-
nected using Gigabit Ethernet, while the remainder of the system is connected
using Fast Ethernet. This process was optimized to improve performance through
knowledge of network topology. By preferentially using the faster Gigiabit Eth-
ernet links, we substantially accelerated the file staging process.

Nevertheless, this process has several shortcomings. First, the tar file of user
data is written to disk on the cluster master and some mayors during interme-
diate staging steps. This process can be wasteful, as each tar file is useful only
once. For larger file-staging runs, multiple stages of disk writes can constitute
a large fraction of the overall run time. Second, process control is provided by
multiple, recursive invocations of pdsh. The return-code handling capabilities of
pdsh require that in each invocation, multiple return codes are compacted into
one. While this allows for basic error detection, complex error assessment isn’t
possible. Third, the coarse-grained parallelism provided by this staged approach
effectively places several global barrier synchronizations in the middle of the pro-
cess. Fourth, several shared resources, including file servers, the cluster master,
and a subset of the mayors are heavily used during the staging process. Thus
users can seriously impact setup performance of one another’s jobs. Fifth, since
all data transmissions to compute nodes originate in the system management
infrastructure, full network bisection bandwidth isn’t available.

4.2 Userstage

The second file staging process in use on Chiba City is implemented in MPI.
Users (or the queue manager by proxy) specify a portion of the home file system

to be used on compute nodes. This data is archived into a compressed tar file and
placed in an HTTP-accessible spool. The nodes start the stagein executable,
which is an MPI program. Rank 0 of this program downloads the stage tar file
from the file server via HTTP. The contents of this file are distributed to all
nodes using MPI Bcast, and then all nodes untar the data to local disk.

This approach addresses many of the shortcomings of the City Transit ap-
proach. MPI provides fine-grained parallelism and synchronization and highly
optimized collectives that use available networks effectively. Errors can be easily
detected and handled properly. Also, only the initial tar file download is depen-
dent on system infrastructure. Hence, users are better isolated from one another
during parallel job setup. Moreover, the use of MPI allows us to largely skip the
optimization process, which was quite troublesome during the design process of
City Transit.

We carried out a set of additional experiments in which the file was broadcast
in various sizes of individual chunks rather than all at once, in order to benefit
from pipeline parallelism. This approach did indeed improve performance slightly
for small numbers of nodes, where the MPICH2 implementation of MPI Bcast
uses a minimal spanning tree algorithm. For more than four nodes, however,
MPICH2 uses a more sophisticated scatter/allgather algorithm, and the benefit
disappears. This experience confirmed our intuition that one can rely on the
MPI library for such optimizations and just code utility programs in the most
straightforward way. The only chunking used in the experiment as reported here
was to allow for the modest memories on the nodes; this points the way for
further optimization of MPI Bcast in MPICH2.

4.3 Practical Usage Experiences

City Transit was used for four years. During this period, there were frequent
problems with transient failures. These problems were difficult to track, as de-
bugging information was split across all systems involved in file staging. The
debugging process was improved with the addition of network logging. However,
many failure modes could be detected only by manual execution of parts of City
Transit, because of poor implementation and pdsh’s execution model. More im-
portant, the tree design of control used didn’t allow communication of errors
between peers. In case of errors, non-failing nodes could finish the file staging
process. As this process could take upwards for 30 minutes and put a heavy load
on the system infrastructure, single node failures would cause a large expenditure
of resources for no benefit. Also, even in cases where everything worked properly,
file staging operations performed poorly, and users were generally unhappy with
the process.

Our experiences over the past year with the MPI-based staging mechanism
show a stark contrast with our previous experiences. Performance is substantially
improved, as shown in Figure 1. This improvement can be attributed to the
highly optimized parallel algorithms implemented in MPICH2. The MPI version
performs better overall, even though it does not exploit knowledge of the network
topology, and as one expects, the advantages are greater both as the number of

nodes increases for fixed file sizes and as the file size increases for a given number
of nodes. At 128 nodes for a gigabyte file, the new code is writing an aggregate
of 216 Mb/sec compared with only 57 Mb/sec for City Transit.

File Staging Comparison on CHIBA

’userstage.MPI’
’chi_file.noMPI’

 1 64 128
 256

 512

 1024

size in MB
 1 4 8 16 32

 64

 128nodes

 0

 500

 1000

 1500

 2000

 2500

time in seconds

Fig. 1. Performance of old vs. new file staging code.

More important, the reliability of the staging process has been substantially
improved. We attribute this to a number of factors. First, the execution model
of the new staging tools provides an easier environment for error detection and
handling. Because programs aren’t called recursively, error codes and standard
output are readily available to the executing program. Also, the communication
constructs available to MPI programs allow for errors to be easily disseminated
to all processors.

As a result of the parallel infrastructure provided by MPI, the volume of code
required to implement file staging has been dramatically reduced. City Transit
consisted of 5,200 lines of Perl code, whereas the MPI-based code is only 84
lines of C. This size reduction makes the code easier to write, debug, and test
comprehensively.

5 File Synchronization

File synchronization is an extremely common operation on clusters. On Chiba
City, we use this process to distribute software repositories to mayors from the
cluster master. This process is executed frequently and can highly tax the re-
sources available on the cluster master. We will describe two schemes for im-
plementing this functionality. The first is based on rsync. The second is a file
synchronizer written in MPI. We will discuss their implementations and stan-
dard usage cases. We will also describe our experiences using each solution and
compare relative performance.

5.1 Rsync

Rsync is a popular tool that implements file synchronization functionality. Its use
ranges from direct user invocation to system management tools. For example,
SystemImager [5], a commonly used system building tool, is implemented on top
of rsync.

Rsync is implemented using a client/server architecture. The server invento-
ries the canonical file system and transmits file metadata to the client. The client
compares this metadata with the local file system and requests all update files
from the server. All communication transactions occur via TCP sockets. This
process is efficient for point-to-point synchronizations; however, the workloads
we see on parallel machines tend to be parallel, and therefore this process can be
wasteful. During a parallel synchronization, the server ends up inventorying the
file system several times, and potentially transmitting the same data multiple
times. Usually, the files between slaves are already synchronized, so the odds of
unnecessary retransmission are high. Many more technical details about rsync
are available at [12].

5.2 MPISync

To address several issues with our usage of rsync, we have implemented a parallel
file synchronization tool, which performs a one-to-many synchronization. The
steps used in mpisync are similar to those used by rsync, with the replacement
of serial steps by parallel analogues where appropriate. The first step is a file
inventory on the master. The result of this process is broadcast to all nodes,
which in turn perform an inventory of the local file system. A list of files that
need distribution is produced by a reduction of the set of inventories on all nodes.
All processors then iterate through files needing distribution. File contents are
then broadcast singly. Through the use of MPI Comm Split, only the processors
requiring the data participate in these broadcasts.

5.3 Experiences and Assessment

As we mentioned, mpisync was designed to address several shortcomings in the
usage for rsync for parallel synchronization. It easily handles several of the

shortcomings of the serial approach; that is, local files are read only once on the
server, and the MPI library provides much more efficient distribution algorithms
than a set of uncoordinated point-to-point links can provide. Considerably im-
proved scalability and performance are shown by the benchmark shown in 2.
Standard rsync performance drops off relatively quickly, and 32-way execution
runs are the largest ones that properly complete. On the other hand, mpisync
runs properly execute concurrently on 128 nodes, and its efficiency is closely
related to the underlying MPI implementation. For this reason, we expect that
its scalability would remain good at levels larger that this.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

T
im

e
in

 S
ec

on
ds

Number of Nodes

rsync vs. mpisync

"rsync.output"
"mpisync.output"

Fig. 2. Performance of old vs. new rsync code.

6 A Parallel Execution Environment

Parallel applications are run on clusters in a variety of ways, depending on the re-
source management system and other tools installed on the cluster. For example,
pdsh uses a tree to execute the same program on a given set of nodes. MPD [2] is
a more flexible process manger, also targeting scalability of parallel job startup,
particularly, but not exclusively, for MPI applications. A number of systems (e.g.
LAM [1]) require a setup program to be run on one node, which then builds an
execution environment for the application on the entire set of allocated nodes.

PBS [10] executes user scripts on a single node, which are in turn responsible
for initiating MPI jobs via some MPI-implementation-dependent mechanism.

Just as serial jobs typically are run as children of a shell program, which man-
ages process startup, delivery of arguments and environment variables, standard
input and output, signal delivery, and collection of return status, so parallel
programs need a parallel version of the shell to provide these same services in
an efficient, synchronized, and scalable way. Our solution is MPISH (MPI Shell),
an MPI program that is started by whatever mechanism is available from the
MPI implementation, and then manages shell services for the application. An
initial script, potentially containing multiple parallel commands, is provided to
the MPI process with rank 0, which then interprets it. Its has all the flexibility
of MPI, including the collective operations, at its disposal for communicating
to the other ranks running on other nodes. It can thus broadcast executables,
arguments, and environment variables, monitor application processes started
on other nodes, distribute and collect stdio, deliver signals, and collect return
codes, all in a scalable manner provided by MPI.

MPISH implements the PMI interface defined in MPICH2. Thus any MPI
implementation whose interface to process management is through PMI (and
there are several) can use it to locate processes and establish connections for
application communication. Thus MPISH both is itself a portable MPI program
and supports other MPI programs.

We have used MPISH to manage all user jobs on Chiba City for the past
year, and found it reliable and scalable. MPISH implements a “PBS compatibility
mode” in which it accepts PBS scripts. This has greatly eased the transition from
the PBS environment we used to run to the component-based system software
stack now in use.

7 Summary and Plans

Using MPI for system software has proven itself to be a viable strategy. In all
cases, we have found MPI usage to substantially improve the quality, perfor-
mance, and simplicity of our systems software. Our plans call for work in several
areas.

First, we can improve our existing tools in a number of ways. We can incor-
porate MPI datatype support into applications, specifically mpisync, to improve
code simplicity. We also plan the development of other standalone system tools.
A number of other common tasks on clusters are currently implemented serially,
and could greatly benefit from this approach. Parallel approaches could be taken
in the cases of several common system management tasks; system monitoring,
configuration management, and system build processes could be substantially
accelerated if implemented using MPI.

Use of other advanced MPI features for system software is under consid-
eration. I/O intensive systems tasks could easily benefit from the addition of
MPI-IO support. The implementation of the MPI-2 process management fea-
tures in MPICH2 will allow the implementation of persistent systems software

components in MPI, using MPI Comm connect and MPI Comm spawn to aid in fault
tolerance.

A final area for further work is that of parallel execution environments. MPISH
provides an initial implementation of these concepts. The idea of an execution
environment that allows the composition of multiple parallel commands is quite
compelling; this appeal only grows as more parallel utilities become available.

References

1. Greg Burns, Raja Daoud, and James Vaigl. LAM: An open cluster environment
for MPI. In John W. Ross, editor, Proceedings of Supercomputing Symposium ’94,
pages 379–386. University of Toronto, 1994.

2. R. Butler, N. Desai, A. Lusk, and E. Lusk. The process management component
of a scalable system software environment. In Proceedings of IEEE International
Conference on Cluster Computing (CLUSTER03), pages 190–198. IEEE Computer
Society, 2003.

3. http://www.mcs.anl.gov/chiba.
4. N. Desai, R. Bradshaw, A. Lusk, E. Lusk, and R. Butler. Component-based cluster

systems software architecture: A case study. In Proceedings of IEEE International
Conference on Cluster Computing (CLUSTER04), 2004.

5. Brian Elliot Finley. VA SystemImager. In USENIX, editor, Proceedings of the 4th
Annual Linux Showcase and Conference, Atlanta, October 10–14, 2000, Atlanta,
Georgia, USA, page 394, Berkeley, CA, USA, 2000. USENIX.

6. William Gropp and Ewing Lusk. MPICH. World Wide Web.
ftp://info.mcs.anl.gov/pub/mpi.

7. William Gropp and Ewing Lusk. Fault tolerance in mpi programs. High Perfor-
mance Computing and Applications, To Appear.

8. J. P. Navarro, R. Evard, D. Nurmi, and N. Desai. Scalable cluster administration
- chiba city i approach and lessons learned. In Proceedings of IEEE International
Conference on Cluster Computing (CLUSTER02), pages 215–221, 2002.

9. Emil Ong, Ewing Lusk, and William Gropp. Scalable Unix commands for parallel
processors: A high-performance implementation. In Y. Cotronis and J. Dongarra,
editors, Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face, volume 2131 of Lecture Notes in Computer Science, pages 410–418. Springer-
Verlag, September 2001. 8th European PVM/MPI Users’ Group Meeting.

10. http://www.openpbs.org/.
11. Rolf Riesen, Ron Brightwell, Lee Ann Fisk, Tramm Hudson, Jim Otto, and

Arthur B. Maccabe. Cplant. In Proceedings of the Second Extreme Linux Workshop
at the 1999 Usenix Technical Conference, 1999.

12. http://rsync.samba.org/.
13. http://www.scidac.org/scalablesystems.

