Control Flow Reversal for Adjoint Code Generation

Uwe Naumann and Jean Utke
Mathematics and Computer Science Division, Argonne National Laboratory
9700 South Cass Avenue, Argonne, IL 60438, USA
{naumann,utke} @mcs.anl.gov

Andrew Lyons
Vanderbilt University
2201 West End Avenue, Nashville, TN 37235, USA
andrew.m.lyons@vanderbilt.edu

Abstract

We describe an approach to the reversal of the control
flow of structured programs. It is used to automatically
generate adjoint code for numerical programs by seman-
tic source transformation. After a short introduction to
applications and the implementation tool set, we describe
the building blocks using a simple example. We then illus-
trate the code reversal within basic blocks. The main part
of the paper covers the reversal of structured control flow
graphs. We show the algorithmic steps for simple branches
and loops and give a detailed algorithm for the reversal of
arbitrary combinations of loops and branches in a general
control flow graph. *

1. Introduction

Research into the reversal of the control flow of struc-
tured programs is part of the “Adjoint Compiler Technol-
ogy and Standards’? (ACTS) project, a collaboration be-
tween MIT, Rice University, and Argonne National Labora-
tory/University of Chicago. It has atwofold goal. The first
isto providean open platform, called OpenAD, for develop-
ing of algorithmsfor the automatic semantic transformation
of numerical programs. The second is to use this platform
to create an adjoint compiler for generating efficient adjoint
codefor the MIT General Circulation Model 3 [8]. A control

1Thiswork was supported by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of Advanced Sci-
entific Computing Research, U.S. Department of Energy, under Contract
W-31-109-ENG-38 and by NSF under ITR contract OCE-0205590.

2Seewww. aut odi f f . or g/ ACTS.

3Seemi tgecm org.

flow reversal isimplemented as one of the fundamental al-
gorithms provided by OpenAD. The principal setup of Ope-

\
)
'

xaifzwhin}

\
\

L

Figure 1. OpenAD setup

nAD and its interaction with other software isillustrated in
Fig. 1.

OpenAD focuses on the semantic transformation of nu-
merical codes. In order to achieve language independence
of the transformation algorithms, the numerically relevant
core is extracted and represented in an intermediate XML
format called xaif.#. The agorithmic component called
xaifBooster accepts xaif and transforms it. The modified
xaif is then back-trandated into the original programming
language. In Fig. 1 all language-dependent parts are shown
in the shaded area. The core OpenAD components are en-
circled by the dashed line. Currently OpenAD uses two
front ends for the translation to and from xaif. For C/C++
codes we use the EDG® front-end in combination with
Sage 3.5. In this paper we concentrate on the Fortran front-

4Seewww. nts. anl . gov/ xai f
5See www. edg. com
6Seewww. | | nl . gov/ CASC

end Open64.’

Consider a Fortran code implementing a vector function
F asin Eqgn. (1). The Open64 front-end performs alexical,
syntactic, and semantic analysis and produces an interme-
diate representation of F in the whirl format.8 OpenAnaly-
sis’ isaframework that provides typical compiler analyzes
and can be used to implement domain-specific analyzes.
The whirl2xaif component creates a representation of the
numerical core of F' in xaif format, Fy,;¢, including call
graphs and control flow graphs built by using OpenAnal-
ysis. The transformation a gorithms implemented in xaif-
Booster then modify F; ;¢ and return £, . .. In the case of
adjoint code generation F', ;. represents the differentiated
code. F . f and F,pi are combined by xaif2whirl to con-
struct awhirl representation of the differentiated code. The
unparser of Open64 then transforms the whirl representa-
tion back into Fortran.

The paper is structured as follows. In Sec. 2 we briefly
introduce the elements of the “big picture” that our con-
trol flow reversal algorithm fitsin. A method for building
adjoint basic blocksis discussed in Sec. 3. In Sec. 4 we de-
rive an algorithm for the reversal of structured control flow
graphs. We draw conclusionsin Sec. 5.

2. The Big Picture

Automatic differentiation (AD) [2, 3, 5] is a set of tech-
niques for transforming numerical programsinto derivative
codethat can be used to compute derivatives of vector func-
tions such as Jacobians, Hessians, or higher-order Taylor
coefficients. A detailed description of the mathematical
foundations of AD is beyond the scope of this paper. Re-
fer to [4] for adiscussion of the theory.

The adjoint of a program implementing avector function

y=F(kx), xeR",yeR" |, QD

is obtained by the reverse mode of AD. It represents a se-

mantically modified version of the original program. Given

values for x and the adjoints of the original outputs y, the

adjoint program computes the transposed Jacobian vector
product

(F)"y=x . @)

This process is best illustrated with the help of a ssimple
example. Consider the following Fortran implementation
of avector functiony = F(x), wherex € IR?,y € IR®.

i:=1

do while (i<3)

if (i<2) then
y(2):=sin(x(1))
"Seehi persoft.cs.rice. edu/ open64.

8Thisis the Open64-specific internal representation.
9Seewww. hi persoft.rice. edu/ openanal ysi s.

el se
y(1):=cos(x(2))
end if
i=i+1
end do
y(3):=y(1)*y(2)

The example has been crafted to illustrate some impor-
tant features of control flow reversal for adjoint codes. We
assume the availability of a control flow graph (CFG) for
the codefor F'. A forward run is required to store informa-
tion regarding the specific path taken through the CFG as
well as numerical values needed for the adjoint computation
during the following reverse sweep. Domain-specific data
flow analyzesfor reverse-mode AD have been developed to
determine these sets of numerical values while minimizing
the conservative overestimate (see [7]). For our simple ex-
ample no numerical values need to be stored as none of the
variables gets overwritten. However, we require additional
statementsto store the path through the CFG. To thisend we
push a unique identifier onto a stack for each branch inside
the if-statement and bu counting the number of iterations
performed by the loop.

i:=1
ctr:=0
do while (i<3)
if (i<2) then
y(2):=sin(x(1))
push(1)
el se
y(1):=cos(x(2))
push(0)
end if
i:=i+1
ctr:=ctr+1
end do
push(ctr)
y(3):=y(1)*y(2)

We call this code version the augmented forward code.
The adjoint code is obtained by applying Egn. (2) to each
statement y = ¢(z) in the original code yields z = 427.
Alternatively Eqgn. (2) can be applied to whole basic blocks
as described in Sec. 3. The control flow is reversed by exe-
cuting al statements in reverse order. The number of itera-
tions of the adjoint loop is equal to the number of iterations
performed by the original loop for the current set of inputs.
The decision about which branch to take is based on what
has been stored during the forward sweep. The adjoint ver-
sion of variablesin the original codeis marked by the suffix
-adj .

y_adj (1):=y(2)*y_adj (3)
y_adj (2):=y(1)*y_adj(3)
r Bound: =pop()
do rCtr: =1, rBound
branchl d: =pop()
if (branchld=1) then
x_adj (1) :=cos(x(1))*y_adj(2)
el se
x_adj (2):=-sin(x(2))*y_adj (1)

end if
end do

The local partial derivatives used in the adjoint state-
ments are the results of applying the well-known differ-
entiation rules. For example, 22 — 4 and 2°%(e) —
—sin(a). The fact that Egn. (2) can be applied per state-
ment is an immediate consequence of the chain rule.

Adjoint codes permit the accumulation of the Jacobian
at a cost proportional to the number of outputs m. Gradi-
ents (m = 1) can be obtained at a small constant multiple
of the cost of evaluating the function itself. This property
is of particular interest for the ACTS project. For exam-
ple, in the context of data assimilation in oceanography the
gradient of some objective with respect to the grid points
of a very fine discretization of the ocean is required. Po-
tentialy, the number of input variables n is on the order of
10°. Neither forward-modeAD nor approximation by finite
difference quotients represents a feasible approach, as each
has a complexity that is O(n).

From now on we will consider a representation of the
CFG asthe directed graph GG. Figure 2 (a) shows G for the
example code introduced earlier.’? The basic block repre-
sented by vertex 3 is the result of a canonicalization step
performed by the front-end that substitutes a Boolean vari-
able for the loop condition. Formally, we define structured
CFGs asfollows.

Definition 1 A structured CFG G = (V, E) is a directed
graph consisting of a list of integer vertices IV and a list
of edges E C V x V. Verticesi € V have a type, where
type(i) € {ENTRY, BASICBLOCK, LOOP, ENDLOOR,
BRANCH, ENDBRANCH, EXIT}. G has a unique entry
i € V : type(i) = ENTRY,|P(i)|] = 0 and a unique exit
j €V : type(i) = EXIT,|S(j)| = 0.)* BASICBLOCK
and ENDL OOP vertices have one predecessor and one suc-
cessor each. Both the number of predecessors and succes-
sors of LOOP vertices is equal to two. The number of pre-
decessors of BRANCH and EXIT vertices as well as the
number of successors of ENDBRANCH and ENTRY ver-
ticesis equal to one.

Edgese € E can have labels. All edges emanating from
a BRANCH vertex are labeled with mutually distinct iden-
tifiers. Edges whose source isa LOOP vertex that lead into
the loop body carry the label ” 17 .

In this paper we follow a unified approach for al kinds of
loops. A formal distinction between for-loops, pre-loops,
and post-loopsis unnecessary, as shown in Sec. 4.4. We use
the vertex type LOORP for all these constructs.

gr aphvi z isused to visuaize the graphs as part of xaifBooster’s de-
bug output (seewww. r esear ch. att. coni sw/' t ool s/ graphvi z).

11\We denote the set of predecessors and successors of avertex i by P(i)
and S (i), respectively. The cardinality of aset A isdenoted by |A|.

Basic blocks can contain assignments and subroutine
cals. The latter require the code reversal to be extended
to the call graph. This is a research topic in itself, and a
variety of solutions have been proposed (see, for example,
[4, Chapter 12]. The techniques proposed in this paper can
be used by all of them.

We present a method for transforming a subroutine that
implements a vector function as in Egn. (1) into a seman-
tically modified version that computes the product of the
transposed Jacobian with avector. If the subroutineis given

=
in form of a CFG, then the transformation G — (G,G)
consists of two parts.

5 = (1_}, E) represents the augmented forward code and
is equivalent to G with al basic blocks semantically mod-
ified as in Egn. (4) and Eqgn. (5). Additional basic blocks
areinserted that contain instructions for storing the flow of
control as shown in Sec. 4. e e

The CFG of the adjoint code G = (V, E) isbuilt by us-
ing the information stored during the execution of the aug-
mented forward code. It executes the adjoint basic blocks,
constructed asin Eqgn. (6), in reverse order.

3. Adjoint Basic Blocks

A potential improvement of the adjoint code can be
achieved by preaccumulating Jacobians of basic blocks
using elimination techniques in linearized computational
graphs[9]. Basic blocks can be viewed aslocal vector func-
tions as in Egn. (1). The preaccumulation algorithm im-
plemented in xaifBooster generates optimized code for the
computation of F" in the following manner. We consider
the simple example of abasic block in Egn. (3).

V3 1= V1 * V3, Vg4 := V1 ¥ U3
vg 1= cos(vq); v7 := (V3 % V2) % vy

3

Linearization implies augmenting the code to include the
computation of local partial derivativesc;; = g—g for each
elemental operation asin Eqgn. (4).

v3:= (V1 * V2); C31 1= U2} C32 1= Uy
ve:= (U1 % U3); €41 1= U3} C43 1= U1
t:= (vg % v3); vr := (vg x) 4
Ci3 1= V2j Ciz 1= Ug; C7t 1= U4; C74 =1
vg := sin(vy); ceq := cos(vy)

This may require the assignment of intermediates as in the
expression (vs *vq) * vy totemporary variables. A linearized
computational graph (LCG) G = (V, £) is derived from the
linearized code, in theform of adirected acyclic graph. The
verticesv € V = X U Z U Y represent input variables
€ X, intermediates € Z, and output variables €). The
edges (v;,v;) € & are |labeled with their respective local
partial derivatives cj;. Fig. 3 (a) shows G represented by
our linearized vector function.

2: BASICBLOCK

1
3 BASICBLOCK
5: BRANCH 14: BASICBLOCK
1
1
-2 BASICBLOCK
5: BRANCH 11: BASICBLOCK
15: BASICBLOCK 16: BASICBLOCK
GreD
6: BASICBLOCK 7: BASICBLOCK 8 ENDBRANCH .
9 BASICBLOCK
1
9. BASICBL

OCK
10: ENDLOOP

@

(©
Figure 3. G, G', and JAE of (3,t)

G

-11: BASICBLOCK
13: BASICBLOCK

1

10: ENDLOOP -4: ENDLOOP

(b) (©

. — —
Figure 2. G, G, and G.

3.1. Edge Elimination

The collection of agorithms in xaifBooster provides
three elimination techniques for the accumulation of Jaco-
bian matrices, known as vertex [6], edge, and face elim-
ination [9]. For our example, we will use edge elimina-
tion. An edge (v;, v;), (4, §) for short, can be either front or
back eliminated, denoted by (i, j) s or (4, j)s, respectively.
Front elimination of (i, j) is executed by connecting all ver-
tices in the predecessor set P(; j), = {v;} with al vertices
in the successor set S; j), = Sy;. These new edges are
(i,k) : vx € Sy, . Only edges whose target is not an output
vertex can be front eliminated.

Back elimination of (j, k) is executed by connecting all
vertices in the predecessor set P), = P,; with al ver-
tices in the successor set S(;), = {vr}. The new edges
are (i,k) : v; € P,;. Only edges whose source is not an
input variable can be back eliminated.

In both cases the new edges are labeled with the val-
ues ci; = cj; * cg;, and the edge (7, j) is removed. If
an edge elimination (4, j) r or (j, k), would create an al-
ready existing edge (i, k), the label of (i, k) isincremented
Cki := Cki + Cj; * cij. Thisisreferred to as absorption, as
opposed to the creation of new edges that represent fill-in.

If at any point during the elimination process an inter-
mediate vertex has no morein- or out-edges, the vertex and

all incident edges are removed from the graph. Thereby, a
complete sequence of edge eliminations reduces G to a bi-
partite graph consisting only of vertices e X U) and edges
whose |abel s represent the Jacobian entries.

Each multiplication or combined increment / multipli-
cation on the edge labels implies a Jacobian accumulation
expression (JAE), which is stored in a list. In our exam-
ple the elimination (3,¢) ; implies a single JAE, shown in
Fig. 3 (c). Fig. 3 (b) shows G after edge (3,t) ; has been
eliminated. To understand why (3, ¢) » was eliminated first,
we must examine our method of choosing eliminations.

3.2. Heuristics

Use of the chain rule in preaccumulation yields a com-
putationally complex search space when attempting to de-
termine the optimal sequence of edge eliminations. We use
two different types of heuristics to determine our elimina
tion sequences. One group attempts to minimize the num-
ber of operations, that is, the number of JAEs implied by a
complete elimination sequence. The other group attempts
to maximize datalocality in the generated code. In order to
narrow the choice to a single elimination target, it may be
necessary to successively apply several heuristics.

For our example, we are primarily interested in maxi-
mizing data locality and therefore choose a heuristic from
the second group as the first heuristic in the sequence. This
heuristic is called highest sibling degree, or simply HS.

HS, like al edge elimination heuristics, is a mapping
from a set of elimination targets © to a subset @' C ©.
An elimination target consists of an edge e € £ and an
elimination direction that can be either front or back.

HS will choose elimination targets that have the maxi-
mum sibling degree denoted by sd ... V8 € ©, thesibling
degree of 6 with respect to the previouselimination 6 —, de-
noted sdy- (), is defined by

Sdg—(e) = |Se N Sg—| * |P9 ﬁP9—|
The maximum sibling degreeis defined as follows:
ez (67) = g;gg{sdof(@}

HS selects ©' = {0 : sdy- () = sdmaz(07)}. Inthe
case when sd,,.., = 0, © = ©. The elimination of a
target O directly following the elimination of a target 0
with sdyp(61) > 0 creates codethat stipul atestheimmediate
absorption of a new edge, which should still be resident in
fast memory.

Note that if thelast elimination was a front (back) elimi-
nation, any edge being considered for back (front) elimina
tion must have a sibling degree of 1. Thus, HS can choose
front (back) eliminations following a back (front) elimina
tion only when the maximum sibling degreeis 1.

Figure 4. JAE of (4,7),, G", and F’

When HS determines a sibling set with |©'| > 1, we
need to narrow the choice by applying another heuristic as
atiebreaker. For our example, we use a lowest Markowitz
degree heuristic (LM). The Markowitz degree for any front
or back eliminationisdefinedas|S| or | P|, respectively; see
[1] for an in-depth description of Markowitz-type heuristics
for edge elimination on an LCG.

If more than one edge existsin the most favorable equiv-
alence class for LM, reverse mode is used to acquire a
unique elimination. Because forward and reverse mode are
implemented based on a single topological sort on G, they
will always return a unique selection.

3.3. Preaccumulation

Our first elimination on the graph shown in Fig. 3 must
be decided by LM because there isn't any data in memory
yet. LM chooses both (3,¢) ; and (2, ¢) ; because they are
in the same equivalence class, with Markowitz degree 1.
Reverse mode chooses (3, t) y because vertex 3 occurs after
vertex 2 in atopological sort of our LCG. Now that we have
made an elimination and we have some datain fast memory,
we can make use of data locality in order to expedite our
accumulation.

Inspection of Fig. 3 (b) reveds that both (3,4); and
(4,7), are siblings (of sibling degree 1) of (3,t) ;. How-
ever, we cannot eliminate edge (3, 4) ; because vertex 4 isa
dependent vertex. Without better analyzes any vertex with
morethan 1 out-edge must be considered an output variable,
in case it appears in some right-hand side later in the code.
Hence, every vertex in our graph except fort will betreated
as an output. One of the two JAE graphs generated by the
elimination of (4,7), is shown in Fig. 4 (a); the resulting
LCG appearsin Fig. 4 (b).

Fig. 4 (c) shows the complete bipartite graph that repre-
sents the Jacobian F'. After a complete sequence of edge
eliminations, the JAE graphs that represent the remaining
edges are identified as Jacobian entries J;;, referenced in
Eqgn. (5) and Eqgn. (6). Finally, xaifBooster, when generating
the modified xaif output £, ,, , iterates through the list of
JAE graphs and generates the corresponding xaif represen-
tation that is unparsed back into Fortran. For our example
a representation of this code is listed in the center column
of Egn. (5). The left column of Egn. (5) shows the respec-
tive elimination steps. The right column indicates which
labels are Jacobian entries that are pushed onto the stack.
For (1,3) and (2, 3) the original edge labels are already Ja-
cobian entries as defined in Eqgn. (4).

C31 push(J31)
C392 pUSh(J32)
(v3,8)f cr3:= C3 * C7y
(U4;'U7)b C71:= C41 * C74
C73:= C13 + C14 * C43

(v3,v7)p Cr1i= 71+ Cr3 % €31 push(Jz1)
C72 1= C73 * C32 (5)
(t,vr)y cr2:= Cra + g * 2 push(J72)
(U4, Uﬁ)b Ce1 -= Cp4 * C41
C63 = Cp4 * C43
(v3,v6)p C61:= Ce1 + C63 * C31 push(Js1)
Cg2 1= Cg3 * C39 pUSh(JGQ)
(vs,v4)p ca1:= Ca1 + Ca3 x C31 push(Jy1)
C492 1= C43 * C39 pUSh(J42)

The subsequent reverse sweep pops these values and per-
forms a (sparse) transposed Jacobian vector product with
the vector of the adjoint variables 7; that correspond to the
original variables v;.

pop() returns:

Vg = pop() * U4 Juo
Dy = pop() * V4 Ju1
Uy := Ty + pop() * Ts Jo2
01 := U1 + pop() * Vg Je1)
Vg := U2 + pop() * vz J72
01 := 01 + pop() * vz Jr1
Uy := Ty + pop() * U3 J32
01 := U1 + pop() * T3 J31

The adjoints of certain basic block outputs need to be set to
zero explicitly if the basic block appearsin the context of a
larger program. The discussion of the conditionsis beyond
the scope of this paper.

4. Adjoint Control Flow

In this section we describe our approach to the automatic
reversal of the control flow. The method is based on atopo-

logically sorted vertex list V' obtained by an algorithm de-
—

scribed in Sec. 4.1. Thetransformation V. — (V, V) isde-
fined in Sec. 4.2. Specifics of the reversal for branches and
loops are discussed in Sections 4.3 and 4.4, respectively.
The heart of this section is an algorithm for for reversing
structured CFGs defined by Def. (1).

4.1. Topological Sort

Algorithm 1 (topsort(i) : i € V) We start with an empty
vertex stack S. The functions push, pop, and top are the
usual stack access routines. The visited flag of all vertices
is assumed to be f al se. A temporary list V' is used to
hold all vertices initially. V' is emptied. The algorithmis
called with the ENTRY vertex as argument.

i €V', type(i) =ENTRY:

1 If (visited(i)) Return

2 wvisited(i) := true

3 If (type(i) = ENDBRANCH) Then

4 S.push(i); Return

5 Endif

6 V.append(i)

7 I (type(i) = LOOP) Then

8 topsort(j): e=(i,j) € E A label(e) =1
9 topsort(k): ¢ = (i,k) € E A label(e’') #1
10 Else

11 V(i,j) € E : topsort(j)

12 Endif

13 If (type(i) = BRANCH) Then

14 V.append(S-top())

15 VY(S.top(),j) € E : topsort(j)

16 S.pop()

17 Endif

18 Return

We require that any given vertex succeeds its dominators
and it precedes its post-dominators. In particular, this re-
quirement implies that a ENDLOOP vertex succeeds any
vertex in the corresponding loop body. Furthermore, it is
ensured that any ENDBRANCH vertex succeeds the ver-
ticesin either of the branches.

Every vertex is visited once (lines 1..2). For BRANCH
vertices, the corresponding ENDBRANCH is appended
to the sorted vertex list only after al vertices inside the
branches have been processed. The agorithm is then ap-
plied recursively to the successor of the ENDBRANCH ver-
tex (lines 3..5 and 13..17). Loop bodies are sorted prior to
the successor of aLOOP vertex (lines7..10). By default, the
algorithms always proceeds to the successors of the given
vertex (line 11).

4.2. Vertex Transfor mation

Alg. 2 defines the transformation of vertices in G into

.) — —
verticesin G and G.
—

Algorithm 2 (V — (V,V))

- o =
1 i=»(ieV,ieV):
2 If type(i) = ENTRY Then
- —
3 type(i) := ENTRY; type(i) := EXIT
4 Elself type(i) = EXIT Then
— —
5 type(i) := EXIT; type(i) := ENTRY
6 Elself type(i) = BASICBLOCK Then
7
8
9

type(?) := BASICBLOCK (asin Equations (4, 5))

type(i) := BASICBLOCK (asin Equation (6))
Elself type(i) = BRANCH Then
10 type(i) := BRANCH
11 type(i) := ENDBRANCH
12 Elself type(i) = ENDBRANCH Then
13 type(i) := ENDBRANCH
14 type(?) := BRANCH
15 cond(i) == mke(i)=branchid
16 Elself type(i) = LOOP Then
17 type(i) = LOOP
18 type(?) := ENDLOOP
19 Elself type(i) = ENDLOOP Then
20 type(?) := ENDLOOP
21 type(?) := FORLOOP
2 iter(i) = | rCtr():=1,rBound(j) | : (i, j) € E
23 Endif

One possible approach to building augmented and adjoint
basic blocks has been discussed in Sec. 3. The adjoint of
an ENDBRANCH vertex i isaBRANCH vertex. The deci-
sion on which branch to execute during the adjoint sweep is
made by matching the restored branchId with the mkr(7),
which are unique for al branchesthat are merged at i. The
mkr(i) represent the labels of the corresponding edges.
Adjoint loops are FORLOOPs performing r Bound(j) it-
erations of the adjoint of the origina loop body, where
rBound(j) is the result of counting the number of itera-
tions during the augmented forward sweep. Further details
can be found in Sec. 4.3 and Sec. 4.4.

4.3. Branches

Consider the CFG G in Figure 5 (). It shows atwo-way
branch preceded and succeeded by a basic block and results

2 BASICBLOCK

2 BASICBLOCK
3 BRANCH

4 BASICBLOCK I 5 BASICBLOCK
6 cH

mmmmmm

) GoD
— —
G G G
2: <B2> 7 <B<—7>
2: <B2> if (...) : o
o R 9: branchl d: =pop()
sif (...) 2 <B4> 6 if (branchld=1)
4. <B4> 9: push(1) 4 Sas
el se el se) el se
S i 5B s G5
6:end if 10: push(0) _3: end if
7. <B7> 6:end if 2: 5o
7. <B73 -
@ (b) (©

Figure 5. Branch Reversal

froman| F- THEN- EL SE statement. The edgeleading into
thet r ue branchislabeled with 1. For multi-way branches

all edges are labeled with a unique identifier. 8 isshownin
Figure 5 (b). Two new basic blocks (9 and 10) are inserted
that contain a single statement each. A call to push stores
the value of the corresponding edge label on the stack. To
ensurethe correctness of the valuethat is pushed, werequire
the edges leading into the ENDBRANCH vertex be marked
by the identifier of the corresponding edge emanating from
the matching BRANCH vertex. Thisisachieved by asimple
traversal algorithm based on Algorithm 1.

5 is shown in Figure 5 (c). Vertices that correspond to
somevertex in G are marked with the respective negativein-
dex. The ENDBRANCH vertex in G becomesa BRANCH
vertex in G. The latter is preceded by anew basic block (9)
that pops the identifier of the branch taken during the for-
ward run from the stack. The corresponding adjoint branch
is then executed.

Algorithm 3 (Adjoint of Simple Branch) The adjoint
code uses a stack S to store the control flow (push) and
to restore it in reversed order (pop). Branches!? are
marked with a unique identifier mkr(i),*® where i is the

12These are the paths connecting a given BRANCH vertex with its given
ENDBRANCH vertex.

130nly one branch is executed for given inputs of the original program.
Therefore, a second index for addressing the single branches explicitly is
not required.

corresponding ENDBRANCH vertex.

Ve= (i,j) € E:

1 If type(j) =ENDBRANCH Then

2 V= Vu{k} k> Spush(mkr(l))
3 E::EU{(Z,k),(k,])}

4 Else

s Bi=FEU{(i,)}

6 Endif

J,

~

If type(i) =ENDBRANCH Then
— —
Vi=VU{k}: k> ‘ branchld::Spop()‘

(o]

< — — —
9 E3:EU{(klai)7(j7kl)}
10 Else
— — —
11 E:=EU{(j,1)}
12 Endif

— — - — —
V and V are constructed asin Sec. 4.2. Edges (i, j) € G
are constructed similar to their originals (i,7) € G (line
5) with an exception if the target j is an ENDBRANCH
vertex. Inthis case anew basic block containing a statement
that pushes the unique marker of the current branch onto S

needs to precede ? (lines 1..3).

If the source i of an edge (i,j) € G is not an END-
BRANCH vertex, then its adjoint is obtained by switching
its direction (line 11). Otherwise, the new basic block that

restores the branchld value needs to precede <z_ (lines7..9).
4.4. L oops

The CFG of asimpleloop isshown in Fig. 6 (a). We re-
verseloops by counting the executions of the loop body per-
formed during the forward sweep. Therefore, aloop counter
variablect r isinitialized before the loop statement. After
the end of the loop body ct r isincremented by one. The
final valueis pushed onto the stack right after the end of the
loop. This procedureresultsin the augmented forward code
and the corresponding augmented CFG that are shown in
Fig. 6 (b). The adjoint codeis displayed in Fig. 6 (C). Any
type of loop is transformed into a FORL OOP with loop in-
dexr Ct r that executesthe adjoint of the loop body exactly
ctr times, wherect r isthe number of executions of the
loop body while running the forward code. This value is
restored from the stack asr Bound. In Fig. 6 (c) al adjoint
CFG vertices are marked with the negative of the index of
their corresponding original vertex.

Algorithm 4 (Adjoint of Simple Loop) Again, a stack S
is used to store the control flow (push) and to restore it in
reversed order (pop). The number of executions of the loop

2: <B2>
. 8 ctr:=0 -6: <B6>
2j <B2> 3 do ... 8: r Bound: =pop()
3 do ... 4 <B4 -5: do rCtr: =1, r Bound
4: <B4> S
. 10: ctr:=ctr+l1 -4; <B4>
5. end do :
6 <B6> 5. end do -3: end do
’ 9 push(ctr) 2 g
6: <BG>
@ (b) (©

Figure 6. Loop Reversal

body corresponding to a LOOP vertex i are counted dur-
ing the augmented forward sweep. The counters ctr (i) are
equal to zero initially.

Ve= (i,j) € B :

1 Iftype() =LOOP A i <yThen

2 K::KU{k}: k 3 [ctr():=0]

s E:=EUu{(i,k),(k i)}
4 Elself type(j) =ENDLOOP Then

5 V = V U{k}: k> |ctr():=ctr()+1

e = =
E:=EU{(i,k),(k, j)}
Elself type(i) =LOOP A label(e) # 1 Then

V=V U{k}: k>[Spush(ctr())

o E=EUu{(i,k),(k i)

~N O

(o]

10 Else
— — - =
11 E:=EU{(i,j)}
12 Endif
13|ftype() LOOP A i< jThen

U Bi= EU{(k z)}: (k,j) e E
15 Elselftype() =LOOP A label(e) # 1 Then

16 V VU{k} k' > ‘rBound(l) =Spop() |

17 E EU{(] k"), (K, k)} (k,i) e E
18 Else
— — =
19 E:=EU{(j,i)}
20 Endif

The construction of vertices in 5 and E is described in
Sec. 4.2. The forward sweep needs to be augmented
by statements for initializing [ctr(i) := 0], increment-
ing [ctr(i) := ctr(i) + 1], and storing the final value
[S.push(ctr(i))] of the counter associated with a LOOP
vertex i. The initialization is done right before the LOOP
vertex (lines 1..3), and the fina value is stored right after
the execution of the loop (lines 7..9). The incrementation
of ctr(i) is performed right before the ENDLOOP vertex
that correspondsto i (lines4..6). The transformation of any
remaining edgesis straightforward (line 11).

If the source i of an edge (i,j) € G isaLOOP vertex
and 7 is not leading into the loop body, then the value of
ctr (i) needs to be restored right before the adjoint loop as
rBound(i) (lines15..17). If j isaLOOP vertex that follows
1 in the topologica order, then the adjoint edge leads into
the corresponding adjoint FORLOORP (lines 13..14). Oth-
erwise, the adjoint of an edge is obtained by switching its

directionin G (line 19).

Note that this algorithm does not explicitly refer to any
index or condition that could be part of the original LOOP
construct in G. Differing from the example used in Sec. 2,
any dependencies on such loop indices have to be resolved
by other means, for example, asintroducedin [7].

4.5. Nesting Branchesand L oops

Obviously, Algorithms 3 and 4 do not cover the general
case where loops and branches can be nested arbitrarily.
The following issues need to be considered.

Vertices need to be visited in the topological order de-
fined by Algorithm 1. In particular, this implies that loop
bodies are processed before the statements following loop.

A stack is required for storing the loop counter symbols
asthey arerequired for inserting the correct incrementation
statement right before the matching ENDLOOP vertex in

Y
G.

Algorithm 5 (Adjoint Structured Control Flow Graphs)
This algorithm combines Algorithms 3 and 4. The starting
conditions are as follows: S is empty, ctr(i) = 0 for all

LOOP vertices i, and mkr(j) is used to mark the branches
merged by an ENDBRANCH vertex j.

Ve= (i,j) € E:

1 If type(i) =LOOP A label(e) # 1 Then

2 V Vu{k} k 3| Spush(ctr(i))

s E:=EU{(i,k)}

4 Iftype() =LOOP Then

5 V VU{l} 15 [ctr():=0]
6 E=EU{k.(0])}

7 Elseif type(j) =ENDLOOP Then

8 V = VU {l}: 1> |ctr():=ctr()+1| A (j,j') € E

o E:=EU{kD, ()}
10 Elsaf type(j) =ENDBRANCH Then

11 V = V U {l}: I 5| Spush(mkr(j))

— —
12 E:=EU{(k10),(,)}
13 Else
— — —
14 E:=EU{(k,j)}
15 Endif
16 Elselftype(j) =LOOP A i < j Then

17 V::VU k}: k>|ctr(j):=0

Vi=VU{k)

18 E:=FEU{(i,k),(k, j)}

19 Elselftype(/) =ENDLOOP Then

20 V = VU {k}: k> |ctr(j):=ctr(j)+1
— — — —

21 E:=EU{(i,k),(k, j)}

22 Elselftype(/) =ENDBRANCH Then

23 V = VU {k} : k 3| Spush(mkr(j))
— — — =

25 Else
— — - =

26 E:=FEU{(i,j)}

27 Endif

28 If type(z) =LOOP A label(e) # 1 Then

29 Vo= Vu{k} k' 9‘rBound(|) =Spop() |

30 E= EU{(k’)} (k,i) €
31 Iftype() LOOPThen

32 E EU{(lk)}:(l,j)eE
33 Else
— — —
s E=EU{(jK)}
35 Endif
36 Elself type(i) =ENDBRANCH Then

— —
37 V:=VU{k'}: k> |branchid:=Spop() |
— — —
38 E:=EU{(K, i)}

39 Iftype() LOOPThen
40 E EU{(k KN} : (k,j) e E
41 Else
— — —
42 E:=EU{(j,k)}
43 Endif
44 Elsel f type(j) =LOOP A i < j Then
— —

45 E::EU{(k,z)} (k,j) € E
46 Else

— — —
47 E:=EU{(j,i)}
48 Endif

The decision about how to augment a given edge in 5 is

based either on its source (if 7 needs to be succeeded by a
new basic block to store the control flow) or onits target (if

7 needsto be preceded by such anew basic block). Thefirst
situation occursif i isaLOOP and (4, j) does not lead into
the loop body (lines 1..3). Then ctr(i) needs to be stored.
Therearethree cases g which anew basic block needsto be
inserted right before j . They are handled separately (lines
16..23). Specia care must be taken if two new successive

basic blocks need to be inserted between i and j (lines
4.12).

The construction of <Z_E is based .on the fact that each
e = (i,j) € E hasamatching ‘e € E. Therearetwo cases
where new basic blocks need to be inserted to restore the
control flow. If 7 isaLOOP vertex and e does not lead into
the loop body, then ctr (i) needs to be restored prior to the

corresponding FORLOORP vertex in E (lines 28..30). Sim-
ilarly, the adjoint of an ENDBRANCH vertex must be pre-
ceded by anew basic block to restore mkr (i) (lines 36..38).
A special treatment isrequired j isaLOOP vertex and i is
not the matching ENDL OOP vertex. The source of the ad-
joint edge must then be the FORL OOP vertex of the adjoint
loop (lines 31..32, 39..40, and 44..45). All other cases are
covered by the smple reversal of the edge (line 47).

The result of applying Alg. 5 tgthe CFGinFig. 2 () is

shown in Fig. 2 (b) and (¢). In G the labels of the edges
emanating from LOOP and BRANCH vertices have been
propagated to the matching ENDLOOP and ENDBRANCH
vertices. Again, adjoint vertices corresponding to vertices
in G carry the respective negative index. Vertices whose
index is greater than 12 (the index of the EXIT vertex in
(7) contain statements for storing and restoring the flow of
control.

5. Conclusions

The strategy presented in this paper is not the only pos-
sible method to reverse the control flow of a subroutine.
For example, instead of storing independent identifiers for
branches, one could store the value of the condition. A cor-
responding approach can be taken for multi-way branches
and loops. In doing so, however, one introduces additional
dependencies between the original code and the adjoint
code, for example, the requirement for additional canoni-
calization. The present approach alows the algorithms to
be formulated purely in terms of the CFG.

We realizethat the repeated insertion of new basic blocks
for storing and retrieving the flow of control is not neces-
sary. The corresponding statements could be merged with
aready existing basic blocks. Inany case, thefinal unparsed
codes are equivalent.

The algorithmsintroduced in this paper have beenimple-

mented in the OpenAD framework. There the adjoining of
the basic blocksis decoupled from thereversal of the CFGs.
Such a decoupling favors the insertion of new basic blocks
for storage and retrieval of control flow information, as sug-
gested in this paper. However, the examples in this paper
cover only the most simple cases. The adjoining of more
complex codes requires more advanced analyzes to guar-
antee semantical correctness. We mentioned the issue of
variable address computation depending on loop variables
in Sec. 4.4. Another issue is the adjoining of unstructured
CFGs. The most general reversal agorithm assigns unique
identifiers to all basic blocks and stores them at execution
during the augmented forward sweep. The adjoint code re-
storestheidentifiersin reverse order and executesthe corre-
sponding adjoint basic blocks. Exploitation of partial struc-
turedness is the subject of future work.

References

[1] A. Albrecht, P. Gottschling, and U. Naumann. Markowitz-
type heuristics for computing Jacobian matrices efficiently. In
ICCS 2003, volume 2658 of LNCS, pages 575 —584, Berlin,
2003. Springer.

[2] M. Berz, C. Bischof, G. Corliss, and A. Griewank, edi-
tors. Computational Differentiation: Techniques, Applica-
tions, and Tools. SIAM, Philadelphia, 1996.

[3] G. Corliss, C. Faure, A. Griewank, L. Hascogt, and U. Nau-
mann, editors. Automatic Differentiation of Algorithms: From
Smulation to Optimization. Springer, New York, 2002.

[4] A. Griewank. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. Number 19 in Frontiers
in Appl. Math. SIAM, Philadel phia, 2000.

[5] A. Griewank and G. Corliss, editors. Automatic Differentia-
tion of Algorithms: Theory, Implementation, and Application.
SIAM, Philadelphia, 1991.

[6] A.Griewank and S. Reese. On the calculation of Jacobian ma-
trices by the Markowitz rule. In A. Griewank and G. Corliss,
editors, [5], pages 126-135. SIAM, Philadelphia, 1991.

[7] L. Hascoét, U. Naumann, and V. Pascual. TBR anaysis in
reverse-mode automatic differentiation. Preprint MCS-P936-
0202, Argonne National Laboratory, 2002.

[8] J. Marshall, C. Hill, L. Perelman, and A. Adcroft. Hydro-
static, quasi-hydrostatic and nonhydrostatic ocean modeling.
J. Geophysical Research, 102, C3:5,733-5,752, 1997.

[9] U. Naumann. Optimal accumulation of Jacobian matrices by
elimination methods on the dual computational graph. Math.
Prog., 2003. To appear.

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory ("Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.

