
Improved Selective Acknowledgment Scheme for TCP

Rajkumar Kettimuthu and William Allcock

Argonne National Laboratory, Globus Alliance
Argonne, IL 60439, USA�

kettimut, allcock � @mcs.anl.gov

Abstract
A selective acknowledgment (SACK) mechanism, com-

bined with a selective repeat retransmission policy, has
been proposed to overcome the limitations with the cu-
mulative acknowledgment scheme in TCP. With the SACK
mechanism, the receiver informs the sender about the non-
contiguous blocks of data that have been received and
queued. However, for each such noncontiguous block,
SACK requires 8 bytes to convey the information to the
sender. Since TCP options field has a fixed length, an ac-
knowledgment packet, at the maximum, can carry infor-
mation about only 4 noncontiguous blocks. Under some
error conditions, this limitation can cause the TCP sender
to retransmit packets that have already been received suc-
cessfully by the receiver. In this paper, we propose an im-
proved selective acknowledgment (ISACK) scheme to over-
come the limitations of the current selective acknowledg-
ment scheme. Using examples, we demonstrate how the
proposed scheme works. We further propose an adaptive
selective acknowledgment (ASACK) strategy that dynami-
cally switches between SACK and ISACK to give optimal
performance.

1 Introduction
TCP was originally defined in RFC 793 [15], and sev-

eral enhancements have been proposed to TCP since then
[1, 6, 11]. Recently, researchers have formulated numerous
other approaches [5, 8, 9, 12, 13] to address the limitations
of the AIMD-based (Additive Increase Multiplicative De-
crease) TCP’s congestion control algorithm [1] in long-fat
networks (networks with large bandwidth and long delay).
In this work, we focus on efficiently transferring informa-
tion about the current state of the receiving TCP to the
sending TCP to help the congestion control algorithm at
the sending side. In the widely known TCP implementa-
tions such as TCP Reno [1] and TCP New-Reno [6], when
multiple packets are lost from a window of data, TCP may
end up either retransmitting packets that might have al-
ready been successfully received or retransmitting at most
one dropped packet per round-trip time. In order to over-
come this limitation, a selective acknowledgment (SACK)
mechanism was defined in RFC 2018 [14]. In TCP SACK,
the receiver can inform the sender about all the segments
that have been received successfully, allowing the sender
to retransmit only the segments that have actually been

lost. SACK uses two 32-bit unsigned integers to represent
a noncontiguous block of contiguous data. Hence, SACK
needs 8 bytes to convey information about one such block.
This 8-byte information is referred to as a “SACK block.”
The maximum size allowed for the TCP options in a seg-
ment is 40 bytes. Apart from the SACK blocks, SACK
needs 1 byte each to indicate the kind and the length of the
option. The maximum number of SACK blocks that can be
carried by an acknowledgment packet is restricted to 4 (the
number of bytes needed to represent 4 SACK blocks is 34
or 4*8+2). If the TCP timestamp option [11] is used, as is
typical, the maximum number of SACK blocks is reduced
to 3 (the timestamp option requires 10 bytes, leaving only
30 bytes for the SACK option). This restriction can some-
times cause unnecessary retransmission of successfully re-
ceived packets. The result is an unnecessary reduction in
the TCP congestion window and a decrease in the through-
put of the TCP connections.

In this paper, we propose an improved selective ac-
knowledgment (ISACK) mechanism to overcome this lim-
itation. We further propose an adaptive selective ac-
knowledgment (ASACK) scheme that uses both SACK and
ISACK to get better performance. In Section 2, we provide
background on TCP and its congestion control algorithms.
In Section 3, we provide a brief introduction to TCP SACK
and elaborate on its limitation. In Section 4, we describe
our ISACK scheme and demonstrate it with an example. In
Section 5, we describe the ASACK scheme; and in Section
6, we summarize our results.

2 Background
TCP provides connection-oriented, reliable byte stream

service. When two processes wish to communicate, their
TCPs must first establish a connection; in other words, they
must send some preliminary segments to each other to es-
tablish the parameters of the ensuing data transfer. TCP
ensures that the data arrives undamaged and in order (no
data is lost, none is repeated, and none is subject to error in
transmission). TCP provides this reliability by assigning a
sequence number to each octet transmitted and by requir-
ing a positive acknowledgment (ACK) from the receiving
TCP. The acknowledgment mechanism is cumulative: an
acknowledgment of sequence number X indicates that all
octets up to but not including X have been received. If the
ACK is not received within a timeout interval, the data is

retransmitted. At the receiver, the sequence numbers are
used to order segments that may be received out of order
and to eliminate duplicates. Damage is handled by adding
a checksum to each segment transmitted, checking it at the
receiver and discarding damaged segments.

The service provided by TCP is called byte stream be-
cause an application that uses the TCP service is unaware
of the fact that data is broken into segments for transmis-
sion over the network. From the application’s viewpoint,
TCP transfers a contiguous stream of bytes. TCP does this
by grouping the bytes in TCP segments, which are passed
to the underlying network protocol for transmission to the
destination. TCP itself decides how to segment the data,
and it may forward the data at its own convenience. If the
application on one end writes 10 bytes, followed by a write
of 20 bytes, followed by 50 bytes, the application at the
other end cannot recognize what size the individual writes
were.

TCP connections are full duplex. Once a TCP connec-
tion is established, application data can flow in both direc-
tions simultaneously. TCP provides flow control; that is,
it provides a means for the receiver to govern the amount
of data sent by the sender. This control is achieved by re-
turning a “window” with every ACK indicating a range of
acceptable sequence numbers beyond the last segment suc-
cessfully received. The window indicates an allowed num-
ber of octets that the sender may transmit before receiving
further permission. Earlier TCP implementations started
a connection with the sender injecting multiple segments
into the network, up to the window size advertised by the
receiver. While this approach is acceptable when the two
hosts are on the same LAN, a problem can arise if there
are routers and slower links between the sender and the re-
ceiver. Some intermediate router must queue the packets,
and that router can run out of space. This problem is of-
ten called congestion. Jacobson [10] shows how this naive
approach can reduce the throughput of a TCP connection
drastically. Slow start, congestion avoidance, fast retrans-
mit, and fast recovery are the principal algorithms used to
deal with congestion. These algorithms require that two
variables be maintained for each connection: congestion
window (cwnd) and slow start threshold size (ssthresh).
The sender can transmit up to the minimum of the con-
gestion window and the advertised window. The conges-
tion window is flow control imposed by the sender, while
the advertised window is flow control imposed by the re-
ceiver. The former is based on the sender’s assessment of
perceived network congestion, and the latter is related to
the amount of available buffer space at the receiver for this
connection.

TCP’s congestion control algorithm operates as follows:

� Cwnd is initialized to one segment and ssthresh to a
very large value.

� If cwnd is less than or equal to ssthresh, TCP per-
forms slow start; otherwise TCP performs congestion
avoidance.

� When congestion is indicated by a timeout, half of
the current window size (the minimum of cwnd and
the receiver’s advertised window, but at least two seg-
ments) is saved in ssthresh, and cwnd is set to one
segment (to enter slow start).

� When congestion is indicated by the reception of three
consecutive duplicate ACKs, fast retransmit, fast re-
covery, and congestion avoidance are performed.

With slow start, cwnd begins at one segment and is in-
cremented by one segment every time an ACK is received.
This opens the window exponentially: send one segment,
then two, then four, and so on.

With congestion avoidance, cwnd is incremented by
“(segsize*segsize)/cwnd” each time an ACK is received,
where “segsize” is the size of segment in bytes (cwnd is
maintained in bytes). This is a linear growth of cwnd,
compared to slow start’s exponential growth. The increase
in cwnd is at most one segment each round-trip time (re-
gardless of how many ACKs are received in that round-trip
time).

Fast retransmit assumes that three or more duplicate
ACKs received in a row strongly indicate that a segment
has been lost. It retransmits the apparently missing seg-
ment without waiting for the retransmission timer to ex-
pire. It sets ssthresh to one-half of the current window
size (the minimum of cwnd and the receiver’s advertised
window, but at least two segments). It also sets cwnd to
ssthresh plus three times the segment size (this inflates the
congestion window by the number of segments that have
left the network and that the other end has cached) and en-
ters fast recovery. (The reason for not performing slow start
in this case is that the receipt of the duplicate ACKs tells
TCP more than just a packet has been lost. Since the re-
ceiver can generate the duplicate ACK only when another
segment is received, that segment has left the network and
is in the receiver’s buffer. That is, data is still flowing be-
tween the two ends, and TCP does not want to reduce the
flow abruptly by going into slow start)

Fast recovery increments cwnd by the segment size each
time a duplicate ACK arrives (thereby inflating the con-
gestion window for the additional segment that has left the
network) and transmits a packet, if allowed. When the next
ACK arrives that acknowledges the retransmitted data, it
sets cwnd to ssthresh and enters congestion avoidance.

A widely known implementation that includes the
above-mentioned congestion control algorithm is known
as TCP Reno. Figure 1 illustrates how TCP Reno works
in the face of a single dropped segment in a window of
data. Let us assume that the advertised window is fairly
large throughout this example. The first unacknowledged
segment (U) is 4, and the current window size (W) is 6 seg-
ments (cwnd is 6 segments). Hence, the sender transmits
segments 4 through 9. Segment 4 gets lost in transit. The
receiver sends duplicate ACKs for segment 4 when it re-
ceives the subsequent segments. After receiving 3 consec-
utive duplicate ACKs for segment 4, the sender enters fast
retransmit. It sets ssthresh to 3 (W/2), retransmits segment

 4 5 6 7 8 9
 4
 5
 6
 7
 8
 9 dupack 4
 dupack 4
 dupack 4
 dupack 4
 dupack 4
 Enter Fast Retransmit/Recovery 4
 4 5 6 7 8 9 10 10
 4 5 6 7 8 9 10 11 11

 ack 10

 Exit Fast Retransmit/Recovery
 10 11 12 12

 .
 .
 .

Figure 1. Behavior of TCP Reno in the presence
of a single dropped segment in a window of data

4, sets cwnd (and thus W) to 6 (W/2 + 3), and enters fast re-
covery. Since 6 unacknowledged segments are already out-
standing, it cannot send any new data. When the sender re-
ceives another duplicate ACK for segment 4 (triggered by
segment 8), it increases cwnd to 7 segments and sends seg-
ment 10. When the sender receives another duplicate ACK
for segment 4 (triggered by segment 9), it increases cwnd
to 8 segments and sends segment 11. When the receiver
gets the retransmitted segment 4, it sends ACK for segment
10 (this is represented as “ack 10” in the figure. Actually,
this will be the sequence number of the first octet in seg-
ment 10, and it indicates that the receiver has received up to
and including segment 9). When the sender receives ACK
for segment 10, it sets the cwnd to ssthresh, which is 3,
and exits fast recovery to enter congestion avoidance. The
sender window allows the sender to transmit segments 10,
11, and 12. As it has already sent segments 10 and 11, it
sends segment 12.

TCP Reno makes an optimistic assumption that only
one segment in the window is dropped. When multiple
segments are dropped from one window of data, the sender
often has to wait for a retransmit timer before recovering.
Figure 2 illustrates what happens when multiple segments
are dropped from one window of data. When the sender
receives ACK for segment 8 (represented as “ack 8” in the
figure), it sets cwnd to 3 (ssthresh) and exits fast recov-
ery to enter congestion avoidance. The sender does not get
enough duplicate ACKs to enter fast retransmit, and thus
the sender has to wait for the retransmission timer to ex-
pire (even if it gets enough duplicate ACKs to enter fast

 4 5 6 7 8 9
 4
 5
 6
 7
 8
 9 dupack 4
 dupack 4
 dupack 4

 dupack 4
 Enter Fast Retransmit/Recovery 4

 4 5 6 7 8 9 10 10

 ack 8

 Exit Fast Retransmit/Recovery dupack 8

 8 9 10

 Not enough dupacks to enter
 Fast Retransmit/Recovery

Figure 2. Behavior of TCP Reno in the pres-
ence of multiple dropped segments in a window
of data

 Kind = 4 Length = 2

Figure 3. SACK-permitted option

retransmit again, it would unnecessarily reduce the con-
gestion window again).

Modifications have been proposed to the fast recovery
algorithm to handle multiple losses in a window of data.
When a partial ACK is received (the ACKs that are less
than U+W, where U and W are the first unacknowledged
segment and the window size, respectively, when fast re-
transmit is entered), it retransmits the current “first unac-
knowledged segment” in the window and remains in fast
recovery. In this way, when multiple segments are lost
from a single window of data, the modified implementa-
tion, widely known as TCP New-Reno, can recover with-
out a timeout, retransmitting one lost segment per round-
trip time until all of the lost segments from that window
have been retransmitted. It remains in fast recovery until
all of the data outstanding when fast recovery was initiated
has been acknowledged.

3 Selective Acknowledgment Scheme
Even with the New-Reno optimization, TCP ends up re-

transmitting at most one dropped segment per round-trip
time. In order to improve this process further, the TCP se-
lective acknowledgment (SACK) mechanism was defined
in RFC 2018 [14] and later extended in RFC 2883 [7].
SACK helps TCP recover faster by providing additional

 Kind = 5 Length

 Left Edge of 1st Block

 Right Edge of 1st Block

 Left Edge of nth Block

 Right Edge of nth Block

Figure 4. SACK option

information about the state of congestion. The selective ac-
knowledgment extension uses two new TCP options. The
first one is an enabling option, SACK-permitted option,
that may be sent in a SYN segment to indicate that the
SACK option may be used once the connection is estab-
lished. The other one is the SACK option itself, which may
be sent over an established connection once permission has
been given by the SACK-permitted option. The SACK-
permitted option is shown in Figure 3 and the SACK option
in Figure 4.

SACK options will be included in all ACKs that do not
acknowledge the highest sequence number in the data re-
ceiver’s queue. In this situation the network has lost or
misordered data, so that the receiver holds noncontiguous
blocks of data in its queue. Each noncontiguous block of
data queued at the data receiver is defined in the SACK
option by two 32-bit unsigned integers. “Left Edge of a
Block” is the first sequence number of this block; “Right
Edge of a Block” is the sequence number immediately fol-
lowing the last sequence number of this block. The SACK
option does not change the meaning of the “Acknowledge-
ment Number” field. A SACK option that specifies “n”
noncontiguous blocks will have a length of “8*n+2” octets,
so the 40 bytes available for TCP options would allow TCP
to specify a maximum of 4 blocks. Of course, if other TCP
options are introduced, they will compete for the 40 bytes,
and the limit of 4 may be reduced further. We note that the
receiver is permitted to discard data in its queue that has
not been acknowledged to the data sender, even if the data
has already been reported in a SACK option. This situa-
tion might happen if the receiver runs out of buffer space;
hence, the sender will not discard the data reported in the
SACK option until it gets an ACK for that data.

RFC 2018 does not address the use of the SACK option
when acknowledging a duplicate segment; RFC 2883, on
the other hand, does specify the use of SACK blocks when
the SACK option is used in reporting a duplicate segment.
The term D-SACK (duplicate SACK) is used to refer to
a SACK block that reports a duplicate segment. The D-
SACK block provides information about the duplicate seg-
ment that triggered this ACK. If present, it will be the first

block in the SACK option. A D-SACK block is used only
to report a duplicate contiguous sequence of data received
by the receiver in the most recent packet. Each duplicate
contiguous sequence of data received is reported in at most
one D-SACK block (the receiver sends two identical D-
SACK blocks in subsequent packets only if the receiver
receives two duplicate segments). If the D-SACK block
reports a duplicate contiguous sequence from a (possibly
larger) block of data in the receiver’s data queue above the
cumulative acknowledgment, then the second SACK block
in that SACK option should specify that (possibly larger)
block of data.

Several studies have been conducted on the perfor-
mance of TCP SACK. TCP SACK was shown to perform
better than TCP Tahoe and TCP Reno in [3]. Charalam-
bous et al. [2] show that, even though TCP SACK is more
efficient than TCP Reno and TCP New-Reno, the through-
put obtained by TCP SACK is much less than optimal. In
[4], Floyd addresses various issues related to the perfor-
mance of TCP SACK. The author expresses concern about
the limit on the number of SACK blocks that can be car-
ried by an acknowledgment packet. As SACK is usually
implemented along with the TCP timestamp option, an
acknowledgment packet can carry a maximum of only 3
SACK blocks. If D-SACK is used, the first SACK block
will be used to carry information about the duplicate seg-
ment that triggered the acknowledgment. This further re-
duces the amount of actual SACK information that can be
carried in the ACK packets. This maximum number de-
creases further in the presence of other TCP options. As
more and more options to TCP are included, especially
in the wireless environment, the issue with the low limit
on the maximum number of SACK blocks needs to be ad-
dressed. Figure 5 shows an example where the TCP (with
SACK) sender unnecessarily retransmits packets because
of the above-mentioned limitation. Assume the left edge
of the sender’s window is 3500 and that the sender trans-
mits a burst of 12 segments, each containing 500 bytes of
data. The second, seventh, ninth, and eleventh (last) seg-
ments are dropped. The receiver acknowledges the first
segment normally. The third, fourth, fifth, sixth, eighth,
tenth, and twelfth segments trigger SACK options. The
fifth, sixth, and seventh ACK packets are dropped. The
SACK option in the eighth ACK packet does not have
enough space to report that the sixth segment has already
been received, and thus the sender unnecessarily retrans-
mits that segment. The example assumes that there is room
for exactly 3 SACK blocks in the ACK packets.

4 Improved Selective Acknowledgment
Scheme

We propose an alternative way to convey information
about the noncontiguous blocks of data that have been re-
ceived successfully. We call this new scheme improved se-
lective acknowledgment (ISACK). For each block, instead
of sending the absolute value of the left and the right edge,
ISACK sends the offset of the left edge from the 32-bit
“(cumulative) Acknowledgment Number” field in the TCP

1st Block 2nd Block 3rd Block
Triggering
Segment

ACK Left
Edge

Right
Edge

Left
Edge

Right
Edge

Left
Edge

Right
Edge

3500 4000
4000 (lost)

4500 4000 4500 5000
5000 4000 4500 5500
5500 4000 4500 6000
6000 4000 (lost) 4500 6500

6500 (lost)
7000 4000 (lost) 7000 7500 4500 6500

7500 (lost)
8000 4000 (lost) 8000 8500 7000 7500 4500 6500

8500 (lost)
9000 4000 9000 9500 8000 8500 7000 7500

Sender would retransmit
segment 4000

Sender would retransmit
segment 6000 (unnecessary)

Figure 5. Limitation with TCP SACK

header and the block size. Similar to the SACK extension,
ISACK uses 2 new TCP options. The first one is an en-
abling option, ISACK-permitted option, that may be sent
in a SYN segment to indicate that the ISACK option may
be used once the connection is established. The other one
is the ISACK option itself, which may be sent over an es-
tablished connection once permission has been given by
the ISACK-permitted option. The ISACK-permitted op-
tion is shown in Figure 6, and the ISACK option in Figure
7. For a given packet, the number of bits used to represent
the offsets is given by ceil(

�������
(maxoffset)), where max-

offset is the largest among the offsets and the number of
bits used to represent the size of the blocks is given by
ceil(

�������
(maxsize)), where maxsize represents the size of

the largest block. Two 1-byte fields “Offset” and “Size” (in
addition to the “Kind” and “Length” fields) are used to in-
dicate the number of bits used to represent “Offset for Left
Edge of a Block” and “Size of a Block,” respectively.

 Kind = 27 Length = 2

Figure 6. ISACK-permitted option

Except for this change in the representation and inter-
pretation of the start and end sequence of the noncontigu-
ous blocks of data that have been received successfully, the
behavior of ISACK is same as that of SACK. For example,
the first ISACK block specifies the noncontiguous block
of data containing the segment that triggered this ACK,
unless that segment advanced the “Acknowledgment Num-
ber” field in the header. This ensures that the ACK with the
ISACK option reflects the most recent change in the data
receiver’s buffer queue. An example will help clarify how
ISACK works and how it differs from SACK. Assume that
the left window edge is 5000 and that the sender transmits
a burst of 11 segments, each containing 500 bytes of data.
The second, fourth, sixth, eighth, and tenth (last) segments

 Kind = 29 Length Offset Size

 Offset for Left Edge of 1st Block

 Size of 1st Block

 Offset for Left Edge of nth Block

 Size of nth Block

Figure 7. ISACK option

are dropped. The receiver ACKs the first packet normally.
The third, fifth, seventh, ninth, and eleventh segments trig-
ger SACK / ISACK options. Table 1 illustrates how SACK
handles the scenario, and Table 2 shows how ISACK han-
dles it.

We see that, with SACK, by the ninth segment (se-
quence number 9000), 34 (4*8+2) bytes (of the 40 bytes
available for the TCP options) would be used up by send-
ing information about 4 blocks. When the eleventh seg-
ment is received, there is not enough space to send infor-
mation about all 5 blocks. The information about the third
segment (octets 6000 – 6500) cannot be sent.

With the ISACK scheme, on the other hand, when the
eleventh segment is received, only 18 bytes are needed to
convey information about all 5 noncontiguous blocks. In
this case,

maxoffset = 4500
So, the number of bits used to represent “Offset for Left
Edge of a Block” = 	�
���������� � ������������� = 13
maxsize = 500

Table 1. Behavior of SACK
1st Block 2nd Block 3rd Block 4th Block

Triggering
Segment

ACK Left
Edge

Right
Edge

Left
Edge

Right
Edge

Left
Edge

Right
Edge

Left
Edge

Right
Edge

5000 5500
5500 (lost)

6000 5500 6000 6500
6500 (lost)

7000 5500 7000 7500 6000 6500
7500 (lost)

8000 5500 8000 8500 7000 7500 6000 6500
8500 (lost)

9000 5500 9000 9500 8000 8500 7000 7500 6000 6500
9500 (lost)

10000 5500 10000 10500 9000 9500 8000 8500 7000 7500

Table 2. Behavior of ISACK

1st Block 2nd Block 3rd Block 4th Block 5th Block Triggering
Segment

ACK
Offset Size Offset Size Offset Size Offset Size Offset Size

5000 5500
5500 (lost)

6000 5500 500 500
6500 (lost)

7000 5500 1500 500 500 500
7500 (lost)

8000 5500 2500 500 1500 500 500 500
8500 (lost)

9000 5500 3500 500 2500 500 1500 500 500 500
9500 (lost)

10000 5500 4500 500 3500 500 2500 500 1500 500 500 500

So, the number of bits used to represent “Size of a Block”
= 	
 � ��� ������� ��� ������� = 9
The total number of bits required by the ISACK option is
8 (Kind) + 8 (Length) + 8 (Offset) + 8 (Size) + 5*13
(offsets) + 5*9 (sizes) = 142 bits (18 bytes)

The improvement is more pronounced when TCP has to
use the timestamp option with SACK; then SACK can con-
vey information about only three blocks, whereas ISACK
can convey information about all the 5 blocks and still 12
bytes would remain unused in the available TCP option
space.

Duplicate ISACK
We use the term D-ISACK to refer to an ISACK block

that reports a duplicate segment. A D-ISACK block (if
present) would be the first block in the ISACK option.
The start and end sequence of a D-ISACK block may be
less than the Acknowledgement Number, whereas the start
and end sequence of an ISACK block is always be greater
than the Acknowledgment Number. Hence, ISACK needs
a simple modification to handle the D-ISACK extension.
Since the start sequence of a D-ISACK block can be less
than the Acknowledgment Number, there should be a way
to indicate to the sender whether to add or subtract the Off-
set for Left Edge of

�����
Block from the Acknowledgment

Number to get the start sequence of the D-ISACK (first)
block. Three bits each in the Offset and Size fields of the

ISACK option remain unused (Offset for Left Edge of a
Block and Size of a Block can never be greater than ���

�
and thus Offset and Size can never be more than 32). We
use the most significant bit in the Offset field to indicate
whether to add (if that bit is 0) or subtract (if that bit is 1)
the Offset for Left Edge of

���	�
Block to or from the Ac-

knowledgment Number for the D-ISACK (first) block. For
the subsequent (ISACK) blocks, the Offset for Left Edge
of a Block should always be added to the Acknowledgment
Number to get the start sequence of a block. The number
of bits used to represent the Offset for Left Edge of a Block
is given by “Offset & 0x1f.”

5 Adaptive Selective Acknowledgment
Scheme

 Kind = 28 Length = 2

Figure 8. ASACK-permitted option

ISACK imposes a little more processing overhead than
does SACK. Hence, it is desired that ISACK be used only
when SACK is not able to convey information about all
the noncontiguous blocks of data that have been received
successfully and queued. We propose an adaptive selec-
tive acknowledgment (ASACK) scheme that dynamically
switches between SACK and ISACK. ASACK uses SACK

as long as it can convey all the information with the avail-
able TCP option space. If SACK cannot convey all the
information, ASACK switches to ISACK. The introduc-
tion of the ASACK mechanism necessitates a new enabling
TCP option, the ASACK-permitted option, that may be
sent in a SYN segment to indicate that either the SACK or
ISACK option may be used once the connection is estab-
lished. The ASACK-permitted option is shown in Figure
8.

6 Conclusion
We presented an improved selective acknowledgment

scheme (ISACK) that addresses the limitations with the
current selective acknowledgment mechanism. We showed
how the proposed scheme can handle the duplicate SACK
extension proposed for SACK. We used an example to
demonstrate how the proposed ISACK scheme works. As
ISACK can convey more information than SACK, it is
more resilient to the high packet error rates often seen
in wireless environments. We also developed an adaptive
scheme (ASACK) that makes use of the advantages of both
SACK and ISACK.

Acknowledgment
This work was supported by the Mathematical, Infor-

mation, and Computational Sciences Division subprogram
of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Con-
tract W-31-109-ENG-38.

References
[1] M. Allman, V. Paxson, and W. Stevens. RFC 2581:

TCP Congestion Control, 1999.

[2] C. Charalambous, V. Frost, and J. Evans. Perfor-
mance of TCP Extensions on Noisy High BDP Net-
works. IEEE Communications Letters, 3(10):294–
299, 1999.

[3] K. Fall and S. Floyd. Simulation-Based Compar-
isons of Tahoe, Reno and SACK TCP. ACM SIG-
COMM Computer Communication Review, 26(3):5–
21, 1996.

[4] S. Floyd. Issues of TCP with SACK. Technical re-
port, Lawrence Berkeley National Laboratory, Jan-
uary 1996.

[5] S. Floyd. RFC 3649 (Experimental): HighSpeed TCP
for Large Congestion Windows, 2003.

[6] S. Floyd and T. Henderson. RFC 2582: The
NewReno Modification to TCP’s Fast Recovery Al-
gorithm, 1999.

[7] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky.
RFC 2883: An Extension to the Selective Acknowl-
edgment (SACK) Option for TCP, 2000.

[8] Y. Gu and R. Grossman. UDT (UDP based Data
Transfer Protocol): An Application Level Transport
Protocol for Grid Computing. Presented at the Sec-
ond International Workshop on Protocols for Fast
Long-Distance Networks, 2004.

[9] E. He, J. Leigh, O. Yu, and T. DeFanti. Reliable
Blast UDP: Predictable High Performance Bulk Data
Transfer. In Proceedings of the IEEE International
Conference on Cluster Computing, pages 317–324.
IEEE Computer Society, 2002.

[10] V. Jacobson. Congestion Avoidance and Control.
ACM SIGCOMM Computer Communication Review,
18(4):314–329, 1988.

[11] V. Jacobson, R. Braden, and D. Borman. RFC 1323:
TCP Extensions for High Performance, 1992.

[12] D. Katabi, M. Handley, and C. Rohrs. Conges-
tion Control for High Bandwidth-Delay Product Net-
works. ACM SIGCOMM Computer Communication
Review, 31(4):89–102, 2002.

[13] T. Kelly. Scalable TCP: Improving Performance in
Highspeed Wide Area Networks. ACM SIGCOMM
Computer Communication Review, 33(2):83–91,
2003.

[14] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
RFC 2018: TCP Selective Acknowledgment Options,
1996.

[15] J. Postel. RFC 793: Transmission Control Protocol,
1981.

Manuscript has been created by the University of
Chicago as Operator of Argonne National Laboratory (“Ar-
gonne”) under Contract No. W-31-109-ENG-38 with the
U.S. Department of Energy. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said article to re-
produce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on
behalf of the Government.

