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1 IntroductionLet Rn (n > 2) denote the usual n-dimensional Euclidean space. Given0 � a < b � 1, we consider the \annular" domain
 = ( fa < jxj < bg if a > 0;fjxj < bg if a = 0 : (1:1)When a > 0, 
 is the usual annulus or the exterior of the ball of radius a,depending on whether b is �nite or not. When a = 0, 
 is either the ball ofradius b, or (when b = 1) the entire Rn. We are concerned here with theuniqueness of positive radial solutions of the problem8>>><>>>: �u+ f(u) = 0 in 
@u@n = 0 when jxj = a > 0u(x) = 0 when jxj = b; (I)where f(u) belongs to a certain class of nonlinear functions. When a = 0,the �rst boundary condition is automatically ful�lled. When b = 1, thesecond boundary condition in (I) is interpreted to be u(x)! 0 as jxj ! 1.This problem arises in many applications. Please consult [8,9] for moreinformation.Existence of positive solutions for various classes of f(u) has been ob-tained by many authors, including Berestycki and Lions [1], and Berestycki,Lions, and Peletier [2]. The uniqueness problem is, however, more di�cult.In general, a positive solution of (I) need not be radially symmetric. Theinterest in radial solutions is sparked by the well-known results of Gidas,Ni, and Nirenberg in [4,5]. When a = 0 and b < 1, they showed that anypositive solution of (I) is necessarily radially symmetric. When b = 1, thesame conclusion is true under some additional restrictions on f(u). Theresult, however, may not hold if either a > 0 or b = 1 and f(u) is, forinstance, not Lipschitz.When we con�ne ourselves to radial solutions, problem (I) is reducedto the following equivalent problem which involves an ordinary di�erential2



equation: 8>><>>: u00 + mr u0(r) + f(u) = 0 a < r < bu0(a) = 0 if a > 0u(b) = 0; (II)where r denotes the radial variable, and m = n� 1 > 0. Since the case withm � 1 has been completely settled by McLeod and Serrin [10], we assumethroughout this paper that m > 1.The study of uniqueness can be traced back to Co�man [3] who ob-tained an a�rmative answer for the case n = 3, and f(u) = u3� u. Peletierand Serrin [13] succeeded in showing uniqueness for functions satisfying astarlike condition. Their result has been further extended by Kaper andKwong [7]. Other uniqueness results have been obtained by Ni [11] and Niand Nussbaum [12]. McLeod and Serrin [10] continued the study of Co�-man and extended his result to functions with a certain convexity property.Nevertheless, there is still a gap between the class of functions that admitsexistence and those covered by their results. Recently Kwong narrowedthe gap by proving uniqueness when f(u) = up � u, for all p 2 (1; n+ 2n� 2).The proof is very complicated and hard to adapt to include more generalfunctions.In this paper, we give a shorter proof of Kwong's result. Furthermore,the technique works for a much wider class of nonlinear functions includingf(u) = up �P ciuqi , with qi < p. The approach is a combination of thoseof Zhang [14] and Kwong [9]. After the present work was completed, welearned that McLeod has also obtained similar results using related tech-niques. In most aspects our results are more general. On the other hand,we are indebted to Professor McLeod for a lemma (Lemma 1 below, witha = 0) that allows us to relax one of the original conditions we imposedon f(u).We assume that f satis�es the following conditions:[F1] f 2 C1[0;1).[F2] There exists a constant � > 0 such that f(u) < 0 for u < � andthat f(u) > 0 for u > �. To cover the case b = 1, we requirein addition that f(0) = 0, and f 0(u) � 0 in a neighborhood ofu = 0. 3



[F3] Let � be the point de�ned by R �0 f(�) d� = 0. In [�;1), thefunction G(u) = uf 0(u)f(u) is nonincreasing and converges to a�nite limit � � 1 as u ! 1. In [�; �), G(u) � G(�), and in[0; �), G(u) � �, but it need not be monotone in either interval.The additional condition in [F2] is not needed if we are interested onlyin boundary value problems in a bounded 
. If f(0) 6= 0, there cannot be asolution of the boundary value problem with b = 1. Even when f(0) = 0,an additional hypothesis such as f 0(0) < 0 is needed to guarantee existence.Since we are concerned only with the uniqueness question, we do not imposethese conditions; we con�ne ourselves to the case where a solution in [a;1)is assumed to exist. We impose the monotonicity of f(u), or equivalentlyf 0(u) � 0, in a neighborhood of 0 to ensure a desirable decay rate for thesolutions. We believe that this condition can be relaxed with a re�nedargument.Apart from the improvement obtained by introducing �, condition [F3]is equivalent to the I-condition �rst used by McLeod and Serrin [10]. Theyalso used a less general condition that is sometimes more convenient to verify.In Section 4 we shall discuss the relations between these various conditionsand give some examples.Our main result can be stated as follows:Theorem 1 Suppose that [F1] { [F3] hold. Then problem (I) has at mostone positive radial solution, and problem (II) has at most one positive solu-tion.Using the symmetry results of Gidas, Ni, and Nirenberg, we can statethe following corollary:Corollary Suppose that [F1] { [F3] hold. Furthermore assume a = 0 andf 0(0) < 0. Then problem (I) has at most one positive solution.Theorem 1 is proved in Section 2, assuming the validity of two key as-sertions, Lemmas 15 and 16 (which we prove in Section 3). The justi�cation4



for postponing the proof of these lemmas is that they are the by-product ofthe investigation of a di�erent boundary value problem which is of interestby itself. Also, Lemma 15 implies Theorem 2, which | roughly speaking |states that no two monotonically decreasing solutions of (II) that intersectbelow u = � can cross the r-axis at the same point.In Section 4, we discuss examples of f(u) that satisfy the condition [F3].There have been much new activities since the paper was completed.Here is a last minute update. Chen and Lin [16] used a di�erent methodinvolving the Pohozaev identity to establish the desired oscillatory behav-ior of the �rst variational equation, thereby obtaining uniqueness results.Although there is a large intersection between their criterion and ours,neither one contains the other. Yanagida [19] used the Pohozaev iden-tity in a clever way to obtain the uniqueness of the ground state of theMatukuma equation, �u+ up1 + jxj2 . His technique was modi�ed by Kwongand Li [18] to treat problem (II) with an additional �rst-order term, namely,u00 +mu0=r+ f(u) + g(r)u = 0, and with general boundary conditions. Forthe case g(x) = �1, the result, besides providing a much shorter proof of thetheorem in [9], now covers the case of all homogeneous boundary conditions.For the case g(x) = 1, and f(u) = up with p subcritical, the result resolvesan open question �rst raised by Brezis and Nirenberg [15] in 1983 on theuniqueness of the positive solutions of�u+ up� + �u = 0 (1:2)on the unit ball, with a critical exponent p�. In [18], we also extendedthe technique we used here to obtain uniqueness for the Matukuma equa-tion in a �nite interval, a situation in which Yanagida's method no longerworks. Some related uniqueness results for Emden-Fowler equations wereestablished in [17] using a method of change of variables and di�erentialinequalities | entirely di�erent from the usual Co�man approach.
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2 Proof of the Main TheoremAs in all previous work, we use the Kolodner-Co�man method [8]. Letu(r; �) be the solution to the initial value problem8<: u00 + mr u0(r) + f(u) = 0 r > a; m > 1u(a) = �; u0(a) = 0: (2:1)Denote the �rst zero of u(r; �), if there is one, by b(�). It is well known thatu(r) is strictly decreasing in the interval (a; b(�)). By [F1], u(r; �) cannotbe tangential to the r-axis at b(�). Hence b(�) is a continuous function of �.We also study the variational equation8<: w00 + mr w0 + f 0(u)w = 0; r > a;w(a) = 1; w0(a) = 0; (2:2)which is satis�ed by the functionw(r; �) = @u(r; �)@� : (2:3)For simplicity, we frequently write w(r) for w(r; �) whenever it is clear fromthe context what value of � has been chosen.Following Co�man, uniqueness for positive solutions on bounded inter-vals holds if we can show that the function w(r) changes sign exactly oncein [a; b(�)], so that w(b(�)) < 0. More work is needed, however, to handleunbounded intervals.We point out that an approximating procedure could be used to relaxthe smoothness requirements on f(u), but we shall not pursue this furtherin the present paper. Suppose that f(u) is the C1 limit of a sequence ofnonlinear functions fn(u), namely, that fn(u) ! f(u) and f 0n(u) ! f 0(u)uniformly on any compact interval. If we can prove that for each n, thecorresponding function wn(r; �) changes sign exactly once in [a; b(�)], thenby taking the limit, we conclude that w(r; �) also changes sign exactly oncein the interior of the interval. But we have only w(b(�)) � 0. We thus\almost" have uniqueness for the limiting reaction function f(u). If we canexclude the possibility w(b(�)) = 0, for instance, using Lemma 8, we canthen restore uniqueness. 6



The �rst step in our proof of Theorem 1 is to ensure that w(r) has at leastone zero in [a; b(�)). This is true in general if f(u) is superlinear (namely, iff(u)=u is an increasing function, or equivalently if � = 1 in [F3]). Our �rstlemma shows that this is still true if � > 1.Lemma 1 The function w(r) must vanish somewhere in [a; b(�)).Proof. As remarked above, we can assume that � > 1. Take � = 2=(�� 1).The function v(r) = (r � a)u0(r) + �u(r) satis�es the di�erential equationL[v] = v00 + mr v0 + f 0(u)v= �amu0(r)r2 + � �uf 0(u)� �f(u)� � 0: (2:4)The �rst term in the second line is nonnegative because u0(r) < 0. Thesecond term is nonnegative by [F3]. On the other hand, equation (2.2) canbe rewritten as L[w] = 0. At r = a, w0(a) = v0(a) = 0 and v(a) = u(a) > 0.At the right endpoint v(b(�)) = (b(�)� a)u0(b(�)) < 0. Thus v(r) vanishessomewhere in the interval; let its �rst zero be �. In [a; �], vL[v] � 0. By theSturm comparison theorem, v(r) oscillates more slowly than w(r), implyingthat w(r) must vanish in [a; �].The remaining e�ort is devoted to showing that w(r) cannot have asecond zero at or before b(�), and to dealing with the case b(�) =1.In general, u(r; �) may not have a zero in (a;1). Following [8], wepartition the set of solutions into the following:N = f� 2 (0;1) : b(�) exists g ; (2:5)G = f� 2 (0;1)�N : u(r; �)! 0 as r!1g (2:6)P = (0;1)�N �G: (2:7)We sometimes abuse the notation by saying that u(r; �) 2 N (G;P ), insteadof � 2 N (G;P ).The following properties of N and P are easy to establish.Lemma 2 Let � 2 P and � > �. Then limr!1 u(r; �) = �. As a conse-quence, u(r; �) has an absolute minimum, say at r0 > a.7



Proof. Equation (2.1) is the familiar classical di�erential equation describ-ing the motion of a particle under the in
uence of a potential (given by theinde�nite integral of f(u)) and a frictional force. The position u = � is theonly place where the potential attains its minimum. It is the only stableequilibrium point, to which all solutions, except the ground states, tend.Lemma 3 The sets N and P are open subsets of (0;1), and (0; �) � P .Proof. That N is open follows from continuity of the solutions on �. Letu(r; �) 2 P . Then it has a positive absolute minimum at r0. The derivativeu0(r; �) therefore changes sign, as r passes through r0. For all � close to�, u0(r; �) must also change sign somewhere close to r0. In other words,u(r; �) has a local minimum near r0, and u has not vanished yet. From theshape of the potential and the dissipativeness of the system, it is easy tosee that u(r; �) cannot fall below this local minimum for larger r. Hence,u(r; �) 2 P .The behavior of the solutions of (2.2), as r !1, plays an important rolein the proof of Theorem 1 for an unbounded domain. Let us �x u(r; �) 2 Gand consider (2.2) as a linear di�erential equation with the known coe�cientf 0(u(r; �)). The set of all its solutions forms a two-dimensional linear space.Lemma 4 Let � 2 G. There is one (up to a constant multiple) solutionW (r) of (2.2) that decays asymptotically, more precisely,W (r) = O(r1�m); as r!1: (2:8)All other (linearly independent) solutions satisfyW (r)! K 6= 0; as r!1: (2:9)The limit K may be �1.Proof. This is very likely a known result, but we are not able to locatea complete reference. The decaying solution has been named the recessivesolution or the principal solution; see Hartman [6]. The conclusions areconsequences of the fact that f 0(u) is eventually negative. Since we are8



concerned only with asymptotic behavior, we may assume in the proof thatf 0(u) < 0 for all u. The existence of the principal solution and the behaviorof the other solutions can be found in Corollary 6.4 of [6]. It remains toprove that W (r) = O(r1�m) for the principal solution. This solution can beobtained by a shooting procedure. Let W (r; �) be the solution of (2.2) withinitial conditions w(a) = 1; w0(a) = �: (2:10)For � very negative, W (r; �) crosses the r-axis. As � increases, the solutionincreases and the zero moves towards r = 1. When � = 0, we have anincreasing solution. Hence there is a maximum value of � for which thesolution just misses the r-axis. This gives the principal solution; it is thesupremum of all the solutions with smaller �. Fix one such �, and let the�rst zero ofW (r; �) be �. A simple comparison principle shows thatW (r; �)in [a; �] is dominated by the solution of the boundary value problemZ 00 + mr Z0 = 0; (2:11)Z(a) = 1; Z(�) = 0: (2:12)By either an explicit solution of (2.11) or a simple application of Sturm'scomparison theorem, we see that Z(r) � (a=r)m�1. Hence W (r; �) �(a=r)m�1. It follows that the same inequality holds for the limiting principalsolution, and the required decaying behavior follows.We need a simple property of functions that satisfy (2.9).Lemma 5 Suppose W (r) < 0 for large r and satis�es (2.9). Thenlim infr!1 rW 0(r)jW (r)j � 0: (2:13)Proof. Suppose (2.13) does not hold. Then for some r0 and some � > 0,W 0(r)jW (r)j � �r ; for all r > r0: (2:14)Integrating over [r0; r] givesjW (r)j � �r0r �� jW (r0)j: (2:15)9



The right-hand side tends to zero as r !1, contradicting (2.9).By Lemma 3, G is a closed set. Let�� = minG: (2:16)As a �rst step towards our goal, we show that with �� chosen as the initialheight, the function w(r; ��) has the expected property.Lemma 6 w(r; ��) has exactly one zero in (a;1).Proof. Suppose the contrary is true, namely, that w(r; ��) has at least twozeros. This implies that if � is su�ciently close to ��, then u(r; �) andu(r; ��) intersect at least twice. Denote the �rst two intersection points by�1(�) and �2(�). These points remain distinct and vary continuously as �changes, at least in a small neighborhood of ��. Let us pick our � in (0; ��)and decrease it gradually from ��. There must be a limiting point � � �at which the second intersection point �2(�) disappears into 1. This isbecause with the initial height �, the solution u(r; �) � � is a constant andintersects u(r; ��) only once.Suppose �rst that � > �. The choice of �� dictates that (0; ��) � P . ByLemma 2, for each � 2 [�; ��), u(r; �) has an absolute minimum at somepoint r0(�). This point depends continuously on �. As � decreases towards�, r0(�) ! r0(�) and u(r0(�); �) ! u(r0(�); �). Hence, for � su�cientlyclose to �, we have u(r0(�); �) > 12u(r0(�); �). Since r0(�) is an absoluteminimum for u(r; �), we haveu(r; �) > 12u(r0(�); �); for all r > a: (2:17)On the other hand, as � decreases towards �, �2(�), the second point ofintersection of u(r; �), with u(r; ��), diverges to 1. At this point,u(�2(�); �) = u(�2(�); ��): (2:18)Note that the right-hand side tends to zero, while, by (2.17), the left-handside is bounded away from zero. This is a contradiction.We therefore must have � = �. For the solution u(r; �), the point r0is not de�ned. Nevertheless, we can still obtain a positive lower bound for10



u(r; �) for all � su�ciently close to �. This can be done by using the well-known energy technique. The potential energy R u0 f(�) d� is strictly lower atand around u = � than at u = 0. We omit the easy details. A contradictioncan be obtained just as before.The next step is the most crucial one in the whole proof. We shall showthat for � 2 N , w(r) cannot have its second zero exactly at b(�). Knowingthis, we can deduce that if for some �1 2 N , the corresponding w(r; �1) hasonly one zero in [a; b(�1)], then for all � > �1, w(r; �) has only one zero in[a; b(�)]; as a consequence, [�;1) � N . The method of proof was �rst usedby Zhang in [14]. It is only in this step that we need to invoke condition[F3]. We begin by giving this condition an equivalent formulation.Lemma 7 If we assume that conditions [F1] and [F2] hold, condition [F3]is equivalent to the following condition:For each � > �, there exist a constant 
 > 1 such that
f(u)� uf 0(u)( � 0 for all u < �� 0 for all u > � : (2:19)Proof. In [0; �), f(u) < 0. The �rst inequality in (2.19) over the interval[0; �) is thus equivalent toG(u) � 
 for u 2 (0; �): (2:20)In [�;1), f(u) > 0. The remaining part of the �rst inequality in (2.19) isequivalent to G(u) � 
 for u 2 (�; �): (2:21)The second inequality in (2.19) is equivalent toG(u) � 
 for u 2 (�;1): (2:22)It follows from (2.21) and (2.22), by continuity, that G(�) = 
. The conclu-sion of the lemma is now obvious.The next lemma is so important that we give two di�erent proofs.Lemma 8 Suppose � 2 N . The endpoint b(�) cannot be the second zero ofthe function w(r). 11



Proof. By Lemma 1, w(r) has one zero � < b(�). Suppose �rst thatu(�) � �. Then by Lemma 15 of Section 3, w(r) cannot have a second zeroin [�; b(�)], and we are done.Next we assume u(�) > �: (2:23)Suppose that b(�) is the second zero of w(r). Thenw(r) > 0 for r 2 (a; �); (2:24)and w(r) < 0 for r 2 (�; b(�)): (2:25)It is straightforward to verify the following identities, by using the di�erentialequations (2.1) and (2.2) satis�ed by u and w, respectively:�rm(u0w � uw0)�0 + rmw �f(u)� uf 0(u)� = 0: (2:26)�rm((ru)00w � (ru)0w0)�0 + rmw �3f(u)� uf 0(u)� = 0: (2:27)By integrating these, we obtainZ ba [f(u)� uf 0(u)]w(r)rm dr = 0; (2:28)andZ ba [3f(u)� uf 0(u)]w(r)rmdr = rmw(ru)00���r=a + bm+1w0(b)u0(b): (2:29)If a = 0, the �rst term on the right-hand side of (2.29) vanishes because ofthe factor rm. If a > 0, this term expands to anu00(a) < 0, since w(a) = 1and u0(a) = 0. The last term in (2.29) is nonnegative since w0(b) � 0 andu0(b) � 0. Hence the integral in (2.29) is nonnegative. By taking suitablelinear combinations of (2.28) and (2.29), we haveZ ba [
f(u)� uf 0(u)]w(r)rm dr � 0; (2:30)for all 
 > 1.By (2.23), u(r) � u(�) > � for r 2 [a; � ] and u(r) � u(�) for r 2 [�; b(�)].Using the alternative form of [F3] given in Lemma 7, we see that thereexists a constant 
 > 1, such that 
f(u) � uf 0(u) is nonnegative in (a; �)12



and nonpositive in (�; b(�)). Furthermore, the function cannot be identicallyzero in (a; �). These facts obviously contradict inequality (2.30).Although the proof is short, its dependence on the seemingly fortuitousidentities (2.28) and (2.29) hides some insight. We give here another proofusing Sturm's comparison theorem. It is this alternative method that en-ables us to obtain uniqueness results for the generalized Matukuma equation,�u+ q(jxj)up = 0, reported in the forthcoming paper [18].Alternative Proof. Let v(r) = ru0(r) + �u(r); (2:31)where � > 0 is a constant to be chosen later. ThenL[v] = � �uf 0(u)� 
f(u)� ; (2:32)where L is the operator de�ned in (2.4) and 
 = (�+2)=�. We use Lemma 7to choose 
 (and hence �) so thatL[v] � 0 in (a; �) and L[v] � 0 in (�; b(�)): (2:33)Suppose as before that � and b(�) are the two zeros of w(r). At r = a,v(a) > 0 and v0(a) � w0(a) = 0. By the Sturm comparison theorem, v(r)oscillates faster than w(r) in the right neighborhood of a before v(r) changessign. Hence v has a �rst zero � < � . After passing �, v(r) becomes negative,and so it begins to oscillate more slowly than w(r). Thus v(r) cannot havea second zero before � . After passing � , L[v] changes sign, and this reversesthe comparison condition. Now v(r) begins to oscillate faster than w(r).Furthermore, since w(�) = 0, v(r) has a head start at r = � . Hence, v(r)must have a zero & before the next zero of w(r), namely, b(�). After passing& , v(r) changes sign, and so it switches to oscillate slower than w(r). Itfollows that v(r) cannot change sign for a third time before b(�). This is acontradiction since v(b(�)) = bu0(b(�)) < 0.When � 2 G, a similar assertion holds.Lemma 9 Suppose that the last condition in [F2] is satis�ed. Let � 2 G.Let w(r) have only one zero in [a;1). Then w(r)! K 6= 0 as r! 1.13



Proof. The �rst proof of Lemma 8 works, after replacing b by1 and usingLemma 16 instead of 15, only if we can control the boundary terms of thevarious integrals. This is indeed true if we know that f 0(0) < 0, whichimplies that u decays exponentially. The general case can also be handledby using estimates of the form (2.8). Instead, let us establish the lemma bymodifying the alternative proof. The last sentence in the proof no longerleads to a simple contradiction, because we do not know (at least not yet)that v(r) < 0 for large r. Suppose v(r) > 0 for large r. We have alreadyshown that in (&;1), v(r) oscillates less than w(r). By Lemma 4, w(r)is the only principal solution; all others that are eventually positive andoscillate more slowly than w(r); in particular v(r), approach a positive limit(or 1). It follows that v(r) = ru0(r) + �u(r) ! K1 > 0. Since u(r) ! 0,ru0(r)! K1 > 0. This is a contradiction.Lemma 10 Suppose that the last condition in [F2] is satis�ed. For � > 0small enough, �� + � 2 N .Proof. As before, let � be the only zero of w(r) = w(r; ��) in [a;1). ByLemma 9, w(r) cannot be the principal solution. By Lemma 5, there existsan arbitrarily large point � such thatw0(�)jw(�)j < m� 1� : (2:34)If we chose � > � , we also have w(�) < 0. Now let us choose one such large� that in (�;1), u(r) is within the neighborhood of 0 in which f 0(u) < 0.Denote v(r) = u(r; ��+ �)� u(r; ��)� : (2:35)Then v(r) satis�es v00 + mr v0 + f 0(�(r))v = 0; (2:36)and v(a) = 1; v0(a) = 0; (2:37)where �(r) is some number between u(r; ��) and u(r; �� + �). As � ! 0,f 0(�(r))! f 0(u(r)) uniformly in any compact interval, in particular in [a; �].14



Thus v(r)! w(r) uniformly in [a; �]. Therefore, when � is small enough,v(�) < 0; and v0(�)jv(�)j < m� 1� : (2:38)The �rst inequality implies that u(�; �� + �) < u(�; ��). Now supposeu(r; ��+ �) does not belong to N . Then either it remains below u(r; ��) forall r > � or the two solutions intersect at some future point �. In otherwords, either v(r) < 0 for all r > �, or v(�) = 0.We claim that the latter case is impossible. In (�; �), the coe�cient ofthe last term in (2.36) is negative. We can compare v(r) with the solutionof the equation V 00 + mr V 0 = 0; (2:39)having initial conditionsV (�) = v(�) < 0; V 0(�)jV (�)j = v0(�)jv(�)j < m� 1� : (2:40)Since v(r) oscillates more slowly than V (r), v(r) � V (r), for r 2 [�; �], aslong as V (r) remains negative. Direct computation shows that V (r) remainsnegative and indeed increases to a negative limit as r! 1. This contradictsthe assumption that v(�) = 0.In the remaining case, the coe�cient of the last term in (2.36) is nega-tive in (�;1), implying that v(r) again oscillates more slowly than V (r) in(�;1). So limr!1 v(r) � limr!1 V (r) < 0. We still have a contradictionbecause, by de�nition (2.35), v(r)! 0 as r !1.Lemma 11 For � > 0 small enough, w(r; �� + �) has exactly one zero in[a; b(��+ �)].Proof. As �! 0, w(r; ��+�) and w0(r; ��+�) converge uniformly to w(r; �)and w0(r; �), respectively, in [a; �]. In the interval [�; b(��+ �)], u(r; ��+ �)remains below u(r; �), so that the coe�cient of the third term in (2.2) (forw(r; ��+ �)) is negative. The proof that w(r; ��+ �) does not vanish in thisinterval is identical to that used in Lemma 10 to show that v(r) cannot havevanished in [�;1). We omit the details.15



We can now wrap up the proof of Theorem 1. We �rst assume that thehypotheses of Lemmas 9 and 11 hold. By the de�nition of ��, we know that(0; ��) � P . By Lemmas 10 and 11, we see that for some � > 0, (��; ��+�) �N , and that w(r; �) has exactly one zero in [a; b(�)]. Thus b(�) is a strictlydecreasing function of �. Using a continuity argument, we see that as �increases, the number of zeros of w(r; �) in [a; b(�)] cannot increase, unlessat some moment w(b(�)) becomes the second zero, a possibility excludedby Lemma 8. Hence w(r; �) changes sign exactly once for all � > ��.As a consequence, b(�) remains strictly decreasing for all � > ��, and(��;1) � N . Uniqueness for (II) on a bounded interval holds. Furthermore,�� is the only initial height that yields a ground state solution in [a;1).Now suppose that the last condition in [F2] is not satis�ed. Then Lem-mas 9 and 11 may not be valid, and we cannot conclude that �� (if it existsat all) gives the only ground state. However, we can still prove that if � 2 N ,then w(r; �) has only one zero in [a; b(�)], and so uniqueness for the bound-ary value problem on a bounded interval is still valid. Suppose that w(r; �)has more than one zero in [a; b(�)]. By Lemma 8, its second zero � must bein (a; b(�)). We can then modify f(u) in the interval [0; �] so that the newfunction satis�es the last condition of [F2]. Then the new w(r) functioncannot have a second zero in (a; b(�)); in particular, it cannot be zero at �.This is a contradiction because the two w(r) coincide in [a; �].From what we have proved, we can describe the structure of the setof solutions. If the last condition in [F2] is satis�ed, then N = (��;1),G = f��g, and P = (0; ��). In general, there is a point ��� = maxG suchthat N = (���;1). There could be more than one member of G in (0; ���).We conjecture, however, that the contrary prevails.
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3 A Boundary Value ProblemIn this section, we assume only that the nonlinear function f(u) satis�es thefollowing:[F4] f 2 C1[0;1),and there exists a point � such thatZ �0 f(�) d� = 0; (3:1)whereas Z u0 f(�) d� � 0; for all u < �: (3:2)We also allow the middle term of our di�erential equation to have a moregeneral coe�cient. The interval [a; b] will be bounded except in Theorem 2and Lemma 16.We consider a new boundary value problem8><>: u00 + g(r)u0(r) + f(u) = 0; u > 0; a < r < bu(a) = �; u0(a) < 0u(b) = 0: (III)We assume that � � � (3:3)and that g(r) : [a; b]! (0;1) is a continuous nonincreasing function. Thecontinuity requirement on g(r) implies that we must take a > 0 for thedi�erential equation considered in Section 2.Our goal is to show that (III) has a unique positive solution. As a bonus,we furnish two of the links needed in Section 2. Note that we require thesolution to be initially decreasing. Otherwise, it is possible that there exists17



another solution that starts with a positive slope at r = a, increases beyondu = �, and then comes back to vanish at r = b.We �rst outline our method. The natural approach is to apply theKolodner-Co�man method on solutions shooting from r = a. This methodrequires knowledge of the oscillatory behavior of the w(r) function, whichseems to be di�cult to obtain directly. We study a related shooting process,this time from the r-axis, backward towards r = a. The techniques ofPeletier and Serrin [13] and Kaper and Kwong [7] can be used to show thatno two solutions of this backward shooting can intersect below u = �. Thisfact implies the nonoscillatory nature of the w(r) function associated withthis second type of shooting. As the two w(r) functions satisfy the samelinear di�erential equation, we can deduce the desired oscillatory propertyof the �rst w(r) function from that of the second one.We shall omit some details, especially those that follow from simple en-ergy arguments. We �rst observe that all solutions to (III) must be mono-tonically decreasing in [a; b].Existence of a solution to (III) is most easily established by shooting.We let u(r; 
) be the solution to the same di�erential equation with the �xedinitial height u(a) = � and the initial slope u0(a) = 
. For 
 su�cientlynegative, u(r; 
) must cross the r-axis at a point very close to a. For 
 = 0,the solution will not cross the r-axis, because it does not have enough energy.Thus, as 
 gradually increases from�1, the �rst zero of u(r; 
)must at somepoint disappear into 1. Hence, by continuity, there exists some suitable 
for which this �rst zero occurs at the given endpoint b.To establish uniqueness, we shall show that the functionw(r; 
) = @u(r; 
)@
 (3:4)does not have a zero in [a; b(
)], where b(
) is de�ned as the �rst zero ofu(r; 
). In particular, w(b(
))> 0. Co�man's argument can then be modi-�ed to show that b(
) is a strictly increasing function of 
, and uniquenessfollows.As usual, the function w(r; 
) satis�es the �rst variational equationw00 + g(r)w0+ f 0(u)w = 0 (3:5)18



and the initial conditions w(a) = 0; w0(a) = 1: (3:6)We look at a related terminal value problem. Let � = u0(b), the terminalslope of the solution that solves (III). Let U(r; �) be the solution of thedi�erential equation in (III) with the terminal valuesU(�; �) = 0; U 0(�; �) = �: (3:7)Here U 0 denotes the derivative with respect to the �rst argument r. Weassume that � varies within a neighborhood of the endpoint b, so small thatU(r; �) < � + �, for all r 2 [a; �], where � > 0 is some su�ciently smallnumber. Using an energy argument, we see that U(r; �) must be strictlydecreasing in [a; �].A monotone separation property was �rst established for g(r) = m=rin [13], and then for general g(r) in [7], for ground states (solutions thatdecay to zero at1). The same ideas in fact work to give a similar result onbounded intervals, which we state as Lemma 12 below. The proof is evensimpler because r =1 is not involved. We omit the details. Let � < b. Atthis moment, we do not know whether the two solutions U(r; �) and U(r; b)intersect in [a; b] or not. Let [�; b] � [a; b] be the maximal subinterval inwhich they do not intersect.Lemma 12 Suppose U(r; �) and U(r; b), � < b, do not intersect in [�; b].For all pairs of points � � � < r at which the two solutions have the sameheight, i.e., U(�; �) = U(r; b),U 0(�; �) � U 0(r; b)< 0: (3:8)The next step, as in [13] and [7], is to use the monotone separation lemmato deduce that the two solutions actually cannot intersect below u = �. Asthe proof works without change here, it is again omitted. Since U(r; b)� �in [a; b], the two solutions cannot intersect at all in [a; b].Lemma 13 For � < b, U(r; �)< U(r; b) in [a; b].19



De�ne W (r; �) = @U(r; �)@� : (3:9)Then W (r) = W (r; b) satis�es the same di�erential equation (2.2) as w(r)does. By di�erentiating the �rst identity in (3.7) with respect to r, we obtainU 0(�; �) +W (�; �) = 0: (3:10)In particular, letting � = b, we obtainW (b) = �� > 0: (3:11)Lemma 14 The function W (r) cannot have a zero in (a; b).Proof. The proof is standard. Suppose � is the last zero of W (r) in (a; b),if there is one. Then at some point r0 < � , W (r0) < 0. This implies that for� < b and su�ciently close to b, U(r0; b)� U(r0; �) < 0. This contradictsLemma 13.Lemma 15 The function w(r) cannot have a zero in (a; b).Proof. Recall that w(r) has a zero at r = a. Since w(r) and W (r) are solu-tions of the same second-order linear ordinary di�erential equation, Sturm'sseparation theorem applies. If w(r) has a second zero in (a; b), W (r) mustalso have one. This contradicts Lemma 14.We have thus completed the proof of the following theorem in the caseb <1. The case b =1 is already included in the results in [7] and [13].Theorem 2 Suppose that f(u) satis�es [F4] and g(r) is a positive nonin-creasing continuous function on the interval [a; b); (b � 1). The boundaryvalue problem (III) has a unique positive solution.The proof of Lemma 9 in Section 3 requires a version of Lemma 15 forb = 1. The technique used to establish Lemma 15 cannot be extended,because, for b =1, it is not clear how to de�ne the corresponding terminalvalue shooting problem. Instead we use a limiting argument.20



Lemma 16 Suppose u(r) is a solution of the di�erential equation over[a;1) in (III), such that u(a) < � and limr!1 u(r) = 0. Then the functionw(r; 
), as de�ned in (3.4), cannot be a principal solution of (3.5).Proof. We extend u(r) backward a little from r = a to r = a� �. If � > 0 ischosen small enough, we can make sure that u(a� �) < �, and u0(a� �) < 0.De�ne the function w(r) in the same way we de�ne w(r), but using a� � asthe shooting point instead. Then w(r) satis�es the same di�erential equation(3.5). Suppose that the lemma is false and w(r) is a principal solution, witha zero at r = a. By Sturm's separation theorem, w(r) must have a zero� 2 (a;1). Next we modify f(u) in (0; u(�)) so that the new functionf(u) vanishes near 0. If we keep the modi�cation within a su�ciently smallneighborhood of 0, we can make sure that u(a� �) remains below � of thisnew function. In [a��; �], u(r) is still the solution of the modi�ed di�erentialequation. When we continue u(r) beyond �, we obtain an extended solutionthat vanishes at a �nite zero (provided that the modi�cation of f(u) hasbeen suitably chosen). This contradicts Lemma 15.Let us now show how f (u) can be constructed. If we just rede�ne f(u) tobe identically zero in a small interval (0; �), then the corresponding new u(r)will have a �nite zero. This can be seen by comparing the new solution withthe original one in [�;1), where � is the point at which u(�) = �. Denotethe �nite zero of the new solution by b0. Then u(b0 + 1) < 0. However, thenew f has a jump at � and so is not C1. To obtain f(u), we must smooththe jump by changing the function in (�; 2�), keeping the modi�cation sosmall that u(b0 + 1) remains strictly negative.
21



4 ExamplesThe most di�cult part in [F3] to verify is usually the monotonicity of G(u).We say that f(u) has the property [G] in an interval I if[G] In I , f(u) > 0, and G(u) = uf 0(u)=f(u) is nonincreasing.New examples can be generated from known ones by the following lemma.Lemma 17 If f(u) satis�es [G], then f(cu), f c(u), and udf(u) also satisfy[G], for any c > 1; d > 0. If f(u) and g(u) satisfy [G], so does the productf(u)g(u).A stronger condition was used in [10]. It is essentially the same as thatstated in the next lemma. In [10], it is required only that some power of uexists with the desired properties (2.21) and (2.22). Our lemma goes onestep further by specifying the optimal choice of such a power.Lemma 18 Let � = limr!1G(u) be as in [F3]. Iff(u)u� is nondecreasing (4:1)and u�f(u)u� �0 is nonincreasing; (4:2)then [F3] holds.Proof. The function in (4.2) expands touf 0(u)� �f(u)u� : (4:3)Note that for u > � (so that f(u) > 0),uf 0(u)f(u) = uf 0(u)� �f(u)u� : u�f(u) + �: (4:4)22



By (4.1) and (4.2) the two fractions on the right-hand side are both non-increasing. Since � is a constant, the entire expression is nonincreasing in(�;1). The remaining inequalities in [F3] are easy to verify.From Lemma 18, it is easy to see that the functionf(u) = up �X cuq; 1 � q < p; c > 0; (4:5)satis�es [F3]. A simple example that does not come under this form isf(u) = u4 � u3 + cu2 � u; 0 < c < 3=2: (4:6)It should be noted that the condition in Lemma 18 does not imply [F3].Examples that satisfy [G] can be easily generated by solving the di�erentialequation f 0f = G(u)u ; (4:7)for any nonincreasing G(u). We obtainf(u) = exp�Z G(u)u !u� : (4:8)In particular, if G(u) is not strictly decreasing, then the conditions of Lemma 18cannot be satis�ed.The following criterion is also useful.Lemma 19 Let f(u) = up � F (u). Suppose that f(u) > 0 for u beyondsome u0 > 0. Ifu2F 00(u) + u(1� 2p)F 0(u) + p2F (u) � 0; u > u0; (4:9)then f(u) satis�es [G] in [u0;1).Proof. Direct computation of G0(u) gives a fraction whose numerator is� P (u)up + �u2F (u)F 00(u) + uF (u)F 0(u)� u2F 02(u)� ; (4:10)where P (u) is the expression in (4.9). Since up > F (u) for u > u0 and thecoe�cient of the �rst term is negative, the expression in (4.10) is less than�P (u)F (u) + �u2F (u)F 00(u) + uF (u)F 0(u)� u2F 02(u)�23



= � �uF 0(u)� pF (u)�2 < 0: (4:11)Hence G(u) is nonincreasing in [u0;1).It is easy to see that F (u) = uq satis�es (4.9). The sum of any setof functions satisfying (4.9) also satis�es (4.9). The example (4.5) can begenerated this way.References[1] Berestycki, H., and Lions, P. L., Non-linear scalar �eld equations I,Existence of a ground state; II Existence of in�nitely many solutions,Arch. Rational Mech. Analysis, 82 (1983), 313-375.[2] Berestycki, H., Lions, P. L., and Peletier, L. A., An ODE approach tothe existence of positive solutions for semilinear problem in Rn, IndianaUniversity Math. J., 30 (1981), 141-167.[3] Co�man, C. V., On the positive solutions of boundary value problemsfor a class of nonlinear di�erential equations, J. Di�. Eq., 3 (1967),92-111.[4] Gidas, B., Ni, W. M., and Nirenberg, L., Symmetry and related prop-erties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.[5] Gidas, B., Ni, W. M., and Nirenberg, L., Symmetry of positive solutionsof nonlinear elliptic equations in Rn, Advances in Math. Studies, 7A(1981), 369-402.[6] Hartman, P. , Ordinary Di�erential Equations, Baltimore, 1973.[7] Kaper, H. G., and Kwong, Man Kam, Uniqueness of non-negative solu-tions of a class of semi-linear elliptic equations, Nonlinear Di�usionEquations and Their Equilibrium States II, Proceedings of Work-shop on Reaction-Di�usion Equations, Berkeley, 1987, ed. W. M. Ni,L. A. Peletier, and J. Serrin, Springer-Verlag, New York (1988), 1-17.[8] Kwong, Man Kam, On the Kolodner-Co�man method for the unique-ness problem of Emden-Fowler BVP, ZAMP (J. of Applied Math. andPhy.), 41 (1990), 79-104. 24



[9] Kwong, Man Kam, Uniqueness of positive solutions of �u�u+up = 0in Rn, Arch. Rational Mech. Anal., 105 (1989), 243-266.[10] McLeod, K., and Serrin, J., Uniqueness of positive radial solutions of�u+ f(u) = 0 in Rn, Arch. Rational Mech. Anal., 99 (1987), 115-145.[11] Ni, W. M., Uniqueness of solutions of nonlinear Dirichlet problems, J.Di�. Eq., 50 (1983), 289-304.[12] Ni, W. M., and Nussbaum, R., Uniqueness and nonuniqueness for posi-tive radial solutions of �u+f(u; r) = 0, Comm. Pure and Appl. Math.,38 (1985), 69-108.[13] Peletier, L. A., and Serrin, J., Uniqueness of solutions of semilinearequations in Rn, J. Di�. Eq., 61 (1986), 380-397.[14] Zhang, Liqun, Uniqueness of ground state solutions, Acta Math. Sci.,8 (1988), 449-468.[15] Brezis, H., and Nirenberg, L., Positive solutions of nonlinear ellipticequations involving critical Sobolev exponents, Comm. Pure and Appl.Math., 36 (1983), 437-477.[16] Chen, Chiun-Chuan, and Lin, Chang-Shou, Uniqueness of the groundstate solution of �u+ f(u) = 0 in Rn; n � 3, Preprint.[17] Kwong, Man Kam, Uniqueness results for Emden-Fowler boundaryvalue problems, Argonne National Laboratory Preprint Series MCS-P118-0190 (to appear in Nonlinear Analysis).[18] Kwong, Man Kam, and Li, Yi, Uniqueness of radial solutions of semi-linear elliptic equations, Argonne National Laboratory Preprint SeriesMCS-P156-0590 (to appear in Trans. Amer. Math. Soc.).[19] Yanagida, E., Structure of positive radial solutions of Matukuma'sequation, Preprint. 25


