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Ever more frequently users of clusters find themselves in an interesting situation:
it isn’t the processors, communication network, or memory that is limiting their
application; it is the storage system. This might force the users to checkpoint less
frequently than they would like, might limit the resolution of output visualization
data, or might prevent the use of out-of-core solutions needed for the largest of
problems. What’s worse, the I/O hardware in the system may indeed be adequate
for the user’s needs but may be being used ineffectively by one of the many software
layers involved.

A lot of mystery surrounds I/O solutions in clusters today. For this reason we
have rewritten this chapter in the second edition. We begin by covering what we
believe are some of the most important issues in parallel I/O systems. These in-
clude parallel access patterns, parallel I/O system components and architectures,
and consistency semantics. Knowing how parallel I/O systems operate and the is-
sues involved can be useful when performance tuning an application for a particular
system or choosing an I/O solution to match expected workloads. This material
builds on material in many preceding chapters, including the I/O hardware discus-
sion in Chapter ??, the local and distributed file system discussion in Chapter ??,
and the network hardware discussion in Chapter ??.

Following this more general discussion, we delve into PVFS, specifically covering
some of the quirks of PVFS, management and tuning, and approaches for narrowing
down the source of problems that may crop up. Finally, we discuss some critical
issues for parallel file systems and how PVFS2, the next-generation parallel file
system being developed by the PVFS team, attempts to address these.

These are very interesting times for parallel file systems on Linux clusters. As we
are writing this chapter, the Lustre, PVFS2, and GPFS groups are all bringing new
parallel file systems to the Linux cluster environment. The relative success of each
of these is not likely to be known for quite some time, but we can certainly hope
that at least one of these projects will result in a new, high-performance parallel
file system designed to operate on systems with thousands of nodes (and,we hope,
more!).

20.1 Parallel I/O Systems

What do we mean by a “parallel I/O system”? At a high level three characteristics
are key:

• multiple hardware I/O resources on which data will be stored,
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Figure 20.1: Parallel I/O System Components

• multiple connections between these I/O resources and compute resources, and

• high-performance, concurrent access to these I/O resources by numerous com-
pute resources.

Parallel I/O systems get their performance by using multiple I/O resources that
are connected to compute resources through multiple I/O paths. Multiple physical
I/O devices and paths are required to ensure that the system has enough bandwidth
to attain the performance desired. The hardware could consist of nodes with local
disks attached via more traditional IP networks, a separate storage area network,
or something else entirely; all of these are valid options for parallel I/O systems.

The third characteristic is easily as important as the first two but is considerably
more difficult to pin down. Parallel I/O systems should be designed from the bottom
up with the assumption that performance is a key attribute and that concurrent
access to resources will be commonplace. This characteristic is heavily dependent
on the software architecture; the software managing the hardware resources can
make or break a parallel I/O system.

Often I/O systems that have multiple connections and hardware devices but don’t
cater to high-performance concurrent access are called distributed file systems. The
software in these systems is tailored to other workloads. Chapter ?? discusses
distributed file systems such as NFS.

A parallel file system is simply a component of a parallel I/O system that presents
a hierarchical (file- and directory-based) view of data stored in the system. In the
next section will see where this component fits into the big picture.

20.1.1 Components of a Parallel I/O Stack

A parallel I/O system includes both the hardware and a number of layers of soft-
ware, as shown in Figure 20.1. While this chapter really focuses on parallel file
systems and PVFS in particular, it is important to understand what other com-
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ponents might be involved and how these work together to provide a reasonable
solution to a tricky problem.

At the lowest level is the I/O hardware, described briefly in Chapter ??. This
layer comprises the disks, controllers, and interconnect across which data is moved.
Obviously, this hardware determines the maximum raw bandwidth and the mini-
mum latency of the system. The bisection bandwidth (defined in Chapter ??) of
the underlying I/O transport is an important measure for determining the possible
aggregate bandwidth of the resulting parallel I/O system, just as it is an important
measure for the communication network as seen in Chapter ??. At the hardware
level, data is usually accessed at the granularity of blocks, either physical disk blocks
or logical blocks spread across multiple physical devices, such as in a RAID array.

Above the hardware is the parallel file system. The role of the parallel file system
is to manage the data on the storage hardware, to present this data as a directory
hierarchy, and to coordinate access to files and directories in a consistent manner.
Later in this chapter we’ll talk more about what “consistent manner” means, as
this is an interesting topic in itself. At this layer the file system typically provides a
UNIX-like interface allowing users to access contiguous regions of files. Additional
low-level interfaces may also be provided by the file system for higher-performance
access.

While some applications still choose to access I/O resources by using a UNIX-
like interface, many parallel scientific applications instead choose to use higher-level
interfaces. These higher-level interfaces allow for richer I/O description capabilities
that enable application programmers to better describe to the underlying system
how the application as a whole wants to access storage resources. Furthermore,
these interfaces, especially high-level I/O interfaces, provide data abstractions that
better match the way scientific applications view data.

Above the parallel file system layer sits the MPI-IO implementation. The MPI-
IO interface [12], part of the MPI-2 interface specification, is the standard parallel
I/O interface and exists on most parallel computing platforms today. The role of
the MPI-IO implementation, in addition to simply providing the API, is to provide
optimizations such as collective I/O that are more effectively implemented at this
layer. In some sense the job of MPI-IO is to take accesses presented by the user and
translate them, as best as possible, into accesses that can be performed efficiently on
the underlying parallel file system. This makes the MPI-IO interface the ideal place
to leverage file system-specific interfaces transparently to the user. The MPI-IO
API is covered in Chapter ??.

The MPI-IO interface is useful from a performance and portability standpoint,
but the interface is relatively low level (basic types stored at offsets in a file), while



496 Chapter 20

most scientific applications work with more structured data. For this reason many
scientific applications choose to use a higher-level API written on top of MPI-
IO (e.g., HDF5 [7] or Parallel netCDF [21]). This allows scientists to work with
data sets in terms closer to those used in their applications, such as collections
of multidimensional variables. These high-level interfaces often provide the same
level of performance as using MPI-IO directly. However, one should be aware that
in practice the implementation details of some of these systems do sometimes add
significant overhead [29].

20.1.2 Access Patterns and Scientific Applications

Applications exhibit all sorts of different access patterns, and these patterns have
a significant effect on overall I/O performance. The cat program, for example,
accesses blocks of a file starting from beginning to end. This is the ideal pattern
of access for most file systems, because many systems can identify this pattern and
optimize for it, and the prefetching implemented in many I/O devices also matches
with this well. This pattern is seen for a large number of applications, including
video and audio streaming, copying of data files, and archiving.

Database systems use I/O resources as another level of memory. In doing so,
they tend to access it in very large blocks (contiguous data regions) in an order
that the I/O system cannot always predict. However, because the blocks are large
and are aligned to match well with the underlying disks, this access pattern can
also match well with the I/O system.

Studies tell us that the access patterns seen in scientific applications are signif-
icantly different from what we see in these other application domains. Scientific
applications are in some sense worst-case scenarios for parallel I/O systems. One
such study, the CHARISMA project [23], provides a great deal of insight into the
patterns seen in scientific applications. We will extract some of the more important
points here.

The CHARISMA project defines sequential access as a pattern where each sub-
sequent access begins at a higher file offset than the point at which the previous
access ended. Most of the write-only files were written sequentially by a single
process. This behavior was likely because in many applications each process would
write out its data to a separate file. This may have been an artifact of poor con-
current write performance on the studied platform. Read-only files were accessed
sequentially as well, but regions were often skipped over by processes indicating
that multiple processes were somehow dividing up the data. About a third of the
files were accessed with a single request.
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Figure 20.2: Nested-Strided Example

Figure 20.2 shows an example of a nested-strided access, in this case utilizing
three strided patterns in order to access a block of a 3D data set. The study
noted that strided access patterns were very common in these applications, with
both simple (single) strides and nested strides present. A nested-strided pattern is
simply the application of multiple simple-strided patterns, allowing the user to build
more complex descriptions of stored data. These patterns arise from applications
partitioning structured data such as multidimensional arrays. More recent studies,
such as an analysis of the FLASH I/O benchmark [29], support these findings,
although in this particular case the strided patterns occur in memory rather than
in the file (which is written sequentially) and data from all processes is always
written to a single file.

What does all this mean to us? First, it indicates that application programmers
really can benefit from the descriptive capabilities available in high-level interfaces.
Second, it suggests that the layers below these high-level interfaces should be ca-
pable of operating in terms of structured data as well. As we will see in the next
section, some parallel file systems fall short in this area.

Because of the differences in access patterns between various applications, I/O
solutions that work well for one application may perform poorly for another. This
situation encourages us to consider using multiple file systems in the same cluster to
fill particular roles. For example, a very reliable distributed file system that might
not handle concurrent writes well could be a very useful file system for storing
home directories in a large cluster. For smaller clusters NFS might fill this role. On
the other hand, a very fast parallel file system with no fault tolerance capabilities
might be perfect for storing application data used at run time that is backed up
elsewhere. With this in mind, we will now discuss some typical parallel file system
architectures with specific examples.
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20.2 Parallel File System Architectures

Numerous parallel I/O systems have been built, although few have seen wide use.
If we look at these file systems we do see trends in how the systems are designed.
The architecture of these systems, both hardware and software, can have a sig-
nificant effect on application performance, particularly with the demanding access
characteristics of scientific applications.

We discuss the two most common architectures, including the components of the
systems and some of the key characteristics. These architectures serve as a starting
point for discussion of specific parallel file systems. For each architecture we give
three example file systems, all of which have run on Linux at one time or another,
and all of which have had an impact on parallel I/O systems of today.

20.2.1 Shared Storage Architectures

File systems relying on a shared storage architecture are the most popular approach
for large production systems. The reason rests at least in part on the popularity
of storage area networks (SANs) and fibre channel (FC) storage. File systems
using shared storage have the common feature of accessing block devices remotely,
either through direct attach hardware (such as FC disks) or through intermediate
I/O servers that provide a block-oriented interface to disks attached locally to the
server. In either case, a key component of these systems is a locking subsystem.
The locking subsystem is necessary to coordinate access to these shared resources.
While we will not discuss the issue of fault tolerance with respect to the locking
subsystems of the example file systems, we note that a significant amount of effort
has been put forth to ensure that locks can be recovered from failed nodes. This is
a complicated problem, and the cited works discuss the issues in detail.

Some file systems that use shared storage implement a “virtual block device”
in order to separate the access of logical blocks of data from their physical repre-
sentation on storage. This virtual block device provides a mapping from logical
blocks to physical storage. A file system component builds on this to provide the
directory hierarchy for the file system, just as a local file system builds on a disk or
RAID volume. This approach is advantageous from a system management point of
view. The virtual block device, because it abstracts away physical data location,
can provide facilities for data migration and replication transparent to the upper
layers of the system. This approach simplifies the implementation of the upper level
components. Further, this virtual block device provides a mechanism for adding
and removing hardware while the system runs. Data blocks can be migrated off a
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device before removal and can later be moved onto a newly installed device. This
capability is very valuable in systems that must provide high availability.

The abstraction is, however, limiting in some ways as well. First, all file sys-
tem accesses must be translated to block accesses before hitting this component.
Because scientific applications often have noncontiguous access patterns, this ap-
proach can result in read/modify/write patterns that could have been avoided if
more fine-grained accesses were allowed. Second, control over physical data loca-
tions is lost to the upper layers. While few scientific applications currently try to
perform careful block placement for performance reasons, this could be an issue as
groups attempt to further push the boundaries of I/O performance. Finally, this
additional level of indirection adds overhead in the system, increasing the latency
of operations.

A number of systems are available with this architecture. The first two example
systems that we cover, Frangipani and GFS, rely on virtual block devices. The last,
GPFS, uses a slightly different organization. SGI’s CXFS file system, not discussed
here, has a similar architecture to GFS.

Frangipani and Petal

The Frangipani and Petal systems, originally developed at Digital Equipment Cor-
poration (DEC), together form a good example of the virtual block device approach.
The Petal [20] component implements a virtual block device with replication, snap-
shotting, and hot swapping of devices. It presents a simple RPC-like API for atom-
ically reading and writing blocks that higher-level components can use to build a
file system. The Petal component runs on nodes that have attached storage. In-
stances of the Petal component communicate to manage these devices, as not all
Petal instances can directly access all the devices that make up the virtual block
device.

The Frangipani [37] component implements a distributed file system on top of
Petal. A distributed locking component is used by Frangipani to manage consis-
tency. Locks are multiple-reader, single-writer and are granted on a per file basis.
Locks are “sticky”; clients hold onto locks until asked to release them by the locking
subsystem, allowing for read and write caching at the client side. The Frangipani
component runs on nodes that access the shared storage region. Instances of the
Frangipani component do not communicate with each other, only the locking com-
ponent and Petal.

This architecture provides us with a good opportunity to introduce a common
term in distributed file systems. A system can be considered a serverless distributed
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Figure 20.3: Frangipani and Petal File System Architecture

file system if nodes work together as peers to provide a shared storage region, as
opposed to some specific server or servers providing this functionality [1]. When
the term was coined back in the mid-1990s, systems weren’t particularly large (the
referenced paper tested on 32 nodes), and the point was really to distribute both
metadata and data across multiple nodes more than to actually use every node as
a storage resource.

In any case, it’s easy to imagine that the Frangipani and Petal approach could
be used in this “serverless” mode with Petal running on all clients, or it could be
used in a system with a collection of heavy-duty servers with RAID arrays running
Petal, with most nodes running only Frangipani. Without knowing more about a
particular architecture, it’s not clear which of these would be the right choice.

Frangipani and Petal are an early and well-documented example of this architec-
ture. The Frangipani and Petal code is still around, although obtaining it seems
difficult. At the time of writing rumor was that the code has been ported to
Linux 2.4 and is floating around at one of the major hardware vendors. Perhaps it
will pop up again to compete with some of the currently available systems.

GFS

The Global File System (GFS) was originally developed at Minnesota and is now
developed and supported by Sistina [26, 25]. GFS is actively maintained and im-
proved by Sistina. An older version of the source code, originally released under
the GPL, is also available under the name OpenGFS. GFS also uses a virtual block
device architecture, in this case using LVM (Logical Volume Manager) underneath
the GFS file system layer.

GFS currently uses a “Pool” driver to organize storage devices into a logical
space. They are investigating the use of LVM [14], a newer system for organizing
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multiple physical storage devices into “volume groups” and then partitioning these
into “logical volumes,” which are the virtual equivalent of partitions on a disk.
Just as with Petal, the Pool driver (and eventually LVM) provides capabilities for
snapshotting and hot swapping of devices. The typical installation of GFS uses
some number of nodes connected to shared fibre channel storage, with all nodes
running both the LVM and GFS software (making it serverless). Alternatively a
GNBD component can be used to provide remote access to a storage device over
IP. This is similar to the VSD component in GPFS, which will be discussed in the
next section.

GFS stores data as blocks on this virtual block device. A locking subsystem,
OmniLock, provides the locking infrastructure necessary to ensure consistency. A
number of locking modules are available with OmniLock allowing the locking gran-
ularity to be tuned to match expected workloads. Locks are sticky here as well,
again allowing for read and write caching of data at the client.

GPFS

The General Parallel File System (GPFS) from IBM grew out of the Tiger Shark
multimedia file system [31] and has been widely used on the AIX platform. Unlike
the other file systems described, GPFS has no explicit virtual block device com-
ponent. Instead GPFS simply uses one of two techniques for accessing block de-
vices remotely and manages these devices itself. IBM’s Virtual Shared Disk (VSD)
component allows storage devices attached to multiple I/O nodes to be accessed
remotely. VSD is different from the previous two approaches in that no logical vol-
ume management is performed at this level; it just exports an API to allow access
to the devices. Alternatively, the VSD component can be avoided by attaching all
nodes that wish to access the system to a SAN that gives them direct access to
storage devices (Figure 20.4). This can be an expensive solution for large clusters,
thus the existence of the VSD component. The newer Linux version of GPFS uses
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a similar component, called the Network Shared Disk (NSD), to provide remote
access to storage devices.

In either case, GPFS operates on a shared storage region using block accesses.
Because there is no volume management, however, GPFS sees multiple devices.
This approach was a conscious decision on the part of the developers to provide the
file system with direct control over striping of data across devices. A side effect of
this decision is that volume management and fault tolerance capabilities must be
handled outside of the VSD, either below the VSD or in GPFS. RAID devices can
be used below the VSD layer (or directly attached via the SAN). In addition to or in
place of RAID, GPFS also supports data and metadata replication at the file system
layer. If this capability is enabled, GPFS will allocate space for a copy of data on
a different disk and keep copies synchronized. In the event of a temporary failure,
GPFS will continue to operate and will update the device when it is returned to
service. Likewise, functionality for migrating data onto new devices or off bad ones
is also implemented within GPFS.

GPFS relies on a distributed locking component to guarantee consistency. Sim-
ilarly to the other two systems, locks are acquired and kept by clients who then
cache data. The granularity of locking in GPFS is at the byte-range level (actually
rounded to data blocks), so writes to nonoverlapping data blocks of the same file
can proceed concurrently.

GPFS provides as an alternative a consistency management system called data
shipping. This mode disables the byte-range locks described above. Instead nodes
become responsible for particular data blocks, and clients forward data belonging
in these blocks to the appropriate node for writing. This approach is similar to the
two-phase I/O approach often applied to collective I/O operations [33]. It is more
effective than the default locking approach when fine-grained sharing is present,
and it forms a building-block optimization for MPI-IO implementations.

The GPFS system also recognizes metadata blocks as distinct from data blocks.
A single node that is accessing a file is given responsibility for metadata updates
for that file. A multiple-reader, multiple-writer system then is applied to metadata
that allows concurrent updates in many circumstances.

GPFS is arguably the most successful parallel file system to date. It is in use on
a variety of large parallel machines, such as ASCI White, a 512-node Power3-based
system. We note that only 16 I/O server nodes (running VSD) are used in that
particular instantiation. At this time GPFS has been made available in a limited
fashion on IA32 and IA64 Linux systems but has not seen widespread use on these
platforms.



Parallel I/O and the Parallel Virtual File System 503

20.2.2 Intelligent Server Architectures

The second common approach to parallel file systems is the use of “intelligent” I/O
servers. By this we mean that the servers do more than simply export a block-
oriented interface to local storage devices. These systems usually communicate
with clients in terms of higher-level constructs, such as files (or parts of files) and
directories. Specific operations to act on metadata atomically might be included
as well, rather than treating them as data operations as in the previous systems.
Further these servers have knowledge that the data they are storing corresponds to
particular file system entities (e.g., files or directories), not just arbitrary blocks on a
storage device. Hence they have the potential to accept more complex, structured
requests than are possible with other approaches. This is a particularly useful
capability for scientific applications given their structured file accesses.

Designers of systems using this architecture often logically separate the storage
of metadata from the storage of file data. This approach allows for flexibility in
configuration because they can choose to handle metadata operations with different
servers from the I/O traffic. Because providing distributed metadata services is
more complicated than placing metadata in a single location, some systems support
only a single metadata server while maintaining many I/O servers. On the other
hand, using a single metadata server adds a potential bottleneck, so some systems
distribute metadata across multiple servers, possibly even all the I/O servers. We
will see examples of both of these approaches in upcoming sections.

Groups have been implementing parallel file systems using this approach for quite
some time as well. Two of these systems are the Galley parallel file system and the
Parallel Virtual File System (PVFS). An emerging parallel file system, Lustre, also
has this type of architecture.

Galley

The Galley parallel file system [22] was developed at Dartmouth College in the
mid-1990s (Figure 20.5). It was a research file system designed to investigate file
structures, application interfaces, and data transfer ordering for parallel I/O sys-
tems. As such many things that we expect from a production file system were never
implemented, including kernel modules to allow mounting of Galley file systems and
administrative tools.

Galley breaks user’s files into subfiles, which are stored on Galley servers. These
subfiles have forks that allow for multiple byte streams to be associated with a
particular subfile as well and can be used for more complex storage organizations.
The client-side code handles placement of file data into appropriate subfiles and
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forks. Metadata is also stored on all the Galley servers. File names are hashed to
find a server on which to store data (a technique also used by the Vesta parallel file
system [10], which we will not cover in detail here).

Galley servers understand strided and batch accesses, making the interface quite
rich. Many of the application access patterns seen in the CHARISMA study, as
well as the patterns seen in the Flash I/O study, could be described with Galley’s
I/O language as single accesses.

Galley also implements disk-directed I/O [19], a method for organizing how data
is moved between client and server. In disk-directed I/O, the server calculates a
preferable ordering of data transfer based on predicted disk access costs. This or-
dering is then used when moving data. The method worked well for many access
patterns, although the designers of Galley did see low performance due to net-
work flow control problems in some cases. Later work showed that a more general
approach of optimizing for the bottleneck resource can be more effective [30].

While Galley never made it into production, it is an excellent example of the
intelligent server approach. Further, many of the ideas embodied in this design, in
particular rich I/O request capabilities and more complex file representations, are
becoming key components of new parallel file system designs. The Galley source
code is available online [11].

PVFS

The Parallel Virtual File System (PVFS) [6] was originally developed at Clemson
University by the authors of this chapter, starting in the mid-1990s, and is now
a joint project between Clemson University and the Mathematics and Computer
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Science Division at Argonne National Laboratory. PVFS is designed to be used as
a high-performance scratch space for parallel applications.

PVFS file systems are maintained by two types of servers (Figure 20.6). A single
metadata server, typically called the “mgr” because of the name of the daemon
that runs on this server, maintains metadata for all files. For many workloads and
configurations this is not seen as a bottleneck, although it is increasingly becoming
one as systems grow in numbers of nodes. Separate I/O servers handle storage
of file data. File data is distributed in a round-robin fashion across some set of
I/O servers using a user-defined stripe size. Thus a simple algorithm can be used
to determine the I/O server holding a particular file region. This simplifies the
metadata stored on the metadata server and eliminates the need for metadata
updates as files are written. I/O servers write to local file systems, so local disk
management is managed by the local file system. Likewise, single disk failures can
be tolerated by using a RAID to store local file system data at the I/O server.

PVFS uses what the authors term stream-based I/O for data movement. PVFS
transfers data using TCP, and the stream-based I/O technique leverages this by
predefining a data ordering and eliminating all control messages in the data stream.
This approach is able to attain very high utilization of TCP bandwidth; however, in
many cases PVFS is disk bound, not network bound. The more adaptive approach
given in [30] would likely provide better overall performance, but it was not merged
into the PVFS source.

PVFS implements simple strided operations. These can be useful for some pat-
terns; however, a more general approach is necessary for implementing MPI-IO
operations. More recently a more flexible (but less concise) system was added for
accepting arbitrary lists of I/O regions as single operations [9]. Called List I/O,
this was first proposed in [35] and has been shown to be of great benefit to some
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access patterns. Support is provided in ROMIO for leveraging this; the hint to
enable this is described in Section 20.4.4.

PVFS has no locking component. Instead, the metadata server supplies atomic
metadata operations, eliminating the need for locking when performing metadata
operations. Data operations are guaranteed by I/O servers to be consistent for
concurrent writes that do not overlap at the byte granularity, but byte-overlapping
concurrent writes result in undefined file state. This approach allows for a relatively
simple system with no file system state held at clients, but it precludes client-side
caching, which makes for very poor performance in a number of cases, particularly
uniprocess workloads where systems from the preceding section would perform well.

Further, PVFS does not implement any form of fault tolerance. RAID can be
used to tolerate disk failures, but node failures cause the system to be at least
temporarily unusable. High-availability (HA) software is being investigated as a
solution to this problem.

PVFS is also missing many of the administrative features that file systems such
as GPFS offer. This limitation, combined with the lack of fault tolerance, has
dissuaded many sites from using PVFS.

Nevertheless, PVFS has made it into production use at a number of sites around
the world, mainly as a large, shared scratch space. PVFS is actively developed and
supported, and the source for the file system, now commonly referred to as PVFS1
by the developers, is freely available online [27]. Because of its easy installation
and source availability, many I/O researchers have chosen to compare their work
to PVFS or to use PVFS as the starting point for their own research. We couldn’t
be happier that so many people have found this work to be so useful!

PVFS1 is showing its age, and a new version is under development to replace
it before typical systems scale beyond its capabilities. We discuss this version,
PVFS2, later in the chapter.

Lustre

The Lustre file system [2] is being developed by Cluster File Systems. At the time
of writing the Lustre file system is under development, but much documentation
and early code is available. The Lustre design benefits heavily from previous work
in parallel file systems.

One of the key features of Lustre is the use of modules connected by well-defined
APIs. This is seen in at least three areas: networking, allowing for multiple under-
lying transports; metadata storage, allowing for multiple underlying metadata tar-
gets; and object (data) storage, allowing for caching and multiple underlying data
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storage technologies. In the latter two cases modules can be stacked to implement
additional functionality. This provides great potential for the reuse of significant
portions of the code when porting to new platforms or adding support for new
hardware. Lustre uses the Portals API [4] for request processing and data trans-
fer. Portals is a full-featured, reliable transfer layer designed for use in large-scale
systems over multiple underlying network technologies.

Lustre breaks the nodes of the system into three types: clients, Object Stor-
age Targets (OSTs), and Metadata Servers (MDSs). Object Storage Targets store
objects, similar to inodes, which hold file data. OSTs perform their own block
allocation, simplifying the metadata for a file in a manner similar to previous sys-
tems [6]. Objects can be stored on a number of back-end resources attached to
OSTs, including using raw file system inodes. Alternatively data can be stored on
more traditional SAN resources. In this case OSTs would still be in place, but
would handle only authentication and block allocation, allowing data to be trans-
ferred directly between clients and SAN storage devices. This is similar to the
GPFS approach when the VSD component is not used. This configuration could
be convenient for sites with a SAN already in place.

Metadata servers store attributes and directory hierarchy information that is
used to build the name space for the file system. Lustre’s design calls for multiple
MDS nodes in order to help balance the load on these systems. The protocol for
metadata operations is explicit and transaction based, allowing for the avoidance
of locks. An option is provided for using a node as both a MDS and as an OST.

A snapshot capability is also provided in Lustre, similar to the approach seen
in [20], except that snapshotting is performed on object volumes (collections of
objects) rather than a collection of blocks.

The designers of Lustre also propose a collaborative caching capability, where
caching servers aggregate accesses to particular objects so that a single cache can
be shared by multiple applications. This is similar in some ways to the data ship-
ping scheme used in GPFS and distributed caches seen in research parallel file
systems [16, 39]. However it is of particular note that Lustre is able to provide this
functionality in a modular way.

Lustre relies on a distributed locking system for data coherence. Locks are avail-
able at different granularity levels to allow for concurrent access to disjoint file
regions. Locks are managed by the OST that stores the object. Metadata opera-
tions are also performed by using locks to allow for client-side caching. Lustre adds
intent locks for use in metadata operations. These are special locks that are used
to perform some type of atomic operation at lock time. While in many instances an
explicit operation to perform the intent could be used instead, this approach may
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lead to fewer opportunities for races between atomic operations by immediately
returning a lock that could be used for a subsequent operation.

Lustre implements full POSIX semantics, but this can be turned off on a per file
or per file system basis. An interface similar to the List I/O interface described
in [35] is proposed as an optimization as well.

Beta versions of Lustre are available, and development is very active. Also re-
leased under the GPL license, Lustre could become the next widely used parallel
file system for Linux clusters; license compatibility with the PVFS2 project means
that the two projects could share components if appropriate APIs were developed.

20.3 File System Access Semantics

From the user’s point of view, two aspects of the file system API should be consid-
ered: what types of accesses can be described to the file system, and what happens
when multiple processes access a file at the same time. We discussed earlier the
importance of structured access descriptions; in this section we will focus on the
second aspect, concurrent access semantics.

20.3.1 POSIX I/O Semantics

The most significant barrier to scalable parallel I/O systems today is the POSIX
I/O interface and its associated semantics.

The POSIX I/O interface [17] was specified with local file systems in mind. The
POSIX I/O interface specifies the open, close, read, write interface that we are
all accustomed to using. It further specifies that writes through this interface must
be performed in a sequentially consistent manner. Writes to the file must also
appear as atomic operations to any readers that access the file during the write;
the reader will see either all or none of any write. These semantics apply to any
processes that access the file from any location.

Internal to a single system, the disadvantages of the POSIX semantics are not
so apparent. In the single system, all operations to a file will pass through to a
single device, and locks can be used to efficiently manage atomic access to files.
However, the semantics of the POSIX interface have broad-reaching implications
on any type of distributed or parallel file storage. In stark contrast to the single
system, now we have multiple devices that might be accessed by any single oper-
ation, and all these devices, plus the clients, are distributed across some type of
network. In this situation maintaining the POSIX semantics can be a complicated
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and communication-intensive process, particularly when many processes access the
same resources.

POSIX I/O and Locking

The most common approach to providing these semantics is to use a locking sub-
system to manage access to files, and this is in fact the approach applied in all our
example systems that implement the POSIX semantics (Frangipani, GFS, GPFS,
and Lustre). POSIX semantics require that all accesses be atomic operations. When
implemented with locks, this means that before a process can write to a region of
a file, it must obtain the lock associated with that region. It can then write, then
release the lock. Sophisticated lock caching and forwarding are used to alleviate
the overhead of the locking subsystem in systems that expect to see a high degree
of concurrent access.

Locks may be applied at the block, file, or extent granularity. The most coarse
grained of these is file-based locks. File-based locks associate a single lock with an
entire file. No distributed file system employing file-based locks should be seriously
considered as part of a parallel I/O system because the contention for locks during
concurrent access will ruin the performance of all but the least I/O-bound problems.

The second most coarse grained is block-based locks. This approach is often
used in systems that use block-based accesses when communicating between clients
and the underlying storage. Block-based locks have the advantage of being much
finer grained than are file based locks. For large files, however, this approach can
result in a very large number of locks being present in the system. Often these file
systems address this by simply increasing the size of blocks. This, however, results
in a situation where false sharing of blocks is more likely to occur.

The third, and most flexible, locking approach is extent-based locks. This ap-
proach can result in fewer locks in use because large ranges may be described as a
single extent. This advantage is lost; however, if accesses are interleaved at a fine
granularity. This approach, when coupled with noncontiguous access, can also re-
sult in a very large number of locks being processed in the system. Even with these
two disadvantages this is the best locking approach for concurrent access under
POSIX in use in parallel file systems today.

Scientific access patterns have a great deal of regularity. None of this informa-
tion is retained in any of these locking approaches, however, leading to all these
approaches being relatively inefficient, either in number of locks or in contention for
a small number of locks. Approaches like IBM’s data shipping can certainly help
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make lock approaches perform more effectively, especially when accesses are inter-
leaved. We will discuss the similar two-phase I/O approach later in Section 20.4.4.

From this discussion, and the presence of optimizations such as data shipping,
it should be clear that the POSIX semantics are known in the community to be a
problem. In fact, this problem is very similar to those seen in distributed shared
memory (DSM) systems, where hardware and software are used to build globally
accessible memory regions [38, 15]. The DSM community has for the most part
abandoned the sequential consistency model in favor of more relaxed consistency
models, in large part because of the overhead of maintaining such a model as systems
scale. Perhaps it is time for the I/O community to follow suit.

20.3.2 NFS Semantics

The Network File System (NFS) protocol [24, 5, 32] is probably the most pop-
ular means for accessing remote file systems. Typically, remote file systems are
“mounted” via NFS and accessed through the Linux virtual file system (VFS) layer
just as local file systems are. What many users don’t understand is that these
NFS-mounted file systems do not provide the POSIX consistency semantics! The
NFS version 3 RFC notes [5]:

The NFS version 3 protocol does not define a policy for caching on
the client or server. In particular, there is no support for strict cache
consistency between a client and server, nor between different clients.

The story is a little more complicated for NFS version 4, but the lack of cache
consistency on the client side remains.

NFS is an everyday example of relaxing the POSIX I/O consistency semantics
in order to gain performance. NFS clients cache file data, checking every now and
again to see whether the file has changed. This loosely synchronous consistency
model makes for convenient, low-latency access to one’s home directory stored on
a remote system. Further, the locking systems typically used to implement the
POSIX semantics are avoided along with their overheads.

On the other hand, NFS semantics are nearly useless from a parallel computing
point of view. Clients can cache data indiscriminately, and tend to do so at arbitrary
block boundaries. This causes unexpected results when nearby regions are written
by processes on different clients; if two processes concurrently write to the same
block on different processes, even if they write to different bytes, the result is
undefined! Figure 20.7 shows an example of how this happens. Two nodes have
cached the same block, and processes have written to different parts. First one



Parallel I/O and the Parallel Virtual File System 511

NFS server

second write

first write

n2

n1

granularity, data
Because of cache

from first write is
overwritten by old
cached data during
second write

b7

b7

b7

Figure 20.7: Concurrent Writes and NFS

block is committed back to storage, then the second. Because of the blocking, and
the lack of consistency control, the data from the first write is lost when the second
write completes.

Nevertheless, the semantics implemented by most NFS clients are sufficient to
provide a usable file system for a number of situations.

20.3.3 MPI-IO Semantics

One could argue that the POSIX semantics are stricter than necessary for use in
parallel I/O in that they force I/O systems to implement more consistency control
than applications really need. Do scientific application programmers typically write
to overlapping regions and let the file system sort it out? Probably not; they have
better things to do with the I/O bandwidth! On the other hand, NFS semantics
are definitely too loose; the nondeterminism introduced by uncoordinated client-side
caching makes NFS semantics troublesome for concurrent writes.

The MPI-IO semantics [12] provide a very precise, but less strict, set of consis-
tency semantics. The Using MPI-2 [13] book provides a very thorough description
of these semantics; they are actually relatively complicated. We touch on the
semantics for some common cases here.

First, the scope of the MPI-IO semantics is the MPI communicator used to open
the file. MPI says nothing about the semantics of access from different communica-
tors, leaving this coordination to the application programmer. Second, by default
MPI-IO does guarantee that concurrent nonoverlapping writes will be written cor-
rectly (unlike NFS) and that the changes will be immediately visible to the writing
process. These changes are not visible by other processes in the communicator right
away. Instead, explicit synchronization between the processes is necessary. This
can be accomplished in a number of ways, all outlined in [13]. Simply closing and
reopening the file is one method of synchronization, and the use of explicit file
synchronization operations is another.
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This model makes a lot of sense for many access modes seen in parallel applica-
tions, including checkpointing and of course all read-only modes. More importantly
it relaxes the requirements on the underlying I/O components significantly and pro-
vides many opportunities for optimization within the MPI-IO implementation. We
will discuss two such optimizations later in this chapter in the context of using
ROMIO with PVFS.

20.3.4 PVFS Semantics

Noting the increased system complexity and potential overhead in implementing full
POSIX I/O semantics (and having limited resources!), the PVFS developers chose
to implement a different set of I/O semantics. With PVFS, concurrent nonoverlap-
ping writes are written correctly and are immediately visible to all processes. Note
that this approach is stronger than the default MPI-IO semantics. Overlapping
writes will leave some undefined combination of the written data in the overlapping
file region, and reads that occur concurrently with writes may see pieces of old and
new data.

These semantics are adequate for implementing most of MPI-IO and are more
than adequate for most access methods while simultaneously simplifying the system
significantly: no coordination is needed at write time between clients or servers. The
result is a more scalable system, at the cost of POSIX semantics.

20.4 Using PVFS

In the previous edition of this book, the majority of this chapter was dedicated to
the specifics of PVFS configuration and use. This information is all available at the
PVFS Web site [27], in particular in the User’s Guide [28]. Rather than rehash that
document, we’ll talk a little bit about practical aspects of using PVFS, including
implications of the PVFS design on certain types of operations, managing and
tuning PVFS file systems, using ROMIO with PVFS, and bug spotting. We hope
that this information supplements the online documentation nicely. Section 20.5
describes PVFS2, the next generation of PVFS, which addresses many of the design
limitations of PVFS.

20.4.1 Implications of the PVFS Design

The preceding sections have prepared us to discuss the implications of the PVFS de-
sign from a practical standpoint. First, PVFS does not perform client-side caching
for metadata. Hence, all metadata operations have to travel across the network to
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the metadata server. For heavy metadata workloads, this design can cause sluggish
performance.

Additionally, PVFS does not keep a file size as part of the metadata stored at the
metadata server; rather, it calculates this value when it is requested. The advantage
is that, during writes, the metadata need not be updated. However, a stat on a file
requires not only a message to the metadata server to obtain the static metadata
but also a sequence of messages to the I/O servers (performed by the metadata
server) in order to obtain the partial sizes necessary to fill in the file size. The ls

program performs this operation on every file in a listed directory, which can cause
ls to be very slow for PVFS file systems. In practice, this makes PVFS a poor
performer for small files, too, because users tend to put all the small files in one
directory. Then they ls the directory and are frustrated by the delay. A pvfs-ls

utility is provided with PVFS that avoids gathering this metadata, instead just
printing directory contents. For users who simply want to see what resides in a
directory, this is a much faster option.

PVFS does not cache data at the client side because it has no mechanism for
ensuring that cached data is kept synchronized with data in other caches or on I/O
servers. Hence, all data reads and writes must cross the network as well. Thus, the
size of reads and writes to large files does have a significant impact on performance,
especially through the VFS interface, which has particularly high overhead. This
design decision makes PVFS perform poorly for benchmarks such as Bonnie [3].
Along these same lines, executing programs stored on a PVFS volume can be quite
slow because pages are read one at a time on demand.

Missing Features

Users are occasionally surprised by the fact that some features are missing from
PVFS. Here’s a list as of version 1.5.8:

• links (both hard and symbolic)

• write-sharing through mmap

• flock and fcntl locks

• fault tolerance (other than using RAID, described later)

That’s about it! If a user requires one of these features, perhaps one of the
systems described earlier in the chapter will suffice instead.
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20.4.2 Managing PVFS File Systems

PVFS allows for many different possible configurations. In this section we’ll discuss
some of these options.

While PVFS is relatively simple for a parallel file system, it can sometimes be
difficult to discover the cause of problems when they occur simply because there
are many components that might be the source of trouble. Here we discuss some
tools and techniques for finding problem spots.

Monitoring File System Health

The pvfs-ping utility is the most useful tool for discovering the status of a PVFS
file system and has turned into something of a “Swiss army knife” for PVFS de-
bugging at this point.

A simple example of its use is as follows:

# pvfs-ping -h localhost -f /pvfs-meta -p 3000

mgr (localhost:3000) is responding.

iod 0 (127.0.0.1:7000) is responding.

pvfs file system /pvfs-meta is fully operational.

In this case the I/O server is dead and needs to be restarted:

# pvfs-ping -h localhost -f /pvfs-meta -p 3000

mgr (localhost:3000) is responding.

pvfs-ping: unable to connect to iod at 127.0.0.1:7000.

iod 0 (127.0.0.1:7000) is down.

pvfs file system /pvfs-meta has issues.

Using Multiple File Systems

Since PVFS includes no fault tolerance, for large systems it can make sense from a
fault tolerance point of view to create multiple PVFS volumes. A single metadata
server can serve multiple file systems if desired; however, if multiple file systems
are chosen for fault tolerance reasons, it is definitely better to use multiple servers
for I/O (one per file system). A single I/O server daemon (iod) cannot serve more
than one file system. However, more than one daemon may be run on the same
server if desired by specifying a different port value in the iod.conf file used to
start the server.
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Tolerating Disk Failures

Disk failures can be tolerated by using any of the many available RAID solutions
under Linux, including both hardware devices and software RAID. There have been
very few reported instances of data loss with PVFS because of software failures.
Using RAID to tolerate disk failures is an effective mechanism for increasing the
reliability of PVFS.

Increasing Usable File Descriptors

While some improvements have been made in PVFS with respect to file descriptor
(FD) utilization, the servers in particular still can end up using all of their available
FDs. The I/O servers will print a little message when this is about to happen:

NOTICE: exceeded 90 percent of available FDs (1024)!

Luckily this is easy to fix. The limits are set in /etc/security/limits.conf.
Lines are of the following format:

<domain> <type> <item> <value>

The domain can be “*” for everyone, a userid, or a group using “@group”. The
type can be soft (setting the default) or hard (setting the maximum). The item
parameter controls what limit this affects and can take many values, including nofile
(open files). “Value” is the new value to set.

For example, the following lines would set the maximum number of FDs for root
to 8192 and the default to 4096:

root hard nofile 8192

root default nofile 4096

Likewise one can set a new maximum and then use limit or ulimit as appropriate
in the startup script for the servers.

Migrating Metadata

When upgrading to a newer PVFS version, occasionally the format of metadata
on disk changes. This is due to oversights in the original design of the metadata
format. Tools are now provided that can be used to convert metadata to the new
format (assuming you haven’t gotten too far behind on updates).

For example, if you are moving from version 1.5.6 to version 1.5.8, a utility called
migrate-1.5.6-to-1.5.8 is provided (there were no changes from 1.5.7 to 1.5.8
in the metadata format). This tool is used in conjunction with find:
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# find /pvfs-meta -type f -not -name .pvfsdir -not \

-name .iodtab -exec migrate-1.5.6-to-1.5.8 \{\} \;

Warning messages will be printed and the process aborted if the utility detects that
the metadata is not the correct version. This process should be performed after
stopping the mgr.

20.4.3 Tuning PVFS File Systems

We often get questions about how to tune PVFS file systems for the best perfor-
mance. Truthfully, system hardware varies widely enough that it is difficult for us
to supply any single set of parameters that will work best for everyone. Instead,
in this section discuss some specific parameters common to all machines and some
general techniques for improving overall PVFS file system performance. Chap-
ters ?? and ?? include many tips for improving the overall performance of Linux
nodes; all that information certainly applies to PVFS servers as well.

Of course, in addition to tuning the file system itself, many steps can be taken
above the file system that can make a huge difference. Given the discussion of the
PVFS design, many of these are obvious: using large requests rather than small
ones, using MPI-IO so PVFS List I/O optimizations can be leveraged, and avoiding
lots of metadata operations (opens, closes, and stats). Often such optimizations in
application code can make more difference than any tuning within PVFS itself. An
in-depth discussion of improving the performance of MPI-IO access can be found
in [13].

Adjusting Socket Buffers

PVFS relies heavily on the select call and kernel handling of multiple TCP con-
nections for parallelism. For this reason, it is often useful to tune the network-
related parameters on the system. Chapter ?? covers this process in some detail;
in particular increasing the wmem max and rmem max values is often very helpful.

Once these have been increased, the socket buf option in the I/O server’s con-
figuration file (iod.conf) can be used to adjust the socket buffer size up to the new
maximum.

Enabling DMA for Hard Drives

Chapter ?? describes the hdparm tool. It can be used to verify that DMA is turned
on for the hard drives that are being used for PVFS storage and to turn this on if
it is not enabled. Because PVFS pushes both the network and storage hardware,
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alleviating any load on the CPU is helpful. Note that DMA isn’t reliable on some
hardware, so you should check the support of your hardware if this isn’t turned on
by default.

Improving Space Utilization

Originally we thought that users would want to know where their data was striped
so that they could distribute processes to match data locations. Hence, we set up
default striping so that data always started on the first I/O server. It turns out
that for the most part people don’t care about this and rarely use this information.
Additionally, when users create lots of small files, this unbalances the distribution
of data across the I/O servers.

We have subsequently added a “-r” flag that can be passed to the metadata server
(mgr). This flag will cause the metadata server to choose a random starting I/O
server when no server is specified (this can be done through the MPI-IO interface,
for example). This will better distribute files and has a particularly large effect in
the small files case.

Here we examine the free space on the I/O servers of a PVFS file system using
the additional “-s” option to pvfs-ping:

# pvfs-ping -h localhost -f /pvfs-meta -s

mgr (localhost:3000) is responding.

iod 0 (192.168.67.51:7000) is responding.

iod 0 (192.168.67.51:7000): total space = 292825 Mbytes,

free space = 92912 Mbytes

iod 1 (192.168.67.52:7000) is responding.

iod 1 (192.168.67.52:7000): total space = 307493 Mbytes,
free space = 121154 Mbytes

iod 2 (192.168.67.53:7000) is responding.

iod 2 (192.168.67.53:7000): total space = 307485 Mbytes,

free space = 121155 Mbytes

iod 3 (192.168.67.54:7000) is responding.

iod 3 (192.168.67.54:7000): total space = 307493 Mbytes,

free space = 121199 Mbytes

We see that the first I/O server has significantly less free space than the others.
This will show up in the df output:

Filesystem Size Used Avail Use% Mounted on

localhost:/pvfs-meta
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1.2T 824G 363G 69% /pvfs

PVFS calculates the available space returned to the system by the minimum amount
available on any single I/O server (in this case 92.9 Gbytes) times the number of
I/O servers (in this case 4). Because so much less space is available on the first
server, we get a very low reported available space. Using the “-r” manager flag
described above will help alleviate this problem.

Testing Aggregate Bandwidth

Since users are mostly interested in PVFS for high performance, obtaining a base-
line performance number for a particular configuration is fairly important. The
pvfs-test tool supplied with PVFS can be used for this purpose. This is an MPI
program that opens a file from a large number of processes and writes or reads
that file in parallel with each process accessing a different large block of the file. A
“-h” option will cause it to list its options. This program can be used as a simple
benchmark for testing the effects of configuration changes.

Here’s the output of one of our favorite runs, using 80 nodes of Chiba City (see
Chapter ??) as clients for PVFS and 128 separate nodes for I/O servers back in
April of 2001:

mpirun -nolocal -np 80 -machinefile mach.all pvfs-test -s 262144 -f

/sandbox/pvfs/testfile -b 268435456 -i 1 -u

# Using native pvfs calls.

nr_procs = 80, nr_iter = 1, blk_sz = 268435456, nr_files = 1

# total_size = 21474836480

# Write: min_t = 3.639028, max_t = 6.166665, mean_t = 4.755538,

var_t = 0.334923

# Read: min_t = 6.490499, max_t = 7.171075, mean_t = 6.977580,

var_t = 0.023353

Write bandwidth = 3482.406857 Mbytes/sec
Read bandwidth = 2994.646755 Mbytes/sec

We did not sync after the writes (“-y” option), so the data was at the servers but
not necessarily on disk. Nevertheless we were able to create a 20 Gbyte file in just
over 6 seconds and read it back in just over 7 seconds. Not too shabby at the time.
Note that we found a strip size of 256 Kbytes to be the best for that particular
configuration, where a strip is the amount of data written to a single server (and a
stripe is the amount written across all servers in the round-robin fashion).
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Adjusting the Default Strip Size

By default the strip size (the size of the regions distributed in round-robin fashion to
I/O servers) is set to 64 Kbytes (as of version 1.5.8). For some systems, particularly
ones using large RAID volumes at each I/O server, this is simply too small.

The pvfs-test tool can be used to experiment with various strip sizes in order
to find a good one for a particular configuration. Using the “-y” option will help
ensure more accurate results by forcing data to the disk. Once a good value has
been found, an additional “-s ssize” option can be used with the metadata server
in order to provide the new default value (ssize is in bytes).

It is also useful to adjust the I/O server write buffer size to be larger than this
size. That value is set in the I/O server configuration file with the write buf option
(value is in Kbytes, and the default is 512 Kbytes).

20.4.4 ROMIO and PVFS

MPI-IO implementations provide a number of services over using a local file in-
terface. First and foremost these implementations provide a portable interface to
which application programmers can code. The MPI-IO implementation takes MPI-
IO operations and translates these into operations that can be performed by the
underlying file system. Depending on the underlying file system, the MPI-IO im-
plementation has a number of options with respect to how it translates an MPI-IO
read or write operation into file system operations. If the underlying file system
supports only POSIX operations, the MPI-IO layer might convert the MPI-IO re-
quest into a collection of contiguous operations. For a file system such as PVFS,
MPI-IO requests might instead be converted into List I/O operations.

The second service that MPI-IO implementations provide is I/O optimizations.
As we have discussed before, the MPI-IO semantics leave some opportunities for
performance optimizations that are not available under the POSIX semantics. Fur-
ther, the information provided by the use of collective I/O calls provides additional
opportunities for optimizations. For more information on MPI-IO in general, in-
cluding examples, see Chapter ?? of this book or [13]. In this section we will
touch upon building ROMIO with PVFS support and then discuss in detail the
optimizations available within ROMIO that are usable with PVFS.

Building MPICH and ROMIO with PVFS Support

Chapter ?? introduced the MPICH implementation of the MPI standard. ROMIO
is included as part of the MPICH package. When configuring MPICH with ROMIO
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and PVFS support, a few additional parameters are necessary. Particularly we want
to tell ROMIO what kinds of file systems to support, link to the PVFS library, and
provide the path to PVFS include files.

For example, let us assume that PVFS was previously installed into
/soft/pub/packages/pvfs-1.5.8, and we want both PVFS and “regular” (UFS)
file system support:

# ./configure --with-romio="-file_system=pvfs+ufs"

-lib="-L/soft/pub/packages/pvfs-1.5.8/lib/ -lpvfs"

-cflags="-I/soft/pub/packages/pvfs-1.5.8/include"

The standard MPICH build and installation procedure can be followed from here.
Building with LAM is very similar.

If ROMIO is not compiled with PVFS support, it will access files only through
the kernel-supported interface (i.e., a mounted PVFS file system). If PVFS support
is compiled into ROMIO and you attempt to access a PVFS-mounted volume, the
PVFS library will detect that these are PVFS files (if the pvfstab file is correct)
and use the library calls to avoid the kernel overhead. If PVFS support is compiled
into ROMIO and you attempt to access a PVFS file for which there is no mounted
volume, the file name passed to the MPI-IO call must be prefixed with pvfs: to
indicate that the file is a PVFS file; otherwise ROMIO will not be able to find the
file.

ROMIO Optimizations

ROMIO implements a pair of optimizations to address inefficiencies in existing
file system interfaces and to leverage additional information provided through the
use of collective operations. These optimizations, as well as PVFS options such
as striping parameters, are controlled through the use of the MPI Info system,
commonly known as “hints.” Much of the information in this section comes from
the ROMIO users guide [36]; this guide provides additional information on these
topics as well as covering the use of ROMIO on file systems other than PVFS.

ROMIO implements two I/O optimization techniques that in general result in
improved performance for applications. The first of these is data sieving [34]. Data
sieving is a technique for efficiently accessing noncontiguous regions of data in
files when noncontiguous accesses are not provided as a file system primitive or
where the noncontiguous access primitives are inefficient for a certain datatype.
In the data sieving technique, a number of noncontiguous regions are accessed by
reading a block of data containing all of the regions, including the unwanted data
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In step one, data is transferred to aggregators.

In step two, aggregators write data to storage.

Figure 20.8: Two-Phase Write Steps

between them (called “holes”). The regions of interest are then extracted from this
large block by the client. This technique has the advantage of a single I/O call,
but additional data is read from the disk and passed across the network. For file
systems with locking the data sieving technique can also be used for writes through
the use of a read-modify-write process. Unfortunately, since PVFS does not have
file locking of any kind currently, this is not available for PVFS.

Two hints can be used to control the application of data sieving in ROMIO for
PVFS:

• ind rd buffer size controls the size (in bytes) of the intermediate buffer
used by ROMIO when performing data sieving during read operations. De-
fault is 4194304 (4 Mbytes). If data will not all fit into this buffer, multiple
reads will be performed.

• romio ds read determines when ROMIO will choose to perform data sieving.
Valid values are enable, disable, or automatic. Default value is automatic.
In automatic mode ROMIO may choose to enable or disable data sieving
based on heuristics.

The second optimization is two-phase I/O [33]. Two-phase I/O, also called col-
lective buffering, is an optimization that applies only to collective I/O operations.
In two-phase I/O, the collection of independent I/O operations that make up the
collective operation are analyzed to determine what data regions must be trans-
ferred (read or written). These regions are then split up among a set of aggregator
processes that will actually interact with the file system. In the case of a read, these
aggregators first read their regions from disk and redistribute the data to the final
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locations; in the case of a write, data is first collected from the processes before
being written to disk by the aggregators. Figure 20.8 shows a simple example of the
two-phase write using a single aggregator process. In the first phase (step), the two
nonaggregator processes pass their data to the aggregator. In the second step the
aggregator writes all the data to the storage system. In practice many aggregators
are used to help balance the I/O rate of the aggregators to that of the I/O system.
Because the MPI semantics specify results of I/O operations only in the context of
the processes in the communicator that opened the file, and all these processes are
involved in collective operations, two-phase I/O can be applied on PVFS files.

Six hints can be used to control the application of two-phase I/O:

• cb buffer size controls the size (in bytes) of the intermediate buffer used in
two-phase collective I/O (both reads and writes). If the amount of data that
an aggregator will transfer is larger than this value, then multiple operations
are used. The default is 4194304 (4 Mbytes). If the data size exceeds this
buffer size, multiple iterations of the two-phase algorithm will be used to
accomplish data movement.

• cb nodes controls the maximum number of aggregators to be used. By default
this is set to the number of unique hosts in the communicator used when
opening the file.

• romio cb read controls when collective buffering is applied to collective read
operations. Valid values are enable, disable, and automatic. Default is
automatic. When enabled, all collective reads will use collective buffering.
When disabled, all collective reads will be serviced with individual operations
by each process. When set to automatic, ROMIO will use heuristics to
determine when to enable the optimization.

• romio cb write controls when collective buffering is applied to collective
write operations. Valid values are enable, disable, and automatic. De-
fault is automatic. See the description of romio cb read for an explanation
of the values.

• romio no indep rw indicates that no independent read or write operations
will be performed. This can be used to limit the number of processes that
open the file.

• cb config list provides explicit control over aggregators, allowing for partic-
ular hosts to be used for I/O. See the ROMIO users guide for more information
on the use of this hint.
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ROMIO Data Placement Hints

Three hints may also be used to control file data placement. These are valid only
at open time:

• striping factor controls the number of I/O servers to stripe across. The
default is file system dependent, but for PVFS it is -1, indicating that the
file should be striped across all I/O devices.

• striping unit controls the striping unit (in bytes). For PVFS the default
will be the PVFS file system default strip size.

• start iodevice determines what I/O device data will first be written to.
This is a number in the range of 0 ... striping factor - 1.

ROMIO and PVFS List I/O

Two hints are available for controlling the use of list I/O in PVFS:

• romio pvfs listio read has valid values enable, disable, and
automatic. The default is disable. This hint takes precedence over the
romio ds read hint.

• romio pvfs listio write has valid values enable, disable, and
automatic. The default is disable.

Clearly, a wide variety of parameters can be used to control the behavior of
ROMIO and PVFS when used together. Because no single set of parameters works
best for all applications, experimentation is often necessary to attain the best set of
parameters. A study examining some of these parameters has been published [8];
this can serve as a starting point for your own tuning.

20.4.5 Bugs

Users sometimes encounter bugs in PVFS. When they do, we generally guide them
through a predictable set of steps to help us discover where the problem lies. This
section outlines this process. The purpose is not to discourage users from reporting
bugs or asking for help, but to streamline the process. If you have already tried
these steps, we can skip a number of email exchanges and get right to the root of
the problem!
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Checking the List Archives

The very first thing to do is to check the PVFS mailing list archives. These are
searchable online and available from the PVFS Web site [27]. Many problems
have already been reported, so checking here might provide you with an immediate
solution.

Reporting Versions and Logged Output

Bugs should always be reported to the PVFS users mailing list. This is an open list
for discussion of many PVFS issues, one of them being bugs. By reporting to the
mailing list you reach the maximum number of people that might be able to solve
your problem, and you guarantee that an archive of the discussion will be saved.

We will always ask what version of the code you are running, especially if the
problem that you report looks like something that has already been fixed. The
distribution and kernel version you are using are helpful as well. If the problem is
related to compiling, we’ll ask for configure output and a log of the make process.
If the problem is a runtime one, we’ll ask for any information in the logs that might
help. This includes dmesg output, the pvfsd log, the iod logs, and the mgr log.
By default the three types of log files are all placed in /tmp, although this can be
changed with configure-time options.

Providing this information in your first message is the easiest way to get the bug
reporting and fixing process started.

Client Side or Server Side

The most common runtime bugs seen in PVFS at this time concern the Linux
kernel module. One of the first things that we do in the case of a runtime problem
is try to determine whether the problem is related to the servers themselves or to
a particular client. We usually ask the user to look at the state of other clients in
order to determine this. For example, one bug that we have seen prevented new
files from showing up on certain clients. One client would see the new file while
others did not. By looking at the state of multiple clients, the user was able to
report this back and help us narrow down the problem.

Simplifying the Scenario

The simpler the set of conditions necessary to cause the problem on your system,
the more likely we are to be able to replicate it on some system we have access to.
Hacking out portions of a scientific code so that it performs only I/O or writing



Parallel I/O and the Parallel Virtual File System 525

a script that uncovers a metadata incoherence problem really helps us see what is
going on and replicate the problem on our end.

20.5 Parallel I/O in the Future

Machines with tens of thousands of nodes are on the horizon. For a parallel I/O
system to efficiently operate at this scale, a number of issues must be addressed.

Adapting to new technologies is critical in this environment. It is not clear what
processor, storage, or network technologies will be present in future machines, or
even what operating system will run on nodes. Any new parallel file system design
should be built with abstract interfaces to allow adoption of new technologies and
porting to new operating systems.

Leveraging collective operations, rich I/O request languages, and relaxed consis-
tency semantics will be key to operating efficiently on these machines and exploiting
the inherent hierarchy in these systems. Opportunities exist at many levels in the
I/O component stack to boost performance.

Management of I/O systems is a growing concern because the systems continue to
become more complex. Tools to aid the administrator are key, and self-maintaining
solutions would be ideal.

Our next-generation parallel file system, PVFS2, is being designed to tackle just
these problems. By the time this book is published, early versions of the next-
generation Parallel Virtual File System, PVFS2, should be available online. The
core of PVFS2 has been designed to provide

• modular networking and storage subsystems,

• a structured data request format modeled after MPI datatypes,

• flexible and extensible data distribution modules,

• distributed metadata,

• tunable consistency semantics, and

• and support for data redundancy.

PVFS2 is the culmination of a 3-year effort to redesign PVFS as a production-
capable parallel file system based on experience gained in the design and operation
of the original PVFS, observations of other parallel file systems, and interactions
with the scientific data management community.
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Figure 20.9: PVFS2 Software Architecture

In this section we will examine some of the challenges facing parallel I/O systems
both today and in the near future. We will use PVFS2 as one example of how these
problems might be addressed.

20.5.1 Supporting New Hardware Technologies

While in some sense cluster computing is about using commodity parts, we often
see new technologies in use in larger clusters before they hit the commodity market.
Networks are a great example of this; we see many interesting network technologies,
including Myrinet, Quadrics, and InfiniBand, in use in clusters today. Likewise on
the storage side we see locally attached hardware, SANs, and iSCSI as some of
the potential mechanisms for storage access. Leveraging these technologies requires
appropriate abstractions in the I/O system. In the Lustre design we see a very
modular system used to attack just this problem [2].

20.5.2 PVFS2 Abstract Interfaces

PVFS2 also addresses this problem with abstraction layers. The first two of these
are BMI, through which client and server messages flow, and Trove, through which
storage is accessed. Figure 20.9 shows the overall software architecture of PVFS2;
we will discuss the major components here.

The Buffered Messaging Interface (BMI) provides a nonblocking network inter-
face that can be used with a variety of high-performance network fabrics and is
tailored for use in file system servers and clients. Currently BMI modules exist for
both TCP/IP and GM networks.

The Trove storage interface provides a nonblocking interface that can be used
with a number of underlying storage mechanisms. Trove storage objects, called
data spaces, consist of both a stream of bytes and a keyword/value pair space,
similar in some ways to the data and resource forks available in other local file
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systems. Keyword/value pairs are convenient for arbitrary metadata storage and
directory entries, while the stream of bytes is a natural place to store file data.
The current implementation uses Unix files and Berkeley db4, but many other
implementations are possible.

The third major abstraction in PVFS2 is Flows. Flows combine the functional-
ity of the network and storage subsystems by providing a mechanism to specify a
flow of data between network and storage. Flows also incorporate the request and
distribution processing system that allows PVFS2 to handle highly complex access
patterns. Finally, Flows provide a point for optimization: specific flow implemen-
tations to optimize data movement between a particular network and storage pair
can be implemented to exploit fast paths.

Above all these the job scheduling layer provides a common interface for post-
ing BMI, Trove, and Flows and checking on their completion. Within this layer,
scheduling decisions are made, and multiple threads are used to manage asynchrony
and leverage multiple CPUs. This is tightly integrated with a state machine pro-
cessing system that is used to track operations in progress. With this layer in place,
new underlying components may also be added and integrated with minimal effort.
At the highest level within the server, the request processing component handles
incoming requests and initializes new state machines to process these requests.

20.5.3 Tolerating Faults

Parallel computing systems continue to grow in numbers of components (nodes,
disks, etc.), and because components are becoming no more reliable, the likelihood
of component failure is increasing. While application and middleware are beginning
to be adapted to handle faults, most users depend on the I/O system to be a reliable
and available location for data storage. On the other hand, because providing fault
tolerance usually lowers performance, some users will desire to forego fault tolerance
at the I/O system level and instead implement it in a more efficient manner at the
application level. Doing so allows them to get the highest performance from the
I/O system. For a parallel file system to be usable in many domains, the level
of redundancy should be configurable. The approach PVFS2 takes to redundancy
is much the same as it takes to semantics and other issues involving a trade-off
between performance and protection: that is, it provides a choice of various levels
of protection, with the requisite loss or gain in performance. Thus PVFS2 aims to
allow files to be stored with no redundancy or with varying degrees of redundancy,
as needed. Multiple technologies may be leveraged to accomplish this, some built
into the file system and others external components.
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Redundant Storage

Many tools are available for providing fault tolerance in storage systems. One is
the use of local RAID arrays. This is a time-proven approach to handling disk
failures, and a RAID provides high-performance I/O with minimal performance
degradation when directly accessed by a single I/O server. We encourage this
application of RAID with both PVFS1 and PVFS2. RAID like-techniques can also
be applied across the devices on a SAN; the file system examples implementing a
VSD use this type of approach. Using RAID in this way can incur performance
penalties because of the fine-grained locking often used to control concurrent access
when multiple nodes have access to the resources.

In PVFS2 we will provide what we term lazy redundancy as an option. In this
approach writes to files do not update redundant information automatically as they
would in a RAID-like approach. Instead redundant information is updated only
when clients make explicit calls. These calls can be automatically made within
I/O middleware libraries at logical points, such as MPI sync or close operations.
By delaying the update to these explicit points we allow the I/O layers the option
of aggregating updates to redundant data. Further, in the context of MPI-IO we
have control of all the processes accessing the file; we can use these processes to
update redundant data in parallel for higher performance. The data distribution
component of PVFS allows us to describe where this redundant data is located in
a convenient manner, and the approach can be applied on a per file basis. Lazy
redundancy can be coupled with server failover to provide an even greater degree
of protection.

Failover

High availability (HA) software provides a mechanism for server failover in the
case of node failure. Dual-attach storage hardware can be used with this software
to tolerate single-node failures by creating pairs of nodes that provide “backup”
for each other. This allows systems to run in what is termed active-active mode
(meaning that neither node sits idle in absence of failure), with somewhat degraded
performance in the event that one node fails. Of course, if you don’t mind having
half your system sitting idle, active-passive mode can be used, leaving an extra
server for each of the ones in service. More complicated HA solutions are becoming
available that allow for a pool of backup servers that can be brought online as
needed. In contrast to active-active pairs, this architecture would allow for a small
number of extra servers that could fill in without degrading performance. However,
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these extra servers would need access to many different storage resources; providing
this capability could be prohibitively expensive.

Having the hardware and software infrastructure necessary to restart a server
on backup hardware is just the first step. A second issue to be considered with
respect to failover is shared state. Clients and servers in a stateless system do not
maintain information about other entities in the system that is necessary for correct
operation (i.e., they can cache information for performance reasons, but the system
must be able to function without this information). Assuming that a system is
stateless and that no file system data is cached in volatile storage, a server restart
need not cause the loss of any data. Unfortunately, shared state is used in many
parallel file systems; write-back caches are an example, where a client is holding
onto the state of blocks (for performance reasons) that a server is in fact responsible
for. Servers and clients can checkpoint their state on shared storage if it is available.
This is a viable option for systems where clients and servers have access to shared
storage, but this connectivity may not be available. Another option is to implement
an arbitration process that allows the system as a whole to reclaim resources and
synchronize state in the event of a node loss. Handling all the failure cases can be
very difficult. PVFS2 servers and clients are stateless in order to simplify the use
of failover solutions and minimize complication in failure scenarios.

20.5.4 Aiding Management

Most parallel file systems today (excluding PVFS1) have mechanisms for checking
the status of devices involved in the system, migrating data on and off particular
resources, checking the consistency of the file system, and adding or removing
devices from the file system. Looking beyond this functionality, we can imagine
I/O systems that can suggest optimizations based on observed access patterns or,
even better, manage themselves. The areas of “autonomic computing” [18] and
“autonomous storage” in particular cover just this type of operation. PVFS1 lacked
most of the management tools that administrators expect from such a system, and
we believe that this discouraged its use in a number of cases. We intend to take
management very seriously in PVFS2, and we will discuss some of the basics here.

System Monitoring

The first step in easing the management task is providing tools for system monitor-
ing. These tools should allow for both examining the real-time state of the system
and looking at trends over time for optimization purposes. A complicating factor
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a) Groups of objects can be migrated
from one server to another.

s0 s1 s2 s0 s1 s2

b) Once objects have been migrated, the
server can be removed from service.

Figure 20.10: Migrating Storage Objects

in parallel I/O monitoring is the sheer amount of data available, particularly infor-
mation on access patterns. This process is similar to gathering logs from parallel
programs in that data from many cooperating components must be collected and
presented coherently.

The PVFS development team has experimented with instrumentation of the
PVFS1 servers and has developed tools to aggregate performance metrics, collect
access pattern statistics, and visualize the results. Using the tools and techniques
developed for PVFS and looking at other work in the area, we have slated moni-
toring operations to be an integral part of the suite of operations that PVFS2 sup-
ports. These monitoring functions can be used as a starting point for visualization,
analysis, and self-management tools.

Data Migration

In PVFS2, file data is distributed to Trove data objects for storage. Trove data
objects are referenced by a handle. These data object handles are clustered into
logical groups such that all handles within a logical group are managed by a single
server. In the simplest case, each server manages a single logical group of Trove
handles, and therefore the objects referenced by those handles. These groups can
be split and merged if necessary for repartitioning purposes, and servers may be
responsible for many of these logical groups. The mapping of handles to the servers
where they are stored is a part of system configuration and is easily changed. This
not only provides a decoupling from handles to servers but potentially allows storage
objects to be moved from server to server by transferring the control of an entire
logical group and updating the handle mapping appropriately.

Figure 20.10 shows three servers, each with two logical groups of storage objects
referenced by different handle ranges. If resources on the middle server need to
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be freed (e.g., to replace faulty hardware), the groups of objects stored on the
server can be relocated to one or more servers, and requests from the clients can be
redirected by updating the mapping of these groups. Because these Trove objects
are used to store both metadata and data, metadata can be migrated in the same
manner.

Automated Management

Ideally, these systems would simply manage themselves! If components fail, data
could be migrated appropriately to allow for continued fault tolerance and min-
imum degradation of performance. Data that is used frequently as input could
be replicated so that multiple copies were available for reading or redistributed to
match observed access patterns. Infrequently used data could be kept on slower
disks or moved to tertiary storage. Caching and scheduling policies could be tuned
to match access patterns as well.

We are very interested in this type of system, and we plan to start working in
this area once the PVFS2 system matures. The first step is to provide a suite
of management operations as part of the server API. With this API in place, an
additional set of monitoring processes can interpret the performance monitoring
information over time and direct changes to the file system accordingly. Separating
these management processes into their own components will maintain the simplicity
of the underlying PVFS2 core.

20.5.5 Leveraging I/O Languages and Semantics

Earlier in the chapter we discussed consistency semantics; obviously we feel that
experimentation in this area could lead to useful alternative semantics. Equally
important is the use of structured I/O descriptions from the highest-level interfaces
down as low as possible in the I/O stack. Certainly, parallel file systems should be
supporting these operations.

MPI-IO

So far, MPI-IO implementations have been very conservative in their exploitation
of the more relaxed MPI-IO consistency semantics. As systems scale, taking further
advantage of these semantics allows us to potentially improve I/O system perfor-
mance using the same hardware as before. During this process, however, some
users are likely to experience surprising behavior from the I/O system because of
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assumptions about what level of consistency MPI-IO will provide. We will do ev-
erything possible to minimize the pain experienced by users in order to keep them
from abandoning this powerful API.

Caching at the MPI layer is one of the biggest opportunities that has so far been
unexploited in production systems. The constrained scope of the MPI-IO seman-
tics, coupled with the explicit synchronization points, makes caching in MPI-IO a
straightforward process. This is in stark contrast to the infrastructure necessary to
cache under the POSIX interface. File systems such as PVFS2 can benefit greatly
from caching at this layer.

Operations such as MPI File open can be further optimized with appropriate
support from the parallel file system. PVFS2 does not keep state regarding open
files. Instead, clients essentially find only a file handle during an open call. A
scalable implementation of MPI File open for PVFS2 can have a single process
perform the mapping from file name to handle, then broadcast the file handle to
the rest of the processes. This type of optimization can be applied in a number of
cases where MPI collectives are used.

Configurable Semantics

Earlier in the chapter we discussed the file consistency semantics of a number of
interfaces. We noted that for some types of workloads the NFS semantics were
acceptable, while for others they were not. It is not difficult for a parallel file
system to relax its semantics; usually this is a matter of simply neglecting to perform
consistency checks it might have otherwise. This approach should be considered
seriously. As a real example, many large physics datasets are being put online
today. Files in these datasets are never modified once written. Aggressive caching
of these files can be performed because the semantics applied to the dataset by the
scientists permit it. We should allow for these optimizations.

Likewise, relaxing the consistency of directory contents provides another poten-
tial point of optimization, as could metadata of files and directories (in particular
file size). PVFS2 will provide a configurable window of time for which previous
metadata values and directory contents are treated as up to date. This allows for
caching without locks, at the cost of short periods of time where views of the file
system on different clients are slightly different. Such an approach might be useful
as we attempt to share parallel file system access across wide-area networks.
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a) Simple Striping Distribution b) Nested Striping Distribution

Figure 20.11: Examples of Data Distributions

Describing I/O Operations and Data Distributions

PVFS2 allows for structured I/O requests via a format based directly on MPI
datatypes. Currently a set of datatype constructor functions identical in function
to the equivalent MPI calls is provided, and the format can readily be translated
from existing MPI datatype formats, making it trivial to leverage this functionality
within an MPI-IO implementation such as ROMIO. PVFS2 servers directly pro-
cess this format (in the flow component) to service I/O requests; the type is not
converted into a vector before processing.

With structured data sets comes the potential for leveraging more sophisticated
data distributions. Most parallel file systems use striping. In PVFS2, however, the
distribution mechanism has been abstracted so that different files can be stored with
different distributions. PVFS2 relies on an algorithmic mechanism for distribution
of data to servers. The functions that define the distribution can now be selected
at file creation time, permitting a number of potential data distributions.

One such alternative distribution pattern is nested striping. As shown in Fig-
ure 20.11, simple striping distributes data round-robin to all IO nodes used to
store the file. Nested striping distributes data round-robin first to one subset of
nodes and then to another subset in a round-robin pattern among subsets. This
pattern better matches block distributions of multidimensional datasets. Any dis-
tribution that can be represented algorithmically can potentially become a PVFS2
distribution scheme.

20.6 Conclusions

The many software and hardware layers of parallel I/O systems and the termi-
nology used to describe them can be very confusing. Underlying this complexity,
however, are simple concepts: methods of describing accesses, consistency seman-
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tics, distributing data across many resources, and surviving component failures.
Armed with knowledge of these concepts, one can both qualitatively assess the ap-
propriateness of a particular system to a given problem and devise tests to measure
quantitatively the effectiveness of the system. Many of these I/O systems share
common traits, so the example systems presented here can be used as a frame of
reference when examining new systems as well.

Parallel I/O continues to grow in importance as a component of clusters. While
existing parallel file systems such as PVFS1, GPFS, and GFS are filling existing
needs, new systems such as Lustre and PVFS2 are already being built to meet the
needs of upcoming systems. These systems build on the successes of the past but
also address issues germane to upcoming systems, in particular parallel I/O system
portability and increased scale. Even so, additional effort will be necessary to see
exciting concepts such as autonomous storage become reality.

As parallel I/O researchers and developers, we definitely have our work cut out
for us!
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