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Abstract. Highly parallel applications often make use of either highly
parallel file systems or large numbers of independent disks. Either of
these approaches can provide high data rates necessary for parallel ap-
plications. However, the failure of a single disk or server can render the
data useless. Conventional techniques, such as those based on applying
erasure correcting codes to each file write, are prohibitively expensive
for massively parallel scientific applications because of the granularity of
access at which codes are applied. In this paper we demonstrate a scal-
able method for recovering from single disk failures that is optimized for
typical scientific data sets. This approach exploits coarser-grain (but pre-
cise) semantics to reduce the overhead of constructing recovery data and
makes use of parallel computation (proportional to the data size and
independent of number of processors) to construct data. Experiments
showing the efficiency of this approach on a cluster with independent
disks are presented, and a technique for hiding the creation of redundant
data within the MPI-IO implementation is described.

1 Introduction

The scale of today’s systems and applications requires very high performance I/O
systems. Because single disk performance has not improved at an adequate rate,
current I/O systems employ 100s of disks in order to obtain the needed aggregate
performance. This approach effectively solves the performance problem, but it
brings with it a new problem: increased chance of component failure. General
approaches for maintaining redundant data have been applied to locally attached
disk storage systems (e.g. RAID [7]). These approaches, however, work at a very
fine granularity. Applying this type of approach in a parallel file system or across
the local disks in a cluster, where disks are distributed and latencies are higher,
imposes unacceptable overhead on the system.

Fortunately, there are characteristics of computational science applications
and storage systems that provide opportunities for more efficient approaches.
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First, the applications that generate large amounts of data typically have phases
of I/O where much data is written at once, such as in the case of checkpointing.
A partially written checkpoint isn’t particularly useful, so generally one or more
previous checkpoints are preserved in case a failure occurs during the checkpoint-
ing process. Thus creating redundant data for a checkpoint once the application
is finished writing it adequately covers the failure cases in which the application
is interested. Second, we can generally detect a failed disk. Failures where the
location of lost data is known are categorized in coding theory as erasures. This
category of data loss is more easily corrected than the general case of potentially
corrupted data located anywhere in the system, meaning that more algorithms
are applicable to the problem of recovering from failures in this environment.

The goal of this paper is to describe Lazy Redundancy, a technique for match-
ing the generation of recovery data to the needs of high-performance parallel
scientific applications and the systems on which these applications run. The lazy
redundancy technique embodies two main principles: aggregating the creation
of error correcting data at explicit points, and leveraging the resources of clients
and storage devices in creating error correcting data or recovering from failures.
Specifically we will describe a method for efficient creation of the data necessary
to recover from a single erasure failure that is applied only when processes reach
an I/O synchronization point (e.g. MPI File close or MPI File sync). Because
all processes have reached this point, we may use the processes to perform the
recovery data calculation. MPI collectives may be used to make communication
as efficient as possible. This approach may be applied both in the case where ap-
plications write out individual files to local disks and in the case where a parallel
file system is used as the backing store. Further, the approach can be general-
ized to provide redundancy in the presence of more than one failure through the
application of well-known algorithms (such as [1] for two erasure (still using only
XOR operations) or the more general approaches based on Reed-Solomon codes
[9]).

There is a great deal of work on recovery from erasures in file systems. Much
of this work is focused on relatively small numbers of separate disks and on
preserving data after each write operation, as required by POSIX semantics.
Work on large arrays of disks has often focused on the multiple-erasure case (e.g.,
[4, 1, 9]). These approaches can be adapted to the techniques in this paper. Other
work has exploited the semantics of operations to provide improved performance.
Ligon [6] demonstrated recovery of a lost data in a PVFS file system using serial
recovery algorithms to create error recovery data after application completion
and to reconstruct data after a single server failure. Pillai et. al. studied the
implementation of redundancy schemes in PVFS maintaining the existing PVFS
semantics and switching between mirroring and parity based on write size [8].
Ladin et. al. discusses Lazy Replication in the context of distributed services [5].

In Section 2 we describe the lazy redundancy technique and our implementa-
tion. In Section 3 we demonstrate the technique in a cluster with separate local
disks. In Section 4 we summarize the contributions of this work and point to
future research directions.



2 Implementing Lazy Redundancy

Let there be p “storage devices,” where a storage device could be a disk local
to a processor or a server in a parallel file system. For the purposes of this work
an erasure failure will be assumed to affect exactly one storage device. Files are
striped across all storage devices in a round-robin fashion. We will denote the
piece of a stripe residing on one storage device as a data block, or block. Each
data block is of some fixed size (e.g. a natural block size for the disk or parallel
file system server, such as 64 Kbytes). A file consists of a set of blocks Ai,j , where
storage device j has blocks i = 0, 1, . . .. The top diagram in Figure 1 shows the
layout of these blocks onto storage devices in a round-robin fashion. We wish
to compute data Pj called the parity blocks, stored on device j, that allows the
reconstruction of Ai,m if any one storage device m is lost.

The particular algorithms for calculating these parity blocks and placing of
these blocks on storage devices in this implementation of the lazy redundancy
technique are based closely on the RAID5 [7] work.

For simplicity, assume that 0 ≤ i < p. If i ≥ p, this approach may be applied
iteratively, starting with a new parity block stored on the first storage device.
Let a⊕ b be bitwise exclusive or. Define

Pj =


 ⊕

0≤k<j

Aj−1,k


 ⊕


 ⊕

j<k<p

Aj,k


 (1)

Note that the parity block Pj does not involve any data from device j and that,
because of the property of exclusive OR, for any m, all of the data blocks Ai,m

can be recomputed using the data Ai,k for k 6= m and the parity blocks Pk for
k 6= m.

These parity blocks are evenly distributed among the storage devices to best
balance the I/O load, and just as in RAID5 the extra space required by the
parity blocks is just 1/p, where there are p disk storage devices. The middle
diagram of Figure 1 illustrates the relationship between data blocks and parity
blocks, including the placement of Pj so that it is not on a device storing one
of the data blocks used in its calculation. The last diagram of Figure 1 points
out that the parity blocks are not necessarily stored in the same file(s) as the
data blocks; they could be stored in a separate file or files, or stored in blocks
associated with the file.

There are three major differences between the lazy redundancy technique
and RAID5: when error correcting data (parity blocks) are computed, how the
parity blocks are computed, and how data is reconstructed in the event of an
erasure. In the RAID5 approach parity blocks are recomputed on each individual
write. This results in a great deal of I/O to parity blocks and at a very fine
granularity (1/p the size of the original data). In the lazy redundancy scheme,
parity blocks are computed only at explicit synchronization points. This avoids
the overhead of computing the parity blocks on small I/O operations and of
writing the corresponding even smaller parity blocks, instead aggregating both
the calculation and I/O into fewer, larger operations.



One possible layout of fhe computed parity blocks (placed in a separate file.)
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View of the data with the parity blocks inserted, showing the
use of MPI_Reduce_scatter to compute the parity blocks
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Fig. 1. Real and logical layout of the data blocks Ai,j and parity blocks Pj .



The second difference is in the computation of the parity blocks themselves,
in particular the communication cost associated with combining data from each
storage device. We leverage the fact that all processes have reached a synchro-
nization point to calculate parity blocks collectively (in the MPI sense). We can
use algorithms that have been optimized for this sort of calculation, as opposed
to performing many independent operations. Because there is no knowledge of a
group of processes collectively operating on the file in the general RAID5 model,
this type of optimization is impossible.

Equation 1 can be implemented in MPI using the MPI Reduce scatter op-
eration, using the predefined combiner operation MPI BXOR. The reduce-scatter
operation in MPI is functionally equivalent to an MPI Reduce followed by an
MPI Scatter. However, the combined operation can often be implemented more
efficiently than using the two separate operations. The time to create the parity
block can be estimated as

Tparity = Tread(b) + Twrite(b/p) + Tc(b/p) (2)

Here, Tread(n) and Twrite(n) are the times to read and write n bytes respectively.
These are single operations involving large blocks that, with some care, can
be aligned with the blocks on the storage device itself, leading to optimal I/O
transfers. The third term is the cost of the MPI Reduce scatter used to compute
the parity blocks (this assumes an optimal implementation of the reduce-scatter
operation, such as that described in [10], whose cost is proportional to the data
size for sufficiently large data). Pseudo-code implementing the computation of
the parity blocks is shown in Figure 2.

The use of MPI Reduce scatter allows this code to exploit any optimizations
in the implementation of this operation that may be included within the MPI
library [10].

Finally, a similar approach to the one used in computing parity blocks is also
applied to reconstruction. To reconstruct the data blocks for a failed device, we
exploit the properties of exclusive OR. If the rank of the failed device is f , then
the data blocks of the failed storage device can be recovered using Equation 3:

Aj,f = Pj ⊕




⊕
0≤k<j

k 6=f

Aj−1,k




⊕



⊕
j<k<p

k 6=f

Aj,k


 (3)

Reconstruction of a block can be implemented with the routine MPI Reduce; this
combines data from all processes to a single process, as shown in Figure 3.

This combination of aggregation of calculations and use of optimized collec-
tives results in very efficient parity calculations.

3 Experiments

In this section, we demonstrate the effectiveness of this approach on a cluster
where each node has a separate disk. The parallel application writes data files,



/* Create the datatype */
b = 65536; /* Bytes per block */
MPI_Comm_rank( comm, &j );
MPI_Comm_size( comm, &p );
blklens[0] = j*b;
blklens[1] = (p-1-j)*b;
displs[0] = 0;
displs[1] = (j+1)*b;
MPI_Type_indexed( 2, blklens, displs, MPI_BYTE, &rtype );
MPI_Type_commit( &rtype );

/* Clear the part of the buffer corresponding to our process */
for (i=0; i<b; i++)

buf[j*b + i] = 0;
MPI_File_open( MPI_COMM_SELF, filename, ..., &fh );
MPI_File_read( fh, buf, 1, rtype, MPI_STATUS_IGNORE );
MPI_File_close( &fh );

for (i=0; i<p; i++)
recvcounts[i] = b;

MPI_Reduce_scatter( buf, rbuf, recvcounts, MPI_BYTE, MPI_BXOR, comm );
MPI_File_open( parityfile, ..., MPI_COMM_SELF, fh );
MPI_File_write( fh, rbuf, b, MPI_BYTE, MPI_STATUS_IGNORE );
MPI_File_close( &fh );

Fig. 2. Pseudo-code for computing the parity blocks and distributing them among
the processes. This code assumes that each process in the communicator comm has an
associated independent disk, rather than using a parallel file system.

/* Create the Datatype rtype as in the parity construction code */
/* Create a communicator ordered in the same way as the original job */
MPI_Comm_split( incomm, 0, oldrank, &comm );
MPI_Comm_rank( comm, &j );
if (j != failedRank) {

MPI_File_open( MPI_COMM_SELF, filename, ..., &fh );
MPI_File_read( fh, buf, 1, rtype, MPI_STATUS_IGNORE );
MPI_File_close( &fh );
MPI_File_open( MPI_COMM_SELF, parityfile, ..., &fh );
MPI_File_read( fh, &buf[j*b], b, MPI_BYTE, MPI_STATUS_IGNORE );
MPI_File_close( &fh );

}
else {

for (i=0; i<p*b; i++) buf[i] = 0;
}
MPI_Reduce( buf, outbuf, p*b, MPI_BYTE, MPI_BXOR, failedRank, comm );
if (j == failedRank) {

MPI_File_open( MPI_COMM_SELF, filename, ..., &fh );
MPI_File_write( fh, outbuf, p*b, MPI_BYTE, MPI_STATUS_IGNORE );
MPI_File_close( &fh );

}

Fig. 3. Pseudocode to reconstruct a block. MPI I/O was used to keep the MPI flavor
and to use a single library for all operations in the examples. The read operation used
is nothing more than a Unix-style readv with a two element iovec.



one per process, to the local disk. This is a common approach for parallel appli-
cations, particularly those running on systems that do not provide an effective
parallel file system.

We do not compare this approach to a traditional RAID-5 approach for a
couple of reasons. First, we did not have a comparable system available. Also,
building such a system would be an endeavor of larger scope than the work
presented here. Finally, the performance of a RAID-5 system would be very
dependent on the pattern of access of the processes, while the lazy redundancy
approach is not.

The specific scenario that we consider is this: each process in an MPI program
writes data to a local disk (that is, a disk on the same processor node as the MPI
process). This collection of files represents the output from the MPI program. If
one node fails for any reason (such as a failure in the network card, fan, or power
supply, not only the disk), the data from that disk is no longer accessible. With
the lazy redundancy approach described in the previous section, it is possible to
recover from this situation. Assuming that the parity blocks have been computed
as described in Section 2, the user can restore the “lost” data by running an
MPI program on the remaining p − 1 nodes and on one new node. In these
experiments we assume that failure detection is handled by some other system
software component.

Our experiment simulates this scenario by performing the following steps on
a Linux cluster [3] where each node has a local disk. Two underlying communica-
tion methods implemented in MPICH2 were used: TCP and an implementation
of the GASNet [2] protocol on top of the GM based Myrinet interconnect. We
would expect the Myrinet results to be superior when communication is neces-
sary, such as in the process of computing parity or restoring from an erasure.
Each step is timed so that the relative cost of each step can be computed:

1. All processes generate and write out data to their local disks.
2. All processes read the data needed to compute the parity blocks.
3. The parity blocks are computed and distributed to each participating pro-

cess.
4. The parity blocks are written to local disk in a separate file.
5. One process is selected as the one with the failed data (whose data and

parity data is removed), and the reconstruction algorithm is executed on
this storage device, recreating the missing data.

The results of running this experiment on 4, 16, and more storage devices (and
the same number of MPI processes) are shown in Table 1. In each example, the
total size of the data scales with p (there are p − 1 blocks of the same size on
each storage device). Thus, the best performance is linear scaling of the time
with respect to the number of processes. Hardware problems precluded running
Myrinet experiments at 128 processes.

In this experiment, each process generates a separate data file with the name
datafile.rank, where rank is the process rank according to MPI Comm rank.
The parity data, once computed and gathered, is written to local disk alongside
the data file as a “hidden“ file with the name .LZY.datafile.rank. The size of



Table 1. Average time (in seconds) to create a file, create the parity blocks using lazy
redundancy, and to restore a file on 4 to 128 storage devices. The step to create the
parity block is broken down into the three substeps shown. Parity data size is fixed at
512 Kbytes per process.

TCP/IP Myrinet
4 16 64 128 4 16 32 64

Data per Client (KB) 1536 7680 32256 65024 1536 7680 16128 32256

Create File 0.040 0.193 0.810 1.632 0.041 0.155 0.319 0.645
Create Parity

Read Blocks 0.030 0.160 0.656 1.741 0.023 0.123 0.270 0.506
Compute Parity 0.288 1.812 8.270 62.71 0.378 0.463 0.594 1.307
Write Parity 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

Restore Erasure 0.307 1.310 5.490 15.06 0.092 0.425 1.212 1.696

the parity data remains fixed for all tests, regardless of the increasing number
of participating processes and data sizes. To achieve the larger data sizes used,
the parity computation was applied iteratively a fixed number of times over the
varying size of the data composed of data blocks.

The results in Table 1 show the scalability of the approach. For the tests on
TCP, the performance scales with the data size to 64 processes. For Myrinet, the
times scale better than linearly; we believe that this is due to the serial overheads;
in fact, the time for the compute parity step is dominated by a constant overhead
of about 0.36 seconds.

Note that the time to create the file is the time seen by the application; this
does not necessarily include the time to write the data to disk (the data may be
in a write cache).

One benefit of using this approach is that there is a very small amount of ad-
ditional data necessary to provide fault tolerance. However, calculating this data
does become more expensive as the number of clients increases, as we see in the
TCP case at 128 processes. In this particular case we may be seeing the impact
of memory exhaustion for large reduce-scatter operations (which may need to be
broken up in the implementation). However, applying the redundancy scheme
to smaller sets of storage devices would also alleviate the problem, at the cost
of somewhat larger storage requirements. For example, we could consider the
128 processes as two groups of 64 for the purposes of redundant data calcula-
tion, doubling the amount of parity data but allowing for the reduce-scatters to
proceed in parallel.

According to the data gathered, it is apparent that a major part of the cost
in these examples is reading the file. If either the user-level I/O library (such as
an MPI-I/O implementation or a higher-level library) or a parallel file system
performed the “Compute Parity” step when sufficient data was available, rather
than re-reading all the data as in our tests, then this cost would disappear.



4 Conclusions and Future Work

In this work we have presented the Lazy Redundancy technique for providing
erasure correction in an efficient manner on highly parallel systems. The tech-
nique exploits collective computation, I/O, and message passing to best leverage
the resources available in the system. While tested in an independent file en-
vironment, the same approach is equally usable for data stored on a parallel
file system. Further, using user-defined reduction operations, this approach can
be extended to more complex erasure-correcting codes, such as Reed-Solomon,
that would handle larger numbers of failures than the algorithm shown in this
work. An additional optimization would leverage accumulate operations during
collective writes to avoid the read I/O step of recovery data calculation. This
would of course impose additional complexity and overhead in the write phase,
and that tradeoff warrants further study.

Although we have presented this work in the context of independent disks,
the technique is equally suitable to the parallel file system environment. In or-
der to implement lazy redundancy transparently in this environment, some aug-
mentation is necessary to the parallel file system. We intend to implement this
technique as a component of the PVFS2 file system [11]. Our approach will be
to transparently perform the lazy redundancy operations within the PVFS2-
specific portion of the ROMIO MPI-IO implementation, hiding the details of
this operation from the user.

Three capabilities will be added to PVFS2 to facilitate this work: a mecha-
nism for allowing clients to obtain the mapping of file data blocks to servers, an
interface allowing clients to perform I/O operations when the file system is only
partially available (and be notified of what servers have failed), and a distribu-
tion scheme that reserves space for parity data as part of the file object, while
keeping parity data out of the file byte stream itself.
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