
Parallel PDE-Based Simulations Using the Common
Component Architecture

Lois Curfman McInnes
�
, Benjamin A. Allan

�
, Robert Armstrong

�
, Steven J.

Benson
�
, David E. Bernholdt

�
, Tamara L. Dahlgren

�
, Lori Freitag Diachin

�
,

Manojkumar Krishnan
�
, James A. Kohl

�
, J. Walter Larson

�
, Sophia Lefantzi

�
, Jarek

Nieplocha
�
, Boyana Norris

�
, Steven G. Parker

�
, Jaideep Ray

�
, and Shujia Zhou

�
	

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL,
[mcinnes,benson,larson,norris]@mcs.anl.gov

Scalable Computing R & D, Sandia National Laboratories (SNL), Livermore, CA,
[baallan,rob]@ca.sandia.gov�
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge,
TN, [bernholdtde,kohlja]@ornl.gov�
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, CA, [dahlgren1,diachin2]@llnl.gov
Computational Sciences and Mathematics, Pacific Northwest National Laboratory,
Richland, WA, [manojkumar.krishnan,jarek.nieplocha]@pnl.gov�
Reacting Flow Research, SNL, Livermore, CA, slefant@ca.sandia.gov�
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT,
sparker@cs.utah.edu�
Advanced Software R & D, SNL, Livermore, CA, jairay@ca.sandia.gov�
Northrop Grumman IT/TASC, Chantilly, VA, szhou@pop900.gsfc.nasa.gov

Summary. The complexity of parallel PDE-based simulations continues to increase as multi-
model, multiphysics, and multi-institutional projects become widespread. A goal of component-
based software engineering in such large-scale simulations is to help manage this complexity
by enabling better interoperability among various codes that have been independently devel-
oped by different groups. The Common Component Architecture (CCA) Forum is defining a
component architecture specification to address the challenges of high-performance scientific
computing. In addition, several execution frameworks, supporting infrastructure, and general-
purpose components are being developed. Furthermore, this group is collaborating with others
in the high-performance computing community to design suites of domain-specific component
interface specifications and underlying implementations.

This chapter discusses recent work on leveraging these CCA efforts in parallel PDE-based
simulations involving accelerator design, climate modeling, combustion, and accidental fires
and explosions. We explain how component technology helps to address the different chal-
lenges posed by each of these applications, and we highlight how component interfaces built
on existing parallel toolkits facilitate the reuse of software for parallel mesh manipulation,
discretization, linear algebra, integration, optimization, and parallel data redistribution. We
also present performance data to demonstrate the suitability of this approach, and we discuss
strategies for applying component technologies to both new and existing applications.

2 Lois Curfman McInnes et al.

1 Introduction

The complexity of parallel simulations based on partial differential equations (PDEs)
continues to increase as multimodel, multiphysics, multidisciplinary, and multi-
institutional projects are becoming widespread. Coupling models and different types
of science increases the complexity of the simulation codes. Collaboration across
disciplines and institutions, while increasingly necessary, introduces new social intri-
cacies into the software development process, such as different programming styles
and different ways of thinking about problems. Added to these challenges, the soft-
ware must cope with the multilevel memory hierarchies common to modern parallel
computers where there may be three to five levels of data locality.

These challenges make it clear that the high-performance scientific computing
community needs an approach to software development for parallel PDEs that fa-
cilitates managing such complexity while maintaining scalable and efficient parallel
performance. Rather than being overwhelmed by the tedious details of parallel com-
puting, computational scientists must be able to focus on the particular part of a
simulation that is of primary interest to them (e.g., the physics of combustion) and
employ well-tested and optimized code developed by experts in other facets of a sim-
ulation (e.g., parallel linear algebra and visualization). Traditional approaches, such
as the widespread use of software libraries, have historically been valuable, but these
approaches are being severely strained by this new complexity.

One goal of component-based software engineering (CBSE) is to enable inter-
operability among software modules that have been developed independently by dif-
ferent groups. CBSE treats applications as assemblies of software components that
interact with each other only through well-defined interfaces within a particular exe-
cution environment, or framework. Components are a logical means of encapsulating
knowledge from one scientific domain for use by those in others, thereby facilitating
multidisciplinary interactions. The complexity of a given simulation is decomposed
into bite-sized components that one or a few investigators can develop independently,
thus enabling the collaboration of scores of researchers in the development of a single
simulation. The glue that binds the components together is a set of common, agreed-
upon interfaces. Multiple component implementations conforming to the same ex-
ternal interface standard should be interoperable, while providing flexibility to ac-
commodate different aspects such as algorithms, performance characteristics, and
coding styles. At the same time, the use of common interfaces facilitates the reuse
of components across multiple applications. Even though details differ widely, many
PDE-based simulations share the same overall software structure. Such applications
could employ similar sets of components, which might conform to many of the same
interfaces but differ in implementation details. This kind of software reuse enables
the cross-pollination of both components and concepts across applications, projects,
and problem domains.

The Common Component Architecture (CCA) [8,21,28] is designed specifically
for the needs of parallel, scientific high-performance computing (HPC) in response
to limitations in the general HPC domain of other, more widely used component
approaches (see Section 3). The general-purpose design of the CCA is intended for

Parallel PDE-Based Simulations Using the CCA 3

Core CCA
Services

Optimi-
zation

Linear
Algebra

Data
Manage-

ment

Integration

Mesh
Manage-

ment

Reusable Scientific
Component Peers

ClimateCombustion

C-SAFE

Accelerators

Parallel PDE-Based
Applications

Etc…

Etc…

Fig. 1. Complete parallel PDE-based applications can be built by combining reusable scientific
components with application-specific components; both can employ core CCA services to
manage inter-component interactions.

use in a wide range of scientific domains for both PDE-based and non-PDE-based
simulations.

As depicted in Figure 1, complete parallel PDE-based applications can be built
in a CCA environment by combining various reusable scientific components with
application-specific components. In keeping with the emphasis of this book, we ex-
plain (1) how component software can help manage the complexity of PDE-based
simulations and (2) how the CCA, in particular, facilitates parallel scientific compu-
tations. We do this in the context of four motivating PDE-based application areas,
which are introduced in Section 2. After presenting the basic concepts of the CCA
in Section 3, we provide an overview of some reusable scientific components and
explain how component interfaces built on existing parallel toolkits facilitate the
reuse of software for parallel mesh manipulation, discretization, linear algebra, inte-
gration, optimization, and parallel data redistribution. Section 5 discusses strategies
for applying component technologies to both new and existing applications, with an
emphasis on approaches for the decomposition of PDE-based problems, including
considerations for how to move from particular implementations to more general
abstractions. Section 6 integrates these ideas through case studies that illustrate the
application of component technologies and reusable components in the four motivat-
ing applications. Section 7 discusses conclusions and areas of future work.

2 Motivating Parallel PDE-Based Simulations

This section introduces four PDE-based application areas that motivate our work: ac-
celerator design, climate modeling, combustion, and accidental fires and explosions.

4 Lois Curfman McInnes et al.

2.1 Accelerator Modeling

Fig. 2. State-of-the-art simulation tools
are used to help design the next gen-
eration of accelerator facilities. (Left):
Mesh generated for the PEP-II interac-
tion region using the CUBIT mesh gen-
eration package. Image courtesy of Tim
Tautges of Sandia National Laborato-
ries. (Right): Excited fields computed
using Tau3P. Image courtesy of the nu-
merics team at SLAC.

Accelerators produce high-energy, high-speed
beams of charged subatomic particles for re-
search in high-energy and nuclear physics,
synchrotron radiation research, medical ther-
apies, and industrial applications. The design
of next-generation accelerator facilities, such
as the Positron-Electron Project (PEP)-II and
Rare Isotope Accelerator (RIA), relies heav-
ily on a suite of software tools that can be
used to simulate many different accelerator
experiments. Two of the codes used by ac-
celerator scientists at the Stanford Linear Ac-
celerator Center (SLAC) are Omega3P [120]
and Tau3P [137]. Omega3P is an extensi-
ble, parallel, finite element-based code for the
eigenmode modeling of large, complex three-
dimensional electromagnetic structures in the
frequency domain, while Tau3P provides so-
lutions to electromagnetics problems in the
time domain. Both codes make extensive use
of unstructured mesh infrastructures to ac-
commodate the complex geometries associ-
ated with accelerator models. In order to over-
come barriers to computation and to improve
functionality, both codes are being evaluated
for possible extension.

For Tau3P, different discretization strategies are being explored to address long-
time instabilities on certain types of meshes. Tau3P is based on a modified Yee
algorithm formulated on an unstructured grid and uses a discrete surface integral
(DSI) method to solve Maxwell’s equations. Since the DSI scheme is known to have
potential instabilities on nonorthogonal meshes, scientists are using a time filtering
technique that maintains stability in most cases, but at a significantly higher com-
putational cost. Unfortunately, integrating new discretization techniques is costly;
and, because of resource constraints, several potentially useful methods cannot be
investigated. A component-based approach that allows scientists to easily prototype
different discretization and meshing strategies in a plug-and-play fashion would be
useful in overcoming this obstacle.

For Omega3P, solutions are being explored that yield more accurate results with-
out increasing the computational cost. That is, scientists are satisfied with the finite-
element-based solver but cannot increase mesh resolution to reduce the large errors
that occur in small regions of the computational domain. To overcome this barrier,
SLAC scientists are working with researchers at Rensellaer Polytechnic Institute
(RPI) to develop an adaptive mesh refinement (AMR) capability. Despite initially

Parallel PDE-Based Simulations Using the CCA 5

using a file-based information transfer mechanism, this effort has clearly demon-
strated the advantage of AMR techniques to compute significantly more accurate
solutions at a reduced computational cost. As described in Section 6.1, current ef-
forts are centered on directly deploying these advanced capabilities in the Omega3P
code by using a component approach. This approach has made the endeavor more
tractable and has given scientists the flexibility of later experimenting with different
underlying AMR infrastructures at little additional cost.

In order to facilitate the use of different discretization and meshing strategies,
there is a need for a set of common interfaces that provide access to mesh and ge-
ometry information. A community effort to specify such interfaces is described in
Section 4.1, and results of a performance study using a subset of those interfaces are
discussed in Section 4.8.

2.2 Climate Modeling

Fig. 3. Displaced pole grid on which
the Parallel Ocean Program ocean
model [104] solves its primitive equa-
tions. The polar region is displaced to lie
over land, thereby minimizing the prob-
lems encountered at high latitudes by
finite-difference schemes. Image cour-
tesy of Phillip Jones and Richard Smith,
Los Alamos National Laboratory.

Climate is the overall product of the mu-
tual interaction of the Earth’s atmosphere,
oceans, biosphere, and cryosphere. These sys-
tems interact by exchanging energy, momen-
tum, moisture, chemical fluxes, etc. The in-
herent nonlinearity of each subsystem’s equa-
tions of evolution makes direct modeling of
the climate—which is the set of statistical
moments sampled over a large time scale—
almost impossible. Instead, climate modeling
is accomplished through integrations of cou-
pled climate system models for extended pe-
riods, ranging from the century to millennial
time scales, logging of model history output
sampled at short time scales, and subsequent
off-line analysis to compute climate statistics.

PDEs arise in many places in the climate
system, most significantly in the dynamics
of the atmosphere, ocean, and sea-ice. The
ocean and atmosphere are both modeled as
thin spherical shells of fluid in a rotating ref-
erence frame, using in each case a system of
coupled PDEs governing mass, energy, and
momentum conservation, called the primitive
equations. Modern sea-ice models simulate the formation and melting of ice (the
thermodynamics of the problem), how the ice pack is forced by surface winds
and ocean currents, and how it behaves as a material (its dynamics and rheology).
Schemes such as the elastic-viscous plastic (EVP) scheme [60] involve the solution
of PDEs.

6 Lois Curfman McInnes et al.

Climate modeling is a grand challenge high-performance computing applica-
tion, requiring highly efficient and scalable algorithms capable of providing the high
throughput needed for long-term integrations. To illustrate the high simulation costs,
we consider the NASA finite-volume General Circulation Model. A 500-model-day
simulation using this model, with a horizontal resolution of

��� ���
latitude by

��� �������
longitude and 32 vertical layers, takes a wall-clock day to run on a 1.25-GHz Com-
paq AlphaServer SC45 with 250 CPUs [83].

The requirements for coping with multiple, coupled physical processes as well
the requirements for parallel computing make software development even more chal-
lenging. The traditional development process for these models was the creation of
highly entangled applications that made little reuse of code and made the interchange
of functional units difficult. In recent years, the climate/weather/ocean (CWO) com-
munity has embarked on an effort to increase modularity and interoperability, the
main motivation being a desire to accelerate the development, testing, and valida-
tion cycle. This effort is positioning the community for the introduction of software
component technology, and there is now an emerging community wide application
framework, the Earth System Modeling Framework [67].

In Section 4.7 we discuss the use of CCA components for climate model cou-
pling. In Section 6.2 we describe the multiple software scales at which component
technology is appropriate in climate system models. We briefly describe the ESMF
and its relationship to the CCA, and we provide an example of CWO code refactor-
ing to to make it component friendly. We also describe a prototype component-based
advection model that combines the interoperable component paradigms of the CCA
and ESMF.

2.3 Combustion

The study of flames, experimentally and computationally, requires the resolution of
a wide range of length and time scales arising from the interaction of chemistry,
radiation, and transport (diffusive and convective). The complexity and expense in-
volved in the experimental study of flames were recognized two decades ago, and the
Combustion Research Facility [37] was created as a “user facility” whose equipment
and expertise would be freely available to industry and academia. Today a similar
challenge is being faced in the high-fidelity numerical simulations of flames [105].
Existing simulations employ a variety of numerical and parallel computing strate-
gies to achieve an accurate resolution of physics and scales, with the unfortunate
side effect of producing large, complex and ultimately unwieldy codes. Their lack of
extensibility and difficulty of maintenance have been a serious impediment and were
the prime motive for establishing in 2001 the Computational Facility for Reacting
Flow Science (CFRFS) [93], a “simulation facility” where various numerical algo-
rithms, physical and chemical models, meshing strategies, and domain partitioners
may be tested in flame simulations.

In the CFRFS project, flames are solved by using the low Mach number form
of the Navier-Stokes equation [92, 133], augmented by evolution equations for the
various chemical species and an energy equation with a source term to incorporate

Parallel PDE-Based Simulations Using the CCA 7

the contribution from chemical reactions. The objective of the project is to simu-
late laboratory-sized flames with detailed chemistry, a problem that exhibits a wide
spectrum of length and time scales. Block-structured adaptive meshes [18] are used
to limit fine meshes only where (and when) required; operator-splitting [68, 117] is
used to treat stiff chemical terms implicitly in time, while the convective and dif-
fusive terms are advanced explicitly. In many cases, the stiff chemical system can
be rendered nonstiff (without any appreciable loss of fidelity) by projection onto a
lower-dimensional manifold. The identification of this manifold and the projection
onto it are achieved by computational singular perturbation (CSP) [70, 75], a multi-
scale asymptotic method that holds the promise of significantly reducing the cost of
solving the chemical system.

Fig. 4. A 10-cm-high pulsating
methane-air jet flame, computed on
an adaptive mesh. On the left is the
temperature field with a black contour
showing regions of high heat release
rates. On the right is the adaptive mesh,
in which regions corresponding to the
jet shear layer are refined the most.

Given the scope of the simulation facil-
ity, the requisite degree of flexibility and ex-
tensibility clearly could not be achieved with-
out a large degree of modularization and with-
out liberating the users (with widely varying
levels of computational expertise) from the
strait jacket imposed by global data-structures
and models. Modularization was achieved
by adopting a component-based architecture,
and the multidimensional Fortran array was
adopted as the basic unit of data exchange
among scientific components. The simula-
tion facility can thus be viewed as a toolkit
of components, each embodying a certain
numerical or physical functionality, mostly
implemented in Fortran 77, with thin C++
“wrappers” around them.

In Section 4.2 we discuss SAMR com-
ponents used in this application, and in Sec-
tion 5 we detail the strategy we adopted to
decompose mathematical and simulation re-
quirements into modules, while preserving a
close correspondence between the software components and identifiable physics in
the governing equations. In Section 6.3 we demonstrate the payoffs of adopting such
a physics-based approach.

2.4 Accidental Fires and Explosions

In 1997 the University of Utah created an alliance with the U.S. Department of En-
ergy (DOE) Accelerated Strategic Computing Initiative (ASCI) to form the Center
for the Simulation of Accidental Fires and Explosions (C-SAFE) [55]. C-SAFE fo-
cuses on providing state-of-the-art, science-based tools for the numerical simulation
of accidental fires and explosions, especially within the context of handling and stor-
ing highly flammable materials. The primary objective of C-SAFE is to provide a

8 Lois Curfman McInnes et al.

software system in which fundamental chemistry and engineering physics are fully
coupled with nonlinear solvers, optimization, computational steering, visualization,
and experimental data verification, thereby integrating expertise from a wide variety
of disciplines. Simulations using this system will help to better evaluate the risks
and safety issues associated with fires and explosions in accidents involving both
hydrocarbon and energetic materials. A typical C-SAFE problem is shown in Fig-
ure 5. Section 6.4 discusses the use of component concepts in this application and
demonstrates scalable performance on a variety of parallel architectures.

Fig. 5. A typical C-SAFE problem involving
hydrocarbon fires and explosions of energetic
materials. This simulation involves fluid dy-
namics, structural mechanics, and chemical
reactions in both the flame and the explosive.
Accurate simulations of these events can lead
to a better understanding of high-energy ex-
plosives, can help evaluate the design of ship-
ping and storage containers for these ma-
terials, and can help officials determine a
response to various accident scenarios. The
fire image is courtesy of Schonbucher Insti-
tut for Technische Chemie I der Universitat
Stuttgart, and the images of the container and
explosion are courtesy of Eric Eddings of the
University of Utah.

3 High-Performance Components

High-performance components offer a means to deal with the ever-increasing com-
plexity of scientific software, including the four applications introduced in Section 2.
We first introduce general component concepts, discuss the Common Component
Architecture (CCA), and then introduce two simple PDE-based examples to help
illustrate CCA principles and components.

3.1 Component-Based Software Engineering

In addition to the advantages of component-based software engineering (CBSE; see,
e.g., [121]) discussed in Section 1, component-based approaches offer additional
benefits, including the following:
� Plug-and-play assembly improves productivity, especially when a significant

number of components can be used without customization, and simplifies the
evolution of applications to meet new requirements or address new problems.

Parallel PDE-Based Simulations Using the CCA 9

� Clear interfaces and boundaries around components simplify the composition of
multiple componentized libraries in ways that may be difficult or impossible with
software libraries in their traditional forms. This approach also helps researchers
to focus on the particular aspects of the problem corresponding to their interests
and expertise.� Components enable adaptation of applications in ways that traditional design
cannot. For example, interface standards facilitate swapping of components to
modify behavior or performance; such changes can even be made automatically
without user intervention [96].

As implied above and in Section 1, CBSE can be thought of, in many respects,
as an extension and refinement of the use of software libraries—a popular and ef-
fective approach in modern scientific computing. Components are also related to
“domain-specific computational frameworks” or “application frameworks,” which
have become popular in recent years (e.g., Cactus [6], ESMF [67], and PRISM [53]).
Typically, such environments provide deep computational support for applications
in a given domain, and applications are constructed at a relatively high level. Many
application frameworks even have a componentlike structure at the high level, allow-
ing arbitrary code to be plugged in to the framework. Application frameworks are
more constrained than general component environments because the ability to reuse
components across scientific domains is quite limited, and the framework tends to
embody assumptions about the workflow of the problem domain. General compo-
nent models do not impose such constraints or assumptions and provide broader op-
portunities for reuse. Domain-specific frameworks can be constructed within general
component environments by casting the domain-specific infrastructure and workflow
as components.

A number of component models have attained widespread use in mainstream
computing, especially Enterprise JavaBeans [44,112], Microsoft’s COM/DCOM [26,
88, 89], and the Object Management Group’s CORBA and the CORBA Component
Model [97]. Despite its advantages, however, CBSE has found only limited adop-
tion in the scientific computing community to date [64, 84, 102]. Unfortunately, the
commodity component models tend to emphasize distributed computing while more
or less ignoring parallel computing, impose significant performance overheads, or
require significant changes to existing code to enable it to operate within the compo-
nent environment. Additional concerns with many component models include sup-
port for programming languages important to scientific computing, such as Fortran;
support for data types, such as complex numbers and arrays; and operating sys-
tem support. The Common Component Architecture has been developed in direct
response to the need for a component environment targeted to the needs of high-
performance scientific computing.

3.2 The Common Component Architecture

The Common Component Architecture [28] is the core of an extensive research and
development program focused on understanding how best to utilize and implement

10 Lois Curfman McInnes et al.

component-based software engineering practices in the high-performance scientific
computing area, and on developing the specifications and tools that will lead to a
broad spectrum of CCA-based scientific applications. A comprehensive description
of the CCA, including more detailed presentations of many aspects of the environ-
ment is available [21]; here we present a brief overview of the CCA environment,
focusing on the aspects most relevant to parallel PDE-based simulations.

The specification of the Common Component Architecture [29] defines the
rights, responsibilities, and relationships among the various elements of the model.
Briefly, the elements of the CCA model are as follows:

� Components are units of software functionality that can be composed together
to form applications. Components encapsulate much of the complexity of the
software inside a black box and expose only well-defined interfaces.� Ports are the abstract interfaces through which components interact. Specifically,
CCA ports provide procedural interfaces that can be thought of as a class or an
interface in object-oriented languages, or a collection of subroutines, or a module
in a language such as Fortran 90. Components may provide ports, meaning that
they implement the functionality expressed in a port (called provides ports), or
they may use ports, meaning that they make calls on a port provided by another
component (called uses ports). The notion of CCA ports is less restrictive than
hardware ports: ports are not assumed to be persistent, e.g., available throughout
an application’s lifetime, and each port can have different access attributes, such
as the number of simultaneous connections.� Frameworks manage CCA components as they are assembled into applications
and executed. The framework is responsible for connecting uses and provides
ports without exposing the components’ implementation details. The framework
also provides a small set of standard services that are available to all components.

Several frameworks that implement the CCA specification and support various
computing environments have been developed. Ccaffeine [3] and SCIRun2 [138],
used by the applications in this chapter, focus on high-performance parallel com-
puting, while XCAT [52,61] primarily supports distributed computing applications;
several other frameworks are being used as research tools.

The importance of efficient and scalable performance in scientific computing is
reflected in both the design of the CCA specification and the features of the various
framework implementations. The CCA’s uses/provides design pattern allows compo-
nents in the same process address space to be invoked directly, without intervention
by the framework, and with data passed by reference if desired (also referred to as
“direct connect,” “in-process,” or “co-located” components). In most CCA frame-
works, this approach makes local method calls between components equivalent to
C++ virtual function calls, an overhead of roughly 50 ns on a 500 MHz Pentium
system (compared to 17 ns for a subroutine call in a non-object-oriented language
such as C or Fortran) [20].

The CCA approach to parallelism. For parallel computing, the CCA has cho-
sen not to specify a particular parallel programming model but rather to allow frame-
work and application developers to use the programming models they prefer. This

Parallel PDE-Based Simulations Using the CCA 11

Fig. 6. A schematic representation of
the CCA parallel programming environ-
ment in the single component/multiple data
(SCMD) paradigm. Parallel processes, la-
beled P0,. . . ,P3, are loaded with the same
set of three components. Components in the
same process (vertical dashed box) interact
using standard CCA port-based mechanisms,
while parallel components of the same type
(horizontal dotted box) interact using their
preferred parallel programming model.

P0 P1 P2 P3

approach has several advantages, the most significant of which is that it allows com-
ponent developers to use the model that best suits their needs, greatly facilitating
the incorporation of existing parallel software into the CCA environment. Figure 6
shows schematically a typical configuration for a component-based parallel appli-
cation in the Ccaffeine framework. For a single-program multiple-data (SPMD) ap-
plication, each parallel process would be loaded with the same set of components,
with their ports connected in the same way. Interactions within a given parallel pro-
cess occur through normal CCA mechanisms, getting and releasing ports on other
components and invoking methods on them. These would generally use the local
direct connect approach mentioned above, to minimize the CCA-related overhead.
Interactions within the parallel cohort of a given component are free to use the par-
allel programming model they prefer, for example MPI [91], PVM [48], or Global
Arrays [94, 98]. Different sets of components may even use different programming
models, an approach that facilitates the assembly of applications from components
derived from software developed for different programming models. This approach
imposes no CCA-specific overhead on the application’s parallel performance. Such
mixing of programming models can occur for components that interact at relatively
coarse grained levels with loose coupling (for example, two parts of a multi-model
physics application, such as the climate models discussed in Section 6.2). In contrast,
sets of relatively fine grain and tightly coupled components (for example, the mesh
and discretization components shown in Figure 7) must employ compatible paral-
lel programming models. Multiple-program multiple-data (MPMD) applications are
also supported through a straightforward generalization of the SPMD model. It is
also possible for a particular CCA framework implementation to provide its own
parallel programming model, as is the case with the Uintah framework discussed in
Section 6.4.

Language interoperability. A feature of many component models, including
the CCA, is that components may be composed together to form applications
regardless of the programming language in which they have been implemented.
The CCA provides this capability through the Scientific Interface Definition Lan-
guage (SIDL) [38], which component developers can employ to express compo-
nent interfaces. SIDL works in conjunction with the Babel language interoperabil-

12 Lois Curfman McInnes et al.

ity tool [38, 74], which currently supports C, C++, Fortran 77, Fortran 90/95, and
Python, with work under way on Java. SIDL files are processed by the Babel com-
piler, which generates the glue code necessary to enable the caller and callee to be
in any supported language. The generated glue code handles the translation of argu-
ments and method calls between languages. Babel also provides an object-oriented
(OO) model, which can be used even in non-OO languages such as C and Fortran.
On the other hand, neither Babel nor the CCA requires that interfaces be strongly
object-oriented; such design decisions are left to the component and interface de-
signers.

The developers of Babel are also sensitive to concerns about performance. Where
Babel must translate arguments for method calls (because of differing representations
in the underlying languages), there will clearly be some performance penalty. Since
most numerical types do not require translation, however, in many cases Babel can
provide language interoperability with no additional performance cost [20]. In gen-
eral, the best strategy is for designers and developers to be aware of translation costs,
and take them into account when designing interfaces, so that wherever possible
enough work is done within the methods so that the translation costs are amortized;
see Section 4.8 for performance overhead studies.

Incorporating components. The CCA employs a minimalist design philosophy
to simplify the task of incorporating existing software into the CCA environment.
Generally, as discussed in Section 3.3, one needs to add to an existing software
module just a single method that informs the framework which ports the compo-
nent will provide for use by other components and which ports it expects to use from
others. Within a component, calls to ports on other components may have slightly
different syntax, and calls must be inserted to obtain and release the handle for the
port. Experience has shown that componentization of existing software in the CCA
environment is straightforward when starting from well-organized code [5, 79, 95].
Moreover, the componentization can be done incrementally, starting with a coarse-
grained decomposition (possibly even an entire simulation, if the goal is coupled
simulations) and successively refining the decomposition when opportunities arise
to replace functionality with a better-performing component.

Common interfaces. Interfaces are clearly a key element of the CCA and of the
general concept of component-based software engineering; they are central to the in-
teroperability and reuse of components. We note that except for a very small number
of interfaces in the CCA specification, typically associated with framework services,
the CCA does not dictate “standard” interfaces—application and component devel-
opers are free to define and use whatever interfaces work best for their purposes.
However, we do strongly encourage groups of domain experts to work together to
develop interfaces that can be used across a variety of components and applications.
Numerous such efforts are under way, including mesh management, linear algebra,
and parallel data redistribution, all of which are related to the applications described
in this chapter and are discussed in Section 4. Anyone interested in these efforts, or
in launching other standardization efforts, is encouraged to contact the authors.

Parallel PDE-Based Simulations Using the CCA 13

3.3 Simple PDE Examples

We next introduce two simple PDE examples to help illustrate CCA principles and
components. While we have deliberately chosen these examples to be relatively
simple and thus straightforward to explain, they incorporate numerical kernels and
phases of solution that commonly arise in the more complicated scientific applica-
tions that motivate our work, as introduced in Section 2.

Steady-State PDE Example

The first example is Laplace’s equation on a two-dimensional rectangular domain:� � �"!$#&%('�)+* � %,#.-0/ � %21435%,'6-7/ � %81435%
with

�9! � %:';)<* �
,
�9!=1�%:';)>*

sin
! �@? ';)

,
and ACBA D

!E#&% �)F* A BA D
!$#&%21)G* �

. This system can be discretized by using a number
of different methods, including finite difference, finite element, and finite volume
techniques on either a structured or an unstructured mesh. This example has char-
acteristics of the large, sparse linear systems that are at the heart of many scientific
simulations, yet it is sufficiently compact to enable the demonstration of CCA con-
cepts and code.

The composition of this CCA application is shown by a component wiring dia-
gram in the upper portion of Figure 7; the graphical interface of the Ccaffeine [3]

Driver for Uxx=0

Go

UnstructuredMesh

Mesh

Discretization

Disc Mesh

LinearSolver

Solve

Disc

Solve

Solve Uxx = 0

Driver for Ut = Uxx

Integrator

Integrate

Visualization

MxN

MxNMesh

Go

Integrate

UnstructuredMeshDiscretization

Disc Mesh

LinearSolver

Go

Viz

Viz

Disc

Mesh

Solve Solve

Mesh

MxNSolve Ut = Uxx

and visualize

Component A

Uses Port 2Provides Port 1

Legend

Connection between
uses and provides ports

Component B

Provides Port 2

Fig. 7. Two component wiring diagrams for (top) a steady-state PDE example and (bottom)
a time-dependent PDE example demonstrate the reuse of components for mesh management,
discretization, and linear solvers in two different applications.

14 Lois Curfman McInnes et al.

framework enables similar displays of component interactions. This example em-
ploys components (as represented by large gray boxes) for unstructured mesh man-
agement, discretization, and linear solution, which are further discussed in Section 4,
as well as an application-specific driver component, which is discussed below. The
lines in the diagram between components represent connections between uses and
provides ports, which are denoted by rectangular boxes that are white and check-
ered, respectively. For example, the discretization component’s “Mesh” uses port is
connected to the unstructured mesh component’s “Mesh” provides port, so that the
discretization component can invoke the mesh interface methods that the mesh com-
ponent has implemented. The special GoPort (named “Go” in this application driver)
starts the execution of the application.

The application scientist’s perspective. The application-specific driver com-
ponent plays the role of a user-defined main program in traditional library-based
applications. CCA frameworks do not require that an application contain a definition
of a main subroutine. In fact, in many cases, main is not defined by the user; in-
stead, a definition in the framework is used. In that case, a driver component partially
fulfills the role of coordinating some of the application’s components; the actual in-
stantiation and port connections can be part of the driver as well, or these tasks can be
accomplished via a user-defined script or through a graphical user interface. A CCA
framework can support multiple levels of user control over component instantiation
and connection; here we present only one of the higher levels, where the user takes
advantage of a framework-supplied main program, as well as framework-specific
concise mechanisms for application composition. In this example, the application
could be composed by using a graphical user interface, such as that provided with
the Ccaffeine [3] framework, by selecting and dragging component classes to instan-
tiate them, and then clicking on pairs of corresponding ports to establish connections.
Alternatively, the application could be composed with a user-defined script.

In addition to writing a driver component, typical application scientists would
also write custom components for the other parts of the simulation that are of
direct interest to their research, for example the discretization of a PDE model
(see Section 6.3 for a discussion of the approach used by combustion researchers).
These application-specific components can then be used in conjunction with external
component-based libraries for other facets of the simulation, for example, unstruc-
tured mesh management (see Section 4.1) and linear solvers (see Section 4.4). As
discussed in detail in Section 4.1, if multiple component implementations of a given
functionality adhere to common port specifications, then different implementations,
which have been independently developed by different groups, can be seamlessly
substituted at runtime to facilitate experimentation with a variety of algorithms and
data structures.

A closer look at the application-specific driver component. Figure 8 shows
the SIDL definition of the driver component for the solution of the steady-state
PDE example in Figure 7. As discussed in Section 3.2, the use of SIDL for the
component interface enables the component to interact easily with other compo-
nents that may be written in a variety of programming languages. The Driver
SIDL class must implement the setServices and go methods, which are part of

Parallel PDE-Based Simulations Using the CCA 15

package laplace version 1.0 {
class Driver implements gov.cca.Component,

gov.cca.ports.GoPort
{

// The only method required to be a CCA component.
void setServices(in gov.cca.Services services);
// The GoPort method that returns 0 if successful.
int go();

}
}

Fig. 8. SIDL definition of the driver component for the steady-state PDE example.

the gov.cca.Component and gov.cca.ports.GoPort interfaces, respec-
tively [29]. For this example, we used Babel to generate a C++ implementation
skeleton, to which we then added the application-specific implementation details,
portions of which are discussed next.

Figure 9 shows the implementation of the setServicesmethod, which is gen-
erally used by components to save a reference to the framework Services object
and to register provides and uses ports with the framework. The frameworkSer-
vices user-defined data member in the Driver impl class stores the reference to
the services object, which can be used subsequently to obtain and release ports from
the framework and for other services. To provide the “Go” port, the driver compo-
nent’s self data member (a Babel-generated reference similar to the this pointer
in C++) is first cast as a gov::cca::Port in the assignment of self to port;
then the addProvidesPort services method is used to register the provides port
of type gov.cca.ports.GoPort with the framework, giving it the name “Go”.
A gov.cca.TypeMap object, tm, is created and passed to each call that registers
provides and uses ports; in larger applications, these name-value-type dictionaries
can be used for storing problem and other application-specific parameters.

void laplace::Driver_impl::setServices (
/*in*/ ::gov::cca::Services services)

throw (::gov::cca::CCAException)
{

// frameworkServices is a programmer-defined private data member of
// the Driver_impl class, declared as
// ::gov::cca::Services frameworkServices
// in the Babel-generated laplace_Driver_impl.hh file
frameworkServices = services;

// Provide a Go port; the following statement performs an implicit cast
gov::cca::Port port = self;
gov::cca::TypeMap tm = frameworkServices.createTypeMap();
frameworkServices.addProvidesPort(port, "Go", "gov.cca.ports.GoPort",tm);

// Use Discretization and Solver ports
frameworkServices.registerUsesPort("Disc", "disc.Discretization",tm);
frameworkServices.registerUsesPort("Solver", "solvers.LinearSolver",tm);

}

Fig. 9. Laplace application driver code fragment showing the C++ implementation of the
setServices method of the gov.cca.Component interface.

16 Lois Curfman McInnes et al.

Figure 10 shows an abbreviated version of the gomethod implementation for the
simple steady-state PDE example. First, we obtain a reference to the discretization
port “Disc” from the framework services object, frameworkServices. Note that
in Babel-generated C++ code, the casting of the gov::cca::Port object returned
by getPort to type disc::Discretization is performed automatically. The
discretization component uses finite elements to assemble the linear system in the
implementation of the createFESystemmethod, which includes information ex-
change with the unstructured mesh component through the “Mesh” port. The linear
system is then solved by invoking the apply method on the linear solver compo-
nent. Finally, all ports obtained in the go method are released via the release-
Port framework services method.

The linear algebra interfaces in this example are based on the TOPS solver inter-
faces [114] (also see Section 4.4). The matrix and vector objects in this example are
not components themselves, but are created as regular objects by the driver compo-
nent and then modified and used in the mesh, discretization, and solver components.

int32_t laplace::Driver_impl::go() throw () {

disc::Discretization discPort;
solvers::Solver linearSolverPort;
try {

// Get the discretization port.
discPort = frameworkServices.getPort("Disc");

// The layout object of type solvers::Layout_Rn is a data member
// of the Driver_impl class describing how vector and matrix
// data is laid out across processors; it also provides a factory
// interface for creating parallel vectors and matrices.

// Create the matrix, A, and right-hand-side vector, b
solvers::Vector_Rn b = layout.createGlobalVectors(1)[0];
solvers::Matrix_Rn A = layout.createOperator(layout);

// Assemble A and b to define the linear system, Ax=b
discPort.createFESystem(A, b);

// Get the solver port
linearSolverPort = frameworkServices.getPort("Solver");

// Create the solution vector, x
solvers::Vector_Rn x = layout.createGlobalVectors(1)[0];

// Initialize and solve the linear system
linearSolverPort.setOperator(A);
linearSolverPort.apply(b, x);

// Release ports
frameworkServices.releasePort("Disc");
frameworkServices.releasePort("Solver");
return 0;

} catch (gov::cca::CCAException& e) { return -1; }
}

Fig. 10. Laplace application driver code fragment showing the C++ implementation of the
go method from the gov.cca.ports.GoPort interface. Exceptions are converted to the
function return code specified in Figure 8 with the try/catch mechanism.

Parallel PDE-Based Simulations Using the CCA 17

While such linear algebra objects could be implemented as components themselves,
we chose to use a slightly more lightweight approach (avoiding one layer of abstrac-
tion) because they have relatively fine-grain interfaces, e.g., setting individual vector
and matrix elements. In contrast, the solver component, for example, provides a port
whose methods perform enough computation to make the overhead of port-based
method invocation negligible (see, e.g., [95]).

Time-Dependent PDE Example

The second PDE that we consider is the heat equation, given by ACBA2H
* � � �9!E#"%:'I%:J:)4%

#K-L/ � %8183M%N'0-O/ � %81435%
with

�9! � %('I%:J:)P* �
,
�9!:1�%:'I%(J:)Q* �� sin

! �@? ';)
cos

!$J(R �)
,

ACBA2D
!E#"% � %:J:)6* ACBA2D

!E#"%81�%:J:)S* �
. The initial condition is

�9!$#&%:'I% �)6*
sin

! �� ? #I)
sin

! �@? ';)
. As shown by the component wiring diagram in the lower portion of Fig-

ure 7, this application reuses the unstructured mesh, discretization, and linear alge-
bra components employed by the steady-state PDE example and introduces a time
integration component as well as components for parallel data redistribution and vi-
sualization. These reusable scientific components are discussed in further detail in
Section 4.

Another component-based solution of the heat equation, but on a structured
mesh, can be found at [109]. This approach employs different discretization and
mesh components from those discussed above but reuses the same integrator. This
CCA example is freely downloadable from [109], including scripts for running the
code.

More detailed CCA tutorial materials, including additional sample component
codes as well as the Ccaffeine framework and Babel language interoperability
tool, are available via http://www.cca-forum.org/tutorials. We rec-
ommend this site as a starting point for individuals who are considering the use of
CCA tools and components.

These examples illustrate one of the ways that components can participate in a
scientific application. In larger applications, such as those introduced in Section 2,
different components are typically developed by different teams, often at different
sites and times. Some of these components are thin wrappers over existing numeri-
cal libraries, while others are implemented from scratch to perform some application-
specific computation, such as the discretization components in Figure 7. The CCA
component model, like other component models, provides a specification and tools
that facilitate the development of complex, multi-project, multi-institutional soft-
ware. In addition to helping manage software development complexity, the simple
port abstraction (1) enables the definition of explicit interaction points between parts
of an application; (2) facilitates the use of thoroughly tuned external components im-
plemented by experts; and (3) allows individual components to be developed, main-
tained, and extended independently, with minimal impact on the remainder of the
application.

18 Lois Curfman McInnes et al.

4 Reusable Scientific Components

Various scientific simulations often have similar mathematics and physics, but cur-
rently most are written in a stovepipe fashion by a small group of programmers
with minimal code reuse. As demonstrated in part by Figure 7, a key advantage
of component-oriented design is software reuse. Components affect reuse in two
ways: (1) because an exported port interface is simpler to use than the underlying
software, a component should be easier to import into a simulation than to rewrite
from scratch; and (2) because common interfaces for particular functionalities can be
employed by many component implementations, different implementations can be
easily substituted for one another to enhance performance for a target machine, data
layout, or parameter set. In Sections 4.1 through 4.7 we detail these two facets of
reusability in terms of several current efforts to develop component implementations
and domain-specific groups devoted to defining common interfaces for various nu-
merical and parallel computing capabilities. In Section 4.8 we demonstrate that the
overhead associated with CCA components is negligible when appropriate levels of
abstraction are employed.

Component implementations can directly include the code for core numerical
and parallel computing capabilities, and indeed new projects that start from scratch
typically do so. However, many of the component implementations discussed in this
section employ the alternative approach of providing thin wrappers layered on top of
existing libraries, thereby offering optional new interfaces that make these indepen-
dently developed packages easier to use in combination with one another in diverse
projects. Section 5 discusses some of the issues that we have found useful to con-
sider when building these component interfaces. The web site http://www.cca-
forum.org has current information on the availability of these components as well
as others.

4.1 Unstructured Mesh Management

Unstructured meshes are employed in many PDE-based models, including the ac-
celerator application introduced in Section 2.1 and the simple examples discussed in
Section 3.3. The Terascale Simulation Tools and Technologies (TSTT) Center [124],
established in 2001, is developing common interface abstractions for managing
mesh, geometry, and field data for the numerical solution of PDEs. As shown in Fig-
ure 11, the common TSTT mesh interface facilitates experimentation with different
mesh management infrastructures by alleviating the need for scientists to write sep-
arate code to manage the interactions between an application and different meshing
tools.

TSTT Mesh Interfaces

The TSTT interfaces include mesh data, which provides the geometric and topolog-
ical information associated with the discrete representation of a computational do-
main; geometric data, which provides a high-level description of the domain bound-
aries, for example, a CAD model; and field data, which provides the time-dependent

Parallel PDE-Based Simulations Using the CCA 19

NWGrid

Overture

MOAB

AOMD

Application NWGrid

Overture

MOAB

AOMD

M
e
s
h

Others…
TSTT
mesh

interface

Application

Others…

mesh libraries

Fig. 11. (Left): The current interface situation connecting an application to T mesh man-
agement systems through T different interfaces. Because developing these connections is
often labor-intensive for application scientists, experimentation with various mesh systems is
severely inhibited. (Right): The desired interface situation, in which many mesh systems that
provide similar functionality are compliant with a single common interface. Scientists can
more easily explore the use of different systems without needing to commit to a particular so-
lution strategy that could prematurely lock their application into a specific mesh management
system.

physics variables associated with application solutions. The TSTT data model covers
a broad spectrum of mesh types and functionalities, ranging from a nonoverlapping,
connected set of entities (e.g., a finite element mesh) to a collection of such meshes
that may or may not overlap to cover the computational domain. To date, TSTT ef-
forts have focused on the development of mesh query and modification interfaces at
varying levels of granularity. The basic building blocks for the TSTT interfaces are
mesh entities, for example, vertices, edges, faces, and regions, and entity sets, which
are arbitrary groupings of mesh entities that can be related hierarchically or by sub-
sets. Functions have been defined that allow the user to access mesh entities using
arrays or iterators, attach user-defined data through the use of tags, and manipulate
entity sets using Boolean set operations.

The TSTT mesh interface is divided into several ports. The core interface pro-
vides basic functionality for loading and saving the mesh, obtaining global infor-
mation such as the number of entities of a given type and topology, and accessing
vertex coordinate information and adjacency information using both primitive arrays
and opaque entity handle arrays. Additional ports are defined that provide single
entity iterators, workset iterators, and mesh modification functionality. Figure 12
shows an example C-code client that uses the TSTT interface. The mesh variable
represents a pointer to an object of type TSTT mesh, which can be either an object
created via a call to a Babel-generated constructor or a uses port provided by a mesh
component instantiated in a CCA framework (for example, see Figure 7). The mesh
data is loaded from a file whose name is specified via a string. Because many of the
TSTT functions work on both the full mesh and on subsets of the mesh, the user
must first obtain the root entity set using getRootSet to access the vertex and face
information. In this example, the user asks for the handles associated with the trian-
gular elements with the getEntities call. Once the triangle handles have been

20 Lois Curfman McInnes et al.

obtained, the user can access the adjacent vertices and their coordinate information
either one handle at a time as shown in the example, or using a single function call
that returns the adjacency information for all of the handles simultaneously.

#include "TSTT.h"

/* ... */
void *root_entity_set;
void **tri_handles, **adj_vtx_handles;
int i, num_tri, num_vtx, coords_size;
double *coords;

/* Load the data into the previously created mesh object */
TSTT_mesh_load(mesh,‘‘mesh.file’’);

/* Obtain a handle to the root entity set */
root_entity_set = TSTT_mesh_getRootSet(mesh);

/* Obtain handles to the triangular elements in the mesh */
TSTT_mesh_getEntities(mesh,root_entity_set, TSTT_EntityType_FACE,

TSTT_EntityTopology_TRIANGLE, &tri_handles,
&num_tri);

/* For each triangle, obtain the corner vertices and their
coordinates */

for (i=0;i<num_tri;i++) {
TSTT_mesh_getEntAdj(mesh,tri_handle[i],TSTT_EntityType_VERTEX,

&adj_vtx_handles,&num_vtx);
TSTT_mesh_getVtxArrCoords(mesh,adj_vtx_handles,num_vtx,

TSTT_StorageOrder_BLOCKED,&coords,&coords_size);
}

/* ... */

Fig. 12. An example code fragment showing the use of the TSTT interface in C to load a mesh
and retrieve the triangular faces and their corner vertex coordinates.

More information on the mesh interfaces and the TSTT Center can be found
in [124]. Preliminary results of a performance study of the use of a subset of the
mesh interfaces can be found in Section 4.8.

TSTT Mesh Component Implementations

Implementations of the TSTT mesh interfaces are under way at several institutions.
The ports provided by these mesh components include the “Mesh” port, which gives
basic access to mesh entities through primitive arrays and opaque entity handles. In
addition to global arrays, entities can be accessed individually through iterators in
the “Entity” port or in groups of a user-defined size in the “Arr” port. These com-
ponents also support the the Tag interface, which is a generic capability that allows
the user to add, set, remove, and change tag information associated with the mesh or
individual entities; the Set interface, which allows the creation, deletion, and def-
inition of relations among entity sets; and the Modify interface, which allows the
creation and deletion of mesh entities as well as the modification of vertex coordinate
locations.

Parallel PDE-Based Simulations Using the CCA 21

For the performance studies presented in Section 4.8, we use a simple implemen-
tation of the interface that supports two-dimensional simplicial meshes. The mesh
software is written in C and uses linked lists to store the element and vertex data.
This component has been used primarily as a vehicle for demonstrating the benefits
of the component approach to mesh management and for evaluating the performance
costs associated therein [95].

4.2 Block-Structured Adaptive Mesh Refinement

Block-structured adaptive mesh refinement (SAMR) is a domain discretization tech-
nique that seeks to concentrate resolution where required, while leaving the bulk
of the domain sparsely meshed. Regions requiring resolution are identified, collated
into rectangular patches (or boxes), and then resolved by a finer grid. Note that the
fine grid is not embedded in the coarser one; rather, distinct meshes of different res-
olutions are maintained for the same region in space. Data, in each of these boxes,
is often stored as multidimensional Fortran 77 arrays in a blocked format; that is,
the same variable (e.g., temperature) for all the grid points are stored contiguously,
followed by the next variable. This approach allows operations involving a spatial
operator (e.g., interpolations, ghost cell updates across processors) to be written for
one variable and reused for others while exploiting cache locality. This approach also
allows scientific operations on these boxes to be performed by using legacy codes.
The collection of boxes that constitute the discretized domain on a CPU are usually
managed by using an object-oriented approach.

SAMR is used by GraceComponent [79], a CCA component based on the
GrACE library [100], as well as by Chombo [35], a block-structured mesh infras-
tructure with similar functionality developed by the APDEC [34] group. While each
has a very different object-oriented approach (and interface) to managing the col-
lection of boxes, individual boxes are represented in a very similar manner, and the
data is stored identically. This fundamental similarity enables a simple, if slightly
cumbersome, approach to interoperability.

Briefly, the data pointer of each box is cached in a separate component, along
with a small amount of metadata (size of array, position of the box in space, etc.),
and keyed to an opaque handle (an integer, in practice). These handles can be ex-
changed among components, and the entire collection of patches can be recreated
by retrieving them from the cache. The interoperability interface is easy to under-
stand and implement; however, the frequent remaking of the box container imposes
some overhead, though not excessively so, since array data is not copied. Because
the main purpose of this AMR interoperability is to exploit specialized solvers and
input/output routines in various packages, metadata overhead is not expected to be
significant. Further, this approach is not a preferred means of interoperability on an
individual-box basis unless the box is large or the operation very intensive. A pro-
totype implementation of this exchange is being used to exploit Chombo’s elliptic
solvers in the CFRFS combustion application introduced in Section 2.3. Section 6.3
includes further information about the use of SAMR components in this application.

22 Lois Curfman McInnes et al.

4.3 Parallel Data Management

The effective management of parallel data is a key facet of many PDE-based simu-
lations. The GlobalArray component, based on the Global Array library [94,98],
includes a set of capabilities for managing distributed dense multidimensional arrays
that can be used to represent multidimensional meshes. In addition to a rich set of op-
erations on arrays, the user can create ghost cells with a specified width around each
of the mesh sections assigned to a processor. Once an update operation is complete,
the local data on each processor contains the locally held visible data plus data from
the neighboring elements of the global array, which has been used to fill in the ghost
cells. Two types of update operations are provided to facilitate data transfer from
neighboring processors to the ghost regions: a collective update of all ghost cells
by assuming periodic, or wraparound, boundary conditions and another nonblocking
and noncollective operation for updating ghost cells along the specified dimension
and direction with the option to include or skip corner ghost cell updates. The first
of these two operations was optimized to avoid redundant communication involving
corner points, whereas the second was designed to enable overlapping communica-
tion involved in updating ghost cells with computations [99].

Unstructured meshes are typically stored in a compressed sparse matrix form, in
which the arrays that represent the data structures are one-dimensional. Computa-
tions on such unstructured meshes often lead to irregular data access and commu-
nication patterns. The GlobalArray component provides a set of operations that
can be used to implement and manage distributed sparse arrays (see [24, 30]). Mod-
eled after similar functions in the CMSSL library of the Thinking Machines CM-2/5,
these operations have been used to implement the NWPhys/NWGrid [123] adaptive
mesh refinement code. Additional GlobalArray numerical capabilities have been
employed with the optimization solvers discussed in Section 4.6 [13, 65].

4.4 Linear Algebra

High-performance linear algebra operations are key computational kernels in many
PDE-based applications. For example, vector and matrix manipulations, along with
linear solvers, are needed in each of the motivating applications introduced in Sec-
tions 2 and 3.3, as well as in the integration and optimization components discussed
in Sections 4.5 and 4.6, respectively.

Linear Algebra Interfaces

Linear algebra has been an area of active interface development in recent years.
Abstract interfaces were defined in the process of implementing numerical linear
algebra libraries, such as the Hilbert Class Library [51], the Template Numerical
Toolkit [106], the Matrix Template Library [85], PLAPACK [7], uBLAS (part of
the BOOST collection) [25], BLITZ++ [129], and the Linear System Analyzer [27].
Many of these packages were inspired by or evolved from legacy linear algebra soft-
ware, such as BLAS and LAPACK. This approach allowed the flexibility of object-
oriented design to be combined with the high performance of optimized library

Parallel PDE-Based Simulations Using the CCA 23

codes. In some cases, such as BLITZ++, the goal is to extract high performance
even if computationally intensive operations are implemented by using high-level
language features; in that case, the library assumes a burden similar to that of a com-
piler in order to ensure that array operations are performed in a way that exploits
temporal and spatial data locality.

Starting in 1997, the Equation Solvers Interface (ESI) working group [31] fo-
cused on developing interfaces targeted at the needs of large-scale DOE ASCI pro-
gram computations, but with the goal of more general use and acceptance. The ESI
includes interfaces for linear equation solvers, as well as support for linear algebra
entities such as index sets, vectors, and matrices.

More recently, the Terascale Optimal PDE Simulation (TOPS) Center [66],
whose mission is to develop a set of compatible toolkits of open-source, optimal
complexity solvers for nonlinear partial differential equations, has produced a pro-
totype set of linear algebra interfaces expressed in SIDL [114]. This language-
independent specification enables a wide variety of new underlying implementations
as well as access to existing libraries. Special care has been taken to separate func-
tionality from the details of accessing the underlying data representation. The result
is a hierarchy of interfaces that can be used in a variety of ways depending on the
needs of particular applications. See section 3.3 for some simple examples and code
using linear algebra components based on the TOPS interfaces.

Linear Algebra Component Implementations

As discussed in detail in [95], an early CCA linear solver port was based on ESI [31]
and was implemented by two components based on Trilinos [56] and PETSc [10,11].
The creation of basic linear algebra objects (e.g., vectors and matrices) was imple-
mented as an abstract factory, with specific factory implementations based on Trili-
nos and PETSc provided as components. The factory and linear solver components
were successfully reused in several unrelated component-based applications. Linear
algebra ports and components based on TOPS [66] interfaces are currently under de-
velopment. One of the most significant advancements since the original simple linear
solver ports and components were developed is the use of SIDL for interface defi-
nition, alleviating implementation language restrictions. By contrast, the ESI-based
ports and components used C++, making the incorporation in non-C or C++ applica-
tions more difficult. The most recent linear solver component implementations, such
as those shown in the examples in Section 3.3, are based on the language-independent
TOPS interfaces [114].

4.5 Integration

Ordinary differential equations (ODEs) are solved routinely when modeling with
PDEs. Often the solution is needed only locally, for example, when integrating stiff
nonlinear chemical reaction rates at a point in space over a short time span. At other
times we need a large parallel ODE solution to a method-of-lines problem.

24 Lois Curfman McInnes et al.

By wrapping the CVODE [33] library, we have created the CVODECompo-
nent [79,115] for the solution of local ODEs in operator-splitting schemes, such as
in the combustion modeling application introduced in Section 2.3. Like the library
it wraps, CVODEComponent can be used to solve ODEs by using variable-order
Adams-Bashforth or backward-difference formula techniques. The library provides
its own linear solvers and requires the application to provide data using a particular
vector representation. The application can provide a sparse, banded, or dense gra-
dient or can request CVODE to construct a finite difference approximation of the
gradient if needed.

For parallel ODE solutions we have refactored the LSODE [58, 107] library to
allow the application to provide abstract linear solvers and vectors. The parallelism
of the ODE is hidden from the integration code by the vector and solver implemen-
tations. The resulting IntegratorLSODE and related components are described
in [5]. These components have been coupled with PETSc-based linear algebra com-
ponents described in Section 4.4 to solve finite element models [95].

4.6 Optimization

The solution to boundary value problems and other PDEs often can be represented
as a function U -WV

such that X ! U)Y*[Z]\�^`_ a�b X !$cd) . In this formulation,
V

is a set
of admissible functions, and Xfe V,gih

is a functional representing the total energy
associated with an element in

V
. This formulation of a PDE is often preferred for

nonlinear PDEs with more than one solution. While each solution satisfies the first-
order optimality conditions of the corresponding minimization problem, the solution
that minimizes the energy functional is often more stable and of greater interest.

The minimization approach also enables inequality constraints to be incorpo-
rated in the model. Obstacle problems, for example, have a free boundary that
can be modeled by using variational inequalities. Efficient algorithms with rigor-
ous proof of convergence can be applied to minimization problems with inequality
constraints [14, 16]. Even PDEs whose corresponding minimization problem is un-
constrained or equality constrained can benefit from optimization solvers [90].

Optimization components [113] based on the TAO library [15] encapsulate the al-
gorithmic details of various solvers. These details include line searches, trust regions,
and quadratic approximations. The components interact with the application model,
which computes the energy function, derivative information, and constraints [65].
The optimization solvers achieve scalable and efficient parallel performance by lever-
aging general-purpose linear solvers and specialized preconditioners available in ex-
ternal components, including the data management components discussed in Sec-
tion 4.3 and the linear algebra components described in Section 4.4 [13, 65, 95].

4.7 Parallel Data Redistribution

As discussed in Section 2, scientific simulations are increasingly composed of mul-
tiple distinct physics models that work together to provide a more accurate overall
system model or to otherwise enhance fidelity by replacing static boundaries with

Parallel PDE-Based Simulations Using the CCA 25

dynamically computed data values from a live companion simulation. Often each of
these models constitutes its own independent code that must be integrated, or cou-
pled, with the other models’ codes to form a unified simulation. This coupling is
usually performed by sharing or exchanging certain common or relevant data fields
among the individual models, for example, heat and moisture fluxes in a coupled
climate simulation. Because most high-performance scientific simulations require
parallel algorithms, the coupling of data fields among these parallel codes raises a
number of challenges. Even for the same basic data field, each distinct model often
applies a unique distributed data decomposition to optimize data access patterns in
its localized portion of a parallel algorithm. Further, each model can use a different
number of parallel processors, requiring complex mappings between disparate par-
allel resource topologies (hence the characterization of this mapping as the “MxN”
problem – transferring data from “M” parallel processors to another set of “N” pro-
cessors, where M and N are not in general equal). These mappings require both
an understanding of the distributed data decompositions for each distinct model, to
construct a “communication schedule” of the elements between the source and des-
tination data fields, as well as special synchronization handling to ensure that data
consistency is maintained in any MxN exchanges.

Worse yet, each model may compute using a different time step or may store data
elements on a unique mesh using wholly different coordinate systems or axes. This
situation necessitates the use of complex spatial and temporal interpolation schemes,
and often the preservation of key energy or flux conservation laws. Such complica-
tions further exacerbate the already complex infrastructure necessary for coupling
disparate data arrays, and require the incorporation of a diverse set of interpolation
schemes that are often chosen as a part of the system’s scientific requirements, or
simply to ensure backwards compatibility with legacy code. Some software pack-
ages capable of addressing these issues exist, notably the Mesh-based parallel Code
Coupling Interface (MpCCI) [1, 2] and the Model Coupling Toolkit (MCT) [71, 73].
The details of interpolation schemes and their inclusion in MxN infrastructure are
beyond the scope of the current work. Yet this important follow-on research will
commence upon satisfactory completion of the fundamental generalized MxN data
exchange technology. In the meantime, such data interpolation must be handled man-
ually and separately by each distinct code or by an intermediary piece of coupling
software.

Parallel Data Redistribution Interfaces

The CCA project is developing generalized interfaces for specifying and controlling
MxN parallel data redistribution operations [22]. These interfaces and their accompa-
nying prototype implementations address synchronization and data movement issues
in parallel component-based model coupling. Initial efforts have focused on inde-
pendently defining the local data allocation and decomposition information within
a given parallel component and then applying these details to automatically gener-
ate efficient mappings, or communication schedules, for executing MxN transfers.
These evolving interfaces are sufficiently flexible and high-level to minimize the in-

26 Lois Curfman McInnes et al.

strumentation cost for legacy codes, and to enable nearly transparent operation by
most of the coupling participants.

Parallel Data Redistribution Component Implementations

A variety of general-purpose prototype MxN parallel data redistribution components
have been developed by using existing technology. Initial prototypes, which were
loosely based on the CUMULVS [49, 69] and PAWS [12, 63] systems, provided a
proof of concept to verify the usefulness of the MxN interface specification and to
assist in evolving this specification toward a stable and flexible standard. The Cu-
mulvsMxN component continues to be extended to cover a wider range of data
objects, including structured and unstructured dense meshes and particle-based de-
compositions. The underlying messaging substrates for MxN data transfers are also
being generalized to improve their applicability to common scientific codes. Addi-
tional MxN component solutions are being developed based on related tools such as
Meta-Chaos [42, 108] and ECho [43, 136].

Special-purpose MxN components [72] for use with climate modeling simula-
tions have been built using the Model Coupling Toolkit (MCT) [71, 73] (see Sec-
tion 6.2). These prototype coupler components provide crucial scientific features
beyond fundamental parallel data transfer and redistribution, including spatial in-
terpolation, time averaging and accumulation of data, merging of data from multiple
components for use in another component, and global spatial integrals for enforcing
conservation laws [22]. Currently MCT is being employed to couple the atmosphere,
ocean, sea-ice, and land components in the Community Climate System Model [54]
and to implement the coupling interface for the Weather Research and Forecasting
Model [132]. Similar coupling capabilities for climate modeling are also being ex-
plored as part of the Earth System Modeling Framework (ESMF) [67] effort, with
specially tailored climate-specific interfaces and capabilities.

4.8 Performance Overhead Studies

Object-oriented programming in general and components in particular adopt a strict
distinction between interfaces and implementations of functionality. The following
subsections demonstrate that the interface-implementation separation results in neg-
ligible overhead when appropriate levels of abstraction are employed.

CCA Components

To quantify the overhead associated with CCA components, we solved an ODE,j
H
*Lkl! j %:J:)

, where
j

is a 4-tuple, implicitly in time using the CVODECompo-
nent integration component introduced in Section 4.5. The numerical scheme dis-
cretizes and linearizes the problem into a system of the form m #0*on

, which is
solved iteratively. m is derived from the Jacobian of the system, p kqR p j , which is
calculated numerically by evaluating

k
repeatedly. Each

k
invocation consists of one

Parallel PDE-Based Simulations Using the CCA 27

r]s�t
evaluation and 40 exponentials and corresponds to the simplest detailed chemi-

cal mechanism described in Section 6.3. A three-component assembly was created
(the Driver, Integrator and F), and the F evaluations were timed. These were
then compared with timings from a non-component version of the code. In order
to reduce instrumentation-induced inaccuracies, the problem was repeated multiple
times and the total time measured. These steps were taken to ensure that the invoca-
tion overhead was exercised repeatedly and the time being measured was significant.
The code for

k
was written in C++ and compiled using g++ -O2 using egcs version

2.91 compilers on a RedHat 6.2 Intel/Linux platform.

1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

Log
10

(No. of repetitions)

T
im

e
(s

ec
)

Component
Non−component

Fig. 13. Timings (in seconds) for component and
non-component versions of an ODE application.
The differences clearly are insignificant. The x-
axis shows the number of times the same problem
was solved to increase the execution time between
instrumentation invocations.

Figure 13 plots the solution time
using the C++ component and the
non-component versions. The differ-
ences are clearly insignificant and
can be attributed to system noise.
For this particular case, the function
invocation overheads were small
compared to the function execution
time. Likewise, negligible overhead
for both C++ and SIDL variants of
optimization components has been
shown [13, 95]. The actual overhead
of the virtual pointer lookup has
been estimated to be of the order of
a few hundred nanoseconds (around
150 ns on a 500 MHz Intel proces-
sor) [20]. Thus, the overhead intro-
duced by componentization is ex-
pected to be insignificant unless the
functions are exceptionally lightweight, such as pointwise data accessor methods.

TSTT Mesh Interfaces

We next evaluate the performance ramifications of using a component model for the
finer-grained activity of accessing core mesh data structures, where we used the sim-
ple mesh management component described in Section 4.1. Since the granularity of
access is a major concern, initial experiments focused on the traversal of mesh en-
tities using work set iterators. These iterators allow the user to access mesh entities
in blocks of a user-defined size, u . That is, for each call to the iterator, u entity
handles are returned in a SIDL array, and it is expected that as u increases, the over-
head associated with the function call will be amortized. For comparison purposes,
experiments were also performed using native data structures to quantify the base
costs.

Figure 14 shows the relative costs of obtaining entity handles from the mesh
using both native data structures and interfaces. In the experiments, six different
mechanisms were used for data access. The native variants consist of timing array

28 Lois Curfman McInnes et al.

Relative Wall Clock Time for Interfaces

75

100

125

150

175

200

225

0 25 50 75 100

Work Set Size

P
e
rc

e
n

ta
g

e
 o

f
N

a
ti

v
e
 I

n
te

rf
a
c
e

Native Interface

SIDL Direct

SIDL Memcpy

SIDL For-loop

Relative Wall Clock Time for Each Variant

0

50

100

150

200

250

1 100
Work Set Size

P
e
rc

e
n

ta
g

e
 o

f
N

a
ti

v
e
 I

n
te

rf
a
c
e

Native Array

Native Linked List

Native Interface

SIDL Direct

SIDL Memcpy

SIDL For-Loop

Fig. 14. Average wall clock time for traversing all mesh elements by work set size relative
to Native Interface. (Left): A comparison of the four TSTT interface approaches for work set
sizes 1 through 100 entities. (Right): A comparison of the six variants for work sets of size 1
and 100 entities only.

(Native Array), linked list (Native Linked List), and language-specific TSTT inter-
face (Native Interface) versions. In order to test the performance of the language
interoperability layer created by SIDL, three variations of managing the conversion
between native and SIDL arrays were developed. The first two, referred to as SIDL
Direct and SIDL Memcpy, take advantage of the fact that the language interoper-
ability layer and native implementation are both written in C. The former allows the
underlying implementation to directly manage the SIDL array contents, while the
latter is able to use the memcpy routine. The general-purpose variant, called SIDL
For-loop, individually copies the pointers from the native into the SIDL array. Babel
0.9 was used to generate the interoperability layer for the underlying mesh imple-
mentation. The results were obtained on a dedicated Linux workstation with a 1.7
GHz Intel Pentium processor and 1 GB RD RAM using three meshes that ranged in
size from 13,000 to 52,000 elements and work set sizes from 1 to 2,000 elements.
The codes were compiled without optimization, and the timing data was measured in
microseconds. Because of the consistency in results across the three different mesh
sizes, the average value of all runs on the meshes is reported for each work set size.

The left-hand side of Figure 14 reports the percentage increase for the SIDL-
based accesses compared to the baseline native interface access for increasing work
set sizes. As expected, the additional function call and array conversion overhead
of the SIDL interoperability layer is most noticeable when accessing entities using
a work set size of 1 and ranges from 50% more expensive than the native interface
for the SIDL Direct to 112% more expensive for the SIDL Memcpy variant. From
work set size 2 on, the SIDL For-loop variant is the worst performing. For all cases,
the SIDL Direct gives the best performance. As the work set size increases to 20
entities and beyond, the SIDL-related overhead decreases to 3.7% more than the
native interface in the direct case and approximately 18.4% more in the for-loop
case.

To gauge the overhead associated with functional interfaces compared to access-
ing the data directly using native data structures, the costs of all six access mecha-

Parallel PDE-Based Simulations Using the CCA 29

nisms are shown on the right-hand side of Figure 14. The results for the interface-
based versions are displayed for work set sizes of 1 and 100 entities. As expected,
the array traversal is the fastest and is 40% faster than traversing a linked list. Go-
ing through the native C interface is about 2.2 and 1.2 times slower than using the
linked lists directly for work set sizes 1 and 100, respectively. For work sets of size
1 and 100, the SIDL Direct method gives the best SIDL performance and is 3.3 and
1.2 times slower, respectively, than using linked lists. For work sets of size 1, the
memcpy SIDL variant is 4.7 times slower (versus 4.5 times slower for the for-loop
version). This position is reversed for work sets of size 100, where the for-loop ver-
sion is 44% slower (versus 29% for the memcpy version).

These experiments demonstrate that the granularity of access is critical in deter-
mining the performance penalty involved in restructuring an application to use an
interface-based implementation. However, the granularity does not need to be very
large. In fact, our experiments show that work sets of size 20 were sufficient to amor-
tize the function call overhead. We also found that the additional overhead associated
with transitioning from a native to language interoperable version of the interfaces
can be negligible for suitable work set sizes.

5 Componentization Strategies

Next we examine strategies for developing software components for parallel PDE-
based applications, including projects that incorporate legacy code as well as com-
pletely new undertakings. These general considerations have been employed when
developing the reusable components discussed in Section 4 as well as throughout the
application case studies presented in Section 6. Useful component designs may be
coarse-grained (handling a large subset of the overall simulation task per component)
or fine-grained. Similarly, an interface (port) between components may be a simple
interface with just a few functions having a few simple arguments or a complex in-
terface having all the functions of a library such as MPI.

The first step in defining components and ports for PDE-based simulations is
considering in detail the granularity and application decomposition of the desired
software. The second step is evaluating the impact on implementers and users of
the chosen component and interface designs. This step may involve implementation
and testing. The third step is iterating the design and implementation steps until a
sufficient subset of the implementers and users is content with the resulting compo-
nents and interfaces. The finest details of CCA component software design [5] and
construction [21] are beyond our scope.

5.1 Granularity

How much functionality is inside each component? What information appears in
public interfaces? In what format does the information appear? The answers to these
questions determine the granularity of any component. We may want fine or coarse
granularity or a combination.

30 Lois Curfman McInnes et al.

Very coarse-grained designs. At the coarsest granularity, an entire PDE simu-
lation running on a parallel machine can be treated as a single component. In most
cases of this scenario, the component simply uses input files and provides output
files. This approach permits the integration of separate programs by applying data
file transformations. The overhead of transferring data using intermediate files may
be reduced by instead transporting data directly from one application to another in
any of several ways, but the essential aspect of copying data from one simulation
stage to the next remains (see Section 4.7). The cost of moving large data sets at
each iteration of an algorithm to and from file systems in large parallel machines can
be prohibitive. Nonetheless, the CCA specification allows components to interact by
file exchange. Software integration through files (see, e.g., Section 6.1) can be a use-
ful starting point for the evolutionary development of a coupled simulation. Many
tools have been built on this style of componentization, but scaling up to very large,
multidomain, multiphysics problems is often inefficient or even impossible.

Finer-grained designs. For the remainder of this section we are concerned with
building an application from component libraries that will result in executing a sin-
gle job. Nearly every PDE-based application has one or more custom drivers that
manage a suite of more general libraries handling different areas of concern, such
as mesh definition, simulation data, numerical algorithms, and auxiliary services,
such as file input and output, message passing, performance profiling, and visualiza-
tion. Building component software for PDEs means teasing apart these many areas
of concern into separate implementations and defining suitable functional interfaces
for exchanging data among these implementations. Once clearly separated, the sub-
stitution and testing of an alternate implementation in any individual area is much
easier.

5.2 Application Decomposition and Interface Design

Making components for a new or existing PDE-based simulation will be straightfor-
ward or difficult depending on how well the code is already decomposed into public
interfaces and private implementations. We have found that the answers to the fol-
lowing technical questions about a PDE software system can aid in creating a good
first approximation to an equivalent component design. Like all good software de-
sign, an iterative implementation and evaluation process is required to arrive at a final
design.
� What are the equations to be solved, the space and time domains in which these

equations apply, and the kinds of boundary and initial conditions that apply at the
edges of these domains?� What are appropriate meshing and spatial discretization techniques and an effi-
cient machine representation of the resulting mesh?� How is data stored for the simulation variables, and how are relationships of the
stored data to various mesh entities (points, edges, faces, cells) represented?� What are appropriate algorithms for solving the equations?

Parallel PDE-Based Simulations Using the CCA 31

� What are appropriate implementations of the algorithms, given the algorithms
and data structures selected? Can these implementations be factored into multiple
independent levels, such as vector and matrix operations, linear solvers, nonlinear
solvers, and time marching solvers?� How can we identify, analyze, and store interesting data among the computed
results?

Usually many mathematical and software design solutions exist for each of these
questions, and of course they are interconnected. Our fundamental goal in component
design for an application involving large-scale or multidomain PDEs is to separate
these areas of concern into various software modules without reducing overall appli-
cation performance. Many packages used for solving PDEs are already reasonably
well decomposed into subsystems with clear (though often rather large) interfaces
that do not impede performance; extending these packages to support component
programming is usually simple unless they rely on global variables being set by the
end user.

The performance requirement directly impacts the interfaces between compo-
nents. Arrays and other large data structures that are operated on by many com-
ponents must be exchanged by passing pointers or other lightweight handles. This
requirement in turn necessitates specific public interface commitments to array and
structure layout, which depend on the type of PDE and the numerical algorithms
being used. CCA componentization allows similar packages to work together, but
it does not provide a magic bullet solution to integrating packages based on fun-
damentally different assumptions and requirements. For example, a mesh and data
component representing SAMR data as three-dimensional dense arrays [77, 79] is
simply inappropriate for use in adaptive finite-element algorithms that call for data
trees. When constructing new components, it is useful for interoperability to de-
sign them to be as general as reasonably possible with respect to details of the data
structures they can accept. For example, we suggest dealing with arrays specified by
strides through memory for each dimension rather than restricting a code to either
row-major or column-major layout.

Some preprocessing or postprocessing components may demand flexibility in
accessing many different kinds of mesh or data subsets. In this situation public inter-
face definitions that require a function call to access data for each individual node or
other mesh entity may be useful. However, as seen in testing the TSTT mesh inter-
faces (Section 4.8), single entity access function overhead slows inner loops, so that
care should be taken when deciding to use such interfaces.

Success is often in the eye of the beholder when choosing a software decom-
position and when naming functions within individual interfaces. Compact, highly
reusable objects, such as vectors and other simple objects in linear algebra, may ap-
pear at first to be tempting to convert into components or ports. Instead, in many
CCA applications, experience has shown that these objects are best handled as
function arguments. Many high-performance, component-based implementations for
PDEs have been reported. Most feature a combination of a mesh definition com-

32 Lois Curfman McInnes et al.

ponent, a data management component, and various numerical algorithm compo-
nents [4, 21, 72, 78, 95, 138].

5.3 Evaluating a Component System Design

Each reusable component provides a set of public interfaces and may also use inter-
faces implemented by other components. Armed with our technical answers about
the PDE software system that we will wrap, refactor, or create from scratch, we must
ask questions about how we expect the components to be used and implemented.
Is some aspect of the design too complex to be useful to the target users? Have we
introduced an interface in such a way that we lose required efficiency or capability?

Component granularity checks. An application is formed by connecting a set
of components and their ports together, and the more components involved in an
application, the more complex it is to define. Too many components may be an indi-
cation of an overly fine decomposition. A good test is to consider the replacement of
each component individually with an alternative implementation. If this would ne-
cessitate changing multiple components at once, then that group may be a candidate
for merging into a single component. As a rule of thumb, we have found that if a
simple test application, such as those discussed in Section 3.3, requires more than
seven components, then the decomposition may be worth revisiting.

Similarly, a component providing or using too many ports may be an indication
that it contains too much functionality to be manageable and should be decomposed
further. Multiple ports may offer alternative interfaces to the same functionality, but
many unrelated ports may signal a candidate for further study. A detailed case study
of component designs for ODE integrations is given in [5].

User experience. Empirical evidence determined by CFRFS combustion re-
searchers, whose work is introduced in Section 2.3, indicates that the final granular-
ity of a component-based application code is arrived at iteratively. One starts with a
coarse-grained decomposition, which in their case was dictated by the nature of their
time-integration scheme, and moves to progressively more refined and fine-grained
designs. For the CFRFS researchers, the more refined decompositions were guided
by physics as represented as mathematical operators and terms in the PDE system
being solved. The finest granularity was achieved at the level of physical/chemical
models. For example, in their flame simulation software, the transport system formed
an explicit-integration system. In the second level of refinement, transport was sepa-
rated into convection and diffusion, which occurs as separate terms in their governing
equations. In the final decomposition, diffusion was separated into a mathematical
component that implemented the discretized diffusion operator, while the functional-
ity of calculating diffusion coefficients (required to calculate the diffusion term and
used in the discretized diffusion operator) was separated as a specialized compo-
nent [79]. Such a decomposition enables the testing of various diffusion coefficient
models and discretizations by simply replacing the relevant component. Since these
components implement the same ports, this activity is literally plug-and-play.

Port complexity checks. Many ports for PDE computations are as simple as
a function triplet (setup, compute, finish) with a few arguments to each function

Parallel PDE-Based Simulations Using the CCA 33

(see, for example, the climate component discussion in Section 6.2). Port interface
design complexity can be measured in terms of the number of functions per port
and the number of arguments per function. If both these numbers are very high,
the port may be difficult to use and need further decomposition. Should some of
the functions instead be placed in a component configuration port that is separate
from the main computation function port? Is a subset of the functions in the port
unique to a specific implementation, making the port unlikely to be useful in any
other component? Are there several subsets of functions in the port such that using
one subset implies ignoring other subsets? Conversely, there may be so few functions
in a port that it is always connected in parallel with another port. In this case the two
ports may be combined.

5.4 Adjusting Complexity and Granularity

Of course a degree of complexity is often unavoidable in the assembly of modern
applications. The CCA specification provides for containers, which can encapsulate
assemblies of components to further manage complexity [19]. This capability allows
a component set to appear as a single component in an application, so that the granu-
larity of components and complexity of interfaces can be revised for new audiences
without major re-implementation. The container may expose a simplified port with
fewer or simpler functions (and probably more built-in assumptions) than a similar
complex port appearing on one of its internally managed components. Some or all
of the ports not connected internally may be forwarded directly to the exterior of the
container for use at the application level.

6 Case Studies: Tying Everything Together

The fundamental contribution of component technology to the four parallel PDE-
based applications introduced in Section 2 and discussed in detail in this section
is the enforcement of modularity. This enforcement is not the consequence of pro-
gramming discipline; rather, it is a fundamental property of the component paradigm
itself. The advantages observed are those naturally flowing from modularization:

1. Maintainability: Components divide complexity into manageable chunks, so that
errors and substandard implementations are localized and easily identifiable, and
consequently may be quickly repaired. Further, the consequences of careless
design of one component often stop at its boundary.

2. Extensibility: Modularization limits the amount of detail that one has to learn
before beginning to contribute to a component-based application. This simplifies
and accelerates the process of using and contributing to an external piece of
software and thus makes it accessible to a wider community.

3. Consistency: Even though the component designs for the various projects have
been agreed to rather informally within small communities, using the component-
based architecture ensures through compile-time checking that object-oriented,

34 Lois Curfman McInnes et al.

public interfaces (ports) are used consistently everywhere. This approach elim-
inates errors often associated with older styles of interface definition such as
header files with global variables and C macros that may depend on compiler
flags or potentially conflicting Fortran common block declarations in multiple
source files. For example, in the CFRFS project introduced in Section 2.3, inter-
faces and the overall design could be (and was) changed often and without much
formal review. However, each port change had to be propagated through all the
components dependent on that port interface in order for the software to compile
and link correctly. This requirement enforced uniformity and consistency in the
design. As the CFRFS toolkit grew, major interface changes became more time-
consuming, compelling the designers to design with care and completeness in
the first place, a good software engineering practice under any conditions.

We now discuss how component technology has been applied in these four scien-
tific applications, each of which faces different challenges and is at a different stage
of incorporating component concepts. We begin in Section 6.1 by discussing the ac-
celerator project, introduced in Section 2.1, which is currently at an early phase of
exploring a component philosophy for mesh infrastructure to facilitate experimenta-
tion with different meshing technologies, as introduced in Section 4.1. Section 6.2
explains how climate researchers have decomposed their models using the general
principles introduced in Section 5 to develop next-generation prototype applications
that handle model coupling issues, which were introduced in Sections 2.2 and 4.7.
Section 6.3 highlights how the plug-and-play nature of CCA components enables
combustion scientists to easily explore different choices in algorithms and data struc-
tures and thereby achieve their scientific goals, introduced in Section 2.3. The final
application, discussed in Section 6.4, explains how CCA components help to harness
the complexity of interdisciplinary simulations involving accidental fires and explo-
sions, as introduced in Section 2.4. Here components allow diverse researchers to
work together without being in lock step, so that a large, multiphysics application
can achieve efficient and scalable performance on a wide range of parallel architec-
tures.

6.1 Accelerator Modeling

As introduced in Section 2.1, ongoing collaborations among scientists in the TSTT
Center and SLAC have resulted in a number of improvements to the mesh generation
tools and software infrastructure used for accelerator modeling. Although the TSTT
mesh interfaces are not yet mature enough for direct use in an application code, a
component philosophy is being employed to insert TSTT adaptive mesh capabilities
into the finite element-based frequency domain code, Omega3P.

Initially, the goal was to demonstrate the benefits of adaptive mesh refinement
without changing a line of code in the core of Omega3P. This goal was accom-
plished by cleanly dividing the responsibilities of the different pieces of software
and iteratively processing the mesh until convergence was achieved. In particular,
TSTT tools developed at RPI handled error estimation and adaptive refinement of

Parallel PDE-Based Simulations Using the CCA 35

the mesh, while Omega3P computed the solution fields. Information was exchanged
between Omega3P and the TSTT meshing tools by using a file-based mechanism in
which the current mesh and solution fields were written to a file that was then read
by the RPI tools.

Although the performance of a file-based mechanism for information transfer
between adaptive refinement steps is clearly not ideal, it proved to be an excellent
starting point because it allowed a very quick demonstration of the potential benefits
of adaptive mesh refinement for the Omega3P code. As mentioned in Section 2.1, a
high degree of accuracy is required in the frequency domain results. For one com-
monly used test geometry, the Trispal geometry, the results from the adaptive re-
finement loop were more accurate than those from prior simulations and provided
the best match to experimental results at a fraction of the computational cost [47].
Furthermore, this work has showcased the benefits of modularizing various aspects
of the simulation process by allowing SLAC researchers to quickly use AMR tech-
nologies without requiring a wholesale change to their code. Based on the success
of this demonstration, work is now proceeding to insert the adaptive refinement loop
directly into Omega3P using the TSTT interface philosophy and the underlying im-
plementations at RPI.

6.2 Climate Modeling

In Section 2.2 we described how the climate system’s complexity leads to software
complexity in climate system models. Here we discuss in greater detail the practices
of the climate/weather/ocean (CWO) community; for brevity, our scope is restricted
to atmospheric global climate models. We discuss the refactoring of CWO software
to make it more component friendly and to alleviate complexity. We describe the
CWO community’s effort to create its own component specification (ESMF). We
also present a prototype component-based atmospheric advection model, which uses
both the ESMF and CCA paradigms. See [72] for further information on these topics.

Model Decomposition

As mentioned in Section 2.2, the fundamental equations for atmosphere and ocean
dynamics are called the primitive equations. Their solvers are normally structured
in two parts. The first part, which solves the primitive equations, is called the dy-
namics, dynamical core, or dycore. The second part, which models source and sink
terms resulting from length scales shorter than those used in the dynamical core’s
discretization, is called the physics. Examples of parameterized physical processes in
the atmosphere include convection, cloud formation, and radiative transfer. In prin-
ciple, one could use the same solver infrastructure for both atmosphere and ocean
dynamics, but this approach is rarely used because of differences in model details.

Climate models are a natural application for component technology. Figure 15
illustrates one of the ways for the component decomposition at several levels. The

36 Lois Curfman McInnes et al.

Climate

AtmosphereOcean Land Sea-Ice

Dynamics Physics

Radiation Cloud

Arrow denotes
composition

Fig. 15. Diagram of climate models decomposed in terms of components.

highest level integrates the major subsystems of the earth’s climate (ocean, atmo-
sphere, sea-ice, and land-surface), which are each a component. Within the atmo-
sphere, we see a component decomposition of the major parts of the model—the
dynamics and the physics. Within the physics parameterization package, each sub-
gridscale process can also be packaged as a component.

The plug-and-play capabilities of component-based design, as introduced in Sec-
tion 3, can aid researchers in exploring trade-offs among various choices in meshing,
discretization, and numerical algorithms. As an example we consider atmospheric
global climate models, in which various approaches, each with different advantages
and disadvantages, can be used for solving the primitive equations. The main solvers
are finite-difference [41] and spectral methods [50]; semi-Lagrangian and finite ele-
ment techniques are also sometimes used. Various solvers have been developed for
each approach, including the Aries dycore [118], the GFDL and NCAR spectral dy-
cores [50,126], and the Lin-Rood finite-volume dycore [83]. An additional challenge
is handling the physical mesh definition; choices for the horizontal direction include
logically Cartesian latitude-longitude, geodesic [36], and cubed-sphere [86]. Various
choices for the vertical coordinate include pressure, sigma-pressure, isentropic, or a
combination of these.

A primary challenge in developing atmospheric models is achieving scalable
performance that is portable across a range of parallel architectures. For example,
parallel domain decompositions of atmospheric dycores are usually one- or two-
dimensional in the horizontal direction. Most codes use MPI or an MPI/OpenMP
hybrid scheme for parallelization because it provides solid performance and porta-
bility. Component-based design helps to separate issues of parallelism from portions
of code that handle physics and mathematics, thereby facilitating experimentation
with different parallel computing strategies. Another challenge is language interop-
erability. The modernization path for most climate models has been a migration from
Fortran 77 to Fortran 90, combined with some refactoring to increase modularity.
Few of these models are implemented in C or C++ [122]. As discussed in Section 3,
the programming language gap between applications and numerical libraries is an
issue that component technology can help to bridge.

In response to a CWO component initiative, scientists have been refactoring their
application codes. Initially, this activity was undertaken simply to provide better

Parallel PDE-Based Simulations Using the CCA 37

modularity and sharing of software among teams. A good example is the refac-
toring of the Community Atmosphere Model (CAM) to split the previously entan-
gled physics and dynamics portions of code. This entanglement made the change
of one dycore for another an arduous process. Now that the physics and dynamics
have been split, CAM has three dycores: the spectral dycore with semi-Lagrangian
moisture transport, the Lin-Rood finite-volume dycore, and the Williamson-Rasch
semi-Lagrangian scheme. This refactoring will ease the integration and testing of
the newly developed NCAR spectral element dycore. An effort is also under way to
repackage these dycores as ESMF components (see below), which will be the first
introduction of component technology to CAM.

Model Coupling

The primitive equations are a boundary-value problem. For the atmosphere, the lat-
eral boundary values are periodic, the top of the atmosphere’s boundary condition
is specified, and the boundary conditions at the Earth’s surface are provided by the
ocean, sea-ice, and land-surface components. This mutual interaction between mul-
tiple subsystems requires MxN parallel data transfers, such as those described in
Section 4.7. This need for boundary data also poses the problem of how to schedule
and execute the system’s atmosphere, ocean, sea-ice, and land-surface components
to maximizes throughput. There are two basic scheduling strategies. The first is a
sequential event-loop strategy, in which the components run in turn on the same pool
of processors (e.g., the Parallel Climate Model (PCM) [23]). The second strategy is
concurrent component execution, in which each model executes independently on
its own pool of processors (e.g., CCSM). Componentization of the land, atmosphere,
ocean, and sea-ice models will increase overall flexibility in scheduling the execution
of a climate model’s constituents and thereby facilitate aggressive experimentation
in creating previously unimplemented climate system models.

ESMF and the CCA

The great potential that components offer for enabling new science has inspired
the CWO community embrace component technology. Of particular note is the
NASA-funded interagency project to develop the Earth System Modeling Frame-
work [57, 67]. The ESMF comprises a superstructure and an infrastructure. The
superstructure provides the component specification and the overall component in-
terfaces used in coupling. The infrastructure includes commonly needed low-level
utilities for error handling, input/output, timing, and overall time management. The
infrastructure also provides a common data model for coordinate grids, physical
meshes, and layout of field data, as well as services for halo updates, parallel data
transfer, and intergrid interpolation, much like the facilities described in Section 4.7.
One distinguishing feature of ESMF components is that they have three methods:
Initialize, Run, and Finalize. The ESMF supplies its coupling data in the
form of the ESMF State datatype.

38 Lois Curfman McInnes et al.

ESMF developers have collaborated with the CCA to ensure framework interop-
erability, so that ESMF components may run in a CCA-compliant framework and
vice versa. This effort will provide scientists application-specific ESMF services in
composing climate components, while also enabling the use of CCA numerical com-
ponents, such as those described in Section 4.

A Prototype Component-Based Climate Application

A prototype coupled atmosphere-ocean application, which employs both the CCA
and ESMF component paradigms, has been developed as proof-of-concept appli-
cation for CWO codes [139, 140]. The application combines the CCA component
registration infrastructure and uses-provides interaction model introduced in Sec-
tion 3 with the ESMF’s component method specification (i.e., Initialize, Run,
Finalize) and data model. (i.e., ESMF State). This application includes a com-
ponent common to the atmosphere and ocean dycores, namely, two-dimensional ad-
vection of a quantity v by the horizontal velocity field

! U %:c�) :
pwv
p Jyx U pwv

p #zx c pwv
p '

*S{|%

where v !$#&%('w%(J:)
is the advected quantity, and

{}!E#&%('I%:J:)
is the sum of all sources and

sinks. The
#

-
'

spatial grid is rectangular, and the discretization method is a finite-
difference scheme. Here we consider three finite difference variants, which are each
forward in time and either forward-, central-, or backward-difference in space.

Following the CCA component specification, we created an advection compo-
nent with a solver port definition for a finite-difference scheme. The advection equa-
tion can be solved by using forward-, central-, or backward-differencing in space. We
employ a proxy design pattern [46] to allow the atmospheric model component the
choice of one of these default solvers or a user-designated scheme. We also use CCA
technology to enable the user to specify run-time parameters such as advection speed.
The ability to easily swap in different implementations in this component-based ad-
vection application has proven useful in exploring differences in the accuracy and
computational complexity of the various numerical methods.

6.3 Combustion

The objective of the CFRFS [93] project introduced in Section 2.3 is the creation
of a component-based toolkit for simulating laboratory-sized (

��� 1 �
m) flames with

detailed chemistry. Such flames contain tens of species, hundreds of reactions, spatial
structures

1 �;~ �
meters in size, and timescales ranging from

1 ��~ �
seconds (chemical

processes) to
1 �;~ �

seconds (convective processes). The low Mach Navier-Stokes
equation [92,133], and the equations for species’ evolution comprise a set of coupled
PDEs of the form p��

p J
*S��! � % � � % �G� � % ���]�) x�� ! �)4%

Parallel PDE-Based Simulations Using the CCA 39

where � consists of flow quantities such as density and temperature. The equation is
discretized on rectangular meshes and solved in rectangular domains. For these sys-
tems � involves the variables only at a given mesh point, while

�
, which involves

spatial derivatives (computed by using finite-difference or finite-volume schemes),
depends on the mesh point and its close neighbors. � is stiff, so that the ratio of the
largest and the smallest eigenvalues of p � R p�� is large, while

�
is non-stiff. Opera-

tor splitting [116, 117] is employed to evolve the stiff (�) and nonstiff (
�

) terms in
a decoupled manner by following a � � � sequence, thus letting the stiff operator be
the last in the time step, in order to achieve higher accuracy in the data reported at
the end of the time step. A backward-difference formulation [33] and a Runge-Kutta-
Chebyshev integrator [9] are used for the stiff and nonstiff problem, respectively. The
solution vector � exhibits steep spatial variations in scattered, time-evolving regions
of the domain. Block-structured adaptive mesh refinement (SAMR) [17] and time
refinement [18] are used to track and resolve these regions.

The CFRFS team used CCA-compliant component technology to explore the use
of high-order spatial discretizations in a SAMR setting [76,78,110] for the first time
and to perform scalability studies of reacting flow problems on SAMR meshes.

High-Order Spatial Discretizations and Block SAMR

PDEs can be discretized by a variety of methods [103]. Finite differences and vol-
umes are popular for solving fluid flows. Typically, second-order spatial discretiza-
tions are used, although high-order spatial discretizations on single-level structured
or unstructured meshes are becoming common [32,62,81,82,130,131]. The CFRFS
team explored the use of high-order (� �

) schemes in multilevel block-structured
adaptive meshes [76, 78]. Multilevel, block-structured meshes are a conceptually
elegant way of achieving resolution in simple domains. One starts with a coarse,
structured, logically rectangular mesh. Regions requiring resolution are identified,
collated into patches, and overlaid with a rectangular mesh of higher density. This
high-density patch is not embedded; rather, it is preserved separately as a fine patch.
This process is carried out recursively, leading to a hierarchy of patches, that is, a
multilevel grid hierarchy [18]. In this way a given point in space is resolved at dif-
ferent resolutions simultaneously, by different levels of the grid hierarchy.

Deep grid hierarchies pose significant load-balancing problems. High-order spa-
tial discretizations present a simple solution because they may provide an accept-
able degree of accuracy on relatively coarse meshes (i.e., with relatively shallow
grid hierarchies). Incorporating high-order schemes in a SAMR setting is nontriv-
ial, however, as the software infrastructure associated with parallel SAMR codes is
very complex. Indeed, the mathematical complexities of high-order schemes have
restricted their use to relatively simple problems. The component design established
a clear distinction between the various domains of expertise and a means of incorpo-
rating the contributions of diverse contributors without imposing a programming and
data-structural straitjacket. Most contributions were written by experts in Fortran 77
and then componentized.

40 Lois Curfman McInnes et al.

Total no. of levels

R
M

S
E

rr
or

w
.r

.t
an

al
yt

ic
al

re
su

lts

0 1 2 3 4

10-5

10-4

10-3

10-2

4th order

2nd order

L0 errors : Squares
L1 errors : Circles
L2 errors : Triangle
L3 errors : Diamonds
Ideal : Line

C
P

U
L

oa
d

10-5 10-4 10-3 10-2

100

101

102

2nd order
4th order

RMS Error

Fig. 16. (Left): The root mean squared (RMS) error on the individual levels, as the simula-
tion is run on a 1-, 2-, 3- and 4-level grid hierarchy. (Right): The computational load versus
RMS error for the second- and fourth-order approaches. Results have been normalized by the
computational load of a second-order, 1-level grid hierarchy run.

These components were used to simulate PDEs on multilevel meshes, with
factor-of-two refinements between levels. The left-hand side of Figure 16 shows the
recovery of the theoretical convergence rate as the effective resolution was increased
by increasing the number of levels. The base grid has 100 cells in the [0,1] do-
main. Both second- and fourth-order discretizations were used. High-order schemes
were found to be more economical than second-order schemes because they required
sparser meshes to achieve a given level of accuracy. Further, higher-order schemes
become progressively more economical vis-a-vis second-order approaches as the er-
ror tolerances become stringent. This behavior is evident in the right-hand side of
Figure 16, which plots the computational loads (in terms of floating point operations
count) normalized by the one-level grid hierarchy load (1,208,728,001 operations).

Strong-Scalability Analysis of a SAMR Reacting Flow Code

SAMR scalability studies are rare [134, 135] and usually specific to the applications
being tested, that is, specific to the implemented algorithm, and hence are difficult
to analyze and interpret. To explore the behavior of the parallel CCA-based block-
SAMR toolkit and to identify the scalability bottlenecks, the CFRFS team performed
a strong scaling study (i.e., the global problem size was kept constant while the
number of processors increased linearly) for a two-dimensional reaction-diffusion
problem with detailed hydrogen-air chemistry using three levels of refinement with
a refinement factor of two [80]. The initial condition was a random distribution of
temperature kernels in a stoichiometric hydrogen-air mixture. For this experiment,
the parallel virtual machine expanded by a factor of two, starting with 7 processors
and reaching 112 processors. Time and messaging volumes were measured by con-
necting the TAU [127] performance analysis component to the CFRFS component
code assembly.

Parallel PDE-Based Simulations Using the CCA 41

Sending proc

R
ec

v
pr

oc

0 10 20
0

5

10

15

20

25

Communication radius

A
ve

ra
ge

C
om

m
un

ic
at

io
n

tim
e

(s
ec

s)

0 2 4 6 8 10
5

10

15

20

25

np=7

np=14

np=28

np=56

np=112

Fig. 17. (Left): Communication patterns for �2� processors at timestep 40. (Right): Communi-
cation costs as a function of the communication radius at timestep 40.

Results indicated that the overall scalability of the adaptive algorithm is highly
dependent on the scalability of the intermediate time steps [80]. There were “scal-
able” and “nonscalable” time steps, depending on the quality of the domain decom-
position. The nonscalable time steps were a consequence of synchronization times,
where many processors idled because of severely uneven computational load parti-
tioning. The scalable time steps showed good load-balance, but their communication
times increased as the number of processors increased. The left-hand side of Fig-
ure 17 shows the communication map for a 28-processor run. While the bulk of
the communication is with the nearest neighbors, there are a significant number of
outliers. The remoteness of these outliers was characterized by an average commu-
nication radius � . The right-hand side of Figure 17 shows that the average communi-
cation time per processor increases with � (after ���6�), a counterintuitive result, as
increasing � indicates more processors and smaller per-processor problem sizes. The
explanation lies in the network topology. The scaling study was performed on a clus-
ter with Myrinet, which has a Clos-network topology. Eight nodes are connected to a
switch; a cascade of 16-port switches ensures full connectivity, though at increasing
levels of indirection. As � g

8, increasing fractions of the total communication oc-
cur over the cascade, as opposed to in-switch communication. This situation results
in message contentions and collisions and hence slower transfer speeds and larger
communication costs.

6.4 Accidental Fires and Explosions

The simulation environment for the Center for the Simulation of Accidental Fires and
Explosions (C-SAFE) [55], introduced in Section 2.4, is the Uintah Computational
Framework (UCF) [39], which is a set of software components and libraries that
facilitate the parallel simulation of PDEs on structured adaptive mesh refinement
(SAMR) grids. The UCF is implemented in the context of the CCA-based SCIRun2
framework [138], which supports a wide range of computational and visualization
applications. One of the challenges of creating component-based PDE software is

42 Lois Curfman McInnes et al.

achieving scalability, which is a global application property, through components
that, by definition, make local decisions.

Managing Parallelism via Taskgraphs

To address this challenge of managing parallelism in multidisciplinary applications,
the UCF employs a nontraditional approach. Instead of using explicit MPI calls
throughout each component of the program, applications are cast in terms of a task-
graph, which describes the data dependencies among various steps of the problem.

Computations are expressed as directed acyclic graphs of tasks, each of which
produces some output and consumes some input, which is in turn the output of some
previous task. These inputs and outputs are specified for each patch in a structured
AMR grid. Associated with each task is a method that performs the actual com-
putation. This representation has many advantages, including efficient fine-grained
coupling of multiphysics components, flexible load balancing mechanisms, and a
separation of application and parallelism concerns. Moreover, UCF data structures
are compatible with Fortran arrays, so that application writers can use Fortran sub-
routines to provide numerical kernels on each patch.

Each execution of a taskgraph integrates a single timestep, or a single nonlinear
iteration, or some other coarse algorithmic step. Tasks communicate with each other
through an entity called the DataWarehouse. The DataWarehouse is accessed through
a simple name-based dictionary mechanism, and it provides each task with the illu-
sion that all memory is global. If the tasks correctly describe their data dependencies,
then the data stored in the DataWarehouse will match the data (variable and region
of space) needed by the task. In other words, the DataWarehouse is an abstraction
of a global single-assignment memory, with automatic data lifetime management
and storage reclamation. Values stored in the DataWarehouse are typically array-
structured. Communication is scheduled by a local algorithm that approximates the
true globally optimal communication schedule. Because of the flexibility of single-
assignment semantics, the UCF is free to execute tasks close to data or move data to
minimize future communication.

The UCF storage abstraction is sufficiently high level that it can be efficiently
mapped onto both message-passing and shared-memory communication mecha-
nisms. Threads sharing a memory can access their input data directly; single-
assignment dataflow semantics eliminate the need for any locking of values. Threads
running in disjoint address spaces communicate by a message-passing protocol, and
the UCF is free to optimize such communication by message aggregation. Tasks
need not be aware of the transports used to deliver their inputs, and thus UCF has
complete flexibility in control and data placement to optimize communication both
between address spaces or within a single shared-memory symmetric multiprocess-
ing node. Latency in requesting data from the DataWarehouse is not an issue; the
correct data is deposited into the DataWarehouse before each task is executed.

Consider the taskgraph in Figure 18. Ovals represent tasks, each of which is a
simple array-based subroutine. Edges represent named values stored by the UCF.
Solid edges have values defined at each material point, and dashed edges have values

Parallel PDE-Based Simulations Using the CCA 43

m

σ
ω

m

m

PositionX
M Mass

Grid Data

Velocity

’

’

Constituents
σ Stress
V

Particle Data

v’
m’

x’

m

m

ω

σ

ω

Acceleration
Integrate

σ
’ v

Motion
Equations Of

Solve

a

Fv

Grid
Particles To
Interpolate Compute

x

Stress Tensor
Compute

Internal Force

v

To Particles And
Interpolate

x

Update
v’

a

v

Fig. 18. An example UCF taskgraph, depicting a portion of the material point method (MPM)
algorithm used to simulate solid materials in C-SAFE scenarios.

defined at each grid vertex. Variables denoted with a prime (’) have been updated
during the time step. The figure shows a portion of the Uintah material point method
(MPM) [119] taskgraph concerned with advancing Newtonian material point motion
on one patch for a single time step.

The idea of the dataflow graph as an organizing structure for execution is well
known. The SMARTS [128] dataflow engine that underlies the POOMA [111] toolkit
shares goals and philosophy with the UCF. Sisal compilers [45] used dataflow con-
cepts at a much finer granularity to structure code generation and execution. Dataflow
is a simple, natural, and efficient way of exposing parallelism and managing compu-
tation and is an intuitive way of reasoning about parallelism. What distinguishes
implementations of dataflow ideas is that each caters to a particular higher-level
presentation. SMARTS is tailored to POOMA’s C++ implementation and stylistic
template-based presentation. The UCF supports a presentation catering to C++ and
Fortran-based mixed particle/grid algorithms on structured adaptive meshes, and the
primary algorithms of importance to C-SAFE are the MPM and Eulerian computa-
tional fluid dynamics algorithms.

This dataflow-based representation of parallel computation fits well with the
structured AMR grids and with the nature of the computations that C-SAFE per-
forms. In particular, we used this approach in order to accommodate multiphysics
integration, load-balancing, and mixed thread/MPI programming. A more detailed
discussion of these advantages (and disadvantages) can be found in [101].

The most important advantage for a large interdisciplinary project such as C-
SAFE is that the taskgraph facilitates the separate development of simulation compo-
nents and allows pieces of the simulation to evolve independently. Because C-SAFE
is a research project, we need to accommodate the fact that most of the software is
still under development. The component-based architecture allows pieces of the sys-

44 Lois Curfman McInnes et al.

tem to be implemented in a basic form at first and then to evolve as the technologies
mature. Most importantly, the UCF allows the aspects of parallelism (schedulers,
load-balancers, parallel input/output, and so forth) to evolve independently of the
simulation components. This approach allows the computer science effort to focus
on these problems without waiting for the completion of the scientific applications
or vice-versa.

Components Involved

Figure 19 shows the main components involved in a typical C-SAFE simulation.
The simulation controller component, which is in charge of the simulation, manages
restart files if necessary and controls the integration through time. First, it reads the
specification of the problem from an XML input file. After setting up the initial grid,
it passes the description to the simulation component, which can implement various
algorithms, including one of two different CFD algorithms, the MPM algorithm, or
a coupled MPM-CFD algorithm. The simulation component defines a set of tasks
for the scheduler. In addition, a data-archiver component describes a set of output
tasks to the scheduler. These tasks save a specified set of variables to disk. Once
all tasks are known to the scheduler, the load-balancer component uses the machine
configuration to assign tasks to processing resources. The scheduler uses MPI for
communication and then executes callbacks to the simulation or data-archiver com-
ponents to perform the actual work. This process continues until the taskgraph has
been fully executed. The execution process is then repeated to integrate further time
steps.

Fig. 19. UCF simulation components.
The simulation describes tasks to a
scheduling component, which are as-
signed to processing resources by a
load-balancer component. Callbacks
are made into the simulation com-
ponent to perform the computation.
Checkpointing and data input/output
are performed automatically by the
data-archiver component.

Each of these components runs concurrently on each processor. The components
communicate with their counterparts on other processors using MPI. However, the
scheduler is typically the only component that needs to communicate with other
processors. Figure 20 demonstrates that the resulting system scales well on various
parallel architectures. Delegating responsibility for parallelism to the scheduler com-
ponent allows complex multiphysics applications to utilize processor resources effi-
ciently and reduces the programming burden for applications that require complex
communication patterns to achieve good scalability.

Parallel PDE-Based Simulations Using the CCA 45

1 4 16 64 256 1024
Number of Processors

1

10

100

1000

T
im

e
pe

r
T

im
es

te
p

(s
ec

on
ds

)

Linear
SCI - Rapture
SCI - Muse
SCI - Inferno
LLNL - Frost
LLNL - Blue
LLNL - ALC
LANL - Nirvana
LANL - QSC

MPM Performance Comparison

Fig. 20. Performance of the UCF MPM simulation on various architectures during the devel-
opment of the simulation. Rapture: 32-processor 250 MHz Origin 2000, Muse: 64-processor
600 MHz Origin 3000, Inferno: 256-processor 2.4 GHz Pentium 4 Linux cluster, Frost: 1024-
processor IBM SP Power 3, Blue: 3392-processor IBM SP PowerPC 604e, ALC: 1024-
processor 2.4 GHz Pentium 4 Linux cluster, Nirvana: 2048-processor 250 MHz Origin 2000
at LANL, QSC: 256-processor 1.25 GHz Alpha. Data courtesy of Randy Jones, Jim Guilkey,
and Todd Harman of the University of Utah.

7 Conclusions and Future Work

All component-based approaches to software seek to divide the inherent complexity
of large-scale applications into sizes that human beings can deal with individually,
so that more complex applications can be constructed from these manageable units.
Parallel PDE-based applications are unique in this context only to the extent that
they tend to be extremely complex and thus can profoundly benefit from component
concepts. The CCA contributes a component model for high-performance scientific
computing that may be of particular interest to investigators conducting simulations
of detailed or comprehensive physical phenomena. Compliance with the CCA spec-
ification has enabled the scientific application teams featured in this chapter to per-
form several tasks more easily:
� Create sets of reusable, easy-to-maintain, and scalable components, each of

which expresses a unique physical or numerical functionality [72,77,79,101,139]� Use legacy code (originally written in Fortran or C) in the CCA environment
without major code rewrites [72, 77]� Easily test different physics and numerics modules with well-defined interfaces
in a plug-and-play mode [79]

46 Lois Curfman McInnes et al.

� Manage the evolution of complex scientific applications, by separating the dis-
parate concerns of physics, numerical, and computer science issues [39, 101]� Obtain good parallel performance [40,79,87] with negligible CCA overhead [20]

There is no point at which we envision the CCA as a component model will be
finished. The CCA continues to respond to implementers’ concerns, feature requests,
and unforeseen conflicts created by CCA-specified mechanisms or the lack thereof.
In addition, the CCA Forum is extending the prototype work of Section 4 and as-
sembling a critical mass of components from which parallel simulations can be pro-
totyped and evolved into meaningful simulations. Component concepts also provide
unprecedented opportunities for automation. Recent work on computational quality
of service [59,96] allows component parameters and component configurations to be
rearranged dynamically, thereby enabling the automatic selection and configuration
of components to suit the computational conditions imposed by a simulation and
its operating environment. The CCA Forum aims to enable next-generation high-
performance scientific simulations by providing a means for tens or even hundreds
of researchers to contribute to a single application as well as by developing the in-
frastructure to automate its construction and execution.

Acknowledgments

The CCA has been under development since 1998 by the CCA Forum and represents
the contributions of many people, all of whom we gratefully acknowledge. We also
thank our collaborators outside the CCA Forum, especially the domain scientists
who have contributed to the four applications discussed in this chapter and the early
adopters of the CCA, for the important contributions they have made both to our
understanding of CBSE in the high-performance scientific computing context and
to making the CCA a practical and usable environment. We thank Barry Smith for
developing a PETSc-based implementation of the TOPS solver interfaces discussed
in Section 4.4. In addition, we thank Are Magnus Bruaset, Jeff Keasler, Barry Smith,
and the anonymous reviewers of this chapter for valuable feedback that has enabled
us to improve our presentation.

This work has been supported in part by the U. S. Department of Energy’s Scien-
tific Discovery through Advanced Computing (SciDAC) [125] initiative, through the
Center for Component Technology for Terascale Simulation Software, of which Ar-
gonne, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia
National Laboratories, Indiana University, and the University of Utah are members.
Members of the SciDAC Computational Facility for Reacting Flow Research have
also contributed to this paper.

Research at Argonne National Laboratory was supported in part by the Mathe-
matical, Information, and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-ENG-38.

Parallel PDE-Based Simulations Using the CCA 47

Some of this work was performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US
Dept. of Energy under contract DE-AC-05-00OR22725.

This research was performed in part using the Molecular Science Computing
Facility (MSCF) in the William R. Wiley Environmental Laboratory at the Pacific
Northwest National Laboratory (PNNL). The MSCF is funded by the Office of Bi-
ological and Environmental Research in the U.S. Department of Energy. PNNL is
operated by Battelle for the U.S. Department of Energy under contract DE-AC06-
76RLO 1830.

Research at the University of Utah is also sponsored by the National Science
Foundation under contract ACI0113829, and the DOE ASC Program.

Some of the work in this paper was carried out by Northrop Grumman/TASC
with funding provided by NASA’s Computation Technologies (CT) Project, part of
the Earth Science Technology Office (ESTO), under a contract with the National
Aeronautics and Space Administration.

References

1. Ahrem, R., Post, P., Steckel, B., and Wolf, K.: MpCCI: A tool for coupling CFD with
other disciplines. In Proceedings of the Fifth World Conference in Applied Fluid Dy-
namics, CFD-Efficiency and Economic Benefit in Manufacturing, (2001)

2. Ahrem, R., Post, P., and Wolf, K.: A communication library to couple simulation codes
on distributed systems for multi-physics computations. In D’Hollander, E., Joubert, G.,
Peters, F., and Sips, H., editors, Parallel Computing: Fundamentals and Applications,
Proceedings of the International Conference ParCO 99, pages 47–55. Imperial College
Press, (1999)

3. Allan, B., Armstrong, R., Lefantzi, S., Ray, J., Walsh, E., and Wolfe, P.: Ccaffeine –
a CCA component framework for parallel computing. http://www.cca-forum.
org/ccafe/, (2003)

4. Allan, B. A., Armstrong, R. C., Wolfe, A. P., Ray, J., Bernholdt, D. E., and Kohl, J. A.:
The CCA core specification in a distributed memory SPMD framework. Concurrency
and Computation: Practice and Experience, 14(5):1–23, (2002)

5. Allan, B. A., Lefantzi, S., and Ray, J.: ODEPACK++: Refactoring the LSODE Fortran
library for use in the CCA high performance component software architecture. In Pro-
ceedings of the 9th International Workshop on High-Level Parallel Programming Mod-
els and Supportive Environments (HIPS 2004), Santa Fe, NM, (2004). IEEE Press. see
http://www.cca-forum.org/˜baallan/odepp

6. Allen, G., Benger, W., Goodale, T., Hege, H., Lanfermann, G., Merzky, A., Radke, T.,
Seidel, E., and Shalf, J.: The Cactus code: A problem solving environment for the Grid.
In High Performance Distributed Computing (HPDC), pages 253–260. IEEE Computer
Society, (2000)

7. Alpatov, P., Baker, G., Edwards, C., Gunnels, J., Morrow, G., Overfelt, J., van de Geijn,
R., and Wu, Y.-J. J.: PLAPACK: Parallel linear algebra package - design overview. In
Proceedings of SC97, (1997)

48 Lois Curfman McInnes et al.

8. Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S.,
and Smolinski, B.: Toward a Common Component Architecture for high-performance
scientific computing. In Proceedings of the Eighth IEEE International Symposium on
High Performance Distributed Computing, (1999)

9. B. P. Sommeijer, L. F. S. and Verwer, J. G.: RKC: an explicit solver for parabolic PDEs.
J. Comp. Appl. Math., 88:315–326, (1998)

10. Balay, S., Buschelman, K., Gropp, W., Kaushik, D., Knepley, M., McInnes, L., Smith,
B. F., and Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revision
2.2.1, Argonne National Laboratory, (2004). http://www.mcs.anl.gov/petsc

11. Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient management of
parallelism in object oriented numerical software libraries. In Arge, E., Bruaset, A. M.,
and Langtangen, H. P., editors, Modern Software Tools in Scientific Computing, pages
163–202. Birkhauser Press, (1997)

12. Beckman, P., Fasel, P., Humphrey, W., and Mniszewski, S.: Efficient coupling of parallel
applications using PAWS. In Proceedings of the 7th IEEE International Symposium on
High Performance Distributed Computation, (1998)

13. Benson, S., Krishnan, M., McInnes, L., Nieplocha, J., and Sarich, J.: Using the GA
and TAO toolkits for solving large-scale optimization problems on parallel computers.
Technical Report ANL/MCS-P1084-0903, Argonne National Laboratory, (2003)

14. Benson, S., McInnes, L. C., and Moré, J.: A case study in the performance and scalability
of optimization algorithms. ACM Transactions on Mathematical Software, 27:361–376,
(2001)

15. Benson, S., McInnes, L. C., Moré, J., and Sarich, J.: TAO users manual. Technical Report
ANL/MCS-TM-242 - Revision 1.7, Argonne National Laboratory, (2004). http://
www.mcs.anl.gov/tao/

16. Benson, S. and Moré, J.: A limited-memory variable-metric algorithm for bound-
constrained minimization. Technical Report ANL/MCS-P909-0901, Mathematics and
Computer Science Division, Argonne National Laboratory, (2001)

17. Berger, M. J. and Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comp. Phys., 53:484–523, (1984)

18. Berger, M. and Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J.
Comp. Phys., 82:64–84, (1989)

19. Bernholdt, D. E., Armstrong, R. C., and Allan, B. A.: Managing complexity in mod-
ern high end scientific computing through component-based software engineering. In
Proceedings. of the HPCA Workshop on Productivity and Performance in High-End
Computing (P-PHEC 2004), Madrid, Spain. IEEE Computer Society, (2004)

20. Bernholdt, D. E., Elwasif, W. R., Kohl, J. A., and Epperly, T. G. W.: A component
architecture for high-performance computing. In Proceedings of the Workshop on Per-
formance Optimization via High-Level Languages and Libraries (POHLL-02), (2002)

21. Bernholdt, D. E., Allan, B. A., Armstrong, R., Bertrand, F., Chiu, K., Dahlgren, T. L.,
Damevski, K., Elwasif, W. R., Epperly, T. G. W., Govindaraju, M., Katz, D. S., Kohl,
J. A., Krishnan, M., Kumfert, G., Larson, J. W., Lefantzi, S., Lewis, M. J., Malony, A. D.,
McInnes, L. C., Nieplocha, J., Norris, B., Parker, S. G., Ray, J., Shende, S., Windus,
T. L., and Zhou, S.: A component architecture for high-performance scientific comput-
ing, (2004). submitted to Intl. J. High-Perf. Computing Appl.

22. Bertrand, F., Bramley, R., Damevski, K., Kohl, J., Larson, J., and Sussman, A.: MxN
interactions in parallel component architectures. Technical Report TR604, Department
of Computer Science, Indiana University, Bloomington, (2004). Accepted by the Inter-
national Parallel and Distributed Processing Symposium, Denver, CO, April 4-8, 2005

Parallel PDE-Based Simulations Using the CCA 49

23. Bettge, T., Craig, A., James, R., and Wayland, V.: The DOE Parallel Climate Model
(PCM): The computational highway and backroads. In Alexandrov, V. N., Dongarra,
J. J., Juliano, B. A., Renner, R. S., and Tan, C. J. K., editors, Proceedings of the Inter-
national Conference on Computational Science (ICCS) 2001, volume 2073 of Lecture
Notes in Computer Science, pages 148–156, Berlin, (2001). Springer-Verlag

24. Blelloch, G. E., Heroux, M. A., and Zagha, M.: Segmented operations for sparse matrix
computation on vector multiprocessor. Technical Report CMU-CS-93-173, Carnegie
Mellon University, (1993)

25. Boost. http://www.boost.org, (2004)
26. Box, D.: Essential COM. Addison-Wesley, (1997)
27. Bramley, R., Gannon, D., Stuckey, T., Vilacis, J., Akman, E., Balasubramanian, J., Berg,

F., Diwan, S., and Govindaraju, M.: The linear system analyzer. In Enabling Technolo-
gies for Computational Science, Kluwer, 2000

28. CCA Forum homepage. http://www.cca-forum.org/, (2004)
29. CCA specification. http://cca-forum.org/specification/, (2004)
30. Chatterjee, S., Blelloch, G. E., and Zagha, M.: Scan primitives for vector computers. In

Supercomputing 1990, (1990)
31. Clay, R. et al.: ESI homepage. http://www.terascale.net/esi, (2001)
32. Cockburn, B. and Shu, C.-W.: The local discontinuous Galerkin method for time-

dependent convection-diffusion systems. SIAM J. Numer. Anal., 35(6):2440–2463,
(1998)

33. Cohen, S. D. and Hindmarsh, A. C.: CVODE, a stiff/nonstiff ODE solver in C. Comput-
ers in Physics, 10(2):138–143, (1996)

34. Colella, P.: An Algorithmic and Software Framework for Applied Partial Differential
Equations Center (APDEC). http://davis.lbl.gov/APDEC/, (2004)

35. Colella, P. et al.: Chombo – Infrastructure for Adaptive Mesh Refinement. http://
seesar.lbl.gov/anag/chombo

36. Colorado State University: The CSU GCM (BUGS) homepage. http://kiwi.
atmos.colostate.edu/BUGS/, (2004)

37. Combustion Research Facility. http://www.ca.sandia.gov/CRF, (2004)
38. Dahlgren, T., Epperly, T., and Kumfert, G.: Babel User’s Guide. CASC, Lawrence Liv-

ermore National Laboratory, version 0.9.0 edition, (2004)
39. de St. Germain, J. D., McCorquodale, J., Parker, S. G., and Johnson, C. R.: Uintah:

A massively parallel prolem solving environment. In Proceedings of the Ninth IEEE
International Symposium on High Performance and Distributed Computing, (August
2000)

40. de St. Germain, J., Morris, A., Parker, S., Malony, A., and Shende, S.: Integrating perfor-
mance analysis in the Uintah software development cycle. In The Fourth International
Symposium on HighPerformance Computing (ISHPC-IV), pages 190–206, (2002)

41. Durran, D. R.: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics.
Springer, (1999)

42. Edjlali, G., Sussman, A., and Saltz, J.: Interoperability of data-parallel runtime libraries.
In International Parallel Processing Symposium, Geneva, Switzerland, (1997). IEEE
Computer Society Press

43. Eisenhauer, G., Bustamante, F., and Schwan, K.: Event services for high performance
systems. Cluster Computing: The Journal of Networks, Software Tools, and Applica-
tions, 3(3), (2001)

44. Englander, R.: Developing Java Beans. O’Reilly and Associates, (1997)
45. Feo, J. T., Cann, D. C., and Oldehoeft, R. R.: A report on the Sisal language project.

Journal of Parallel and Distributed Computing, 10(4):349–366, (1990)

50 Lois Curfman McInnes et al.

46. Gamma, E. et al.: Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, (1994)

47. Ge, L., Lee, L., Zenghai, L., Ng, C., Ko, K., Luo, Y., and Shephard, M.: Adaptive mesh
refinement for high accuracy wall loss determination in accelerating cavity design. In
IEEE Conf. on Electromagnetic Field Computations, (2004)

48. Geist, G. A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V.:
PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge, MA, (1994)

49. Geist, G. A., Kohl, J. A., and Papadopoulos, P. M.: CUMULVS: Providing fault toler-
ance, visualization and steering of parallel applications. Intl. J. High-Perf. Computing
Appl., 11(3):224–236, (1997)

50. GFDL Flexible Modeling System. http://www.gfdl.noaa.gov/fms, (2004)
51. Gockenbach, M. S., Petro, M. J., and Symes, W. W.: C++ classes for linking optimization

with complex simulations. ACM Transactions on Mathematical Software, 25(2):191–
212, (1999)

52. Govindaraju, M., Krishnan, S., Chiu, K., Slominski, A., Gannon, D., and Bramley, R.:
Merging the CCA component model with the OGSI framework. In 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid, (2003)

53. Guilyardi, E., Budich, R. G., and Valcke, S.: PRISM and ENES: European approaches to
Earth System Modelling. In Proceedings of Realizing TeraComputing - Tenth Workshop
on the Use of High Performance Computing in Meteorology, (2002)

54. Harper, L. and Kauffman, B.: Community Climate System Model. http://www.
ccsm.ucar.edu/, (2004)

55. Henderson, T. C., McMurtry, P. A., Smith, P. J., Voth, G. A., Wight, C. A., and Pershing,
D. W.: Simulating accidental fires and explosions. Comp. Sci. Eng., 2:64–76, (1994)

56. Heroux, M. A. and Willenbring, J. M.: Trilinos Users Guide. Technical Report
SAND2003-2952, Sandia National Laboratories, (2003). http://software.
sandia.gov/Trilinos

57. Hill, C. et al.: The architecture of the earth system modeling framework. Computing in
Science and Engineering, 6(1):18–28, (2003)

58. Hindmarsh, A. C.: ODEPACK, a systematized collection of ODE solvers. Scientific
Computing, (1993)

59. Hovland, P., Keahey, K., McInnes, L. C., Norris, B., Diachin, L. F., and Raghavan, P.: A
quality of service approach for high-performance numerical components. In Proceed-
ings of Workshop on QoS in Component-Based Software Engineering, Software Tech-
nologies Conference, Toulouse, France, (2003)

60. Hunke, E. C. and Dukowicz, J. K.: An elastic-viscous-plastic model for sea ice dynam-
ics. J. Phys. Oc., 27:1849–1867, (1997)

61. Indiana University: XCAT homepage. http://www.extreme.indiana.edu/
xcat/

62. Karniadakis, G. E. and Sherwin, S. J.: Spectral/Hp Element Methods for CFD. Numeri-
cal Mathematics and Scientific Computation. Oxford University Press, (1999)

63. Keahey, K., Fasel, P., and Mniszewski, S.: PAWS: Collective interactions and data trans-
fers. In Proceedings of the High Performance Distributed Computing Conference, San
Francisco, CA, (2001)

64. Keahey, K., Beckman, P., and Ahrens, J.: Ligature: Component architecture for high
performance applications. Intl. J. High-Perf. Computing Appl., 14(4):347–356, (2000)

65. Kenny, J. P., Benson, S. J., Alexeev, Y., Sarich, J., Janssen, C. L., McInnes, L. C., Krish-
nan, M., Nieplocha, J., Jurrus, E., Fahlstrom, C., and Windus, T. L.: Component-based

Parallel PDE-Based Simulations Using the CCA 51

integration of chemistry and optimization software. J. of Computational Chemistry,
25(14):1717–1725, (2004)

66. Keyes, D.: Terascale Optimal PDE Simulations (TOPS) Center. http://
tops-scidac.org/, (2004)

67. Killeen, T., Marshall, J., and da Silva, A.: Earth System Modeling Framework. http:
//www.esmf.ucar.edu, (2004)

68. Knio, O., Najm, H., and Wyckoff, P.: A semi-implicit numerical scheme for reacting
flow. II. stiff, operator-split formulation. J. Comp. Phys., 154:428–467, (1999)

69. Kohl, J. A. and Papadopoulos, P. M.: A library for visualization and steering of dis-
tributed simulations using PVM and AVS. In High Performance Computing Symposium,
Montreal, CA, (1995)

70. Lam, S. H. and Goussis, D. A.: The CSP method of simplifying kinetics. International
Journal of Chemical Kinetics, 26:461–486, (1994)

71. Larson, J. W., Jacob, R. L., Foster, I. T., and Guo, J.: The Model Coupling Toolkit. In
Alexandrov, V. N., Dongarra, J. J., Juliano, B. A., Renner, R. S., and Tan, C. J. K., editors,
Proceedings of the International Conference on Computational Science (ICCS) 2001,
volume 2073 of Lecture Notes in Computer Science, pages 185–194, Berlin, (2001).
Springer-Verlag

72. Larson, J. W., Norris, B., Ong, E. T., Bernholdt, D. E., Drake, J. B., Elwasif, W. R.,
Ham, M. W., Rasmussen, C. E., Kumfert, G., Katz, D. S., Zhou, S., DeLuca, C.,
and Collins, N. S.: Components, the Common Component Architecture, and the cli-
mate/weather/ocean community. In 84th American Meteorological Society Annual Meet-
ing, Seattle, Washington, (2004). American Meteorological Society

73. Larson, J., Jacob, R., and Ong, E.: The Model Coupling Toolkit: A new Fortran90
toolkit for building multi-physics parallel coupled models. Technical Report ANL/MCS-
P1208-1204, Argonne National Laboratory, (2004). Submitted to Int. J. High Perf.
Comp. App. See also http://www.mcs.anl.gov/mct/

74. Lawrence Livermore National Laboratory: Babel. http://www.llnl.gov/CASC/
components/babel.html, (2004)

75. Lee, J. C., Najm, H. N., Valorani, M., and Goussis, D. A.: Using computational singular
perturbation to analyze large scale reactive flows. In Proceedings of the Fall Meeting
of the Western States Section of the The Combustion Institute, Los Angeles, California,
(2003). Distributed via CD-ROM

76. Lefantzi, S., Kennedy, C., Ray, J., and Najm, H.: A study of the effect of higher order
spatial discretizations in SAMR (Structured Adaptive Mesh Refinement) simulations.
In Proceedings of the Fall Meeting of the Western States Section of the The Combustion
Institute, Los Angeles, California, (2003). Distributed via CD-ROM

77. Lefantzi, S. and Ray, J.: A component-based scientific toolkit for reacting flows. In Pro-
ceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics,
June 17-20, 2003, Cambridge, MA, volume 2, pages 1401–1405. Elsevier, (2003)

78. Lefantzi, S., Ray, J., Kennedy, C., and Najm, H.: A component-based toolkit for react-
ing flow with high order spatial discretizations on structured adaptively refined meshes.
Progress in Computational Fluid Dynamics: An International Journal, (2004). To ap-
pear

79. Lefantzi, S., Ray, J., and Najm, H. N.: Using the Common Component Architecture to
design high performance scientific simulation codes. In Proceedings of the 17th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2003), 22-26 April 2003,
Nice, France. IEEE Computer Society, (2003)

52 Lois Curfman McInnes et al.

80. Lefantzi, S., Ray, J., and Shende, S.: Strong scalability analysis and performance evalua-
tion of a CCA-based hydrodynamic simulation on structured adaptively refined meshes.
Poster in ACM/IEEE Conference on Supercomputing, November 2003, Phoenix, AZ

81. Lele, S.: Compact finite differnece schemes with spectral-like resolution. J. Comp.
Phys., 103:16–42, (1992)

82. Lilek, Z. and Perić, M.: A fourth-order finite volume method with collocated variable
arrangement. Computers & Fluids, 24, (1995)

83. Lin, S. J. et al.: Global weather prediction and high-end computing at NASA. Computing
in Science and Engineering, 6(1):29–35, (2003)

84. Lindemann, J., Dahlblom, O., and Sandberg, G.: Using CORBA middleware in finite
element software. In Sloot, P. M. A., Tan, C. J. K., Dongarra, J. J., , and Hoekstra, A. G.,
editors, Proceedings of the 2nd International Conference on Computational Science,
Lecture Notes in Computer Science. Springer, (2002). To appear in Future Generation
Computer Systems (2004).

85. Lumsdaine, A. et al.: Matrix Template Library. http://www.osl.iu.edu/
research/mtl, (2004)

86. Massachussetts Institute of Technology: The MIT GCM homepage. http://
mitgcm.org/, (2004)

87. McCorquodale, J., de St. Germain, J., Parker, S., and Johnson, C.: The Uintah parallelism
infrastructure: A performance evaluation on the SGI Origin 2000. In High Performance
Computing 2001, (2001)

88. Microsoft Corporation: Component Object Model specification. http://www.
microsoft.com/com/resources/comdocs.asp, (1999)

89. Microsoft Corporation: Distributed Component Object Model. http://www.
microsoft.com/com/tech/dcom.asp, (2004)

90. Moré, J. J. and Wright, S. J.: Optimization Software Guide. SIAM Publications, Philadel-
phia, (1993)

91. MPI Forum: MPI: a message-passing interface standard. International Journal of Su-
percomputer Applications and High Performance Computing, 8(3/4):159–416, (1994)

92. Najm, H. N., Schefer, R. W., Milne, R. B., Mueller, C. J., Devine, K. D., and Kempka,
S. N.: Numerical and experimental investigation of vortical flow-flame interaction.
SAND Report SAND98-8232, UC-1409, Sandia National Laboratories, Livermore, CA
94551-0969, (1998)

93. Najm, H. N. et al.: CFRFS homepage. http://cfrfs.ca.sandia.gov/, (2003)
94. Nieplocha, J., Harrison, R. J., and Littlefield, R. J.: Global arrays: A non-uniform-

memory-access programming model for high-performance computers. J. Supercom-
puting, 10(2):169, (1996)

95. Norris, B., Balay, S., Benson, S., Freitag, L., Hovland, P., McInnes, L., and Smith, B.:
Parallel components for PDEs and optimization: Some issues and experiences. Parallel
Computing, 28(12):1811–1831, (2002)

96. Norris, B., Ray, J., Armstrong, R., McInnes, L. C., Bernholdt, D. E., Elwasif, W. R.,
Malony, A. D., and Shende, S.: Computational quality of service for scientific compo-
nents. In Proc. of International Symposium on Component-Based Software Engineering
(CBSE7), Edinburgh, Scotland, (2004)

97. Object Management Group: CORBA component model. http://www.omg.org/
technology/documents/formal/components.htm, (2002)

98. Pacific Northwest National Laboratory: Global Array Toolkit homepage. http://
www.emsl.pnl.gov:2080/docs/global/, (2004)

Parallel PDE-Based Simulations Using the CCA 53

99. Palmer, B. and Nieplocha, J.: Efficient algorithms for ghost cell updates on two classes
of MPP architectures. In 14th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems, Cambridge, MA, (2002)

100. Parashar, M. et al.: GrACE homepage. http://www.caip.rutgers.edu/
˜parashar/TASSL/Projects/GrACE/, (2004)

101. Parker, S. G.: A component-based architecture for parallel multi-physics PDE simula-
tion. In Proceedings of the International Conference on Computational Science-Part III,
pages 719–734. Springer-Verlag, (2002)

102. Pérez, C., Priol, T., and Ribes, A.: A parallel CORBA component model for numerical
code coupling. Intl. J. High-Perf. Computing Appl., 17(4), (2003)

103. Peyret, R. and Taylor, T.: Computational Methods for Fluid Flow, chapter 6. Springer
Series in Computational Physics. Springer-Verlag, New York, (1983). Finite-Difference
Solution of the Navier-Stokes Equations

104. Phillip Jones: Parallel Ocean Program (POP) homepage. http://climate.lanl.
gov/Models/POP/, (2004)

105. Poinsot, T., Candel, S., and Trouvé, A.: Applications of direct numerical simulation to
premixed turbulent combustion. Progress in Energy and Combustion Science, 21:531–
576, (1995)

106. Pozo, R.: Template Numerical Toolkit. http://math.nist.gov/tnt, (2004)
107. Radhakrishnan, K. and Hindmarsh, A. C.: Description and use of LSODE, the Liver-

more solver for ordinary differential equations. Technical Report UCRL-ID-113855,
Lawrence Livermore National Laboratory, (1993)

108. Ranganathan, M., Acharya, A., Edjlali, G., Sussman, A., and Saltz, J.: A runtime cou-
pling of data-parallel programs. In Proceedings of the 1996 International Conference
on Supercomputing, Philadelphia, PA, (1996)

109. Ray, J., Allan, B. A., Armstrong, R., and Kohl, J.: Structured mesh demo for super-
computing 2004. http://www.cca-forum.org/˜jaray/SC04/sc04.html,
(2004)

110. Ray, J., Kennedy, C., Lefantzi, S., and Najm, H.: High-order spatial discretizations and
extended stability methods for reacting flows on structured adaptively refined meshes. In
Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute,
March 16-19, 2003, Chicago, Illinois., (2003). Distributed via CD-ROM

111. Reynders, J. V. W., Cummings, J. C., Hinker, P. J., Tholburn, M., S. Banerjee, M. S.,
Karmesin, S., Atlas, S., Keahey, K., and Humphrey, W. F.: POOMA: A FrameWork for
Scientific Computing Applications on Parallel Architectures, chapter 14. MIT Press,
(1996)

112. Roman, E.: Mastering Enterprise JavaBeans. O’Reilly and Associates, (1997)
113. Sarich, J.: A programmer’s guide for providing CCA component interfaces to the Toolkit

for Advanced Optimization. Technical Report ANL/MCS-TM-279, Argonne National
Laboratory, (2004)

114. Smith, B. et al.: TOPS Solver Interface. http://www-unix.mcs.anl.gov/
scidac-tops/tops-solver-interface, (2004)

115. Smith, K., Ray, J., and Allan, B. A.: CVODE component user guidelines. Technical
Report SAND2003-8276, Sandia National Laboratory, (2003)

116. Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comp.
Phys., 161:140–168, (2000)

117. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer.
Anal., 5(3):506–517, (1968)

118. Suarez, M. J. and Takacs, L.: Documentation of the Aries-GEOS dynamical core: Ver-
sion 2. Technical Report TM-1995-104606, NASA, (1995)

54 Lois Curfman McInnes et al.

119. Sulsky, D., Chen, Z., and Schreyer, H. L.: A Particle Method for History Dependent
Materials. Comp . Methods Appl. Mech. Engrg, 118, (1994)

120. Sun, Y., Folwell, N., Li, Z., and Golub, G.: High precision accelerator cavity design
using the parallel eigensolver Omega3P. In Proc. of the 18th Annual Review of Progress
in Applied Computational Electromagnetics ACES 2002, Monterey, CA, (2002)

121. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. ACM
Press, New York, (1999)

122. Talbot, B., Zhou, S., and Higgins, G.: Software engineering support of the third round
of scientific grand challenge investigations–earth system modeling software framework
survey task4 report. Technical Report TM-2001-209992, NASA, (2001)

123. Trease, H.E.and Trease, L.: NWGrid: A multi-dimensional, hybrid, unstructured, paral-
lel mesh generation system. http://www.emsl.pnl.gov/nwgrid, (2000)

124. The Terascale Simulation Tools and Technologies (TSTT) Center. http://www.
tstt-scidac.org, (2004)

125. U. S. Dept. of Energy: SciDAC Initiative homepage. http://www.osti.gov/
scidac/, (2003)

126. University Corporation for Atmospheric Research: The Community Atmosphere Model
(CAM) homepage. http://www.ccsm.ucar.edu/models/atm-cam/, (2004)

127. University of Oregon: TAU: Tuning and analysis utilities. http://www.cs.
uoregon.edu/research/paracomp/tau, (2003)

128. Vajracharya, S., Karmesin, S., Beckman, P., Crotinger, J., Malony, A., Shende, S., Old-
ehoeft, R., and Smith, S.: Smarts: Exploiting temporal locality and parallelism through
vertical execution. In Proceedings of the 13th International Conference on Supercom-
puting (ICS 99), pages 302–310, Rhodes, Greece, (1999). ACM Press

129. Veldhuizen, T. et al.: BLITZ++: Object-oriented scientific computing. http://www.
oonumerics.org/blitz, (2004)

130. Visbal, M. R. and Gaitonde, D. V.: On the use of higher-order finite-difference schemes
on curvilinear and deforming meshes. J. Comp. Phys., 181:155–185, (2002)

131. Wang, Z. and Huang, G. P.: An essentially nonoscillatory high-order Padé-type (ENO-
Padé) scheme. J. Comp. Phys., 177:37–58, (2002)

132. Weather Research and Forecasting Model. http://www.wrf-model.org/,
(2004)

133. Williams, F.: Combustion Theory. Addison-Wesley, New York, 2nd edition, (1985)
134. Wissink, A., Hornung, R., Kohn, S., Smith, S., and Elliott, N.: Large scale parallel struc-

tured AMR calculations using the SAMRAI framework. In Proceedings of the SC01
Conf. High Perf. Network. and Comput, Denver, CO, (2001)

135. Wissink, A., Hysom, D., and Hornung, R.: Enhancing scalability of parallel structured
AMR calculations. In Proceedings of the �4�2��� ACM International Conference on Su-
percomputing (ICS03), pages 336–347, San Francisco, CA, (2003)

136. Wolf, M., Cai, Z., Huang, W., and Schwan, K.: Smart pointers: Personalized scientific
data portals in your hand. In Proceedings of Supercomputing 2002, (2002)

137. Wolf, M., Guetz, A., and Ng, C.-K.: Modeling large accelerator structures with the par-
allel field solver Tau3P. In Proc. of the 18th Annual Review of Progress in Applied
Computational Electromagnetics ACES 2002, Monterey, CA, (2002)

138. Zhang, K., Damevski, K., Venkatachalapathy, V., and Parker, S.: SCIRun2: A CCA
framework for high performance computing. In Proceedings of the 9th International
Workshop on High-Level Parallel Programming Models and Supportive Environments
(HIPS 2004), Santa Fe, NM, (2004). IEEE Press

Parallel PDE-Based Simulations Using the CCA 55

139. Zhou, S., da Silva, A., Womack, B., and Higgins, G.: Prototyping the ESMF using
DOE’s CCA. In NASA Earth Science Technology Conference 2003, College Park,
MD, (2003). http://esto.nasa.gov/conferences/estc2003/papers/
A4P3(Zhou).pdf

140. Zhou, S.: Coupling earth system models: An ESMF-CCA prototype. http://
webserv.gsfc.nasa.gov/ESS/esmf_tasc, (2003)

56 Lois Curfman McInnes et al.

The submitted manuscript has been created in part by the Uni-
versity of Chicago as Operator of Argonne National Labora-
tory (“Argonne”) under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said article to repro-
duce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of
the Government.

