Abstract

We establish new uniqueness results for boundary value problems of
the superlinear Emden-Fowler type, w”(¢) + F(t,u) =0, wu(t)>0, t¢€
(a,b), with either a Dirichlet or Neumann condition at each endpoint.
The first result extends a known criterion to nonlinear terms that may
change sign. The proof uses the theory of differential inequalities, after
changing the independent variable to the quantity w. The second result
deals with nonlinear functions of the form Z ct"uP ¢,¥ > 0. The proof
uses part of a method due to Coffman and employs as an independent
variable the quantity ¢*u for some a > 0. We also look at a special case
F(t,u) = t*(«® + u), not covered by the previous two results. We show
that some of the earlier ideas still apply after we work through several
rather technical estimates, with the help of the symbolic manipulation

software MAPLE.
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1 Introduction

We are interested in boundary value problems for second-order nonlinear ordi-
nary differential equations of the form

u’(t) + F(t,u) =0, wu(t)>0, te(a,b), (1.1)

where —oo < a < b < o0, subject to either a Dirichlet or a Neumann condition
at each of the endpoints a and b. More precisely, we impose one of the three
sets of boundary conditions:

u(a) = u(b) = 0, (BC1)

u'(a) = u(b) = 0, (BC2)
and

u(a) = v'(b) = 0. (BC3)

The third type can be reduced to (BC2) by using a reflection. We shall not
consider the case of two Neumann conditions. We shall refer to the boundary
value problems consisting of (1.1) and one of the above boundary conditions as

(BVP1), (BVP2), and (BVP3), respectively.

The question studied in this paper is the uniqueness of the (positive) solu-
tion, assuming its existence. Recently, there has been considerable interest in
this problem in connection with the study of radially symmetric ground state
solutions of a nonlinear reaction-diffusion equation either in an annulus or out-
side a ball. Symmetry reduces the partial differential equation in question to an
ordinary differential equation of the Lane-Emden type. A well-known change
of variable then transforms it into the Emden-Fowler form. The resulting equa-
tion usually involves a singularity at the origin { = 0. An additional singularity
arises when the domain is unbounded; in this case, ¥ = oo and the boundary
condition at this “endpoint” is replaced by lim;_, o u(?) = 0.

The classical Emden equation is the following special case of (1.1):

n—1
i

u”(t) + u'(t) +uf (t) = 0, (1.2)
where n is the dimension of the Euclidean space in which the reaction-diffusion
equation holds. If solutions that change sign are also considered, the nonlinear
term in (1.2) must be replaced by |u(t)[P~tu(t). The classical Emden-Fowler
equation is obtained from (1.2) and takes the form

u’(t) +t"uP(t) =0, v € (—o0,00),p> 1. (1.3)

Nehari’s work [12] on the equation (1.1) has much influence in later work by Coff-
man [3] [4], Moroney [11], Wong [17], and others. Wong’s excellent survey [16]



contains known results for these equations up to 1975. Much development has
occurred since then. The paper of Brezis and Nirenberg [2] led to a surge of
activity on equations with nonlinear terms of the form u? +u?, for various values
of p and q.

In this paper, we look at the uniqueness problem, assuming existence of
the pertinent solution. In general, it is hard to establish uniqueness, even in
the regular case b < co. We are not concerned here with “global” uniqueness,
as 18 the case for most classical results such as those given in the monograph
by Bernfeld and Lakshmikantham [1], but with uniqueness within the class of
positive solutions. Many of the equations we study admit the trivial solution as
well as infinitely many other solutions that change sign.

The nonlinear function F : [a,b] x [0,00) — R is said to be superlinear
(sublinear) if for each fixed ¢ € [a, b],

F(tu

bl

is nondecreasing (nonincreasing) in u € (0,00) but not a
u

constant in any interval (0, ug).

The nonconstancy requirement is used to exclude functions that behave like a
linear function for small u. Prototypes of F(¢,u) are q(¢)uf with ¢(¢) > 0. Tt
is superlinear when p > 1 and sublinear when p < 1. We do not assume that
F(t,u) is positive, as in some previous work. Thus F'(¢, u) = ¢(t)(u? — u) is, by
our definition, superlinear for p > 1 and ¢(¢) > 0.

For sublinear equations, uniqueness theorems have been obtained by Picard
and Urysohn; see [7] for a recent treatment. For equations that behaves sublin-
early for large values of u, there is the result of Peletier and Serrin [15], later
improved by Kaper and Kwong [5].

The corresponding theory for superlinear equations is richer because unique-
ness no longer holds unless some rather technical restrictions are imposed on
the coefficients. The most tantalizing fact is that numerical experiments usually
show positive results under much less stringent conditions than required by an-
alytic proofs. In the rest of this paper, we are concerned only with superlinear
equations. We mention that the results in [9] apply to some equations that are
neither superlinear nor sublinear.

Moroney [11] first showed that (BVP2) has a unique solution if F'(¢,u) is
positive and nonincreasing in ¢ for fixed u. Coffman [4] gave a different proof
and complemented the result by showing that the same is true if F(¢,u) is
positive and nondecreasing in ¢ but (b—¢)?F (¢, u) is nonincreasing in t. Kwong
[7] showed that the monotonicity of F'(¢, ) in ¢ is not needed. In Section 2 we
improve this result further to allow F'(¢,u) to change sign. Coffman [3] also



established uniqueness for (BVP1) with the classical Emden-Fowler equations
(1.3). Ni [13] studied equation (1.1) in the form

n—1
i

u”(t) + uw'(t) + flu) =0 (1.4)
and extended Coffman’s results in many directions. The effort was continued
by Ni and Nussbaum [14]. Among the many interesting results they obtained
are a uniqueness theorem for functions of the form f(u) = «? + eu? with p,¢ <

n+2

9 and a nonuniqueness theorem for the same functions with ¢ < 9 <

n
p. Kwong [7] noticed that the method first used by Coffman for establishing
uniqueness results can be simplified by using Sturm comparison arguments.

For the singular or noncompact case, Coffman [4] obtained uniqueness for
(BVP2) for the equation

u”(t) + %u/(t) +u?(t)—u=0, t€(a,0), a>0. (1.5)

McLeod and Serrin [10] extended the result to a wide range of n and p. Kwong
[6] completed the study by confirming uniqueness for all admissible solution of
n and p. The results were further extended by Kwong and Zhang [9] recently.

In this paper we explore another avenue for obtaining uniqueness results.
Let us consider (BVP2). Suppose that u1(¢) and us(t) are two solutions of the
boundary value problem. It is well known that they must intersect at least once
in [a, b]. Uniqueness follows if we can show that they intersect exactly once. The
main idea is to rewrite the original equation using u(t) or some related function
as the independent variable (with an appropriate new dependent variable) and
then use comparison techniques of differential inequalities to show that beyond
the first point of intersection of u;(¢) and uz(¢), some function of «}(t) remains
always larger than the corresponding function of w4(¢). This implies that the
two solutions cannot intersect again. In Section 2 we illustrate this approach
by extending one of Coffman’s theorems as mentioned above. Some interesting
corollaries are given. We also show how new criteria may be obtained from
old ones by using the method of change of variables. In Section 3 we give
some further application of our method, dealing with reaction terms of the form
F(t,u) = > t7"uP. In Section 4, we study (BVP1) of one particular equation
u” 4+ t*(u® + u) = 0, which is covered neither by known results nor by those
in earlier sections. We show how an elaboration of our method still leads to a
positive result. An obvious conjecture is the validity of a more general result.

The proofs of the theorems in Sections 3 and 4 require very technical com-
putation done with the help of the symbolic manipulation software MAPLE.



2 Some General Uniqueness Results

We first give a uniqueness criterion for (BVP2) which extends earlier results of

Coffman [4] and Kwong [T7].

The condition we impose on F'(¢,u) is the following:

[F1] The function F'(¢,u) is Lipschitz continuous in u for fixed ¢ and is super-
linear. There exists a positive concave function ¢ : (a,b) — (0,00) such
that ¢ F'(¢,u) is nonincreasing in ¢ for each fixed u .

In the Coffman-Kwong theorem, ¢(t) is (b — t), but there is an additional
positivity assumption on F'(¢,u), under which [F1] does not offer any more
than the above particular choice of ¢(¢). The situation, however, is different if
F(t,u) is allowed to change sign. Simple examples of functions that satisfy [F1]

3 _
Q{Z(Zf))’ with any choice of ¢(¢), such as I)Z—f—ut Note that this

function satisfies [F1] with ¢(¢) = v/b+ 1 — ¢ but not with ¢(¢) = b —¢.

are given by

Lipschitz continuity on F'(u,t) is assumed to ensure uniqueness for initial
value problems. The requirement can be slightly relaxed either by refining the
arguments or by using a limiting process.

Theorem 1 Suppose that F(t,u) satisfies [F1]. Then (BVP2) has a unique
solution, and il is sirictly decreasing in [a,b].

Proof. The monotonicity of w(t) in (a,b) is obvious if F(¢,u) is nonnegative.
Once we know monotonicity, strict monotonicity is a consequence of uniqueness
of initial value problems. Indeed, if there is a point ¢ € (a, b) at which «/(¢) = 0,
it must also be a point of inflection. Then w’(¢) = —F (¢, u(c)) = 0; but now
we have the contradiction that u(t) = u(c) is the only solution that satisfies the
initial conditions at ¢ = ¢. Let us first prove the uniqueness of u(?) assuming
this monotonicity property.

Suppose that there are two distinct solutions u;(¢) and us(#) of the boundary
value problem. Without loss of generality we may assume that uq(a) > us(a). Tt
is well known that the two solutions must intersect at least once in (a, b). Indeed,
if this is not true, then uy(¢) > us(t) in (a,b), implying by superlinearity that
F(t,ui()/ui(t) > F(t,ua(t))/ua(t). We deduce from the Sturm comparison
theorem that u(t) oscillates faster than us(?) in (a,b), but this is obviously
false.

Let ¢ € (a,b) be the first point of intersection of ui(¢) and wua(¢). Then
ui(e) = u2(e) = B and wj(e) < uh(e) < 0. Let d < b be the next point of



intersection, which exists since the two solutions intersect again at b. Denote
u1(d) = ua2(d) = 4. Now we consider the solution curves as functions of their
abscissa u € (v, 8). Define R;(u) = ¢(t)ui(t), i = 1,2, as a function of u instead
of t. We have

Ro(y) < Ra(7) (2.1)
and

Ra(B) > Ra () (22)
By continuity, there exists a point « € (v, 3) at which

Ro(a) = Ry(a). (2.3)

In the interval [«, £, the functions R;(u) satisfy the differential equations
dR;(u) dR;

dui
du dt t=ty(u) dt t=t,(u)

P(t)ui () + ¢'(H)ui(t)
u;(t) t=t;(u)

= o) - L,

where t = t;(u) denotes the inverse function corresponding to u = w;(¢). It is
easy to see from a simple picture that ¢1(u) < ¢2(u) for v € (o, 5). Tt follows
from the monotonicity of F(¢, u) that the function Ra(u) satisfies in [, 8] the
differential inequality

dRZ(U)

oW () F(t(u), u)
du ’

Rz(u)

< ¢'(t(w))

(2.4)

Given the initial comparison condition (2.3), we can thereby conclude, using the
theory of differential inequalities, that Ra(u) < Rj(u), a contradiction to (2.2).

Let us complete the proof of the theorem by showing that a solution to
the boundary value problem must be nonincreasing. Let ¢ be the last local
maximum of the solution u(t) and denote § = wu(c). Then in [e,b], u(t) is
nonincreasing. Let d be the last local minimum before ¢, and denote o = u(d).
Then in [d, ], u(t) is nondecreasing. Now switch to using u € [«, 4] as the
independent variable as before. Define Ry(u) = —¢(¢1(u))u'(#1(w)) and Ra(u) =
é(ta(u))u (ta(u)), where t1(u) is the inverse function of u(t) in [d, ¢] and ¢3(u)
the inverse of u(t) in [e, b]. Obviously t2(w) > ¢1(u). The functions R;(u) satisfy
the same differential equation and differential inequality, respectively. From the
strict initial comparison condition Ra(e) < Ry(«) = 0 follows the contradiction

Ra(B) < Ra(B3). 1



In the proof of Theorem 1, we have actually shown the uniqueness of a
nonincreasing solution to (1.1) having prescribed boundary values. We state
this more explicitly below.

Theorem 2 Suppose that [F1] is satisfied. Let py > ps > 0 be two given real
values. There is at most one nonincreasing solution of (1.1) on [a,b] satisfying
the boundary conditions

u(a) = p1,  u(b) = po. (2.5)
Furthermore, let wi(t) and wa(t) be solutions of (1.1) on [a,b] satisfying
wi(a) = u(a) = ws(a), (2.6)
and
w)(a) < u(a) < wha) < 0. (2.7)

Let [a, ¢] be the largest interval in which wy(t) > pa. Then wy(t) is nonincreasing
in [a, ],

wi(t) < u(t) forall t €(a,d, (2.8)

and

wa(t) > u(t) for all t € (a,b]. (2.9)

Proof. The proof of the first part of the theorem is precisely that part in the
proof of Theorem 1 where we showed that wi(t) and wus(t) cannot have two
intersection points ¢ and d.

The comparison assertion between wi(t) and u(¢) in [a, ¢] is a consequence
of the first part of the theorem once we know that wi(¢) is nonincreasing in
[a,c]. Indeed, if w1 (7) = u(r) for some 7 € [a, c|, we arrive at the contradiction
that (1.1) has two distinct monotone solutions satisfying the same boundary
conditions at @ and 7. So let us suppose that wi(?) is not nonincreasing in
[a,c]. Then there is a first point d € [a,c] at which wi(d) = 0. In [a,d],
wi(t) is nonincreasing. It therefore cannot intersect u(?) in [a,d], again by
the first part of the theorem. Denote o« = wy(d). Within the horizontal strip
a < u < pq, the graph of wy(t) lies to the left of that of u(t). We can rewrite
(1.1) using u in [o, 1] as the independent variable, and Ri(u) = ¢(¢)w'(¢) and
Ra(u) = ¢(t)w)(t) as we did in the proof of Theorem 1. The inequalities

Rl(Oé) < Rz(Oé) =0 and Rl(/il) > Rz(/iz) (210)
yield a contradiction just as before.

Finally, suppose that the comparison conclusion between wa(t) and wu(t) is
false. Let 7 be the first point of intersection of the two solution curves. Just as



in the proof of Theorem 1, we can show that ws(¢) must be monotone in the
interval [a, 7]. The first part of the theorem now leads to a contradiction. 1

Note that Theorem 2 does not guarantee the existence of a solution satis-
fying the given boundary conditions, nor does it rule out the possibility of a
second solution that is nonmonotone. Also, Theorem 2 asserts only a compar-
ison between wi(?) and w(¢) up to the point ¢. Beyond ¢, wq(t) at first dips
under the height gs, but at a later point, wy(?) may bounce back to overtake
u(t). On the other hand, wa(t) lies above u(¢) in the entire interval [a, b].

An analog of Theorem 2 concerning solutions having the same terminal val-
ues at the right endpoint b can easily be obtained as a corollary. It will be used
later in the study of (BVP1).

Corollary 1 Suppose that [F1] is satisfied and py > po > 0 are {wo given
real values. Let u(t) be the unique solution of (1.1) on [a,b] satisfying (2.5), as
asserted in Theorem 2. Let vi(t) and va(t) be the solutions of (1.1) on [a,b]
satisfying

v1(b) = u(b) = va(b), (2.11)
and
0> vi(b) > u'(b) > vh(b). (2.12)
Then
vi(t) < u(t) for allt € [a,b), (2.13)
and
max{va(t) : t € [a,b]} > pa. (2.14)

Let us now turn our attention to (BVP1). We need a complementary con-
dition on F'(t, u):

[F2] There exists a positive concave function ¢ : (a,b) — (0,00) such that
Y2 F(t,u) is nondecreasing in ¢ for each fixed u.

Theorem 3 Suppose that F(t,u) satisfies [F1] and [F1]. Then (BVP1) has «a
unique solution, and it has a unigue mazimum in [a,b].

Proof. The fact that any solution of (BVP1) can only have one maximum in
[a,b] is a consequence of the monotonicity of any solution of (BVP2).

Suppose that there are two distinct solutions () and us(t). By superlin-
earity, they must intersect at least once in (a, b). Between two consecutive points



of intersection (including @ and ), one of the solutions cannot be monotone (be-
cause of Theorem 2), and it must therefore attain its unique maximum between
the two points. It follows that the two solutions cannot have more than one other
intersection point besides @ and b. Whichg we may assume that u}(b) > u5(b). Tt
follows that at the other endpoint a, «}(a) < u4(a). Let ¢ be the point at which
u1(t) attains its maximum. By Corollary 1, max{usa(?) : ¢ € [¢,b]} > wui(c).
Hence, max {ua(t) : t € [a,b]} > max{ui(?) : t € [a,b]}. Let ¢/ be the point at
which us(?) attains its maximum. By applying Corollary 1 to a reflection of
the interval [a, ¢'], we obtain exactly the opposite inequality between the two
maxima. This contradiction completes the proof of the theorem. §

Examining the above proof more closely reveals that the full strength of
[F1] and [F2] is not actually needed. If we now have an a priori estimate of
where the maximum of a solution of (BVP1) is located, say within a subinterval
[¢/, ] C [a, b], then all we need is the monotonicity of ¢?F'(¢,u) and ¥? F'(¢, u) in,
respectively, [¢/, 5] and [a, c]. We give below an application of this observation.
In the rest of this section, we consider only nonnegative C'! functions F(t,u)
for the sake of simplicity. With due care, most of the results can be extended
to the more general situation.

Theorem 4 Suppose that F(t,u) is Ct, superlinear, and nonnegative. If for
every fived u, F(t,u) is nondecreasing in t and satisfies the inequality

Ft(t,u) 2
1’

Fiw) S (2.15)

where Iy denotes the partial derivative of F' with respect to t, then (BVP1) has
a unique solution for all0 < a < b.

Proof. A simple comparison argument using the monotonicity of F(¢, ) with
respect to ¢ shows that a solution of (BVP1) must be skewed towards the end-
point b. Hence, the maximum of the solution must be attained within the

interval [(a—+ b)/2,b] C [6/2,b].

Next, it is easy to verify that (2.15) implies that (b —¢)2F'(¢, u) cannot have
a critical point in (b/2,b]. In other words, (b — ¢)?F(¢,u) is nonincreasing in
[b/2,b], and so the proof of Theorem 3 works to give uniqueness. 1

Corollary 2 Suppose that F(t,u) = q(t)f(u) is C, superlinear, and nonneg-
ative. If q(t) is nondecreasing and 2tq'(t) < q(t), then (BVP1) has a unique
solution for all 0 < a < b.



The hypothesis on ¢(t) in the lemma is satisfied in particular if ¢(¢) is a
positive linear combination of nonnegative powers of ¢ up to the square or,
more generally, if

qwzﬂﬂwm, (2.16)

for some nonnegative Borel measure du(y). As a simple example, we can take

dp(y) = 1 to obtain ¢(t) = (t* — 1)/ In(t).

Note that uniqueness is valid for a similar class of coefficients,

q(t) = /02 (), (2.17)

Y

this time because the hypotheses of Theorem 3 are satisfied.

In the rest of this section as well as in the next, many of the criteria are
established for nonlinear functions of the form

F(t,u) =Y etV (2.18)

where ¢; > 0, with given conditions relating p; and ~;. Often the results can
be extended to the case in which the finite sum is replaced with an integral
containing a nonnegative Borel measure. This can be done by either modifying
the proof or by using the following limiting argument. Let S denote the set of
pairs (p,7) that satisfy the condition imposed on (p;,y;) by the criterion, and
let du be a nonnegative Borel measure defined on S. In general, S is a two-
dimensional subset of the plane. Sometimes the result involves a fixed value of
p or 7; then the set S is usually an interval. The nonlinear function generated
by dp over S is defined to be

F(t,u)= p"u?; 8) = / P dp. (2.19)
5

The function F'(¢,u) can be approximated by a sequence of functions each in
the form of a finite sum. Let b;(3) denote the first zero of the solution with the
initial conditions u(a) = 0,u/(a) = 3 for the i*" function in this sequence. By
continuity, the sequence b; converges uniformly to the corresponding first-zero
function for the limiting nonlinear function F'(¢, ). By the uniqueness results on
boundary value problems for nonlinear terms in the form a finite sum, each b;(5)
is a strictly decreasing function of 8. Hence b(3) is a decreasing (not necessarily
strict) function. Strict monotonicity can be established by observing that the
possibility of having an interval of values of 8 for which 6(3) is a constant is
ruled out by superlinearity.

10



In Section 4 we show how the idea used in the proof of Theorem 4 can be

further exploited. In the meantime, with the help of some well-known trans-

formations, we can increase the versatility of our criteria. We mention only a

couple of examples.

Theorem 5 Suppose that F(t,u) is Ct, superlinear, and nonnegative and that

for each fized v either

tF(t,tv) is nonincreasing in 1

and
2 F(t,tv) is nondecreasing in t,
or
t*F(t,tv) is nonincreasing in t
and 5
o [PF(t, tv)] < 20°F (1, tv).

Then (BVP1) has a unique solution for all 0 < a < b.

Proof. The change of variables

transforms (1.1) into

dv 1 1w
I (A )
d52+53 (5’5)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

Theorem 3 and Corollary 2 can now be applied to the two sets of conditions,

respectively. [

Corollary 3 Suppose that
F(t,u) = q(t)u?,
where q(t) satisfies either
tP1q(t) is nonincreasing,

and
t734(t) is nondecreasing

or
t734(t) is nonincreasing

11

(2.26)

(2.27)

(2.28)

(2.29)



and
—tq'(t) < (p+5)q(?). (2.30)

Then (BVP1) has a unique solution for all 0 < a < b. In particular, the
hypotheses on q(t) are satisfied if

g(t) = p(t™", p+ 1,p+3]) (2.31)

g(t) = p(t™", [p+3,p+5]) (2.32)

for some nonnegative Borel measure du(y).

Corollary 4 Suppose that
uPi
where
i >0, and p;+1<vy <p;+3. (2.34)
Then (BVP1) has a unique solution for all 0 < a < b.

Ni [13] showed that for (BVP1) and (BVP2) (1.4) has a unique solution if
f(u) >0, n >3, and

() = uf(w). (2.35)
An alternative proof was given in [7]. We now give a third proof and an exten-
sion. The change of variables u(t) = v(¢)/t"~% and s = ¢"~2 transforms (1.4)
to

! o (2). (2.36)

where k = For this equation, [F1] is satisfied with ¢(¢) = 1, from
n—
superlinearity. With the choice of ¢(t) = ¢, we see that [F2] becomes

sk f (E) is increasing in s. (2.37)
s

On differentiating this expression with respect to s and then substituting v/s =
u, we see that this condition is equivalent to Ni’s criterion.

It is now easy to see how the method can be extended to cover time-
dependent reaction terms.

12



Theorem 6 Suppose that f(t,u) is Ct, superlinear, and nonnegative and that
for each fized v,

sE=2f (sk/", g) is nonincreasing in s (2.38)
s
and v
sEf (sk/", —) is nondecreasing in s, (2.39)
s
where k = LQ (more generally, whenever the function in (2.38) satisfies

any uniqueness criterion applicable to F(t,u) of (1.1)). Then (BVP1) for the

equation
n—1

t

(1) + ' (6) + f(t,u) =0 (2.40)

has a unique solution.

When f(t, u) is a sum of products of powers of ¢ and u, we have the following
result.

Corollary 5 Letn > 2, ¢; > 0, 3 and p; (i = 1,---,N) be given constants.
There exists a unique solution to (BVP1) for

u”(t) + nT_lu/(t) + if;t%u”’ =0, (2.41)
of etther, for each i,
max{l,m—Q}SpiS n+ 7 (2.42)
n—32 n—32
or, for each i,
max{l, Zt’;} <pi < 7::’; 19 (2.43)

Proof. The assumption that p; > 1 1s needed to ensure that the equation is
superlinear. The second set of conditions implies that the transformed equation
satisfies the hypotheses of Corollary 2. 1

Specializations to cases where all the v; or p; are equal can be obtained as
before.

13



3 F(t,u)=Yct'u

The techniques we use in this section are most suited to handle functions of the
form F(t,u) = 5 ¢;t"uf, with 9; > 0. Extensions to more general functions
appear plausible. In order not to obscure the main ideas with too much technical
detail, we first illustrate how the method works on a special case,

u’(t) + 1 (WP (t) + ut(t)) = 0. (3.1)

Using results from Section 2, we already know that in this case, (BVP1) has a
unique solution if —2 < y < 2. We wish to extend this range. For functions with
only one term, namely F(¢,u) = t7u?, it is known that (BVP1) has a unique
solution for any value of 5 (see [3]). There is, of course, no reason to believe that
such a nice property is preserved when the function is perturbed by a different
power of u. We show that at least when the perturbing power is close enough
to p, and when v > 0, uniqueness prevails. The argument used is a combination
of Coffman’s method and a new choice of the independent variable.

The solution u(t) for (BVP1) is a member of the family of solutions u(t; §)
of an initial value problem for (3.1), in which the initial values at { = a are
assigned as follows:

u(a; 8) =0, u'(a;8) = 0. (3.2)

When we omit the parameter £ in the notation u(¢; 3), we are referring to the
original solution of our (BVP1).

According to Coffman’s method (see Kwong [7] for a survey), uniqueness for
(BVP1) follows if we can show that

w(b) = 6ug;6) _

The function w(t) satisfies the variational equation, obtained by differentiating
(3.1) with respect to 3,

<0. (3.3)

w”(t) + 17 (5ut(t) + 4u’(t))w(t) = 0, (3.4)

and the initial condition

w(a) = 0. (3.5)

The assertion (3.3) is usually derived from a study of the oscillatory behavior of
w(t) as a solution of the second-order “linear” differential equation (3.4); indeed,
if we can prove that w(¢) has exactly one zero in (a,b], then (3.3) follows.

The function z(t) = (24 v)u(t)/4 + tu'(t) satisfies the differential inequality

() + 17 (5ut(t) + 4uP(1))z(t) = —(2 + v)t u(t)/4 < 0. (3.6)
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Near a, z(t) is positive. Let ¢ > a be the first zero of z(¢). According to Sturm’s
comparison theorem, the function w(t) oscillates more slowly than the function
z(t) in [a,c]. Thus the first zero of w(?) must be larger than e¢. In a right
neighborhood of ¢, z(t) is negative. At this point, we do not know whether z(¢)
will remain negative in the rest of the interval, [¢,b]. Let d > ¢ be either the
next zero of z(t) or b if z(¢) does not have another zero.

Consider an auxiliary function W (¢), which is the solution of (3.4) satisfying,
at t = c,

W(e)=0,W'(c)=—1. (3.7)

Even though z(¢) satisfies the same differential inequalities in [c, d] as it does in
[a,c], the sign of z(¢) in these intervals determines the speed of its oscillation
relative to that of the solution of the corresponding differential equation. In
the interval [e, d], W(t) oscillates faster than z(¢). Thus, if d is a zero of z(1),
W (t) must have a zero within [e, d], and W (¢) must take negative values at some
points in [¢,d]. Let us assume we can prove that this is impossible. Then, as a
consequence, d cannot be a zero of z(t), d = b, and T (¢) remains nonnegative
in the entire interval [e, b]. Since w(?) and W (¢) satisfy the same second-order
linear differential equation, their zeros must separate each other, by Sturm’s
separation theorem. We already know that w(?) has a zero in (¢, b]. Tt cannot
have another zero, lest W(¢) have one between these two zeros; (3.3) is now
proved.

It remains to establish our claim that W(¢) cannot be negative in [¢,d].
Suppose the contrary; so W(r) < 0 for some 7 € [¢,d]. Just as w(t) can be
interpreted as the rate of change of u(t;8) with respect to the initial slope 3,
W () can be interpreted as the rate of change of u(¢; ) with respect to the slope
7 at the point ¢, where u(¢; ) now stands for the family of solutions of the initial
value problem

u(e;n) = u(e),  u'(e;n) =n. (3.8)

The inequality W(7) < 0 means that there exists a solution of (3.1) that inter-
sects u(t) at e, having a slightly larger slope than u(t) at ¢ (so it stays above
u(t) in a right neighborhood of ¢), but is below u(?) at ¢t = 7. By continuity,
the two solutions must intersect again before ¢ = 7. Since u(t) < 0 in (a, b],
we can assume, by choosing the slope of u(¢;7) at ¢ sufficiently close to that of
u(t), that the second solution is also decreasing in [e, 7]. We now show that this
leads to a contradiction.

Let @ = (24 v)/4. Since (t%u(t)) = t*71z(t) < 0 in (¢, d), t%u(t) is
decreasing in the interval. We can rewrite the equation in [¢, d] using v = t*u(t)
as the new independent variable and Ry(v) = «/(t) and Ra(v) = «/(¢;n) as the
dependent variables. As before, we obtain the differential equation for R;(v),

using the relation dR;/dv = (dR;/dt)/(dv/dt). In the following, we list the
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equation and suppress the subscript ¢ = 1, 2.

dR 7 (u® + ut
dR __ 0+ ul) (3.9)
dv tou’ + at*~ly
After substituting u = v/t{* and v’ = R, we have the equation
dR 4(v5 + %)
— =G(v, R;t) = — . 3.10
7 = O R = e e R) (3.10)

If we can show that G(v, R;t), the righthand side of (3.10), is nonincreasing in
t for fixed v and R, then as in the proof of Theorem 1, this implies that the
two solutions u(t) and u(¢, ) cannot intersect beyond the point ¢ = ¢, giving us
the desired contradiction. The monotonicity G(v, R;t) is, however, not obvious.
The following argument, though conceptually simple, involves a fair amount of
computation, which we carried out with the help of the symbolic manipulation
software MAPLE. We shall give more details on the computer aspect of our
work in the Appendix.

Differentiating G/(v, R;t) with respect to ¢ gives a fraction, the numerator of
which, aside from factors of powers of v and t, is

(124 8y + 7)o + (8 + 47)vt® + (48 + 8y)vRt'T™ + (40 + 4y) Rt' T2, (3.11)

The denominator of the fraction is the square of the denominator of the original
fraction and so is positive. It thus remains to show that the expression (3.11)
is nonpositive. This fact is not readily obvious; although the last two terms
are nonpositive (recall that R = «' < 0), the first two are not. Since v(?) is
decreasing in [c, 7], we have o/(¢) < 0, implying that

t4(2u + yu + 4tu') < 0. (3.12)

Let us denote this function by —P(t), with P(¢) > 0, and replace the variables
u and u’ by the new variables v and R. We obtain

—P(t)=2v+yv+ 4R <0, (3.13)

Solving this inequality for R and then substituting the answer into (3.11), we
have

— (124 8y + vH)v? — (12 + 27)Pv — (12 4 8y + 4% )ut® — (10 + ) Pt*, (3.14)
which is now obviously nonpositive.

One may wonder why we had the confidence to carry on the complicated
computation, as there was very little indication of possible success at the point
when (3.10) was derived. In fact, our initial investigation used chosen values
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of 7, thus rendering the computation less formidable. Besides, the availability
of a symbolic algebra software makes it easy to carry out experimentations; a
simple program mechanizes the process. After a number of successful trials with
specific values of 7, we took a general . Then we went on to the general case
summarized by the following theorem.

Theorem 7 Suppose that

F(tu)=Y t"u, (3.15)

with
vi > —2, and p;>1. (3.16)
Denote L g
oz:mim{;z_l}. (3.17)
If for all 1,
b > 73 _1, (3.18)

then (BVP1) has a unique solution for all 0 < a < b.

Proof. The basic steps in the proof of the general case are identical to those of
the special case discussed above. The only difference is that the computation
involved is many times more complicated. With the help of MAPLE, however,
this is not a major obstacle. Only the final simplified result of each compu-
tational step will be presented in this proof. The MAPLE program used to
produce the result will be discussed in the Appendix.

The function w(t), as defined in (3.3), satisfies the differential equation

Llw(t)] = w"() +

Zpit%up’_l(t)] w(t) = 0. (3.19)

The quantity « is chosen as in (3.17) so that the function z(¢) = au(t) + tu'(t)
satisfies the differential inequality
L[z] <0. (3.20)

The same arguments using the auxiliary function W(t) carry over without
change. Using R = «/(¢) and v = t*u as dependent and independent variables,
we obtain a differential equation of the form (3.10). All that remains is to show
that the righthand side of (3.10), namely, G(v, R;t), is nonincreasing in ¢ for
fixed v and R. Note that each term in the expression for F'(t,u) gives rise to
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a term of an identical form in the numerator of G(v, R;t). In the subsequent
computation, each of these can be handled independently of the others; and
since each term has the same form, we have to keep track of only one typical
term.

As before, each term 1s differentiated with respect to ¢, and the numerator of
the resulting fraction is treated with a substitution by using R from an inequality
of the form (3.13). The final expression, analogous to (3.14), can be separated
into two parts; the first one contains the factor P, and the other does not. After
we discard factors that are powers of ¢ and v (the actual exponents depend on
the term), what remains of the first part is the same for all terms and has the
form

=2y +2)(p+v+1), (3.21)

where v and p pertain to the particular term for which « is defined. The other
part, again after we discard powers of ¢ and v, assumes the form

— (i +7 —vip+ v+ 2pi +2). (3.22)

Since the first part is obviously nonpositive, uniqueness follows when the expres-
sion in (3.22) is nonpositive. Tt is easy to see that this is equivalent to requiring

that (3.18) holds. 1

A few special cases of the theorem are given below as corollaries. As shown
in Section 2, uniqueness criteria of the form in this paper can be stated more
generally for functions induced by Borel measures. We recall the notation in-

troduced in (2.19).

Corollary 6 Let p > 1 and du(p) be a nonnegative Borel measure on [p,p+2].
If
f(u) = p(u?, Ip,p+2]), (3.23)

then (BVP1) for the differential equation
u (@) + 7 f(u) =0, 0<a<t<b (3.24)

has a unique solution for ally > =2, or v < —(p+3).

Proof. Let us first look at the case when v > 0. We apply Theorem 7 with
all the v; in (3.15) equal to v and p < p; < p+ 2. In this case, the number «
defined in (3.17) is y/(p + 1). The inequality (3.18) can be verified easily, and
so the conclusion of Theorem 7 holds.

In the second case, we apply Theorem 7 first to the nonlinear function F'(¢, )
in which v, = v —p; —3 and p < p; < p+ 2. The change of variable argument
used to prove Theorem b (see (2.25)) then gives the desired conclusion. 1
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This is an extension of the well-known fact that uniqueness holds for F'(¢,u) =
tYuP, for all v and p > 1. Note, however, that Corollary 6 leaves a gap in the
admissible values of 7. It is interesting to find out what really happens if
—-p+3)<y< -2

In case the function f(u) is generated by a wider range of powers of u,
Theorem 7 no longer gives uniqueness for all large 7. Indeed, if ¢ > p+ 2 and
flu) = p(u’, [p, q]), then uniqueness holds for (3.24) if

2 2
Lgca g Hot2)

< (3.25)

On the other hand, the change of variable argument fails to provide any result
for negative values of ~.

By fixing the exponent of u we obtain the following corollary.

Corollary 7 Let F(t,u) = q(t)uP. Let § > 0 be any positive number. If
1)(6+2
q(t) = p (ﬂ, [6, AR CRR)) 1+ )D , (3.26)
p—

or

Q(t):ﬂ<t_7,[5-1-]7-1-3,@—1—;)_#—1—])—1—3]), (3.27)

then (BVP1) has a unique solution.
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4 A Special Case F(t,u) = t*(u’ + u)

Ample numerical evidence indicates that established uniqueness criteria, such
as those derived in previous sections, are not very sharp. This is typical of
nonlinear analysis.

In this section we consider uniqueness for (BVP1) of an equation that is not
covered by any of the criteria known so far. The method used is an elaboration
of ideas used earlier in Section 2. The technicalities are so involved that we
believe it is easier to present the details only for a special case. Obviously the
method has wider applications.

We wish to show that for any 0 < a < b, (BVP1) of
' 41w’ +u) =0 on (a,b) (4.1)
has only one solution.

Suppose there are two solutions, u1(t) and wua(?), with vf(a) > ub(a). They
must intersect at least once before ¢t = b. Let the first intersection be at ¢ = ¢.
As usual, we can easily show that w(t) = u1(¢) — ua(?) oscillates more slowly
than z(¢) = 3u1(t)/2+tu}(t), by comparing the second-order “linear” equations
that they satisfy. Hence, the point ¢ must be larger than the first zero of z(t),
namely, the first point 7 at which 74 (7)/u1(r) = —3/2. From the differential
equation satisfied by z(t), we see that z(¢) cannot be tangent to the #-axis.
Hence the point 7 depends continuously on the initial conditions as well as on
the left endpoint a.

Suppose now that we can assert

2b
> —. 4.2
r> 2 (4.2
Then it is easy to see that the function (b—¢)%*¢* is nonincreasing in the interval
[r,b], which contains [¢,b]. In other words, condition [F1] is satisfied with
é(t) = (b —t). The existence of two distinct nonincreasing solutions u;(¢) and
ua2(t) on [¢,b] would have contradicted Theorem 2.

Hence it remains to establish inequality (4.2) to verify uniqueness. Since we
no longer need to mention the solution wua(t), we will drop the subscript when
referring to wy (). Alternatively, we may view (4.2) as a fact to be established
for any solution that vanishes at @ and b.

Note that the solutions of (4.1) oscillates faster in (a,b) than those of the
linear equation

U’ +t*U = 0. (4.3)
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Hence u(t) < U(t) in (a,b) if u(a) = U(a) = 0 and u'(a) = U’'(a) > 0. This

implies in particular that b < co.

We suppose now that (4.2) is not satisfied. Let us pull the left endpoint a
back towards the origin, while keeping the initial slope fixed. We know that
both 7 and b will change continuously. We have one of two possibilities. Either
there is a point a > 0 at which (4.2) is barely violated, for which case we have
T =2b/3, or when a = 0, we still have 7 < 26/3.

In the latter case, let us start with the solution at @ = 0 and deform it by
decreasing the initial slope «/(0). If the initial slope is sufficiently small, then
«'(t) remains small in (0,56); «'(¢) is smaller than U’(¢) . The nonlinear term
uS(t) in (4.1) is relatively small in comparison with the linear term. It follows
that U(t) gives a very good approximation for u(¢). It can be verified easily, for
example numerically, that for U(¢) the inequality corresponding to (4.2) holds.
Thus (4.2) holds for u(?) if «/(0) is sufficiently small. From our assumption that
(4.2) is not satisfied originally, we must be able to get a value at which (4.2) is
barely violated, so that

= 2b/3. (1.4)

Hence in all cases, we have a suitable solution in (a,b) for some a > 0,
such that (4.4) holds. In the rest of the proof we concentrate on this particular
solution and claim that a contradiction ensues.

Before starting the complicated computation, we scale the solution both
horizontally and vertically. Scaling is done for convenience rather than necessity.
The horizontal scaling is chosen so as to transform 7 into 1 and b into 3/2. A
constant factor is then introduced into the nonlinear term. The vertical scaling
is used to retain a unit coefficient for the term ¢*u®. By abusing the notation,
we denote the scaled solution again by u(¢). The differential equation it satisfies
is now

u(t) + PP (t) + Mtu(t) =0, on (a,3/2), (4.5)

where A > 0 i1s some number determined by the scaling. By the definition of
the point 7,

Z/((ll)) = —%. (4.6)
Let us denote
u(l) = k. (4.7)
Then
u’(l):—%{. (4.8)
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We first derive an upper bound on & By integrating (4.5) twice, first over
[1,s],s < 3/2 and then over [1,3/2], we obtain the identity

3/2
u(l) = — +/1 (3/2 — t)t* (WP(t) + Au(t)) dt. (4.9)

Making use of (4.7) and (4.8), we have

3/2
K= 4/ (3/2 = t)t* (W (1) + Au(t)) dt. (4.10)

Concavity implies that in the interval [1,3/2], u(t) > (3 — 2t)x. Substituting
this inequality into (4.10) and making a change of variable in the integral, we
obtain

1/2
1Z4<K4+/\)/ (1/2 = s)(1 + s)* dt. (4.11)
0
With the help of MAPLE, this simplifies to

12320 6886
4

< — — —— A .
FS 5081 T 22810 (4.12)

Let ¢ € (0,1) be the point at which u(¢) achieves it maximum. Our next
step 1s to obtain an upper bound for . Let « = 1 — 0. We need a lower bound
on «. Integrating (4.5) over [, 1], we get

3k

/1154 (u(t) + Au(t)) dt = 5 (4.13)

Because of concavity, u(t) in [o, 1] lies entirely under its tangent line at the
point ¢ = 1. The highest point of the tangent line in the interval is directly
above t = ¢. This point is in fact higher than the maximum point on u(t) and
is therefore an upper bound for u(t), t € ([a,3/2]. In other words,

u(t) < (1 + 370[) Kk, t€la,3/2]. (4.14)
Substituting this into (4.13) gives the inequality
1 3a 3a\* 3
—[1-(1-a)’] 1+ = 1+ =] s*+A] > <. 4.1
=1 ( a)]<+2)<+2)f€+ >3 (4.15)

Using (4.12) in estimating the expression in the second pair of square brackets
(and ignoring the negative term involving A), we have

%[1_(1_@5] <1+3§)5 [%8210] —%20. (4.16)
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The lefthand side is a polynomial in ««. MAPLE has a command to find ezact
upper and lower bounds for all the real roots of a given polynomial, with specified
accuracy. For the above polynomial, MAPLE found two real roots, a negative
one and a positive one larger than 18475/131072. We repeat the fact that the
bound is ezact, not just a numerical approximation. Inequality (4.16) therefore

implies that
18475

~ 31072

(4.17)

By integrating twice the differential equation over [a, o], we get the inequality

/U(t —a)t* (ut(o) +A) dt > 1. (4.18)

This is a special case of a generalization of the well-known Lyapunov inequality
for disfocality in oscillation theory; see [8]. Inequalities (4.14) and (4.18) yield

3o 4
(1+7) kP4 A

Replacing a by 0 will increase only the lefthand side; so we have

3o 4
(1+7) A

Moving the term involving A to the righthand side and using inequality (4.17),

we have . .
3w 112597
6 4
— — > 6 — . R
(1-a) (1—1— 7 ) K*>6 (131072) A (4.21)

The coefficient of the lefthand side is an increasing function of «. It therefore is
not larger than that obtained by substituting the righthand side of (4.17) for .
Dividing (4.21) by this coefficient, we obtain the inequality

/U(t —a)t*dt > 1. (4.19)

(1-a)°

> 1. 4.2
- > (1.20)

k* > 6.93 — 0.465), (4.22)

which contradicts (4.12). The proof is now complete.

23



It is interesting to see how far this proof can be extended to cover more
general powers. We conclude by posing the challenge:

Challenge: Classify completely according to uniqueness or nonunique-

ness of (BVP1) or (BVP2) on all intervals [a,b], 0 < a < b, for

equations of the form
u’(t) + ' uP () + tPul(t) =0, on (a,b), (4.23)
in terms of the values of v, 68 € (—o0,00) and p,¢ > 1.

Results in this paper have provided some partial answers.
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APPENDIX. The MAPLE Program

The program that leads to the results in Section 3 is contained in a file called
uQ and has the following lines of MAPLE instructions. Line numbers are added
for reference and are not part of the file.

O© 0 ~N O 0 WN =

NN NNDNNNR R R B B2 25 2 3 3 2
OO W, O O 00 ~NO0 01k WM~ O

B i R i 2

f(u):=t"h*u"q;

# ul is du/dt and u2 is the second derivative

#

u2 := -f(u);

# df(z) is the chain rule

df := proc (z) diff(z,t)+diff(z,u)*ul+diff(z,ul)*u2 end;

#

dr := proc (RR,vv) dR:=df(RR)/df(vv);
dR:=expand(subs(ul=solve(R=RR,ul),u=solve(v=vv,u),dR));
normal(dR); end;

el := proc (ex,eq,x) subs(x=solve(eq,x),ex); end;

#

RR:=ul; a:=(g+2)/(p-1); vv:=t~a*u;

#

rDR:=dr(RR,vV);
DrDR:=normal (diff(",t));
nDrDR:=numer(");
eq:=numer (df (vv))=-P;
subs(u=solve(vv=v,u),");

nDrDR:=normal (expand(el(""",el(",R=RR,ul),R)));
#
k:=op(")[1];

KO:=coeff(",P,0);
Kl:=coeff(k,P,1);
KO:=factor(K0);
K1:=factor(K1);

B i R i 2

Line 1 defines the nonlinear term, and can be changed if a different equation

is studied. As pointed out in Section 3, we have to keep track of only one typical
term in F(¢,u). In this case it is tPud. We have used h and q instead of v;
and p; for convenience. Lines that start with # are comment or separator lines.
Line 4 is simply the differential equation «”’ 4+ f(u) = 0, being solved for u”.
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Line 6 defines a procedure with the name df that takes an argument z. In the
definition, z is a dummy variable, so that an actual invocation of the procedure
should be df (expression in t and u). It uses the chain rule and the differential
equation to find the total derivative of the expression with respect to ¢. Lines 8
to 10 define the procedure that gives the righthand side of (3.10). Tt takes two

arguments RR and vv that correspond to R and v, respectively. The last part of

dRR [/ dvv

line 8 simply defines the local variable dR as ] @ What line 9 does is to

first eliminate in dR the variables ul and u in favor of R and v, and then multiply
everything out. The normal command in line 10 is used to combine all the pieces
obtained in line 9 into one single fraction in the lowest possible reduced form.
Line 11 defines the procedure of eliminating from a given expression (ex) a given
variable (x) according to a given equation (eq that contains x).

Then comes the actual computation. Line 13 inputs our choices of RR =
R=v=ul,a=a=0w+2)/p-1)=(g+2)/(p—1), and vv = v =
t*u = t a*u. Line 15 invokes dr to find the righthand side of (3.10). Line 16
finds the derivative of the answer from the previous line and simplifies it; the
symbol " is a convenient abbreviation for the previous answer. Line 17 takes
the numerator of the derivative. Line 18 defines the equation given by (3.13).
Lines 19 and 20 carry out the task of solving the equation for R and substituting
into the numerator of the derivative to obtain (3.14). The answer from line 20
is an expression consisting of a long expression multiplied by a power of v and
a power of t. The operator op in line 22 extracts the long expression. The next
two lines separate the expression into two parts, KO that contains no P and K1
that does. The last two lines factor these two parts.
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