
AbstractWe establish new uniqueness results for boundary value problems ofthe superlinear Emden-Fowler type, u00(t) +F (t; u) = 0; u(t) > 0; t 2(a; b), with either a Dirichlet or Neumann condition at each endpoint.The �rst result extends a known criterion to nonlinear terms that maychange sign. The proof uses the theory of di�erential inequalities, afterchanging the independent variable to the quantity u. The second resultdeals with nonlinear functions of the form P ct
up, c; 
 > 0. The proofuses part of a method due to Co�man and employs as an independentvariable the quantity tau for some a > 0. We also look at a special caseF (t; u) = t4(u5 + u), not covered by the previous two results. We showthat some of the earlier ideas still apply after we work through severalrather technical estimates, with the help of the symbolic manipulationsoftware MAPLE.AMS(MOS) Subject Classi�cation. Primary 34B15. Secondary35J25, 35J65.Key Words and Phrases. Reaction-di�usion equation, boundaryvalue problem, uniqueness of positive radial solutionProposed Running Head. Uniqueness for Emden-Fowler BVP
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1 IntroductionWe are interested in boundary value problems for second-order nonlinear ordi-nary di�erential equations of the formu00(t) + F (t; u) = 0; u(t) > 0; t 2 (a; b); (1:1)where �1 < a < b <1, subject to either a Dirichlet or a Neumann conditionat each of the endpoints a and b. More precisely, we impose one of the threesets of boundary conditions: u(a) = u(b) = 0; (BC1)u0(a) = u(b) = 0; (BC2)and u(a) = u0(b) = 0: (BC3)The third type can be reduced to (BC2) by using a re
ection. We shall notconsider the case of two Neumann conditions. We shall refer to the boundaryvalue problems consisting of (1.1) and one of the above boundary conditions as(BVP1), (BVP2), and (BVP3), respectively.The question studied in this paper is the uniqueness of the (positive) solu-tion, assuming its existence. Recently, there has been considerable interest inthis problem in connection with the study of radially symmetric ground statesolutions of a nonlinear reaction-di�usion equation either in an annulus or out-side a ball. Symmetry reduces the partial di�erential equation in question to anordinary di�erential equation of the Lane-Emden type. A well-known changeof variable then transforms it into the Emden-Fowler form. The resulting equa-tion usually involves a singularity at the origin t = 0. An additional singularityarises when the domain is unbounded; in this case, b = 1 and the boundarycondition at this \endpoint" is replaced by limt!1 u(t) = 0.The classical Emden equation is the following special case of (1.1):u00(t) + n� 1t u0(t) + up(t) = 0; (1:2)where n is the dimension of the Euclidean space in which the reaction-di�usionequation holds. If solutions that change sign are also considered, the nonlinearterm in (1.2) must be replaced by ju(t)jp�1u(t). The classical Emden-Fowlerequation is obtained from (1.2) and takes the formu00(t) + t
up(t) = 0; 
 2 (�1;1); p > 1: (1:3)Nehari's work [12] on the equation (1.1) has much in
uence in later work by Co�-man [3] [4], Moroney [11], Wong [17], and others. Wong's excellent survey [16]2



contains known results for these equations up to 1975. Much development hasoccurred since then. The paper of Brezis and Nirenberg [2] led to a surge ofactivity on equations with nonlinear terms of the form up+uq, for various valuesof p and q.In this paper, we look at the uniqueness problem, assuming existence ofthe pertinent solution. In general, it is hard to establish uniqueness, even inthe regular case b < 1. We are not concerned here with \global" uniqueness,as is the case for most classical results such as those given in the monographby Bernfeld and Lakshmikantham [1], but with uniqueness within the class ofpositive solutions. Many of the equations we study admit the trivial solution aswell as in�nitely many other solutions that change sign.The nonlinear function F : [a; b] � [0;1) ! R is said to be superlinear(sublinear) if for each �xed t 2 [a; b],F (t; u)u is nondecreasing (nonincreasing) in u 2 (0;1) but not aconstant in any interval (0; u0).The nonconstancy requirement is used to exclude functions that behave like alinear function for small u. Prototypes of F (t; u) are q(t)up with q(t) > 0. Itis superlinear when p > 1 and sublinear when p < 1. We do not assume thatF (t; u) is positive, as in some previous work. Thus F (t; u) = q(t)(up � u) is, byour de�nition, superlinear for p > 1 and q(t) > 0.For sublinear equations, uniqueness theorems have been obtained by Picardand Urysohn; see [7] for a recent treatment. For equations that behaves sublin-early for large values of u, there is the result of Peletier and Serrin [15], laterimproved by Kaper and Kwong [5].The corresponding theory for superlinear equations is richer because unique-ness no longer holds unless some rather technical restrictions are imposed onthe coe�cients. The most tantalizing fact is that numerical experiments usuallyshow positive results under much less stringent conditions than required by an-alytic proofs. In the rest of this paper, we are concerned only with superlinearequations. We mention that the results in [9] apply to some equations that areneither superlinear nor sublinear.Moroney [11] �rst showed that (BVP2) has a unique solution if F (t; u) ispositive and nonincreasing in t for �xed u. Co�man [4] gave a di�erent proofand complemented the result by showing that the same is true if F (t; u) ispositive and nondecreasing in t but (b� t)2F (t; u) is nonincreasing in t. Kwong[7] showed that the monotonicity of F (t; u) in t is not needed. In Section 2 weimprove this result further to allow F (t; u) to change sign. Co�man [3] also3



established uniqueness for (BVP1) with the classical Emden-Fowler equations(1.3). Ni [13] studied equation (1.1) in the formu00(t) + n� 1t u0(t) + f(u) = 0 (1:4)and extended Co�man's results in many directions. The e�ort was continuedby Ni and Nussbaum [14]. Among the many interesting results they obtainedare a uniqueness theorem for functions of the form f(u) = up + �uq with p; q �nn� 2 , and a nonuniqueness theorem for the same functions with q < n+ 2n� 2 <p. Kwong [7] noticed that the method �rst used by Co�man for establishinguniqueness results can be simpli�ed by using Sturm comparison arguments.For the singular or noncompact case, Co�man [4] obtained uniqueness for(BVP2) for the equationu00(t) + 2t u0(t) + u3(t)� u = 0; t 2 (a;1); a � 0: (1:5)McLeod and Serrin [10] extended the result to a wide range of n and p. Kwong[6] completed the study by con�rming uniqueness for all admissible solution ofn and p. The results were further extended by Kwong and Zhang [9] recently.In this paper we explore another avenue for obtaining uniqueness results.Let us consider (BVP2). Suppose that u1(t) and u2(t) are two solutions of theboundary value problem. It is well known that they must intersect at least oncein [a; b]. Uniqueness follows if we can show that they intersect exactly once. Themain idea is to rewrite the original equation using u(t) or some related functionas the independent variable (with an appropriate new dependent variable) andthen use comparison techniques of di�erential inequalities to show that beyondthe �rst point of intersection of u1(t) and u2(t), some function of u01(t) remainsalways larger than the corresponding function of u02(t). This implies that thetwo solutions cannot intersect again. In Section 2 we illustrate this approachby extending one of Co�man's theorems as mentioned above. Some interestingcorollaries are given. We also show how new criteria may be obtained fromold ones by using the method of change of variables. In Section 3 we givesome further application of our method, dealing with reaction terms of the formF (t; u) = P t
up. In Section 4, we study (BVP1) of one particular equationu00 + t4(u5 + u) = 0, which is covered neither by known results nor by thosein earlier sections. We show how an elaboration of our method still leads to apositive result. An obvious conjecture is the validity of a more general result.The proofs of the theorems in Sections 3 and 4 require very technical com-putation done with the help of the symbolic manipulation software MAPLE.4



2 Some General Uniqueness ResultsWe �rst give a uniqueness criterion for (BVP2) which extends earlier results ofCo�man [4] and Kwong [7].The condition we impose on F (t; u) is the following:[F1] The function F (t; u) is Lipschitz continuous in u for �xed t and is super-linear. There exists a positive concave function � : (a; b) ! (0;1) suchthat �2F (t; u) is nonincreasing in t for each �xed u .In the Co�man-Kwong theorem, �(t) is (b � t), but there is an additionalpositivity assumption on F (t; u), under which [F1] does not o�er any morethan the above particular choice of �(t). The situation, however, is di�erent ifF (t; u) is allowed to change sign. Simple examples of functions that satisfy [F1]are given by f(u)�2(t) , with any choice of �(t), such as u3 � ub+ 1� t . Note that thisfunction satis�es [F1] with �(t) = pb+ 1� t but not with �(t) = b� t.Lipschitz continuity on F (u; t) is assumed to ensure uniqueness for initialvalue problems. The requirement can be slightly relaxed either by re�ning thearguments or by using a limiting process.Theorem 1 Suppose that F (t; u) satis�es [F1]. Then (BVP2) has a uniquesolution, and it is strictly decreasing in [a; b].Proof. The monotonicity of u(t) in (a; b) is obvious if F (t; u) is nonnegative.Once we know monotonicity, strict monotonicity is a consequence of uniquenessof initial value problems. Indeed, if there is a point c 2 (a; b) at which u0(c) = 0,it must also be a point of in
ection. Then u00(c) = �F (c; u(c)) = 0; but nowwe have the contradiction that u(t) � u(c) is the only solution that satis�es theinitial conditions at t = c. Let us �rst prove the uniqueness of u(t) assumingthis monotonicity property.Suppose that there are two distinct solutions u1(t) and u2(t) of the boundaryvalue problem. Without loss of generality we may assume that u1(a) > u2(a). Itis well known that the two solutions must intersect at least once in (a; b). Indeed,if this is not true, then u1(t) � u2(t) in (a; b), implying by superlinearity thatF (t; u1(t))=u1(t) � F (t; u2(t))=u2(t). We deduce from the Sturm comparisontheorem that u1(t) oscillates faster than u2(t) in (a; b), but this is obviouslyfalse.Let c 2 (a; b) be the �rst point of intersection of u1(t) and u2(t). Thenu1(c) = u2(c) = � and u01(c) < u02(c) < 0. Let d � b be the next point of5



intersection, which exists since the two solutions intersect again at b. Denoteu1(d) = u2(d) = 
. Now we consider the solution curves as functions of theirabscissa u 2 (
; �). De�ne Ri(u) = �(t)u0i(t), i = 1; 2, as a function of u insteadof t. We have R2(
) < R1(
) (2:1)and R2(�) > R1(�): (2:2)By continuity, there exists a point � 2 (
; �) at whichR2(�) = R1(�): (2:3)In the interval [�; �], the functions Ri(u) satisfy the di�erential equationsdRi(u)du = dRidt ����t=ti(u), duidt ����t=ti(u)= �(t)u00i (t) + �0(t)u0i(t)u0i(t) ����t=ti(u)= �0(ti(u)) � �(ti(u))F (ti(u); u)Ri(u) ;where t = ti(u) denotes the inverse function corresponding to u = ui(t). It iseasy to see from a simple picture that t1(u) � t2(u) for u 2 (�; �). It followsfrom the monotonicity of F (t; u) that the function R2(u) satis�es in [�; �] thedi�erential inequalitydR2(u)du � �0(t1(u))� �(t1(u))F (t1(u); u)R2(u) : (2:4)Given the initial comparison condition (2.3), we can thereby conclude, using thetheory of di�erential inequalities, that R2(u) � R1(u), a contradiction to (2.2).Let us complete the proof of the theorem by showing that a solution tothe boundary value problem must be nonincreasing. Let c be the last localmaximum of the solution u(t) and denote � = u(c). Then in [c; b], u(t) isnonincreasing. Let d be the last local minimum before c, and denote � = u(d).Then in [d; c], u(t) is nondecreasing. Now switch to using u 2 [�; �] as theindependent variable as before. De�ne R1(u) = ��(t1(u))u0(t1(u)) and R2(u) =�(t2(u))u0(t2(u)), where t1(u) is the inverse function of u(t) in [d; c] and t2(u)the inverse of u(t) in [c; b]. Obviously t2(u) � t1(u). The functions Ri(u) satisfythe same di�erential equation and di�erential inequality, respectively. From thestrict initial comparison condition R2(�) < R1(�) = 0 follows the contradictionR2(�) < R1(�). 6



In the proof of Theorem 1, we have actually shown the uniqueness of anonincreasing solution to (1.1) having prescribed boundary values. We statethis more explicitly below.Theorem 2 Suppose that [F1] is satis�ed. Let �1 > �2 > 0 be two given realvalues. There is at most one nonincreasing solution of (1.1) on [a; b] satisfyingthe boundary conditions u(a) = �1; u(b) = �2: (2:5)Furthermore, let w1(t) and w2(t) be solutions of (1.1) on [a; b] satisfyingw1(a) = u(a) = w2(a); (2:6)and w01(a) < u(a) < w02(a) � 0: (2:7)Let [a; c] be the largest interval in which w1(t) � �2. Then w1(t) is nonincreasingin [a; c], w1(t) < u(t) for all t 2 (a; c]; (2:8)and w2(t) > u(t) for all t 2 (a; b]: (2:9)Proof. The proof of the �rst part of the theorem is precisely that part in theproof of Theorem 1 where we showed that u1(t) and u2(t) cannot have twointersection points c and d.The comparison assertion between w1(t) and u(t) in [a; c] is a consequenceof the �rst part of the theorem once we know that w1(t) is nonincreasing in[a; c]. Indeed, if w1(� ) = u(� ) for some � 2 [a; c], we arrive at the contradictionthat (1.1) has two distinct monotone solutions satisfying the same boundaryconditions at a and � . So let us suppose that w1(t) is not nonincreasing in[a; c]. Then there is a �rst point d 2 [a; c] at which w01(d) = 0. In [a; d],w1(t) is nonincreasing. It therefore cannot intersect u(t) in [a; d], again bythe �rst part of the theorem. Denote � = w1(d). Within the horizontal strip� � u � �1, the graph of w1(t) lies to the left of that of u(t). We can rewrite(1.1) using u in [�; �1] as the independent variable, and R1(u) = �(t)u0(t) andR2(u) = �(t)w01(t) as we did in the proof of Theorem 1. The inequalitiesR1(�) < R2(�) = 0 and R1(�1) > R2(�2) (2:10)yield a contradiction just as before.Finally, suppose that the comparison conclusion between w2(t) and u(t) isfalse. Let � be the �rst point of intersection of the two solution curves. Just as7



in the proof of Theorem 1, we can show that w2(t) must be monotone in theinterval [a; � ]. The �rst part of the theorem now leads to a contradiction.Note that Theorem 2 does not guarantee the existence of a solution satis-fying the given boundary conditions, nor does it rule out the possibility of asecond solution that is nonmonotone. Also, Theorem 2 asserts only a compar-ison between w1(t) and u(t) up to the point c. Beyond c, w1(t) at �rst dipsunder the height �2, but at a later point, w1(t) may bounce back to overtakeu(t). On the other hand, w2(t) lies above u(t) in the entire interval [a; b].An analog of Theorem 2 concerning solutions having the same terminal val-ues at the right endpoint b can easily be obtained as a corollary. It will be usedlater in the study of (BVP1).Corollary 1 Suppose that [F1] is satis�ed and �1 > �2 > 0 are two givenreal values. Let u(t) be the unique solution of (1.1) on [a; b] satisfying (2.5), asasserted in Theorem 2. Let v1(t) and v2(t) be the solutions of (1.1) on [a; b]satisfying v1(b) = u(b) = v2(b); (2:11)and 0 > v01(b) > u0(b) > v02(b): (2:12)Then v1(t) < u(t) for all t 2 [a; b); (2:13)and maxfv2(t) : t 2 [a; b]g > �2: (2:14)Let us now turn our attention to (BVP1). We need a complementary con-dition on F (t; u):[F2] There exists a positive concave function  : (a; b) ! (0;1) such that 2F (t; u) is nondecreasing in t for each �xed u.Theorem 3 Suppose that F (t; u) satis�es [F1] and [F1]. Then (BVP1) has aunique solution, and it has a unique maximum in [a; b].Proof. The fact that any solution of (BVP1) can only have one maximum in[a; b] is a consequence of the monotonicity of any solution of (BVP2).Suppose that there are two distinct solutions u1(t) and u2(t). By superlin-earity, they must intersect at least once in (a; b). Between two consecutive points8



of intersection (including a and b), one of the solutions cannot be monotone (be-cause of Theorem 2), and it must therefore attain its unique maximumbetweenthe two points. It follows that the two solutions cannot have more than one otherintersection point besides a and b. Whichg we may assume that u01(b) > u02(b). Itfollows that at the other endpoint a, u01(a) < u02(a). Let c be the point at whichu1(t) attains its maximum. By Corollary 1, maxfu2(t) : t 2 [c; b]g > u1(c).Hence, maxfu2(t) : t 2 [a; b]g > maxfu1(t) : t 2 [a; b]g. Let c0 be the point atwhich u2(t) attains its maximum. By applying Corollary 1 to a re
ection ofthe interval [a; c0], we obtain exactly the opposite inequality between the twomaxima. This contradiction completes the proof of the theorem.Examining the above proof more closely reveals that the full strength of[F1] and [F2] is not actually needed. If we now have an a priori estimate ofwhere the maximum of a solution of (BVP1) is located, say within a subinterval[c0; c] � [a; b], then all we need is the monotonicity of �2F (t; u) and  2F (t; u) in,respectively, [c0; b] and [a; c]. We give below an application of this observation.In the rest of this section, we consider only nonnegative C1 functions F (t; u)for the sake of simplicity. With due care, most of the results can be extendedto the more general situation.Theorem 4 Suppose that F (t; u) is C1, superlinear, and nonnegative. If forevery �xed u, F (t; u) is nondecreasing in t and satis�es the inequalityFt(t; u)F (t; u) � 2t ; (2:15)where Ft denotes the partial derivative of F with respect to t, then (BVP1) hasa unique solution for all 0 < a < b.Proof. A simple comparison argument using the monotonicity of F (t; u) withrespect to t shows that a solution of (BVP1) must be skewed towards the end-point b. Hence, the maximum of the solution must be attained within theinterval [(a+ b)=2; b] � [b=2; b].Next, it is easy to verify that (2.15) implies that (b� t)2F (t; u) cannot havea critical point in (b=2; b]. In other words, (b � t)2F (t; u) is nonincreasing in[b=2; b]; and so the proof of Theorem 3 works to give uniqueness.Corollary 2 Suppose that F (t; u) = q(t)f(u) is C1, superlinear, and nonneg-ative. If q(t) is nondecreasing and 2tq0(t) � q(t), then (BVP1) has a uniquesolution for all 0 < a < b. 9



The hypothesis on q(t) in the lemma is satis�ed in particular if q(t) is apositive linear combination of nonnegative powers of t up to the square or,more generally, if q(t) = Z 20 t
 d�(
); (2:16)for some nonnegative Borel measure d�(
). As a simple example, we can taked�(
) = 1 to obtain q(t) = (t2 � 1)= ln(t).Note that uniqueness is valid for a similar class of coe�cients,q(t) = Z 20 d�(
)t
 ; (2:17)this time because the hypotheses of Theorem 3 are satis�ed.In the rest of this section as well as in the next, many of the criteria areestablished for nonlinear functions of the formF (t; u) =X cit
iupi ; (2:18)where ci > 0, with given conditions relating pi and 
i. Often the results canbe extended to the case in which the �nite sum is replaced with an integralcontaining a nonnegative Borel measure. This can be done by either modifyingthe proof or by using the following limiting argument. Let S denote the set ofpairs (p; 
) that satisfy the condition imposed on (pi; 
i) by the criterion, andlet d� be a nonnegative Borel measure de�ned on S. In general, S is a two-dimensional subset of the plane. Sometimes the result involves a �xed value ofp or 
; then the set S is usually an interval. The nonlinear function generatedby d� over S is de�ned to beF (t; u) = �(t
up;S) = ZS t
up d�: (2:19)The function F (t; u) can be approximated by a sequence of functions each inthe form of a �nite sum. Let bi(�) denote the �rst zero of the solution with theinitial conditions u(a) = 0; u0(a) = � for the ith function in this sequence. Bycontinuity, the sequence bi converges uniformly to the corresponding �rst-zerofunction for the limiting nonlinear function F (t; u). By the uniqueness results onboundary value problems for nonlinear terms in the form a �nite sum, each bi(�)is a strictly decreasing function of �. Hence b(�) is a decreasing (not necessarilystrict) function. Strict monotonicity can be established by observing that thepossibility of having an interval of values of � for which b(�) is a constant isruled out by superlinearity. 10



In Section 4 we show how the idea used in the proof of Theorem 4 can befurther exploited. In the meantime, with the help of some well-known trans-formations, we can increase the versatility of our criteria. We mention only acouple of examples.Theorem 5 Suppose that F (t; u) is C1, superlinear, and nonnegative and thatfor each �xed v either tF (t; tv) is nonincreasing in t (2:20)and t3F (t; tv) is nondecreasing in t; (2:21)or t3F (t; tv) is nonincreasing in t (2:22)and @@t �t3F (t; tv)� � 2t2F (t; tv): (2:23)Then (BVP1) has a unique solution for all 0 < a < b.Proof. The change of variabless = 1t and u = vs (2:24)transforms (1.1) into d2vds2 + 1s3F �1s ; vs� = 0: (2:25)Theorem 3 and Corollary 2 can now be applied to the two sets of conditions,respectively.Corollary 3 Suppose that F (t; u) = q(t)up; (2:26)where q(t) satis�es either tp+1q(t) is nonincreasing; (2:27)and tp+3q(t) is nondecreasing (2:28)or tp+3q(t) is nonincreasing (2:29)11



and � tq0(t) � (p+ 5)q(t): (2:30)Then (BVP1) has a unique solution for all 0 � a < b. In particular, thehypotheses on q(t) are satis�ed ifq(t) = �(t�
 ; [p+ 1; p+ 3]) (2:31)or q(t) = �(t�
 ; [p+ 3; p+ 5]) (2:32)for some nonnegative Borel measure d�(
).Corollary 4 Suppose that F (t; u) =X ciupit
i ; (2:33)where ci > 0; and pi + 1 � 
i � pi + 3: (2:34)Then (BVP1) has a unique solution for all 0 � a < b.Ni [13] showed that for (BVP1) and (BVP2) (1.4) has a unique solution iff(u) > 0, n > 3, and nn � 2f(u) � uf 0(u): (2:35)An alternative proof was given in [7]. We now give a third proof and an exten-sion. The change of variables u(t) = v(t)=tn�2 and s = tn�2 transforms (1.4)to v00(s) + 1(n� 2)2 sk�2f �vs�; (2:36)where k = nn� 2 . For this equation, [F1] is satis�ed with �(t) = 1, fromsuperlinearity. With the choice of  (t) = t, we see that [F2] becomesskf �vs� is increasing in s: (2:37)On di�erentiating this expression with respect to s and then substituting v=s =u, we see that this condition is equivalent to Ni's criterion.It is now easy to see how the method can be extended to cover time-dependent reaction terms. 12



Theorem 6 Suppose that f(t; u) is C1, superlinear, and nonnegative and thatfor each �xed v, sk�2f �sk=n; vs� is nonincreasing in s (2:38)and skf �sk=n; vs� is nondecreasing in s; (2:39)where k = nn� 2 (more generally, whenever the function in (2.38) satis�esany uniqueness criterion applicable to F (t; u) of (1.1)). Then (BVP1) for theequation u00(t) + n� 1t u0(t) + f(t; u) = 0 (2:40)has a unique solution.When f(t; u) is a sum of products of powers of t and u, we have the followingresult.Corollary 5 Let n > 2, ci > 0, 
i and pi (i = 1; � � � ; N ) be given constants.There exists a unique solution to (BVP1) foru00(t) + n� 1t u0(t) + NXi=1 t
iupi = 0; (2:41)if either, for each i, max�1; n+ 
in� 2 � 2� � pi � n+ 
in� 2 (2:42)or, for each i, max�1; n+ 
in� 2 � � pi � n+ 
in� 2 + 2: (2:43)Proof. The assumption that pi � 1 is needed to ensure that the equation issuperlinear. The second set of conditions implies that the transformed equationsatis�es the hypotheses of Corollary 2.Specializations to cases where all the 
i or pi are equal can be obtained asbefore. 13



3 F (t; u) = P ct
upThe techniques we use in this section are most suited to handle functions of theform F (t; u) = P cit
iupi , with 
i > 0. Extensions to more general functionsappear plausible. In order not to obscure the main ideas with too much technicaldetail, we �rst illustrate how the method works on a special case,u00(t) + t
(u5(t) + u4(t)) = 0: (3:1)Using results from Section 2, we already know that in this case, (BVP1) has aunique solution if �2 � 
 � 2. We wish to extend this range. For functions withonly one term, namely F (t; u) = t
up, it is known that (BVP1) has a uniquesolution for any value of 
 (see [3]). There is, of course, no reason to believe thatsuch a nice property is preserved when the function is perturbed by a di�erentpower of u. We show that at least when the perturbing power is close enoughto p, and when 
 > 0, uniqueness prevails. The argument used is a combinationof Co�man's method and a new choice of the independent variable.The solution u(t) for (BVP1) is a member of the family of solutions u(t; �)of an initial value problem for (3.1), in which the initial values at t = a areassigned as follows: u(a; �) = 0; u0(a; �) = �: (3:2)When we omit the parameter � in the notation u(t; �), we are referring to theoriginal solution of our (BVP1).According to Co�man's method (see Kwong [7] for a survey), uniqueness for(BVP1) follows if we can show thatw(b) = @u(t; �)@� ����t=b < 0: (3:3)The function w(t) satis�es the variational equation, obtained by di�erentiating(3.1) with respect to �,w00(t) + t
 (5u4(t) + 4u3(t))w(t) = 0; (3:4)and the initial condition w(a) = 0: (3:5)The assertion (3.3) is usually derived from a study of the oscillatory behavior ofw(t) as a solution of the second-order \linear" di�erential equation (3.4); indeed,if we can prove that w(t) has exactly one zero in (a; b], then (3.3) follows.The function z(t) = (2+ 
)u(t)=4+ tu0(t) satis�es the di�erential inequalityz00(t) + t
 (5u4(t) + 4u3(t))z(t) = �(2 + 
)t
u4(t)=4 � 0: (3:6)14



Near a, z(t) is positive. Let c > a be the �rst zero of z(t). According to Sturm'scomparison theorem, the function w(t) oscillates more slowly than the functionz(t) in [a; c]. Thus the �rst zero of w(t) must be larger than c. In a rightneighborhood of c, z(t) is negative. At this point, we do not know whether z(t)will remain negative in the rest of the interval, [c; b]. Let d > c be either thenext zero of z(t) or b if z(t) does not have another zero.Consider an auxiliary functionW (t), which is the solution of (3.4) satisfying,at t = c, W (c) = 0;W 0(c) = �1: (3:7)Even though z(t) satis�es the same di�erential inequalities in [c; d] as it does in[a; c], the sign of z(t) in these intervals determines the speed of its oscillationrelative to that of the solution of the corresponding di�erential equation. Inthe interval [c; d], W (t) oscillates faster than z(t). Thus, if d is a zero of z(t),W (t) must have a zero within [c; d], andW (t) must take negative values at somepoints in [c; d]. Let us assume we can prove that this is impossible. Then, as aconsequence, d cannot be a zero of z(t), d = b, and W (t) remains nonnegativein the entire interval [c; b]. Since w(t) and W (t) satisfy the same second-orderlinear di�erential equation, their zeros must separate each other, by Sturm'sseparation theorem. We already know that w(t) has a zero in (c; b]. It cannothave another zero, lest W (t) have one between these two zeros; (3.3) is nowproved.It remains to establish our claim that W (t) cannot be negative in [c; d].Suppose the contrary; so W (� ) < 0 for some � 2 [c; d]. Just as w(t) can beinterpreted as the rate of change of u(t; �) with respect to the initial slope �,W (t) can be interpreted as the rate of change of u(t; �) with respect to the slope� at the point c, where u(t; �) now stands for the family of solutions of the initialvalue problem u(c; �) = u(c); u0(c; �) = �: (3:8)The inequality W (� ) < 0 means that there exists a solution of (3.1) that inter-sects u(t) at c, having a slightly larger slope than u(t) at c (so it stays aboveu(t) in a right neighborhood of c), but is below u(t) at t = � . By continuity,the two solutions must intersect again before t = � . Since u(t) < 0 in (a; b],we can assume, by choosing the slope of u(t; �) at c su�ciently close to that ofu(t), that the second solution is also decreasing in [c; � ]. We now show that thisleads to a contradiction.Let � = (2 + 
)=4. Since (t�u(t))0 = t��1z(t) < 0 in (c; d), t�u(t) isdecreasing in the interval. We can rewrite the equation in [c; d] using v = t�u(t)as the new independent variable and R1(v) = u0(t) and R2(v) = u0(t; �) as thedependent variables. As before, we obtain the di�erential equation for Ri(v),using the relation dRi=dv = (dRi=dt)=(dv=dt). In the following, we list the15



equation and suppress the subscript i = 1; 2.dRdv = � t
 (u5 + u4)t�u0 + �t��1u: (3:9)After substituting u = v=t� and u0 = R, we have the equationdRdv = G(v;R; t) := � 4(v5 + t�v4)t�+1(2v + 
v + 4t�+1R) : (3:10)If we can show that G(v;R; t), the righthand side of (3.10), is nonincreasing int for �xed v and R, then as in the proof of Theorem 1, this implies that thetwo solutions u(t) and u(t; �) cannot intersect beyond the point t = c, giving usthe desired contradiction. The monotonicityG(v;R; t) is, however, not obvious.The following argument, though conceptually simple, involves a fair amount ofcomputation, which we carried out with the help of the symbolic manipulationsoftware MAPLE. We shall give more details on the computer aspect of ourwork in the Appendix.Di�erentiating G(v;R; t) with respect to t gives a fraction, the numerator ofwhich, aside from factors of powers of v and t, is(12 + 8
 + 
2)v2 + (8 + 4
)vt� + (48 + 8
)vRt1+� + (40 + 4
)Rt1+2�: (3:11)The denominator of the fraction is the square of the denominator of the originalfraction and so is positive. It thus remains to show that the expression (3.11)is nonpositive. This fact is not readily obvious; although the last two termsare nonpositive (recall that R = u0 � 0), the �rst two are not. Since v(t) isdecreasing in [c; � ], we have v0(t) � 0, implying thatt�(2u+ 
u + 4tu0) � 0: (3:12)Let us denote this function by �P (t), with P (t) � 0, and replace the variablesu and u0 by the new variables v and R. We obtain� P (t) = 2v + 
v + 4t1+�R � 0: (3:13)Solving this inequality for R and then substituting the answer into (3.11), wehave� (12 + 8
 + 
2)v2 � (12 + 2
)Pv � (12 + 8
 + 
2)vt� � (10 + 
)Pt�; (3:14)which is now obviously nonpositive.One may wonder why we had the con�dence to carry on the complicatedcomputation, as there was very little indication of possible success at the pointwhen (3.10) was derived. In fact, our initial investigation used chosen values16



of 
, thus rendering the computation less formidable. Besides, the availabilityof a symbolic algebra software makes it easy to carry out experimentations; asimple program mechanizes the process. After a number of successful trials withspeci�c values of 
, we took a general 
. Then we went on to the general casesummarized by the following theorem.Theorem 7 Suppose that F (t; u) =X t
iupi ; (3:15)with 
i � �2; and pi � 1: (3:16)Denote � = mini �
i + 2pi � 1� : (3:17)If for all i, pi � 
i� � 1; (3:18)then (BVP1) has a unique solution for all 0 � a < b.Proof. The basic steps in the proof of the general case are identical to those ofthe special case discussed above. The only di�erence is that the computationinvolved is many times more complicated. With the help of MAPLE, however,this is not a major obstacle. Only the �nal simpli�ed result of each compu-tational step will be presented in this proof. The MAPLE program used toproduce the result will be discussed in the Appendix.The function w(t), as de�ned in (3.3), satis�es the di�erential equationL[w(t)] = w00(t) + "X pit
iupi�1(t)#w(t) = 0: (3:19)The quantity � is chosen as in (3.17) so that the function z(t) = �u(t) + tu0(t)satis�es the di�erential inequality L[z] � 0: (3:20)The same arguments using the auxiliary function W (t) carry over withoutchange. Using R = u0(t) and v = t�u as dependent and independent variables,we obtain a di�erential equation of the form (3.10). All that remains is to showthat the righthand side of (3.10), namely, G(v;R; t), is nonincreasing in t for�xed v and R. Note that each term in the expression for F (t; u) gives rise to17



a term of an identical form in the numerator of G(v;R; t). In the subsequentcomputation, each of these can be handled independently of the others; andsince each term has the same form, we have to keep track of only one typicalterm.As before, each term is di�erentiated with respect to t, and the numerator ofthe resulting fraction is treated with a substitution by usingR from an inequalityof the form (3.13). The �nal expression, analogous to (3.14), can be separatedinto two parts; the �rst one contains the factor P , and the other does not. Afterwe discard factors that are powers of t and v (the actual exponents depend onthe term), what remains of the �rst part is the same for all terms and has theform � 2(
 + 2)(p+ 
 + 1); (3:21)where 
 and p pertain to the particular term for which � is de�ned. The otherpart, again after we discard powers of t and v, assumes the form� (
pi + 
 � 
ip + 
i + 2pi + 2): (3:22)Since the �rst part is obviously nonpositive, uniqueness follows when the expres-sion in (3.22) is nonpositive. It is easy to see that this is equivalent to requiringthat (3.18) holds.A few special cases of the theorem are given below as corollaries. As shownin Section 2, uniqueness criteria of the form in this paper can be stated moregenerally for functions induced by Borel measures. We recall the notation in-troduced in (2.19).Corollary 6 Let p � 1 and d�(�) be a nonnegative Borel measure on [p; p+2].If f(u) = �(u�; [p; p+ 2]); (3:23)then (BVP1) for the di�erential equationu00(t) + t
f(u(t)) = 0; 0 � a < t < b (3:24)has a unique solution for all 
 � �2, or 
 � �(p+ 3).Proof. Let us �rst look at the case when 
 > 0. We apply Theorem 7 withall the 
i in (3.15) equal to 
 and p � pi � p + 2. In this case, the number �de�ned in (3.17) is 
=(p + 1). The inequality (3.18) can be veri�ed easily, andso the conclusion of Theorem 7 holds.In the second case, we apply Theorem 7 �rst to the nonlinear function F (t; u)in which 
i = 
 � pi � 3 and p � pi � p + 2. The change of variable argumentused to prove Theorem 5 (see (2.25)) then gives the desired conclusion.18



This is an extension of the well-known fact that uniqueness holds for F (t; u) =t
up, for all 
 and p > 1. Note, however, that Corollary 6 leaves a gap in theadmissible values of 
. It is interesting to �nd out what really happens if�(p+ 3) < 
 < �2.In case the function f(u) is generated by a wider range of powers of u,Theorem 7 no longer gives uniqueness for all large 
. Indeed, if q > p + 2 andf(u) = �(u�; [p; q]), then uniqueness holds for (3.24) if� 2 � 
 � 2(p+ 2)q � p� 2 : (3:25)On the other hand, the change of variable argument fails to provide any resultfor negative values of 
.By �xing the exponent of u we obtain the following corollary.Corollary 7 Let F (t; u) = q(t)up. Let � > 0 be any positive number. Ifq(t) = ��t
 ; ��; (p+ 1)(� + 2)p� 1 �� ; (3:26)or q(t) = ��t�
 ; �� + p+ 3; (p+ 1)(� + 2)p� 1 + p+ 3�� ; (3:27)then (BVP1) has a unique solution.
19



4 A Special Case F (t; u) = t4(u5 + u)Ample numerical evidence indicates that established uniqueness criteria, suchas those derived in previous sections, are not very sharp. This is typical ofnonlinear analysis.In this section we consider uniqueness for (BVP1) of an equation that is notcovered by any of the criteria known so far. The method used is an elaborationof ideas used earlier in Section 2. The technicalities are so involved that webelieve it is easier to present the details only for a special case. Obviously themethod has wider applications.We wish to show that for any 0 < a < b, (BVP1) ofu00 + t4(u5 + u) = 0 on (a; b) (4:1)has only one solution.Suppose there are two solutions, u1(t) and u2(t), with u01(a) > u02(a). Theymust intersect at least once before t = b. Let the �rst intersection be at t = c.As usual, we can easily show that w(t) = u1(t) � u2(t) oscillates more slowlythan z(t) = 3u1(t)=2+ tu01(t), by comparing the second-order \linear" equationsthat they satisfy. Hence, the point c must be larger than the �rst zero of z(t),namely, the �rst point � at which �u01(� )=u1(� ) = �3=2. From the di�erentialequation satis�ed by z(t), we see that z(t) cannot be tangent to the t-axis.Hence the point � depends continuously on the initial conditions as well as onthe left endpoint a.Suppose now that we can assert� > 2b3 : (4:2)Then it is easy to see that the function (b� t)2t4 is nonincreasing in the interval[�; b], which contains [c; b]. In other words, condition [F1] is satis�ed with�(t) = (b � t). The existence of two distinct nonincreasing solutions u1(t) andu2(t) on [c; b] would have contradicted Theorem 2.Hence it remains to establish inequality (4.2) to verify uniqueness. Since weno longer need to mention the solution u2(t), we will drop the subscript whenreferring to u1(t). Alternatively, we may view (4.2) as a fact to be establishedfor any solution that vanishes at a and b.Note that the solutions of (4.1) oscillates faster in (a; b) than those of thelinear equation U 00 + t4U = 0: (4:3)20



Hence u(t) � U (t) in (a; b) if u(a) = U (a) = 0 and u0(a) = U 0(a) > 0. Thisimplies in particular that b <1.We suppose now that (4.2) is not satis�ed. Let us pull the left endpoint aback towards the origin, while keeping the initial slope �xed. We know thatboth � and b will change continuously. We have one of two possibilities. Eitherthere is a point a � 0 at which (4.2) is barely violated, for which case we have� = 2b=3, or when a = 0, we still have � < 2b=3.In the latter case, let us start with the solution at a = 0 and deform it bydecreasing the initial slope u0(0). If the initial slope is su�ciently small, thenu0(t) remains small in (0; b); u0(t) is smaller than U 0(t) . The nonlinear termu5(t) in (4.1) is relatively small in comparison with the linear term. It followsthat U (t) gives a very good approximation for u(t). It can be veri�ed easily, forexample numerically, that for U (t) the inequality corresponding to (4.2) holds.Thus (4.2) holds for u(t) if u0(0) is su�ciently small. From our assumption that(4.2) is not satis�ed originally, we must be able to get a value at which (4.2) isbarely violated, so that � = 2b=3: (4:4)Hence in all cases, we have a suitable solution in (a; b) for some a � 0,such that (4.4) holds. In the rest of the proof we concentrate on this particularsolution and claim that a contradiction ensues.Before starting the complicated computation, we scale the solution bothhorizontally and vertically. Scaling is done for convenience rather than necessity.The horizontal scaling is chosen so as to transform � into 1 and b into 3/2. Aconstant factor is then introduced into the nonlinear term. The vertical scalingis used to retain a unit coe�cient for the term t4u5. By abusing the notation,we denote the scaled solution again by u(t). The di�erential equation it satis�esis now u00(t) + t4u5(t) + �t4u(t) = 0; on (a; 3=2); (4:5)where � > 0 is some number determined by the scaling. By the de�nition ofthe point � , u0(1)u(1) = �32 : (4:6)Let us denote u(1) = �: (4:7)Then u0(1) = �3�2 : (4:8)21



We �rst derive an upper bound on � By integrating (4.5) twice, �rst over[1; s]; s < 3=2 and then over [1; 3=2], we obtain the identityu(1) = u0(1)2 + Z 3=21 (3=2� t)t4 �u5(t) + �u(t)� dt: (4:9)Making use of (4.7) and (4.8), we have� = 4 Z 3=21 (3=2� t)t4 �u5(t) + �u(t)� dt: (4:10)Concavity implies that in the interval [1; 3=2], u(t) � (3 � 2t)�. Substitutingthis inequality into (4.10) and making a change of variable in the integral, weobtain 1 � 4 ��4 + �� Z 1=20 (1=2� s)(1 + s)4 dt: (4:11)With the help of MAPLE, this simpli�es to�4 � 123202281 � 68862281�: (4:12)Let � 2 (0; 1) be the point at which u(t) achieves it maximum. Our nextstep is to obtain an upper bound for �. Let � = 1� �. We need a lower boundon �. Integrating (4.5) over [�; 1], we getZ 1� t4 �u5(t) + �u(t)� dt = 3�2 : (4:13)Because of concavity, u(t) in [�; 1] lies entirely under its tangent line at thepoint t = 1. The highest point of the tangent line in the interval is directlyabove t = �. This point is in fact higher than the maximum point on u(t) andis therefore an upper bound for u(t), t 2 ([a; 3=2]. In other words,u(t) � �1 + 3�2 ��; t 2 [a; 3=2]: (4:14)Substituting this into (4.13) gives the inequality15 �1� (1� �)5��1 + 3�2 �"�1 + 3�2 �4 �4 + �# � 32 : (4:15)Using (4.12) in estimating the expression in the second pair of square brackets(and ignoring the negative term involving �), we have15 �1� (1� �)5��1 + 3�2 �5 �123202281 �� 32 � 0: (4:16)22



The lefthand side is a polynomial in �. MAPLE has a command to �nd exactupper and lower bounds for all the real roots of a given polynomial, with speci�edaccuracy. For the above polynomial, MAPLE found two real roots, a negativeone and a positive one larger than 18475=131072. We repeat the fact that thebound is exact, not just a numerical approximation. Inequality (4.16) thereforeimplies that � > 18475131072: (4:17)By integrating twice the di�erential equation over [a; �], we get the inequalityZ �a (t � a)t4 �u4(�) + �� dt � 1: (4:18)This is a special case of a generalization of the well-known Lyapunov inequalityfor disfocality in oscillation theory; see [8]. Inequalities (4.14) and (4.18) yield"�1 + 3�2 �4 �4 + �#Z �a (t� a)t4 dt � 1: (4:19)Replacing a by 0 will increase only the lefthand side; so we have(1� �)66 "�1 + 3�2 �4 �4 + �# � 1: (4:20)Moving the term involving � to the righthand side and using inequality (4.17),we have (1� �)6�1 + 3�2 �4 �4 � 6� �112597131072�6 �: (4:21)The coe�cient of the lefthand side is an increasing function of �. It therefore isnot larger than that obtained by substituting the righthand side of (4.17) for �.Dividing (4.21) by this coe�cient, we obtain the inequality�4 > 6:93� 0:465�; (4:22)which contradicts (4.12). The proof is now complete.
23



It is interesting to see how far this proof can be extended to cover moregeneral powers. We conclude by posing the challenge:Challenge: Classify completely according to uniqueness or nonunique-ness of (BVP1) or (BVP2) on all intervals [a; b], 0 < a < b, forequations of the formu00(t) + t
up(t) + t�uq(t) = 0; on (a; b); (4:23)in terms of the values of 
; � 2 (�1;1) and p; q � 1.Results in this paper have provided some partial answers.
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APPENDIX. The MAPLE ProgramThe program that leads to the results in Section 3 is contained in a �le calleduQ and has the following lines of MAPLE instructions. Line numbers are addedfor reference and are not part of the �le.##############################################1 f(u):=t^h*u^q;2 # u1 is du/dt and u2 is the second derivative3 #4 u2 := -f(u);5 # df(z) is the chain rule6 df := proc (z) diff(z,t)+diff(z,u)*u1+diff(z,u1)*u2 end;7 #8 dr := proc (RR,vv) dR:=df(RR)/df(vv);9 dR:=expand(subs(u1=solve(R=RR,u1),u=solve(v=vv,u),dR));10 normal(dR); end;11 el := proc (ex,eq,x) subs(x=solve(eq,x),ex); end;12 #13 RR:=u1; a:=(g+2)/(p-1); vv:=t^a*u;14 #15 rDR:=dr(RR,vv);16 DrDR:=normal(diff(",t));17 nDrDR:=numer(");18 eq:=numer(df(vv))=-P;19 subs(u=solve(vv=v,u),");20 nDrDR:=normal(expand(el(""",el(",R=RR,u1),R)));21 #22 k:=op(")[1];23 K0:=coeff(",P,0);24 K1:=coeff(k,P,1);25 K0:=factor(K0);26 K1:=factor(K1);##############################################Line 1 de�nes the nonlinear term, and can be changed if a di�erent equationis studied. As pointed out in Section 3, we have to keep track of only one typicalterm in F (t; u). In this case it is thuq. We have used h and q instead of 
iand pi for convenience. Lines that start with # are comment or separator lines.Line 4 is simply the di�erential equation u00 + f(u) = 0, being solved for u00.25



Line 6 de�nes a procedure with the name df that takes an argument z. In thede�nition, z is a dummy variable, so that an actual invocation of the procedureshould be df(expression in t and u). It uses the chain rule and the di�erentialequation to �nd the total derivative of the expression with respect to t. Lines 8to 10 de�ne the procedure that gives the righthand side of (3.10). It takes twoarguments RR and vv that correspond to R and v, respectively. The last part ofline 8 simply de�nes the local variable dR as dRRdt �dvvdt . What line 9 does is to�rst eliminate in dR the variables u1 and u in favor of R and v, and then multiplyeverything out. The normal command in line 10 is used to combine all the piecesobtained in line 9 into one single fraction in the lowest possible reduced form.Line 11 de�nes the procedure of eliminating from a given expression (ex) a givenvariable (x) according to a given equation (eq that contains x).Then comes the actual computation. Line 13 inputs our choices of RR =R = u0 = u1, a = � = (
 + 2)=(p � 1) = (g+ 2)=(p� 1), and vv = v =t�u = t^a � u. Line 15 invokes dr to �nd the righthand side of (3.10). Line 16�nds the derivative of the answer from the previous line and simpli�es it; thesymbol " is a convenient abbreviation for the previous answer. Line 17 takesthe numerator of the derivative. Line 18 de�nes the equation given by (3.13).Lines 19 and 20 carry out the task of solving the equation for R and substitutinginto the numerator of the derivative to obtain (3.14). The answer from line 20is an expression consisting of a long expression multiplied by a power of v anda power of t. The operator op in line 22 extracts the long expression. The nexttwo lines separate the expression into two parts, K0 that contains no P and K1that does. The last two lines factor these two parts.References[1] Bernfeld, S. R., and Lakshmikantham, V., An Introduction to Nonlin-ear Boundary Value Problems, Academic Press, New York, 1974.[2] Brezis, H., and Nirenberg, L., Positive solutions of nonlinear elliptic equa-tions involving critical Sobolev exponents, Comm. Pure Appl. Math., 36(1983), 437-477.[3] Co�man, C. V., On the positive solutions of boundary value problems fora class of nonlinear di�erential equations, J. Di�. Eq., 3 (1967), 92-111.[4] Co�man, C. V., Uniqueness of the ground state solution for�u�u+u3 = 0and a variational characterization of other solutions, Arch. Rational Mech.Analysis, 46 (1972), 81-95. 26
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