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Abstract. The BlueGene/L supercoputer, with 65,536 dual-processor compute
nodes, was designed from the group up to support ef£ceint execution of mas-
sively parallel message passing programs. Part of this support is an optimized
implementation of MPI that leverages the hardware features of BlueGene/L. MPI
for BlueGene/L is implemented on top of a more basic message-passing infras-
tructure called the message layer. This message layer can be used both to im-
plement other higher-level libraries and directly by applications. MPI and the
message layer are used in the two modes of operation of BlueGene/L: copro-
cessor mode and virtual node mode. Performance measurements show that our
message-passing services deliver performance close to the hardware limits of the
machine. They also show that dedicating one of the processors of a node to com-
munication functions (coprocessor mode) greatly improves the message-passing
bandwidth, whereas running two processes per compute node (virtual node mode)
can have a positive impact on application performance.

1 Introduction

The BlueGene/L supercomputer is a new massively parallel system being developed
by IBM in partnership with Lawrence Livermore National Laboratory (LLNL). Blue-
Gene/L uses system-on-a-chip integration [5] and a highly scalable architecture [2] to
assemble a machine with 65,536 dual-processor compute nodes. When operating at its
target frequency of 700 MHz, BlueGene/L will deliver 180 or 360 Tera¤ops of peak
computing power, depending on its mode of operation. BlueGene/L is targeted to be-
come operational in early 2005.

Each BlueGene/L compute node can address only its local memory, making mes-
sage passing the natural programming model for the machine. This paper describes how
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we designed and implemented application-level message passing services for Blue-
Gene/L. The services include both an implementation of MPI [12] as well as a more
basic message-passing infrastructure called the message layer.

Our starting point for MPI on BlueGene/L [3] is the MPICH2 library [1], from
Argonne National Laboratory. MPICH2 is architected with a portability layer called the
Abstract Device Interface, version 3 (ADI3), which simpli£es the job of porting it to
different architectures. With this design, we could focus on optimizing the constructs
that were of importance to BlueGene/L.

MPI for BlueGene/L was built on top of the BlueGene/L message layer. This lower-
level message passing library if speci£c to BlueGene/L, with an architecture that closely
re¤ects the hardware architecture of the machine. The message layer was designed to
support the implementation of higher-level libraries, such as MPI. However, it can also
be used directly by application programs that want to have a more direct path to hard-
ware features.

BlueGene/L is a feature-rich machine. A good implementation of message passing
services in BlueGene/L needs to leverage those features to deliver high-performance
communication services to applications. The BlueGene/L compute nodes are intercon-
nected by two high-speed networks: a three-dimensional torus network that supports
direct point-to-point communication and a tree network with support for broadcast and
reduction operations. Those networks are mapped to the address space of user processes
and can directly be used by a message passing library. We will show how we archi-
tected our message passing implementation to take advantage of both memory mapped
networks.

Another important architectural feature of BlueGene/L is its dual-processor com-
pute nodes. A compute node can operate in one of two modes. In coprocessor mode,
a single process, spanning the entire memory of the node, can use both processors by
running one thread on each processor. In virtual node mode, two single-threaded pro-
cesses, each using half of the memory of the node, run on one compute node, with each
process bound to one processor. This creates the need for two modes in our message
passing services, with different performance impacts.

We validate our MPI implementation on BlueGene/L by analyzing the performance
of various benchmarks on 32- and 512-node prototypes. The prototypes were built us-
ing second-generation BlueGene/L chips operating at 700 MHz. We use microbench-
marks to assess how well MPI performs compared to the limits of the hardware and
how different modes of operation within MPI compare to each other. We use the NAS
Parallel Benchmarks to demonstrate the bene£ts of virtual node mode when executing
computation-intensive benchmarks. Although the focus of our performance study is on
MPI, as that is what most applications will use, we also report results measured directly
on the message layer. These results help us quantify the overheads imposed by MPI and
provide guidance for future implementations of other higher-level libraries.

The rest of this paper is organized as follows. Section 2 presents an overview of the
hardware and software architectures of BlueGene/L. Section 3 discusses those details
of BlueGene/L hardware and software that were particularly in¤uential to our MPI im-
plementation. Section 4 presents the architecture of our MPI implementation. Section 5
describes the basic architecture of the BlueGene/L message layer, while Sections 6 and
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7 focus on point-to-point and collective operations in the message layer, respectively.
Section 8 describes and discusses the experimental results on the prototype machines
that validate our approach. Finally, Section 9 contains our conclusions.

2 An overview of the the BlueGene/L supercomputer

The BlueGene/L hardware [2] and system software [4] have been extensively described
elsewhere. In this section we present a short summary of the BlueGene/L architecture
to serve as background to the following sections.

The 65,536 compute nodes of BlueGene/L are based on a custom system-on-a-
chip design that integrates embedded low power processors, high performance network
interfaces, and embedded memory. The low power characteristics of this architecture
permit a very dense packaging. One air-cooled BlueGene/L rack contains 1024 compute
nodes (2048 processors) with a peak performance of 5.7 Tera¤ops.

The BlueGene/L chip incorporates two standard 32-bit embedded PowerPC 440
processors with private L1 instruction and data caches, a small 2 kB L2 cache/prefetch
buffer and 4 MB of embedded DRAM, which can be partitioned between shared L3
cache and directly addressable memory. A compute node also incorporates 512MB of
DDR memory.

The standard PowerPC 440 cores are not designed to support multiprocessor archi-
tectures: the L1 caches are not coherent and the processor does not implement atomic
memory operations. To overcome these limitations BlueGene/L provides a variety of
custom synchronization devices in the chip such as the lockbox (a limited number
of memory locations for fast atomic test-and-sets and barriers) and 16 KB of shared
SRAM.

Each processor is augmented with a dual ¤oating-point unit consisting of two 64-bit
¤oating-point units operating in parallel. The dual ¤oating-point unit contains two 32
× 64-bit register £les, and is capable of dispatching two fused multiply-adds in every
cycle, i.e. 2.8 GFlops/s per node at the 700 MHz target frequency. When both processors
are used, the peak performance is doubled to 5.6 GFlops/s.

In addition to the 65,536 compute nodes, BlueGene/L contains a variable number
of I/O nodes (1 I/O node to 64 compute nodes in the current con£guration) that connect
the computational core with the external world. We call the collection formed by one
I/O node and its associated compute nodes a processing set. Compute and I/O nodes
are built using the same BlueGene/L chip, but I/O nodes have the Ethernet network
enabled.

The main network used for point-to-point messages is the torus. Each compute node
is connected to its 6 neighbors through bi-directional links. The 64 racks in the full
BlueGene/L system form a 64×32×32 three-dimensional torus. The network hardware
guarantees reliable, deadlock free delivery of variable length packets.

The tree is a con£gurable network for high performance broadcast and reduction
operations, with a latency of 2.5 microseconds for a 65,536-node system. It also pro-
vides point-to-point capabilities. The global interrupt network provides con£gurable
OR wires to perform full-system hardware barriers in 1.5 microseconds
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All the torus, tree and global interrupt links between midplanes (a 512-compute
node unit of allocation) are wired through a custom link chip that performs redirec-
tion of signals. The link chips provide isolation between independent partitions while
maintaining fully connected networks within a partition.

BlueGene/L system software architecture: User application processes run exclu-
sively on compute nodes under the supervision of a custom Compute Node Kernel
(CNK). The CNK is a simple, minimalist runtime system written in approximately 5000
lines of C++ that supports a single application running by a single user in each BG/L
node. It provides exactly two threads running one on each PPC440 processor. The CNK
does not require or provide scheduling and context switching. Physical memory is stati-
cally mapped, protecting a few kernel regions from user applications. Porting scienti£c
applications to run into this new kernel has been a straightforward process because we
provide a standard Glibc runtime system with most of the Posix system calls.

Many of the CNK system calls are not directly executed in the compute node, but are
function shipped through the tree to the I/O node. For example, when a user application
performs a write system call, the CNK sends tree packets to the I/O node managing
the processing set. The packets are received on the I/O node by a daemon called ciod.
This daemon buffers the incoming packets, performs a Linux write system call against
a mounted £lesystem, and returns the status information to the CNK through the tree.
The daemon also handles job start and termination on the compute nodes.

I/O nodes run the standard PPC Linux operating system and implement I/O and
process control services for the user processes running on the compute nodes. We mount
a small ramdisk with system utilities to provide a root £lesystem.

The system is complemented by a control system implemented as a collection of
processes running in an external computer. All the visible state of the BlueGene/L ma-
chine is maintained in a commercial database. We have modi£ed the BlueGene/L mid-
dleware (such as LoadLeveler and mpirun) to operate through the ciod system rather
than launching individual daemons on all the nodes.

3 Hardware and system software impact on MPI implementation

In this section we present a detailed discussion of the BlueGene/L features that have a
signi£cant impact on the MPI implementation.

The torus network guarantees deadlock-free delivery of packets. Packets are routed
on an individual basis, using one of two routing strategies: a deterministic routing al-
gorithm, in which all packets follow the same path along the x, y, z dimensions (in this
order); and a minimal adaptive routing algorithm, which permits better link utilization
but allows consecutive packets to arrive at the destination out of order.

Ef£ciency: The torus packet length is between 32 and 256 bytes in multiples of
32. The £rst 16 bytes of every packet contain destination, routing and software header
information. Therefore, only 240 bytes of each packet can be used as payload. For every
256 bytes injected into the torus, 14 additional bytes traverse the wire with CRCs etc.
Thus the ef£ciency of the torus network is η = 240

270
= 89%.
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Link bandwidth: Each link delivers two bits of raw data per CPU cycle (0.25
Bytes/cycle), or η × 0.25 = 0.22 Bytes/cycle of payload data. This translates into
154 MBytes/s/link at the target 700 MHz frequency.

Per-node bandwidth: Adding up the raw bandwidth of the 6 incoming + 6 outgoing
links on each node, we obtain 12 × 0.25 = 3 bytes/cycle per node. The corresponding
bidirectional payload bandwidth is 2.64 bytes/cycle/node.

Reliability: The network guarantees reliable packet delivery. In any given link, it
resends packets with errors, as detected by the CRC. Irreversible packet losses are con-
sidered catastrophic and stop the machine. The communication library considers the
machine to be completely reliable.

Network ordering semantics: MPI ordering semantics enforce the order in which
incoming messages are matched against the queue of posted messages. Adaptively
routed packets may arrive out of order, forcing the MPI library to reorder them be-
fore delivery. Packet re-ordering is expensive because it involves memory copies and
requires packets to carry additional sequence and offset information. On the other hand,
deterministic routing leads to more network congestion and increased message latency
even on lightly used networks.

The tree network serves a dual purpose. It is designed to perform MPI collective oper-
ations ef£ciently, but it is also the main mechanism for communication between I/O and
compute nodes. The tree supports point-to-point messages of £xed length (256 bytes),
delivering 4 bits of raw data per CPU cycle (350 Mbytes/s). It has reliability guarantees
identical to the torus.

Ef£ciency: The tree packet length is £xed at 256 bytes, all which can be used for
payload. 10 additional bytes are used with each packet for operation control and link
reliability. Thus, the ef£ciency of the tree network is η = 256

266
= 96%.

Collective operations: An ALU in the tree network hardware can combine incom-
ing and local packets using bitwise and integer operations, and forward the resulting
packet along the tree. Floating-point reductions can be performed in two phases, one to
calculate the maximum exponent and another to add the normalized mantissas.

Packet routing on the tree network is based on packet classes. Tree network con-
£guration is a global operation that requires the con£guration of all nodes in a job
partition. For that reason we only support operations on MPI COMM WORLD.

CPU/network interface: The torus, tree and barrier networks are partially mapped
into user-space memory. Torus and tree packets are read and written with special 16-
byte SIMD load and store instructions of the custom FPUs.

Alignment: The SIMD load and store instructions used to read and write network
packets require that memory accesses be aligned to a 16 byte boundary. The MPI library
does not have control over the alignment of user buffers. In addition, the sending and re-
ceiving buffer areas can be aligned at different boundaries, forcing packet re-alignment
through memory-to-memory copies.

Network access overhead: Torus/tree packet reads into aligned memory take about
204 CPU cycles. Packet writes can take between 50 and 100 cycles, depending on the
whether the packet is being sent from cache or main memory.
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CPU streaming memory bandwidth is another constraint of the machine. For MPI
purposes we are interested mostly in the bandwidth for accessing large contiguous
memory buffers. These accesses are typically handled by prefetch buffers in the L2
cache, resulting in a bandwidth of about 4.3 bytes/cycle.

We note that the available bandwidth of main memory and the torus and tree net-
work are in the same order of magnitude. Performing memory copies on this machine to
get data into/from the torus results in reduced performance. It is imperative that network
communication be zero-copy wherever possible.

Inter-core cache coherency: The two processors in a node are not cache coherent.
Software must take great care to insure that coherency is correctly handled in software.
Coherency handled at the granularity of the CPUs’ L1 cache lines: 32 bytes. Therefore,
data structures shared by the CPUs should be aligned at 32-byte boundaries to avoid
coherency problems.

4 Architecture of BlueGene/L MPI

The BlueGene/L MPI is an optimized port of the MPICH2 [1] library, an MPI library de-
signed with scalability and portability in mind. Figure 1 shows two components of the
MPICH2 architecture: message passing and process management. MPI process man-
agement in BlueGene/L is implemented using system software services. We do not
discuss this aspect of MPICH2 further in this paper.
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Fig. 1. BlueGene/L MPI software architecture.

The upper layers of the message passing functionality are implemented by MPICH2
code. MPICH2 provides the implementation of point-to-point messages, intrinsic and
user de£ned datatypes, communicators, and collective operations, and interfaces with
the lower layers of the implementation through the Abstract Device Interface version
3 (ADI3) layer [9]. The ADI3 layer consists of a set of data structures and functions
that need to be provided by the implementation. In BlueGene/L, the ADI3 layer is
implemented using the BlueGene/L Message Layer, which in turn uses the BlueGene/L
Packet Layer.
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The ADI layer is described in terms of MPI requests (messages) and functions to
send, receive, and manipulate these requests. The BlueGene/L implementation of ADI3
is called bgltorus. It implements MPI requests in terms of Message Layer messages,
assigning one message to every MPI request. Message Layer messages operate through
callbacks. Messages corresponding to send requests are posted in a send queue. When
a message transmission is £nished, a callback is used to inform the sender. Correspond-
ingly, there are callbacks on the receive side to signal the arrival of new messages.
Those callbacks perform matching of incoming Message Layer messages to the list of
MPI posted and unexpected requests.

The BlueGene/L Message Layer is an active message system [8, 11, 14, 15] that
implements the transport of arbitrary-sized messages between compute nodes using the
torus network. It can also broadcast data, using special torus packets that are deposited
on every node along the route they take. The message layer breaks messages into £xed-
size packets and uses the packet layer to send and receive the individual packets. At the
destination, the Message Layer is responsible for reassembling the packets, which may
arrive out of order, back into a message.

The message layer addresses nodes using the equivalent of MPI COMM WORLD
ranks. Internally, it translates these ranks into physical torus x, y, z coordinates, that are
used by the Packet Layer. The mapping of ranks to torus coordinates is programmable
by the user, and can be used to optimize application performance by choosing a map-
ping that support the logical communication topology of the application.

The Packet Layer is a very thin stateless layer of software that simpli£es access to
the BlueGene/L network hardware. It provides functions to read and write the torus/tree
hardware, as well as to poll the state of the network. Torus packets typically consist of
240 bytes of payload and 16 bytes of header information. Tree packets consist of 256
bytes of data and a separate 32-bit header. To help the Message Layer implement zero-
copy messaging protocols, the packet layer provides convenience functions that allow
software to “peek” at the header of an incoming packet without incurring the expense
of unloading the whole packet from the network.

5 Message layer architecture

Figure 2 shows the structural and functional composition of the message layer. It is
divided into three main categories - basic functional support, point-to-point commu-
nication primitives (or protocols) and collective communication primitives. The base
layer acts as a support infrastructure for the implementation of all the communication
protocols.

Initialization: The message layer takes full control of a number of hardware resources
in the BlueGene/L system - namely all the torus hardware FIFOs. The message layer is
not equipped to share these objects; therefore there should never be two message layer
objects instantiated in the same process.

Initialization is a fairly complicated process. It initializes all state machines, the
rank mapping subsystem and decides the operating mode (virtual node mode, heater
mode or coprocessor mode) based on input from the caller.
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The message layer may decide during the initialization phase that the current pro-
cessor is not needed for the computational effort, based on a user option that speci£es
the number of processors the application is being run on. In this case, message layer
initialization calls exit instead of returning.

Advance loop: The message layer’s basic operating mode is polling. There are perfor-
mance related reasons for this. Although the torus (and tree) hardware support interrupt
driven operation, handling a hardware interrupt would cost the processor about 103

cycles of overhead.
The price for polling based operation is that the system needs to be able to predict

when to expect an incoming message and poll for it. This works out in standard MPI
operations like MPI Send and MPI Recv which are issued in synchrony in most well-
behaved applications. However, the MPI-2 standard also has one-sided communication
primitives that require no help from the passive party. We plan to add interrupt-driven
operation to the message layer in order to support one-sided operations.

Figure 3 shows the architecture of the message layer progress engine and connec-
tion manager. For each peer of a node, send and receive queues are maintained. The
progress sends data from the send queues and processes incoming packets by dispatch-
ing a handler for each of these.

In coprocessor mode there are two advance loops in the system, one for each pro-
cessor. The advance loops service mutually exclusive sets of torus FIFOs. The network
hardware allows simultaneous access to the two sets of FIFOs without compromising
performance.

In virtual node mode the advance loop also services an additional pair of virtual
FIFOs destined for communication between the two processors in the same node.

Mapping: We realized fairly early that on a machine like BlueGene/L the correct map-
ping of MPI applications to the torus network could be a critical factor in maintaining
application performance and scaling. Figure 4 compares the scaling characteristics of
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the NAS parallel benchmark [7, 10, 6] BT on BlueGene/L when mapped onto a mesh
naively or optimally.

The message layer, like MPI, has a notion of process ranks, ranging between 0 and
N − 1 where N is the number of processes participating. Message layer ranks are the
same as the COMM WORLD ranks in MPI. The message layer allows arbitrary mapping
of torus coordinates to ranks. This mapping can be speci£ed via an input £le listing the
torus coordinates of each process in increasing rank order, as shown in Figure 5.

100 200 300 400 500 600 700 800 900 1000 1100
0

10

20

30

40

50

60

70

80

90

100

# processors

N
A

S
 B

T
 p

er
fo

rm
an

ce
 (

M
O

ps
/s

/p
ro

ce
ss

or
)

naive (standard) mapping
optimized mapping for NAS BT

Fig. 4. Comparison of NAS BT bench-
mark (class B) scaling characteristics when
mapped onto the BlueGene/L torus naively
vs. optimally.
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Fig. 5. An example mapping £le, describing
a possible mapping of 8 ranks onto a 2×2×
2 mesh. Torus coordinates are described as
quadruplets of x× y× z× t, where t is the
processor ID and is non-zero only in virtual
node mode.

The default rank to torus coordinate mapping is called XYZT, and corresponds to the
lexical ordering of (x, y, z) triplets (in coprocessor/heater mode) or (x, y, z, t) quadru-
plets (in virtual node mode, with t representing the processor ID in each processor of a
compute node).

While every processor in a partition is initialized, the user has the option of specify-
ing a maximum number of processors to participate in the computation. Any processors
that are mapped to a rank larger than this maximum will call exit during the mapping
phase, and thus not return from initialization.

5.1 Coprocessor mode support

To support the concurrent operation of the two non-cache-coherent processors in a com-
pute node, the message layer allows the use of the second processor both as a commu-
nication coprocessor and as a computation coprocessor. The message layer provides
a non-L1-cached, and hence coherent, area of the memory to coordinate the two pro-
cessors. This memory is called the scratchpad. The main processor supplies a pool of
work units to be executed by the coprocessor. Work units can be permanent, executed
whenever the coprocessor is idle, or transient functions, executed once and then re-
moved from the pool. An example of a permanent function would be the one that uses
the coprocessor to help with the rendezvous protocol. To start a transient function, one
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invokes the co start function provided by the message layer. The main processor
waits for the completion of the work unit by invoking the co join function.

The coprocessor can also help with communication tasks. One of the permanent
work units is a communication thread that runs all the time. Administrative data for
messages received by the coprocessor is held in the scratchpad. Messages processed
by the coprocessor are always aligned at cache line boundaries, and at the end of the
reception the two processors cooperatively enforce coherency in software.

5.2 Virtual node mode support

The kernel in the compute nodes also supports a virtual node mode of operation for the
machine. In this mode the kernel runs two separate processes in each compute node.
Node resources (primarily the memory and the torus network) are evenly split between
both processes. In virtual node mode, an application can use both processors in a node
simply by doubling its number of tasks, without having to explicitly handle cache co-
herence issues. The now distinct tasks running in the two CPUs of a compute node have
to communicate to each other. We have solved this problem by implementing a virtual
torus device, serviced by a virtual packet layer, in the scratchpad memory. Virtual FI-
FOs make portions of the scratchpad look like a send FIFO to one of the processors and
a receive FIFO to the other. Access to the virtual FIFOs is mediated with help from the
hardware lockboxes. Code for scratchpad setup is the same for both coprocessor mode
and virtual node mode.

Virtual node doubles the number of tasks in the message layer; it also introduces a
re£nement in the addressing of tasks. As already shown in Figure 5, instead of being
addressed with a triplet (x, y, z) denoting the torus coordinates, tasks are addressed
with quadruplets (x, y, z, t) where t is the processor ID (0 or 1) in the current node. In
coprocessor mode t is always 0.

5.3 Packet layer primitives

The message layer needs to perform three functions to function correctly: it needs to
check the status of the hardware FIFOs, and it needs to inject and extract packets from
the FIFOs. As will be seen later, one of the most critical performance limitations of
the message layer is the number of CPU cycles spent handling each individual network
packet. The absolute limits of packet read/write times are about 100 CPU cycles for
writes and 204 CPU cycles for reads. The larger read overhead is caused by a combina-
tion of relatively large read latency and a limitation of the PPC 440 processor causing
it to stall after 4 consecutive reads from the network hardware.

The best way to keep packet processing times low is to avoid additional memory
copies in the software stack. Thus, an outgoing packet should be sent directly from the
send buffer; an incoming packet should be read directly into its £nal destination. Both
of these are nontrivial to achieve.

We dispensed with additional memory copies during packet reads by using partial
packets. Instead of reading a whole packet into a temporary buffer and then copying
the payload portion to the actual destination, the message layer uses reads out only the
packet header and calls a packet handler based on the contents of the header. The packet
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handler gets the header and a handler function to read the rest of the packet. Thus the
bulk of the packet is copied out directly into the desired destination with no intervening
memory buffers, allowing for better packet processing times.

Another restriction of the network hardware is that the memory buffers used for
packet transfers have to be aligned to quad word boundaries. The alignment restriction
is caused by the double ¤oating point load and store instructions used to access the
network devices. If the user speci£es non-aligned memory buffers, additionally memory
copies are needed to realign the packet data.

We have discovered that we can use a portion of the 204 cycles spent reading a
packet from the network to perform an in-memory realignment of the already available
data. Thus we effectively overlap the network read and the realignment copy. Figure 6
shows the savings in cycles to read a packet achieved by this technique when compared
to the standard read-and-copy method.

5.4 Posting messages

In order to make the implementation of MPI possible, the message layer supports mes-
sage ordering even while running on network hardware that doesn’t preserve packet
order. The message layer provides enough ¤exibility to meet the needs of MPI seman-
tic correctness without compromising ef£ciency.

One of the ways in which packet order can be enforced is called FIFO pinning,
i.e. ensuring that packets going to the same destination are always posted to the same
FIFO. FIFO pinning assigns packets to FIFOs based on the packet’s expected direction
of travel. This technique can actually contribute to better performance when multiple
messages are sent at the same time, because opportunistic assignment of FIFOs can lead
to links being starved when all FIFOs are full with packets going in other directions.

The message layer is also able to restrict messages traveling to the same destination
to being sent one at a time. To ensure that messages are delivered in the correct order
one must enforce both FIFO pinning and send order. This is extremely useful for e.g.
the eager protocol which relies on ordering. Other messages, e.g. the data packets in
the rendezvous protocol, may be posted without any ordering restrictions.
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5.5 Non-contiguous data delivery

The message layer is able to handle arbitrary collections of data, including non-contiguous
data descriptors described by MPICH2 data loops. The Message Layer incorporates
a number of complex data packetizers and unpacketizers that satisfy the multiple re-
quirements of 16-byte aligned access to the torus, arbitrary data layouts, and zero-copy
operations.

6 Point-to-point Protocols in the message layer

The ultimate goal of point-to-point primitives in the message layer is to support an ef£-
cient implementation of MPI. For this reason, there is a range of point-to-point message
transmission primitives available in the message layer, each suited for a different mes-
sage sizes and having different latency and bandwidth characteristics. Some protocols,
like the one-packet protocol, are limited as far as maximum message size, but provide
extremely good latency; the rendezvous protocol, by contrast, works for any message
size but provides poor latency. The BlueGene/L MPI implementation uses all these
protocols depending on communication requirements. A discussion of the speci£cs of
the MPI implementation is beyond the scope of this paper; however, the names of the
message layer point-to-point primitives should give a good indication of their intended
purpose in the MPI implementation.

All point-to-point messaging primitives share the same design philosophy. Namely,
all primitives are non-blocking and results of user actions are announced through call-
backs registered by the user.

In order to send a message, the user of the message layer needs to have access to
the send buffer as well as memory for the message state (the latter can be allocated by
asking the message layer to provide the memory). The user initializes the message state
and attaches the send buffer, and then posts the message by calling a form of the post
method in the message layer. The user is also responsible for providing the name of the
callback function to be called at the end of the send process.

At the receiving end an incoming message is noted by calling the recvnew call-
back previously registered by the user. In the callback the user is responsible for provid-
ing memory both for the message data structure as well as for the receive buffer, and the
name of the recvdone callback which will be invoked when the receive is complete.

The message layer completion semantics are local: the senddone callback is
called when the send buffer can be reused, but not guarantees are made about the state
of reception at the receiver. The recvdone callback is called when the receive buffer
is ready to be used by the user. The user is forbidden to touch the send/receive buffer
until the senddone/recvdone callback is called.

Point-to-point messaging is implemented with the help of a number of packetizers
and unpacketizers. These are functions that prepare BlueGene/L network packets from
the send buffer and piece the packets together into the another buffer at the receiving
end. The packetizers support both contiguous and non-contiguous user buffers. Because
packets on the network can arrive out of order, the unpacketizer has to be able to deal
with packets of the same message arriving in any sequence.
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6.1 The eager protocol

The eager protocol is one of the simplest both in terms of programmer’s interface and
implementation. It guarantees ordered delivery of messages by enforcing by both FIFO
pinning and post send order. All eager protocol packets are sent using deterministic
routing, so that the packets themselves arrive in order at the receiver. This means that
unpacking the eager protocol is extremely simple, with a running counter keeping track
of the message offset both at the sender and the receiver.

The programmer’s interface for the eager protocol consists of constructor functions
to initialize eager messages and the three callbacks recvnew, recvdone and send-
done.

In addition to the send buffer, every eager message also transmits a £xed size mem-
ory buffer that may contain message metadata. The contents of this buffer is opaque to
the message layer; in the BlueGene/L MPI implementation we use it to transmit MPI
matching information, such as the sender’s MPI rank, the message tag and the context
identi£er.

6.2 The one-packet protocol

The one packet protocol is a simpli£ed version of the eager protocol for cases when
the send buffer £ts into a single packet. The one packet protocol saves overhead costs
by virtue of a very simple packetizer. The programmer’s API is also simpler than ea-
ger message’s, because there is no need for the recvdone callback. The recvnew
callback carries with it a temporary message buffer, and it is the user’s responsibility to
copy its contents before the callback returns.

6.3 The rendezvous protocol

Both the one-packet and eager protocols suffer from two major de£ciencies. First, data
packets are deterministically routed to retain ordering, resulting in inef£cient use of the
torus network. Second, the eager and one-packet protocols are unable make use of the
coprocessor for packet delivery.

The rendezvous protocol £xes both these problems. The only packet sent via de-
terministic route is the initial “scout” packet that essentially asks permission from the
receiver to send data. The receiver returns an acknowledgment, followed by the data
transfer from the sender.

In our current implementation of the rendezvous protocol the burden of message re-
ception can be carried by the coprocessor, subject to availability, cache coherency and
alignment constraints. Thus, the receiver’s coprocessor is able to handle any packets
carrying contiguous data aligned at cache line boundaries (in order to avoid false shar-
ing at cache line boundaries). This improves the ef£ciency of simultaneous message
exchanges with multiple neighbors.

The unpacking of rendezvous protocol packets is somewhat more complicated than
that of eager packets. The packets can arrive out of order. We chose a solution in which
the sender and receiver exchange the absolute address of the receive buffer before any
data is sent; thus each packet is addressed directly to a particular memory address in the
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receiver. Thus, all the unpacketizer has to do is copy each incoming packet to the spec-
i£ed memory address, count the packets until the required amount of data has ¤own in.
This makes for streamlined handling of packet reception, again improving the ef£ciency
of multiple neighbor exchanges.

6.4 The adaptive eager protocol

The adaptive eager protocol is a version of the eager protocol that uses no determin-
istically routed packets. Instead it solves the message ordering problem by sending
a con£rmation packet every time the £rst packet of a new message is received. The
sender can only start sending the next message after it has received con£rmation that at
least one packet of the previous message has been seen by the receiver. This technique
ensures that the receiver sees the £rst packet of each message in order, although it does
not guarantee the order of message completion either at the sender or receiver.

The obvious drawback of this solution is that there is a mandatory waiting time of
at least one network round trip between subsequent message sends. This is not an issue
if messages to the same node are sent infrequently - such as in a chaotic communication
pattern, where nodes talk to many other nodes - because it is likely that by the time the
next message is ready to be sent the previous message has been acknowledged by the
receiver.

We believe that the adaptive eager protocol will become more important as the Blue-
Gene/L machine scales beyond 20,000 processors, and the number of nodes that are
relatively far apart grows. On a large network deterministically sent eager messages are
more likely to cause traf£c hotspots. The adaptive eager protocol will be in position to
solve that problem.

7 MPI collective operation support in the message layer

It is typical of an MPI implementation to implement collective communication in terms
of point-to-point messages. This is certainly the case for MPICH2, the framework used
by BlueGene/L MPI. But on the BlueGene/L platform the default collective implemen-
tations of MPICH2 suffer from low performance, for at least three reasons:

– The MPICH2 collectives are written with a crossbar-type network in mind, and not
for special network topologies like the BlueGene/L torus network. Thus the default
implementation more often than not suffers from poor mapping (see Section 5).

– Point-to-point messaging in BlueGene/L MPI has a high messaging overhead, due
to the relative slowness of the CPU when compared to the network speed. Thus,
implementing e.g. MPI broadcast in terms of a series of point-to-point messages
will result in poor behavior at short message sizes, where overhead dominates the
execution time of the collective.

– Some of the network hardware’s performance-enhancing properties are hidden when
using only standard point-to-point messaging. A good example of this is the use of
the deposit bit, a feature of the network hardware that lets packets be “deposited”
on every node they touch on the way to the destination.
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Our work on collective communication in the message layer has just begun. We
have message layer based implementations of MPI Bcast and MPI Alltoall[v].
The broadcast implementation bene£ts from all three factors we have enumerated - it
has lower overhead, is torus/mesh aware and uses the special deposit bit sends provided
by network hardware. The alltoall implementation is somewhat immature - although it
bene£ts from lower overhead it has a lower target bandwidth because it uses a type of
packet with fewer payload bytes. Our short term future plans include implementations
of MPI Barrier and MPI Allgatherv as well as MPI Allreduce. Our primary
focus is on these primitives because they are in demand by the people doing applica-
tions tuning on BlueGene/L today. In particular, broadcast, allgather and barrier are
heavily used by the ubiquitous HPL benchmark that determines the TOP500 placement
of BlueGene/L.

8 Performance analysis

In this section we discuss the performance characteristics of the MPI library. We £rst
present microbenchmark results that analyze different aspects of our current MPI imple-
mentation. We compare different message passing protocols. We present result compar-
ing processor effectiveness in coprocessor mode as well as virtual node mode. Finally,
we analyze BlueGene/L-speci£c implementations of common collectives.

For measuring performance we used various microbenchmarks, written both on top
of the message layer as well as using MPI as a driver for the message layer. These are
some of the same benchmarks we actually used to tune the message layer and MPI. We
consider these benchmarks to be extremely useful in pinpointing performance de£cien-
cies of the message layer (and therefore, of MPI).

For our evaluation, we had several systems available, made of both £rst and second
generation chips. The £nal runs presented in this paper were, however, all made on
second generation chips running at 700 MHz. Most of our micro-benchmark runs were
made on 32 node systems. Scalability studies were performed on systems consisting of
up to 512 nodes.

8.1 Point-to-point message latency

Figure 7 shows the half-roundtrip latency of 1-byte messages sent with all of the four
point-to-point protocols. Latencies were measured with message layer and MPI ver-
sions Dave Turner’s mpipong program [13]. Unsurprisingly, the one-packet protocol
has the lowest overhead, about 1600 cycles. The highest overhead by far belongs to the
rendezvous protocol, with the two eager variants in the middle of the range. When mea-
sured from within MPI, the latency numbers increase drastically due to the additional
software overhead. All measurements are shown both in cycles and in µs, assuming a
700 MHz clock speed.

MPI adds about 750 cycles of overhead in the case of the one-packet protocol, and
more than 1300 cycles in the case of the eager protocol; in the case of the adaptive eager
protocol MPI overhead also measures the time required to get the next token from the
receiver; hence MPI time more than doubles compared to the message layer’s timing.



16

Protocol name msglayer MPI
cycles µs cycles µs

one-packet 1600 2.29 2350 3.35
eager 2700 3.86 4000 5.71

adaptive eager 3300 4.71 11000 15.71
rendezvous 12000 17.14 17500 25.0

Fig. 7. Roundtrip latency comparison of all pro-
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Latency as a function of Manhattan distance: Figure 8 shows 1
2

-roundtrip latency
as a function of the Manhattan distance between the sender and the receiver in the torus.
The £gure shows a clear linear dependency, with about 90 ns of additional latency added
for every hop. Latency is measured in microseconds on a 700 MHz system.

8.2 Point-to-point message bandwidth

Figure 9(a) shows the available bandwidth measured with MPI on a single bidirectional
link of the machine (both sending and receiving). The £gure shows both the raw band-
width limit of the machine running at 700 MHz (2links×175 = 350 MBytes/s) and the
net bandwidth limit (η× 2× 175 = 310 MBytes/s), as well as the measured bandwidth
as a function of message size. With the relatively low message processing overhead of
the MPI eager protocol, high bandwidth is reached even for relatively short messages:
1
2

bandwidth is reached for messages of about 1 KByte.

A comparison of point-to-point messaging protocols: Figures 9 (b), (c), (d) and (e)
compare the multi-link performance of the eager, adaptive eager and rendezvous proto-
cols, the latter with and without the help of the coprocessor. We can observe the number
of simultaneous active connections that a node can keep up with. This is determined by
the amount of time spent by the processor handling each individual packet belonging to
a message; when the processor cannot handle the incoming/outgoing traf£c the network
backs up.

In the case of the eager and rendezvous protocols, without the coprocessor’s help,
the main processor is able to handle two bidirectional links simultaneously. The adap-
tive eager protocol, which is the least optimized at the moment, cannot even handle two
links. In any case, when network traf£c increases the processor becomes a bottleneck,
as shown by Figures 9 (b), (c) and (d).

Figure 9 (e) shows the effect of the coprocessor helping out in the rendezvous pro-
tocol: MPI is able to handle the simultaneous traf£c of more than three bidirectional
links in this case.
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(a) Single−link measured MPI bandwidth
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(b) Eager protocol
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(c) Rendezvous protocol
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(d) Adaptive eager protocol
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(e) Rendezvous protocol with coprocessor support
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Fig. 9. Comparing multi-link bandwidth performance of MPI protocols.

8.3 Coprocessor mode vs. virtual node mode

Figure 10 shows a comparison of per-task performance in coprocessor and virtual node
modes. We ran a subset of the class B NAS parallel benchmarks [6] on a 32-compute
node subsystem of the 512-node BG/L prototype. We used 25 (for BT and SP) or 32
(for the other benchmarks) MPI tasks in coprocessor mode, and 64 (for all benchmarks)
MPI tasks in virtual node mode.
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Fig. 10. Comparison of per-node performance in coprocessor and virtual node mode.

Ideally, per-task performance in virtual node mode would be equal to that in copro-
cessor mode, resulting in a net doubling of total performance (because of the doubling
of tasks executing). However, because of the sharing of node resources – including
the L3 cache, memory bandwidth, and communication networks – individual processor
ef£ciency degrades between 2-20%, resulting in less than ideal performance results.
Nevertheless, the improvement warrants the use of virtual node mode for these classes
of computation-intensive codes.

8.4 Optimized MPI broadcast on the torus

In this section we compare the performance of three implementations of MPI Bcast.
The baseline four our comparison is the default implementation of MPI Bcast in
MPICH2. We compare this with a mesh-aware implementation of broadcast using point-
to-point MPI messages. Finally, we have a mesh-aware implementation of broadcast
directly in the message layer, this one using the torus network hardware’s deposit bit
feature.

The standard MPICH2 implementation of MPI Bcast builds a binary tree of nodes
(regardless of their position in the mesh/torus) to do the broadcast. Since the tree is
imperfectly mapped onto the mesh, with multiple branches of the tree covering the
same physical links, the algorithm has a low effective bandwidth.

The mesh-aware broadcast (both MPI based and message layer based) implemen-
tation has a target bandwidth that depends on the dimensionality of the mesh. In a
line broadcast the expected bandwidth is the equivalent of a single link, or 175 × η =
155 MBytes/s; if the line is connected into a torus, the expected bandwidth is 2×155 =
310 MBytes/s. On a 2D mesh, the expected bandwidth is also 310 MBytes/s; on a 2D
torus, bandwidth rises to the equivalent of four links, or 700 MBytes/s, although at that
point the processors become the bottlenecks and limit bandwidth.

Figure 11 shows the principle of a 2D mesh broadcast. The message is cut into two
roughly equal pieces which are then routed over non-overlapping subsections of the
torus network. Any single torus link cannot be involved in routing more than one of the
pieces of the broadcast, or else that link becomes a bottleneck.
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Fig. 11. Depiction of 2D mesh-aware
broadcast algorithm on a 4 × 4 mesh.
The message is broken into two parts
which are then broadcast using mutu-
ally exclusive sets of links.
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Fig. 12. Performance comparison of broadcast
implementations

Figure 12 compares the performance of the three broadcast implementations men-
tioned earlier, measured on a 4× 4 mesh.

The standard MPI broadcast tops out at about 60 MBytes/s, less than half of a
single link’s bandwidth. The mesh-aware MPI based implementation reaches a little
better than one link worth of bandwidth (200 MBytes/s), but only for very large (>
200 KBytes) messages. By comparison message layer based implementation reaches
the theoretical maximum, 308 MBytes/s or 2 links worth of bandwidth, and perfor-
mance climbs relatively steeply even with small message sizes. In order to better show
short message behavior the horizontal axis in this Figure is logarithmic.

8.5 Optimized MPI alltoall[v] on the torus

Figure 13 compares the performance of three implementations of MPI Alltoall.
The baseline is again the unmodi£ed MPICH2 implementation, which (as the £gure
shows) switches strategy at the message size of about 100 KBytes. The strategy for short
messages is to post all sends and all receives at once, followed by a giant MPI Waitall
to collect results. The long message strategy sequentially posts pairs of sends and re-
ceives between pairs of hosts. The long message strategy yields poor bandwidth on the
BlueGene/L torus.

The second implementation of MPI Alltoall replicates the small-message be-
havior of the default implementation for all message sizes. The performance curve
closely overlaps the baseline implementation for small messages, but does not degrade
when message size increases: instead it reaches about 84% of the theoretical peak or
large messages.

The third implementation is message layer based. This is a fairly immature imple-
mentation. It uses a packet type that has a smaller per-packet payload (only 224 Bytes
of each 256 Byte packet). This accounts for the smaller absolute bandwidth achieved by
the algorithm. Note, however, that the message layer-based algorithm outperforms the
MPI-based algorithms when the message sizes are small. We expect that absolute per-
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formance of the message layer based algorithm will improve with further optimization
efforts.
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Fig. 13. Comparison of MPI Alltoall im-
plementations
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Fig. 14. Tree-based MPI broadcast and allre-
duce: measured bandwidth

8.6 Using the tree network

As mentioned in Section 3, the tree network supports collective operations, including
broadcast and reduction. The MPI library currently uses the tree network to implement
broadcast and integer reduce and allreduce operations on the MPI COMM WORLD com-
municator. Tree-based reduction of ¤oating-point numbers is under development.

Figure 14 shows the measured bandwidth of tree-based MPI broadcast and allreduce
measured on the 512-node prototype. Broadcast bandwidth is essentially independent
of message size, and hits the theoretical maximum of 0.96 × 350 = 336 Mbytes/s.
Allreduce bandwidth is somewhat lower, encumbered by the software overhead of re-
broadcasting the result.

9 Conclusions

The BlueGene/L supercomputer represents a new level of scalability in massively paral-
lel computers. Given the large number of nodes, each with its own private memory, we
need an ef£cient implementation of message pasing services, particularly in the form of
an MPI library, to support application programmers effectively. The BlueGene/L archi-
tecture provides a variety of features that can be exploited in an MPI implementation,
including the torus and tree networks and the two processors in a compute node.

This paper reports on the architecture of our MPI implementation and also presents
initial performance results. Starting with MPICH2 as a basis, we provided an imple-
mentation that uses the tree and the torus networks ef£ciently and that has two modes
of operation for leveraging the two processors in a node. Key to our approach was the
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de£nition of a BlueGene/L message layer, that directly maps to the hardware features
of the machine. The performance results show that different message protocols exhibit
different performance behaviors, with each protocol being better for a different class
of messages. They also show that the coprocessor mode of operation provides the best
communication bandwidth, whereas the virtual node mode can be very effective for
computation intensive codes represented by the NAS Parallel Benchmarks.

Our MPI library is already being used by various application programmers at IBM
and LLNL, and those applications are demonstrating very good performance and scal-
ability in BlueGene/L. Other application-level communication libraries, which would
be implemented using the BlueGene/L message layer, are also being considered for the
machine. The lessons learned on this prototype will guide us as we move to larger and
larger machine con£gurations.
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