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Abstract

An error functional expansion is constructed for a four-dimensional integral over [0, 1]* whose inte-
grand function has a singularity structure of a type that occurs in integrals in the Galerkin boundary
element method. We show with an example how extrapolation may be used to evaluate this integral.

1 Introduction

In applications of the boundary element method, one needs to evaluate many four-dimensional
integrals. In a wide class of problems, these integrals are each of the form

/ / |X1 —X2|7h(X1,X2)dX1dX2. (11)
R1 JR2

Here + is typically a negative integer, and R; and R4 are each a specified two-dimensional
planar region. The function A is usually innocuous, often simply a multinomial. The more
interesting of these integrals are those in which the regions R and Rg intersect, either at
a single point or along a common edge. In the example treated here, these regions concide.
A significant proportion of the extensive literature on Galerkin methods is devoted to the
numerical evaluation of these somewhat intractable integrals. See, for example, [ScWe92]
and [SaLa00]. However, the possibility of using extrapolation methods (generalizations
of Romberg Integration) has received little consideration. In this note, we investigate in
detail a single prototype example to see whether a proper underlying error expansion for
extrapolation exists; and to provide a springboard for a more thorough investigation.
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2 Prototype Example

Our prototype example is one of the simplest examples of (1.1). Here we set h = 1, Ry =
Ro =38 =[0,1]2 and v = —1. This leaves

Iif = /S/S {(5E1 —2)” + (y1 — y2)2}71/2 dz1dy, dzadys. (2.1)
This four-dimensional integrand function is singular in the two-dimensional manifold
{(z1 —22) = 0} N{(y1 —2) =0} (2.2)
In spite of this singularity, the integral (2.1) converges; we show in the Appendix that

Qf:u%a+¢®—§w§—nz207 (2.3)

However, we seek a numerical method for evaluating integrals similar to this, and we
treat this one (our prototype) with a view to generalizing the theory later. In this paper,
we confine ourselves to extrapolation based on the following set of cubature rules.

Definition 2.1 For positive integer m, the four-dimensional product m-panel midpoint
trapezoidal rule for the region [0, 1]*
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Here f* is identical with f except that any point for which f is indeterminate is “ig-
nored”, that is, replaced by zero. In our example, points for which both j; = j3 and jo = j4
have to be ignored. There are m? of these points out of a total of m* points. The four
zeros in the superscript simply indicate that the midpoint trapezoidal rule is used in each
dimension.

The principal purpose of this paper is to show that, for our prototype integrand function

= |r12| 71, the error functional has an asymptotic expansion of the form
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where the coefficients A;, B; and C; are independent of m.

After doing so, we give a numerical example to illustrate how this expansion may be
applied in extrapolation quadrature.

3 Some N-Dimensional Error Expansions

Two familiar integration rules for [0, l]N are the the product midpoint trapezoidal rule
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and the product endpoint trapezoidal rule,

- ki k k
QN L, mNZ”Z” Zmp( L2 . N>. (3.2)

F1=0 ko—0  kn=0 m

As is conventional, the double prime on the summation symbol indicates that a factor (1/2)
is to be applied to the first and last element in the summation. In the rest of this paper,

QEQ”] may stand for either (3.2) or (3.1).

Theorem 3.2 When 1(x) and its derivatives of order 2p and less are integrable over
[0, 1},

O(m~2~1). (3.3)

This is an N-dimensional version of the standard Euler-Maclaurin expansion. Simple inte-
gral representations are known for the coefficients B, which depend on % and on @)y but
are independent of m.

When the integrand function v has a singularity in [0, 1]V, (3.3) is generally not valid.
However, an expansion is known for integrand functions that are homogeneous of specified
degree about the origin and C*°[0, 1]V \ (0).

Definition 3.3 f(x) is homogeneous about the origin of degree X if f(Ax) = Af(x) for all
A >0 and |x| > 0.

A/3

Examples of these include (z2y)*/3, (22 +y?)*?, and, with A = —1, our prototype integrand

function in (2.1).

Theorem 3.4 [Ly76]: Let v > —N; let 1,(x) denote an N -dimensional homogeneous
function of degree v > —N, which is C*®[0,1]" \ (0). Then
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(m] % Ayin  Cyyinlnm Boyy
@n N~ Tin + mYtN + mr+N + Z m2s’

237E'y+N

(3.4)

where Cyyn = 0 unless v+ N s an even integer.

As before, the asterisk indicates that indeterminate function values are to be ignored. In
this paper, we require this theorem with N = 2 only.

We note that the prototype integrand in (2.1) is homogeneous of degree —1 about the
origin. Were it not for the singularities in [0,1]* (mentioned in (2.2)), the expansion we
seek would be (3.4) with N = 4 and 7 = —1; the leading terms would then be O(1/m?).
In view of the singularities, this expansion is invalid. In this paper we establish the correct
expansion (2.5), where the leading term is O(1/m).



4 Error Functional Expansion for the Prototype Example
In this section we establish the asymptotic expansion (2.5) above.

Theorem 4.5 Let t1 = 1 — x2 and t9 = y1 — y9, and let the four argument function
f(z1,y15m2,y2) be expressible as follows:

f(z1,y1, 2, y2) = d(t1,t2), (4.1)

where the two-argument function ¢ is symmetric in t1 and in to. Then, for all positive
integer m,

ng;o,o,o,o]f _ Q[2m;i1,i1]¢’ (4.2)

where
Y(ty,t2) = 4p(t1,t2) (1 —t1)(1 — t2). (4.3)

The rules ) were defined in Section 3. The theorem involves only finite sums and
its proof is straightforward. Note that the prototype function f = |ris|~! satisfies the
conditions of this theorem with ¢(t1,%2) = (£2 + t3) /2.

Proof. Applying (4.1) in (2.4) gives immediately

m; 1 m m m m _ _
QE; 0000 _m_zz:z::gz:: (]1 J3 ]2m]4> (4.4)

This can be reduced to a double summation by noting that for any function @,

m

i i (j1 —J3) = Z O (k1) (m — |k1]). (4.5)
J1=1j3=1

ki=—m

(In the sum on the left, there are m elements (j1,73) for which j; — j3 = 0; more generally,
there are m — |k1| elements (j1,73) for which j; — j3 = |k1|. The terms in the sum on the
right for which k; = |m| vanish, but it is helpful at this stage to leave them in.) Applying
(4.5) twice, one may reduce the quadruple sum (4.4) to

) (-

Since ¢(t1,t2) is symmetric under sign reversal of ¢; and of ¢y, this summation may be
partitioned into four identical summations, giving

m

ng,o,ooo Z Z ¢<k1 kg)(

k =—mko=—m

ki
m

ko

m

) . (4.6)

k1
m

ks

m

) (1

Here, as before, the double prime indicates that a factor % is to be applied to initial and
final terms in the sum. The reader may verify that, when k; = m, the term involved is zero;

Qi = m2 ok Z”qﬁ(kl k2> ( ) (4.7)
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when k; = 0, the factor % is necessary because this contribution in (4.6) has to be shared
between two different elements in (4.7).
This expression is clearly a discretization of a two-dimensional integral

1 1
Ile:/O /0 ¢(x1,x2)dx1dx2,

where ¢ is given by (4.3) above. In fact, reference to (3.2) confirms that this discretization
is specifically

QY = oYY (22, (48)
This establishes the theorem. §

Note that, at this stage, we have used only the circumstances that f(z1,y1;z9,y2) may
be expressed as ¢(z1 — x2,y1 — y2)) and that ¢ is symmetric. No other property of f has
been used.

The following corollary is a simple consequence of this theorem.

Corollary 4.6
Lif = Ixp. (4.9)

Since both integrands are Riemann integrable, this is simply a matter of setting h = 1/m
in (4.2) and taking the limit.
We now apply Theorem 4.5 to our prototype integrand function

~1/2
f(@1,y15@2,42) = {(301 —29)? + (1 — y2)2}
This reduces Q™" ¢ to QU™ *1+!y with

Pt ta) = 4+ 13721 — 1) (1 — 1)
gV (t1, t9) + g (t1, 82) + g (k1 12),

where

g (b, te) = 487 +13) 7
9O (t1,t2) = —4(8 +3) 2 (11 + to)
gV (ty, ty) = 4(t2 + 12) 214ty
are homogeneous functions of degrees -1, 0, and 1, respectively; since none of these has a

singularity in [0, 1]? except at the origin, we may apply Theorem 3.4 with N = 2 to each,
giving

: , LA Ct olnm Bi

;E1,+1 2 2 .

QY lg® ~ Ig® + m@iQ + Z;*nm + mg; i=-1,0,1. (4.10)
s=1

Adding these three asymptotic expansions gives
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Note that in accordance with Theorem 3.4, we have omitted C/,, when i+ 2 is odd. Using
(4.2) and (4.9), we may reduced (4.11) to

! B
QUmi0:0.000 5 _ I4f~—1 2W(L>ng+_2 +Z 25 (4.12)

as stated in Section 2.

5 Numerical Application of Extrapolation

This asymptotic expansion may be used to provide the basis for four-dimensional extrap-
olation quadrature in the following way. One may obtain a sequence of approximation
Qi) f = QImii0.0.0.0] £ “each requiring m? function values. Having available, say p, of these
approximations for m = mj,ma,...,m,, respectively, one discards all but the p most sig-
nificant terms from the asymptotic expansion and, using perhaps a linear equation solver,
finds a solution INf to the set of p linear equations

- A Chlogm; A Bs ,
[f+_1+$+ 2 +Z 2 —Qmly  i=1,2,...,p. (5.1)
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For illustration, with p = 4, these equations may be written as follows.

1. L logmi 1 -
om TmZ 0 m If QImlf
1 logms 1 7
1’ ma’ m% ? m% Al Q[mﬂf
1 logmsg 1 A [m3]
13 m3’ m% ) m% 02 Q f
| L logma 1 Ay Qmalf
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Table 1: Numerical Results for Prototype Example

v Q[m;0,0,0,0}f S If
110 110
16 | 0.1354E4-01 17 | 0.2707106781E+401
81 | 0.1848E+01 98 | 0.2843194763E+01

256 | 0.2108E+01 354 | 0.2967272235E4-01

625 | 0.2269E+01 979 | 0.2973125627E+-01
1296 | 0.2379E4-01 2275 | 0.2973229910E+4-01
2401 | 0.2459E4-01 4676 | 0.2973212687E+01
4096 | 0.2520E+01 8772 | 0.2973209845E+401
6561 | 0.2568E+01 || 15333 | 0.2973209614E+01
10 10000 | 0.2607E401 | 25333 | 0.2973209600E+01

Exact | 0.2973E+01 || Exact | 0.2973209598E+01
Condition Number of Final Entry | 6.59 x 10*

CQOO\]OUO'(»J;OOMD—‘S

Table 1 displays some of the results obtained using this technique to evaluate our
prototype integral. Ome can see clearly how slowly the trapezoidal rule approximations
QUm:0,0,0,0] ¢ converge. In fact, the m = 48 approximation using 5.3 million function values
is 0.2893E+1 (roughly 3% accuracy). However, using the first ten of these approximations,
each of which is individually extraordinarily inaccurate, we obtain seven-figure accuracy at
a cost of less than 26,000 function values.

On the other hand, one would expect results based on transformations to a smooth
integrand followed by the use of an appropriate Gaussian rule to be better than the ones
above.

6 Concluding Remarks

This prototype example is useful because an exact integral is available, the derivation of
the error expansion is relatively straightforward, and the numerical results are encouraging.
Unfortunately, it is far from general. When one replaces the square [0, 1]? by a rectangle or
a triangle, the derivations given here cannot be readily modified. Nevertheless, preliminary
results, both numerical and theoretical, indicate that expansions of this general type are
valid in a much wider context.
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Appendix (The Exact Integral)

In this appendix, we evaluate our prototype integral I,f given in (2.1) analytically.
Using standard procedure, or simply applying the corollary 4.6, (Iyf = I>1) we find

—~1/2 Lrel (1 —¢)(1—t¢
Lf= // (o1 = 22)" + (31 = 92)°} dxldyldx?dy?:/o/o ( & jr)i%)l/;)dtldtz'

(6.1)
The region t1,ts € [0,1]? may be partioned by the line ¢; = 5 into two triangular regions;
in polar coordinates, one of these is

Ay; Bin [O, %} r € [0,1/ cos 0. (6.2)

In view of the symmetry of the integrand, the integral over A; coincides with the integral
over the other triangle As. We find successively

Lif = IQ’!/JZQI(AI)"/}
e g,
0

r=1/cos@

3
= 2/ <r—— (cos 6 + sinf) + %cosHsinO) do

r=0

VA | 1 sinf /(-1 1
- 2/0 <cost9 <1 B 5) + cos2 0 <7 + §>> 9. (6.3)

The integrals required here are simply

do sinf
/ osf = log(sec 6 + tan ), / po_— 0d0 = sec¥; (6.4)

and using these, we obtain the result 4log(1 + v/2) — 3(V/2 — 1), as stated in (2.3) above.
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