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Abstract 

The basic formal and numerical aspects of different-degree interpolated moving least-

squares (IMLS) methods are applied to a six-dimensional potential energy surface (PES) 

of the HOOH molecule, for which an analytic (“exact”) potential is available in the 

literature. We report the results of systematic investigations of the effects of weight 

function parameters, the degree and partial degree of IMLS, the number of data points 

allowed, and the optimal automatic point selection of data points up to full third-degree 

IMLS (TD-IMLS) fits. With partial reduction of cross terms and automatic point 

selection, the full 6D HOOH PES can be fit over a range of 100 kcal/mol to an accuracy 

of less than 1 kcal/mol with ~1350 ab initio points. 
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I.  Introduction 

       The progress made during the past decade in electronic structure theory allows for 

direct use of ab initio forces in molecular dynamics simulations. Although most potential 

energy surfaces (PESs) have been obtained by empirical fitting, interest in using ab initio 

methods has grown in recent years as a result of the increased reliability of electronic 

structure calculations and enhanced computing capabilities. This direction is especially 

significant for PESs that describe chemical reactions because surfaces derived from 

relatively unsophisticated electronic structure calculations are notoriously inaccurate for 

describing bond breaking and formation. It is fairly routine now to perform high-quality 

ab initio calculations for hundreds to thousands of geometries. Many fitting methods 

have been studied in an effort to develop a broadly reliable approach to fitting ab initio 

points. Among the approaches used are cubic splines, least squares fitting, and hybrid 

methods.1-3 The construction of a PES by these methods can be tedious, however, with 

the level of difficulty increasing rapidly with the size of the reacting system. Direct 

dynamics methods circumvent this problem, but they are computationally demanding, 

especially if high-level quantum chemistry calculations are used. 

        During the past decade the local fitting method introduced by Ischtwan and Collins,4 

which is based on modified Shepard interpolation, has become widely accepted. The 

unmodified Shepard method suffers from the flat-spot phenomenon; that is, the derivative 

of the interpolated surface is zero at each data point.5  This difficulty is avoided, however, 

by using a Taylor expansion that includes the first and second derivatives at each data 

point. An attractive feature of the modified Shepard approach is its mathematical 

simplicity. It can be coupled with dynamical simulations to bias the fit, but the need for 
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derivatives, usually up to second order, cannot be readily or inexpensively satisfied by 

highest-level ab initio calculations.      

       Recently, we have helped introduce interpolating moving least-squares methods 

(IMLS)6-9 for fitting PESs.  The IMLS methods involve polynomials of any desired 

degree. The Shepard method is in fact a zero-degree IMLS method.  Since the IMLS 

methods do not need gradients and Hessians, they are efficient for fitting PESs obtained 

by high-level ab initio calculations. As in both the Shepard and Ischtwan-Collins 

methods, the IMLS method uses a weighted least-squares fitting procedure where the 

weights are functions of both where the potential is to be evaluated (i.e., the evaluation 

point) and where the ab initio potential values have already been calculated. However, 

Ischtwan and Collin use the gradients and Hessians at each ab initio point to get a force 

field estimate of the potential at the evaluation point. They then use a Shepard fit to the 

set of potential estimations. Because the Shepard fit is of such low order, the weighted 

least-squares procedure implicit in the fit has an analytic solution that reduces to a 

weighted average and is thus trivial to calculate. In contrast, IMLS generalizes the 

Shepard approach to higher-order fits where the least squares procedure typically requires 

matrix algebra. Thus the procedure is not as computationally trivial as the Shepard 

method. However, IMLS directly fits the ab initio potentials, instead of their force field 

estimates of the potential at the evaluation point. Consequently, no gradients or Hessians 

at the ab initio points are required. In principle a zeroth-order IMLS fit (i.e., a Shepard 

fit) could also be applied to the ab initio potentials without the use of gradients or 

Hessians. However, Ischtwan and Collins4 and we7 have shown that in practice and in 

principle the derivative properties of this approach are poor and the resulting fitted 
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potential has undesirable characteristics. In principle, the weights could be discarded and 

a regular least squares procedure could be used once to define a fixed, namely, not 

moving, least-squares fit to the PES. However, many studies over the years have shown 

that such a procedure is accurate only if the ab initio data set is dense. The moving part to 

IMLS, that is, the locally varying weights, give a nonlinear character and accuracy to the 

fit that allows IMLS fits to retain high accuracy with relative sparse ab initio data sets.6-9  

Our earlier work focused on features of IMLS for a 1D case7 and a 3D case.6 

These studies highlighted the improved accuracy in values and derivatives obtainable 

with higher-degree IMLS. To improve the accuracy and efficiency of interpolation 

methods, we recently introduced a dual-level approach10 that employs a zeroth-order PES 

as a reference surface.8 This approach was tested on a 6D PES for HOOH with two 

interpolation methods: modified Shepard and second-degree IMLS. The results show that 

with the dual-level approach the IMLS and modified Shepard methods give comparably 

accurate fits for the same number of ab initio points but the IMLS requires only the 

values, not the gradients and Hessians.8   

       The present paper reports a study that is a continuation of that work.  Here we 

explore the effects both of different degrees and mixed-degree polynomials in the IMLS 

and of ab initio point selection by automatic PES generation schemes for the 6D PES of 

the HOOH dissociation reaction. Different ensembles of data points were used, obtained 

by different sampling methods. In order to assess the global fitting error, the “ab initio” 

points were calculated from the analytic potential PCPSDE developed by Kuhn et al.11 

and the fitting error was determined by global samplings of the IMLS fit to the PCPSDE 

PES. 

 4



       The rest of the paper is arranged as follows. Section II contains a brief review of 

IMLS methods. The weights and sampling that are used in the IMLS applications are 

discussed in Sec. III.  The results for applications of various degree IMLS are presented 

in Sec. IV.  The results for automatic surface generation are given in Sec. V.   A summary 

and conclusions are given in Sec. VI. 

 

II.  Methods 

       Detailed descriptions of the IMLS methods are available in our previous papers6,7 

and earlier standard references,5 so we will only briefly outline the approach here for 1D 

applications.  The generalization to many dimensions is straightforward. 

       Suppose that m linearly independent functions bj(X) (j=1,…,m) are given and defined 

on the surface and that we are given data values f1,…,fN.  The fitted surface is then a 

linear combination of these basis functions bj, , 

 

                                 u(X) =∑ (X) ba j
j=1

m

j(X),                                                  (1) 

 

where aj(X) are the coefficients. To evaluate the fit of function u(X) to the data values, 

we use the error functional 

 

                        E(u) =   ∑ (X) [u(X) - f(i)]wi
i=1

N
2  .                                            (2) 
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We assume that m≤N, and we have introduced wi(X), a weight function that is a rapidly 

decreasing function of the distance ||X - X(i)||. The solution to obtain the coefficients 

aj(X) follows the standard formulation of the normal equations for least-squares fitting: 

 

                                   BTW(X)Ba(X) = BT W(X)f,                                             (3) 

 

where a and f are column vectors, B is N×m matrix with elements Bij = bi(X(j)), BT is 

transpose matrix, and W(X) is an N×N diagonal matrix whose element Wii = wi(X). The 

solution a(X) to Eq. (3) provides the coefficients to the u at point X. Since B is a 

Vandermonde matrix, it tends to be ill-conditioned,5 and for higher-degree IMLS we use 

either singular value decomposition (SVD) or QR-factorization for more stable 

factorization approaches than directly treating the normal equations. 

       To apply the IMLS method, one needs to define the coordinates X, the weights 

wi(X), and the basis functions bj(X). In our previous study of HOOH8 the fitting 

coordinates were taken to be reciprocal interatomic distances X=1/R, whereas the weight 

function coordinates were the interatomic distances R. This hybrid coordinate system has 

been shown to be more efficient than only interatomic distances for related problems.4,8 

As in our previous studies, the weights have the form  

 

                                      
( ) ε+−

= ni iRR
w

||||
1   ,                                            (4) 
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where n is a small positive integer and ε is a small positive real value that forces wi to be 

finite at R=R(i). Tests show that minor changes in the form of the weights have relatively 

little effect on performance and behavior.6  

       The basis set is taken to be a direct product of monomials in each degree of freedom 

in the vector X.  Varying the powers of the monomial represented in the full basis set 

gives zero-degree (ZD), first-degree (FD), second-degree (SD), and third-degree (TD) 

IMLS. As the dimension of the system and the degree of IMLS increase, the number of 

the basis functions increases dramatically, mostly because of cross terms where the basis 

functions contains the products of monomials of different nonzero powers of different 

coordinates. For example, the total number of basis functions for SD-IMLS in the 6D 

case is 28, but if cross-terms are removed, the number of basis functions drops to 13. The 

TD-IMLS with and without cross-terms has 84 and 19 basis functions, respectively. Since 

the cost of an IMLS evaluation goes as the square of the number of basis functions, for 

higher-degree IMLS the cross-terms are the principal cost in the calculation. 

 

III. Characterization of Weights and Samples 

A.  Sampling 
 
       Because we use an analytical PES, we can test the accuracy of the IMLS fits. We 

employ two different data sets drawn from the analytic PES: Set 1 is a restricted data set 

that is the collection of “ab initio” points used in the fitting, and Set 2 is a much larger set 

of points used for the evaluation of the global RMS errors of the fits.  

       The sampling scheme plays an important role in the efficiency of fitting 

multidimensional PESs. Previously8 we used efficient microcanonical sampling (EMS)12 
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for both Set 1 and Set 2 and a symmetrized function as the “exact” function.  For Set 1, 

89 symmetry distinct predetermined data points were selected to cover the low-energy 

region of the PES, that is, the equilibrium and the vicinity of the intrinsic reaction 

coordinates (IRC). We added 10 more sets of data points sampled by EMS with an upper 

bound to the energy of 100 kcal/mol but with no restriction on the total angular 

momentum. All the atoms were moved in Cartesian coordinates for each Markov step 

with a step size of 0.5a0 for an acceptance/rejection ratio of approximately unity. In order 

to reduce the correlation of the sampled points, one point was picked from the Markov 

sequence every one-hundredth step. The O–O distance was restricted to rOO<6a0 during 

the walk. The singularity problem that occurs for planar geometries was avoided by using 

the “distortion” technique proposed by Yonehara et al.13  For Set 2 we used 10 different 

ensembles of 5,000 data points sampled by the EMS method. 

       For the present study, we tested three other sampling methods in addition to EMS: a 

purely random sampling (RANDOM), a combination of EMS and RANDOM sampling 

(COMB), and an unequally-spaced grid of data points (GRID).  We used the same 89 

symmetry distinct predetermined data points used on our early study8 for Set 1 in all the 

sampling methods. However, we did not symmetrize the “exact” potential; rather, we 

employed the “exact” potential as given in Ref. 11. The RANDOM method adds 10 

different sets of data points obtained by Monte Carlo sampling with the same upper 

bound on E. In order to avoid trapping in the RANDOM sampling, one point was picked 

from the Markov sequence every one-thousandth step.  In the COMB scheme, we added 

10 different sets of data points, half picked by EMS and half picked by RANDOM 

sampling. In Set 2 for RANDOM sampling we used 10 different ensembles of 5,000 data 
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points selected by Monte Carlo, whereas in COMB we used 10 different ensembles of 

5,000 data points, half sampled by EMS and RANDOM techniques.  

       In the GRID method we augmented the 89 predetermined points for Set 1 with points 

selected in a grid built from a geometric progression: 
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where f>1, each ni is an integer, r1 is the H1-H2 distance, r2 is H1-O1, r3 is H1-O2, r4 is 

O1-H2, r5 is H2-O2, r6 is O1-O2, and 
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We selected the points such that E < 100 kcal/mol and r6
(0) < 6a0. For Set 2 we used only 

the geometric progression to select points but with values of f closer to unity to produce a 

finer grid. We calculated the RMS error for values of f that produced from ~3,000 to 

~25,0000 points in Set 2, all with E < 100 kcal/mol. Relative to the largest Set 2, we 

found differences of 2−9% in the RMS errors for ~5,00 points in Set 2, differences of 
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0.6−1.5% for ~40,000 points, and no differences for greater than 70,000 points. In the 

calculations presented below, we used 40,192 data points for Set 2 generated by f = 

1.1108.   

       These sampling methods are compared in Fig. 1, where we show the distributions of 

data points as a functions of energy for 5,000 points select by EMS, RANDOM, and 

COMB and for 5,134 points selected by GRID.  A cut-off in energy of 100 kcal/mol was 

used in all the sampling methods. As the results in Fig. 1 show, EMS sampling mainly 

covers the mid-range energies region of the PES and only partially includes points in the 

high- and low-energy ranges. The RANDOM sampling method covers mainly the high-

energy region, only partially covers the mid-range of energies, and poorly defines the 

low-energy region. The GRID and RANDOM methods provide similar coverages for 

both high- and mid-energy regions, but the GRID method provides much greater 

coverage in the low-energy region. The COMB method provides comparable low-energy 

coverage and in effect averages the differences between the EMS and RANDOM 

methods in the mid- to high-energy regions. The results in Fig. 1 do not include the 89 

symmetry distinct predetermined data points from the low-energy region that 

significantly improve the coverage of all methods in that region.  Because the low-energy 

region has small spatial extent, it is expected that the 89 data points along with the 

sampling seen in Fig. 1 are sufficient to determine this area.8  

       By definition, Set 1 and Set 2 essentially encompass all the parts of the PES that are 

chemically interesting for HOOH → OH+OH dissociation and association reactions. 

Only extraordinary high energies (>100 kcal/mol) or exceptionally large OH+OH 

separations (>6 ao) are excluded.  Thus a satisfactory RMS error implies that the 
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spectroscopy and the dissociation/association reactivity of the HOOH system can be 

computed with confidence.  Of all the calculated results presented in this paper, Set 2 

(defining the RMS error) is much larger than Set 1 (the ab initio set).  Hence, both 

interpolation and extrapolation conditions are found in evaluating the IMLS potential at 

the coordinates in Set 2.  The mixture of these conditions depends on the sampling 

methods used; nonetheless, the RMS test should be a broad measure of the reliability of 

IMLS fits.  

B.  Weight Parameters 

       In a study of 1D fitting7 we investigated the dependence of the accuracy of different 

degrees of IMLS on the weight function parameters ε and n, where we used an 

underlying grid for Set 1 and Set 2. To determine the dependence for multidimensional 

PESs and compare it to the 1D case, here we examined RMS errors of different degree 

IMLS as functions of ε and n.  As in the 1D case, Set 1 and Set 2 were constructed by the 

GRID method and do not include the predetermined 89 data points in Set 1, although for 

other applications discussed below the predetermined points were used. The total number 

of data points N is 3,200 (f = 1.1758). 

       Figure 2 demonstrates the dependence of the RMS error of E on ε for FD-, SD-, and 

TD-IMLS fits for a fixed value of n. As in the 1D case,7 when ε is too large, the accuracy 

of all fits is degraded. As ε decreases, the RMS error reaches a minimum that persists 

essentially for all further decrease in ε. Also, increasing the degree of IMLS for fixed ε 

decreases the RMS error. For TD-IMLS an RMS error of ~1 kcal/mol requires ε < ~10-2. 

We observed in the 1D case7 that with increasing N the range of optimal values of 

 11



ε becomes smaller; therefore, in the results for larger N, discussed below, we used ε = 

10-24, which guarantees optimal performance of the weights for any tractable value of N. 

       Figure 3 shows the dependence of RMS error for first derivatives on ε for FD-, SD-, 

and TD-IMLS. These results are similar to those found for 1D.7 Since the range of values 

of the first derivatives is much larger than the range of energy values, the scale of Fig. 3 

is much larger than the scale of Fig. 2. As in the 1D case the higher-degree IMLS have a 

less-pronounced minimum (almost impossible to see on figure). 

        Figure 4 illustrates the behavior of RMS error of energy for FD-, SD-, TD-IMLS as 

a function of n for a fixed value of ε. As in the 1D case7 the RMS error dependence on n 

is much less severe than that on ε.  Comparing the RMS error behavior as a function of n 

for 1D and 6D PESs shows that the range of optimal n for the 6D PES starts from slightly 

larger values of n (n = 8) than in the 1D case (n = 6) and depends only weakly on N.  The 

behavior of the RMS errors for the derivatives is similar to that shown in Fig. 4 for 

energy. 

 

IV. Various Degrees of IMLS  

A.  SD-IMLS Results 

       In Sec. III.A we defined the RANDOM, COMB, and GRID sampling methods that 

we have investigated.  Here, we discuss the effect of the sampling method on the 

accuracy of SD-IMLS fits; the results are summarized in Table I for 12 different 

combinations of (Set 1, Set 2).  We report the global RMS error and the uncertainty in 

that error due to the underlying statistical basis of the EMS, RANDOM, and COMB 

schemes (i.e., the variances in the 10 ensembles used to obtain the RMS error).  This 
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information is given for Set 1 N values from 189 to 6,489, which include the 89 

predetermined points.  Set 2 comprises 50,000 points sampled by EMS, RANDOM, and 

COMB and 40,192 points sampled by GRID. 

       The first nine rows of Table I are the combinations of (Set 1, Set 2) possible from the 

three statistical methods EMS, COMB, and RANDOM.  The first, fourth, and seventh 

rows show the diagonal combinations, for example, (COMB,COMB).  For each value of 

N, the RMS error increases in the order of EMS, COMB, and RANDOM.  This ordering 

is expected based on the results in Fig. 1 because this is the order in which higher-energy 

points are included in the samplings. For each N, the off-diagonal combinations, for 

example, (RANDOM,COMB), display RMS errors that generally increase from the 

diagonal value in Set 1 and Set 2.  When Set 1 is obtained by EMS, the order of the 

increase is (EMS,EMS), (EMS,COMB), and (EMS,RANDOM).  When Set 1 is obtained 

by RANDOM, the order of the increase is similar, namely, (RANDOM,RANDOM), 

(RANDOM,COMB), and (RANDOM,EMS).  When Set 1 is obtained by COMB, it is 

unclear which Set 2 is the more dissimilar, EMS or RANDOM.  The results in Table I 

show that the error decreases for (COMB,EMS), probably because EMS weakly samples 

high-energy values.   

       Combinations involving GRID are given in the last three rows of Table I.  The 

diagonal (GRID,GRID) combination for most of the values of N produce RMS errors that 

generally fall between those for the (COMB,COMB) and (RANDOM,RANDOM) 

diagonal combinations, although for the smallest and largest number of data points 

(GRID,GRID) gives the lowest and biggest RMS errors, respectively. Off-diagonal 

combinations, for example, (COMB,GRID), gives larger the RMS errors compared to the 
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corresponding diagonal contributions−to an extent generally larger than that found 

between other off-diagonal/diagonal comparisons. 

       It is difficult to make general recommendations concerning which sampling 

combinations to use, other than to use a diagonal combination.  The particular use of the 

fitted PES will dictate the most appropriate diagonal combination to use.  The higher-

energy portion of the PES has the largest spatial extent in multidimensional systems, but 

at the same time low-energy regions, including equilibrium points and reaction paths, 

have a large influence on the dynamics.  The GRID approach is more likely to maintain a 

certain density of points per unit spatial “area” on the surface and in this way balance 

high- and low-energy demands on a PES representation.  This sampling method is further 

highlighted by the results discussed below. 

       Independent of the behavior of RMS error with sampling techniques, all the results in 

Table I show a decline in the SD-IMLS error with N.  Diagonal combinations produce 

~0.65 to ~1.25 kcal/mol RMS errors for on the order of 6500 ab initio points.   

B.    Higher-Degree IMLS 

       The RMS error versus N for FD-, SD-, and TD-IMLS fits for (GRID,GRID) and  

(COMB,COMB) samplings are shown in Figs. 5 and 6, respectively.  These results are 

taken from Table I supplemented by an additional calculation at N = 12889 for Set 1.  In 

general the behaviors of the RMS errors for FD-, SD-, and TD-IMLS are similar to that 

for the 1D case7 for which increasing the number of data points and the degree of IMLS 

systematically improves the fit. The overall the dependence on the sampling combination 

is weak.  Both sampling methods show only the TD-IMLS method reaching ~1 kcal/mol 

RMS error and for values of N that exceed ~3,000 points. The FD-, SD-, and TD-IMLS 
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RMS errors in Figs. 5 and 6 show for larger values of N an approximately linear 

dependence on N on a log-log scale.  This is a power law behavior that settles in at higher 

values of N as the IMLS degree increases.  Fits show the power increases from about -1/4 

for FD-IMLS to about -1/3 for TD-IMLS.  Note that the number of ab initio points per 

dimension goes as N6.  Thus the reduction in RMS error goes as the number of points per 

dimension raised to the -1.5 to -2 power.  In the 1D case7 a power law convergence of 

RMS error also applies at large values of N.  As in HOOH, the inverse powers involved 

increase with the degree of IMLS.  For FD-IMLS to TD-IMLS, the range of powers for 

the 1D case are about –1.75 to –3.0, a range that largely overlaps the HOOH range.  The 

1D and 6D results suggest that higher degree IMLS RMS error converges for any 

dimensional system with some higher than unit inverse power of the number of points per 

dimension. 

       As the dimensions of the PES increase, a full higher-degree IMLS fit is increasingly 

dominated by cross-terms: direct product basis functions where the monomials in at least 

two coordinates have nonzero powers.  For a 6D PES, an SD-IMLS has 28 basis 

functions of which 15 are cross terms.  A TD-IMLS has 84 basis functions of which 65 

are cross terms.  Since the time to solution for an IMLS evaluation goes as the square of 

the number of basis functions, the elimination of negligible cross-terms can have a major 

effect on the computation time.  In Figs. 5 and 6, the RMS error versus N is plotted for 

SD- and TD-IMLS with completely eliminated cross-terms (SD-IMLSreduced and TD-

IMLSreduced). The RMS errors for SD-IMLSreduced and TD-IMLSreduced are very close to 

each other in both sampling methods. This implies somewhat disappointing results for 

TD-IMLSreduced because TD-IMLS for most values of N has a noticeably lower RMS 
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error.  Going to TD-IMLSreduced considerably reduces the quality of the fit.  For SD-IMLS 

and SD-IMLSreduced, the penalty for eliminating cross-terms is not particularly severe. 

One possible reason for the impact of cross-term elimination on fit quality is that the 

optimal values of the weight parameters (ε, n) change with the details of cross-term 

retention. However, test variations in weight parameters about the values used in Figs. 5 

and 6 produce no change in the results.  

       A better explanation for the results in the figures is that chemical intuition would 

suggest that not all cross-terms are comparable and negligible. Rather, only certain 

classes of cross-term may be insignificant depending on the nature of the PES. We have 

investigated this explanation, and the resulting RMS errors are in Table II (for SD-IMLS 

derived results) and Table III (for TD-IMLS derived results) for three values of N with 

(GRID,GRID) sampling. (The results in these tables were obtained with an 

approximation of a variable cutoff radius, which is discussed fully in the Appendix. The 

basis of this approximation is that ab initio points far from the point of PES evaluation 

have negligible influence on the IMLS result because the weights decay so rapidly with 

distance. The elimination of the influence of the far points by a cutoff radius retains the 

accuracy of fit and noticeably reduces CPU time.) The first two rows in both tables are, 

respectively, for the full-degree IMLS fits and for the reduced fits, where the use of 

variable cutoff slightly changes the RMS errors displayed in Fig. 5 and Table I. The 

remaining rows are the results for elimination of certain classes of cross-terms. The third 

row in each table eliminates all cross-terms except not containing r6, on the supposition 

that coupling to the HO–OH reaction coordinate r6 is the only substantial effect cross-

terms should retain. The results in the third row of each table indicate degradations in the 
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RMS error from the full fit of less than 20% for both SD- and TD-IMLS. (For TD-IMLS, 

this partial elimination of cross-terms dramatically improves the RMS error for the lowest 

value of N.) This partial elimination produces results much superior to the reduced fits at 

the cost of the retention of 5 of 15 (SD-IMLS) or 25 of 65 (TD-IMLS) cross-terms. 

       With the retention of only a few more terms beyond those involving r6, important 

angular dependencies can be retained. A zeroth-order potential of HOOH can be written 

in internal coordinates as 

 

                           V≈Vφ(α1)+ Vφ(α2)+VOH(r2)+VOH(r5)+VOO(r6)+Vτ(τ),                           (7) 

 

where  α1 is the angle between H1O1 and O1O2, α2 is the angle between H2O2 and O2O1, 

and τ is a dihedral angle. In our interatomic coordinates the angles α1 can be described by 

r2, r6, and r3 and α2 by r5, r6, and r4. Thus, cross-terms in interatomic coordinates within 

each triplet express α1 and α2 dependencies. For SD-IMLS, of the 10 cross-terms 

discarded for not having an r6 dependence, only two have to be retained to also include a 

full (α1, α2) dependence. For TD-IMLS, 12 of the 40 terms discarded have to be retained. 

The fourth row of each table shows the results. For both cases, for the two lower values 

of N, the RMS error is below the RMS error for the full fit. For the highest value of N, 

the RMS error is degraded by only ~4−9% from the full fit. 

       The success of eliminating all cross-terms except those involving r6, α1, and α2 

suggests eliminating all terms except those involving α1 and α2. Such a strategy is more 

indiscriminate, resulting in more terms being eliminated. The results are in the fifth row 

of each table. For both SD- and TD-IMLS, comparing rows three, four, and five, one 
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clearly sees that retention of terms that describe α1, and α2 is somewhat more important 

than retention of terms that describe r6.  

       Unlike SD-IMLS fits, TD-IMLS contains enough terms of enough degrees that one 

can consider eliminating terms based on degree alone. The last two rows in Table III are 

the results of a purge of either second-degree or third-degree terms from those terms 

retained to represent r6, α1, and α2. Purging second-degree terms produces an excellent 

result, within 3% of the results in the fourth row for no purge. Purging third-degree terms 

produces a generally unsatisfactory result. 

       Overall, the results in Table II and III provide the guidance necessary to match the fit 

to the task. Time to solution goes as the square of the number of terms in the fit. The total 

number of terms in a full SD-IMLS fit is 28 and in a full TD-IMLS fit is 84. In the 

calculations of the next section we will feature SD-IMLS and TD-IMLS, in which all the 

cross terms are eliminated not containing r6, α1, and α2. From the fourth columns in 

Tables II and III, that will result in 20 terms for SD-IMLS and 56 terms for TD-IMLS, 

with minimal if any degradation in the RMS error for the full fit. The evaluation costs 

will be reduced by ~50% for SD-IMLS and by about ~40% for TD-IMLS. If less 

accuracy can be tolerated, bigger savings in evaluation costs can be achieved.  

 

V.  Automatic Point Selection 

       It is important to generate an accurate PES with the fewest number of data points. In 

our 1D study7 we introduced an automatic point selection strategy that significantly 

reduced the number of points needed to reach a fit of given accuracy. Since 

multidimensional surfaces deal with a large number of data points, the application of this 
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kind of strategy is critical. The basis of our automatic point selection scheme is that, for 

fixed N, IMLS fits of different degrees are most different from one another where the 

PES is poorly defined but are essential identical to each other and the true PES in the near 

vicinity of an ab initio point.  Thus, additional ab initio points should be calculated where 

the contending IMLS fits of different degrees are maximally different. In the present 

study we use as contending fits SD- and TD-IMLS with partially reduced cross-terms 

(fourth rows in Tables II and III) as bases sets to select one additional ab initio point at a 

time. As in Tables II and III, the variable cutoff is used in the calculations. As in Figs. 

2−6 and all the tables, the same Set 2 of 40,192 points is used to evaluate the RMS error. 

In principle, new ab initio data points could be selected from Set 2. However, it is not 

practical to survey such a dense set of points to extract the point where contending IMLS 

fits are maximally different. Thus, in addition to Set 1 (the included ab initio points for 

the current fit) and Set 2, we define a Set 3 with a grid of 6,489 points from which we 

select the new ab initio points to be added one at a time to Set 1. 

       The results are expressed in Fig. 7. This figure shows the GRID RMS error of the 

partially reduced TD-IMLS fit where the points are automatically selected as described 

above from a starting collection of 189, 289, 489, 889, and 1689 ab initio points. The 

figure also shows the RMS errors of TD-IMLS calculated at 189, 289, 489, 889, 1,689, 

3,289, 6,889, and 12,889 ab initio points selected via the GRID method.  The results in 

the figures display two important properties.  First, no matter how many seed points one 

begins with, the RMS errors for large N all fall on essentially the same curve.  Second, 

the “universal” curve has essentially the same power law dependence as the GRID 

selection scheme for the ab initio points.  However, the prefactor is reduced by 
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approximately 50%.  In effect, automatic point selection halves the RMS error for larger 

values of N.  The result is a TD-IMLS fit that represents with a 1 kcal/mol RMS error a 

full 6D PES everywhere below 100 kcal/mol based on only ~1350 ab initio points.  The 

SD-IMLS RMS error derived from the same automatic point selection has a very similar 

relationship to the SD-IMLS RMS error derived from GRID sampling; in other words, 

the automatic point selection RMS error is about half that of the grid method. 

       The results in Fig. 7 do not address the issue of how to terminate the automatic point 

selection. In an actual application, we do not know the true PES and cannot compute the 

RMS error. All we know is information about the SD- and TD-IMLS fits.  In Fig. 8 we 

plot as a function of N the RMS difference between SD-IMLS and TD-IMLS fits.  Also 

in the figure as a function of N is the RMS difference of TD-IMLS and the true PES.  

This last curve is information that in an actual application we cannot know.  We seek a 

similarity between SD-TD information and TD-exact information that allows us to 

estimate the later by knowledge of the former.   

       Several obvious ways of representing SD-TD information fail to track the 

dependence of the TD-IMLS RMS error with N. The maximum difference between SD-

IMLS and TD-IMLS is an oscillatory function of N that generally decreases more rapidly 

with N than the TD-IMLS RMS error does. The RMS difference between SD-IMLS and 

TD-IMLS on Set 3 is a generally smooth function of N but it also decreases more rapidly 

with N than the TD-IMLS RMS error does. The underlying problem with both 

approaches is that Set 3 is selected to be significantly smaller than Set 2 (on which TD-

IMLS RMS error is measured) for reasons of practicality. When almost all the points in 
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Set 3 have been selected for ab initio points, SD-TD differences by any measure will be 

minimal. However, the TD-IMLS RMS error will not. 

       The successful representation of SD-TD information that tracks TD-IMLS RMS 

error is to periodically calculate the RMS difference of SD-IMLS and TD-IMLS on the 

full Set 2. If this were done with every addition of an ab initio point, the computational 

cost would be excessive. However, we are not calculating the RMS difference for ab 

initio point selection but rather for termination of the selection procedure. A calculation 

of the RMS difference, say, every increase in N by 100 points, will allow termination 

with a 100-point precision. The ability of the RMS difference of SD-IMLS from TD-

IMLS on Set 2 to track TD-IMLS RMS error is displayed in Fig. 8 for Set 3 sizes of 

1,689, 3,289, and 6,489 points. All the results are for an initial seed Set 1 of 489 points. 

For each Set 3, there is a pair of curves with the upper curve displaying the RMS 

difference and the bottom curve displaying the RMS error. Although there is more initial 

raggedness in the comparison at small values of N, at the larger value of N the curves 

track one another with the RMS difference being a 10% to 15% overestimation of the 

TD-IMLS RMS error. The figure also shows that the smaller the Set 3, the larger the 

RMS error that selecting all the points in Set 3 will obtain. This is obvious. Set 2 was 

selected to be the size that it is because quadrupling the size of Set 2 did not appreciably 

change the TD-IMLS RMS error. Of course, if all the points in Set 2 were selected for ab 

initio points, the TD-IMLS RMS error would be extremely small. 

       Another consideration about Fig. 8 concerns the general lack of inverse power 

dependence on N. Generally after N exceeds about half the size of Set 3, the TD-IMLS 

RMS error flattens out on a log-log plot and thus loses its inverse-power dependence. At 
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the same time, selecting all the points in Set 3 and then doubling the Set 3 size produces 

results as in Fig. 6 where, on a coarser scale, an inverse-power dependence still appears 

to hold. In other words, automatic point selection out of a Set 3 will degrade the inverse-

power dependence at large enough values of N as well as limit the final accuracy that can 

be obtained. Nonetheless, automatic point selection one point at a time out of a Set 3 can 

be terminated to a desired accuracy knowing only RMS differences between SD-IMLS 

and TD-IMLS on a Set 3 large enough to converge the TD-IMLS error with the exact 

PES. Figures 7 and 8 show that such a procedure can arrive at RMS errors of less than 1 

kcal/mol with about half the number of points required by a systematic increase in grid 

density.   

                       

IV. Conclusions 

       In the context of a 6D application to HOOH, we have presented the basic formal and 

numerical aspects of IMLS methods of different degree with total, completely reduced, 

and partially reduced cross terms. We have included details of the weights and the 

sampling procedures used to select ab initio points and estimate RMS fitting errors. The 

major conclusions of this study are as follows: 

• The RMS fitting error converges with N, the number of ab initio points, in an inverse-

power-law fashion with powers that increase with the degree of the IMLS fit.  For FD-

IMLS to TD-IMLS the inverse powers range from 1.5 to 2 with respect to N1/6, the 

average number of data points per dimension.  These results are consistent with our 

earlier 1D study.7 
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• Higher-degree IMLS fits are dominated by cross terms that contribute in only a minor 

way to the quality of the fit.  Neglect of all cross terms that do not include the 

approximate reaction coordinate (rOO) produces RMS error increases of less than 15% 

for SD-IMLS and TD-IMLS. The retention of the cross terms related to rOO, α1, and α2 

angles gives better or almost the same results as full SD- and TD-IMLS. Moreover, 

TD-IMLS with elimination of second-order cross-terms along with all cross terms that 

do not include the reaction coordinate and angles fits PES as good as full TD-IMLS.    

• Automatic point selection that optimally selects additional ab initio points 

approximately halves the RMS error relative to blind point-selection by changing grid 

increments or by Monte Carlo sampling.  The automatic point selection scheme is that 

first developed and tested in 1D applications.  Over a 100 kcal/mol range, 1 kcal/mol 

RMS error can be reached for the full 6D HOOH PES by a TD-IMLS fit of ~1,350 

automatically selected ab initio points. Reliable termination procedures of automatic 

point selection allow preselected fit accuracy. 

Future studies will examine the application of IMLS  in classical trajectory simulations, to 

higher-dimensional systems, and to systems where gradient information is available. 
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Table I.  Comparisons of the RMS errors in the energy calculated by SD-IMLS for 
different sampling methods, Set 1 and Set 2 (see text). The results were obtained by using 
10 different ensembles for each pair.  Average values with deviations (in kcal/mol) are 
listed. Only in the (GRID;GRID) case was used one pair of Set 1 and Set 2. 
 
(Set 1; Set 2) 189 289 489 889 1689 3289 6489 
(EMS;EMS) 
 
 

7.89 
±1.23 

4.11 
±0.58 

2.48 
±0.22 

1.60 
±0.03 

1.20 
±0.04 

0.87 
±0.05 

0.67 
±0.05

(EMS;COMB) 
 
 

10.09 
±1.59 

5.45 
±0.55 

3.53 
±0.07 

2.46 
±0.07 

2.15 
±0.35 

1.72 
±0.27 

1.37 
±0.11

(EMS;RANDOM) 
 
 

12.40 
±2.48 

6.55 
±0.69 

4.53 
±0.39 

3.12 
±0.09 

2.64 
±0.19 

2.20 
±0.13 

2.00 
±0.35

(COMB;COMB) 
 
 

9.78 
±0.99 

5.42 
±0.55 

3.66 
±0.58 

2.36 
±0.17 

1.70 
±0.08 

1.30 
±0.09 

0.99 
±0.07

(COMB;EMS) 
 
 

9.24 
±1.25 

4.92 
±0.56 

3.28 
±0.51 

1.91 
±0.06 

1.38 
±0.06 

1.00 
±0.05 

0.74 
±0.03

(COMB;RANDOM) 
 
 

10.61 
±1.19 

5.98 
±0.80 

4.29 
±0.98 

2.80 
±0.41 

2.13 
±0.14 

1.59 
±0.13 

1.16 
±0.05

(RANDOM;RANDOM) 
 
 

10.41 
±1.99 

6.75 
±0.92 

4.15 
±0.25 

2.75 
±0.30 

2.10 
±0.18 

1.49 
±0.08 

1.16 
±0.07

(RANDOM;COMB) 
 
 

10.96 
±1.30 

6.81 
±1.16 

4.29 
±0.25 

2.79 
±0.31 

2.16 
±0.09 

1.52 
±0.05 

1.31 
±0.17

(RANDOM;EMS) 
 
 

11.74 
±1.37 

7.17 
±1.25 

4.47 
±0.36 

2.96 
±0.33 

2.26 
±0.08 

1.60 
±0.05 

1.37 
±0.06

        
(GRID;GRID) 
 

7.68 4.72 3.72 2.53 2.00 1.59 1.25 

(GRID;COMB) 
 
 

8.53 
±0.19 

7.16 
±0.13 

3.65 
±0.09 

3.20 
±0.04 

2.77 
±0.07 

1.99 
±0.04 

1.44 
±0.08

(COMB;GRID) 
 
 

35.33 
±7.80 

17.77 
±4.10 

12.73 
±3.84 

5.38 
±0.58 

4.30 
±0.64 

2.96 
±0.30 

2.24 
±0.23
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Table II. The RMS error in the energy (in kcal/mol) for SD-IMLS with all cross-terms 
and with completely and partially reduced cross terms. 
 
Omitted Cross-Terms Number of Omitted Cross-Terms 289 889 3289 
None                         0 4.72 2.50 1.51 
All                        15 5.37 3.20 2.11 
All not containing r6                        10 5.08 2.90 1.82 
All not containing 
α1, α2 and r6 

                        8 4.32 2.53 1.58 

All not containing 
α1, α2 

                        9 4.30 2.52 1.60 

 
 
 
Table III. The rms errors of energy in kcal/mol for TD-IMLS with all cross terms and 
with completely and partially reduced cross-terms.  
 
Omitted Cross-Terms Number of Omitted Cross-Terms  289 889 3289 
None                         0  6.12 1.80 1.03 
All                        65 6.24 3.46 2.23 
All not containing r6                        40 4.39 2.15 1.20 
All not containing 
α1, α2 and r6 

                       28  3.77 1.84 1.13 

All not containing 
α1, α2 

                       34      4.03 1.86 1.15 

All not containing 
α1, α2, r6 + all 
remaining second- 
order cross-terms 

                       35 3.21 1.85 1.09 

All not containing 
α1, α2, r6 + all 
remaining third-order 
cross-terms 

                       58 3.92 2.28 1.48 
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Appendix 

The data points farther from an evaluation point R have a smaller contribution to 

the fitting because of the reduced weight function. The cost of the IMLS procedure is 

linear in the number of data points explicitly included in the least-squares procedure. 

Therefore we can decrease the IMLS computational cost by removing distant data points 

before solving the normal equations. 

       One removal method is to exclude data points of whose distances from R are farther 

than a fixed threshold rcut. However, in applications where the number of data points N 

will change (such as in automatic point selection discussed in Sec. V), rcut can be a 

significant function of N. An additional problem is that excluding the ith point whose 

distance δi(R) from the evaluation point is larger than rcut in effect truncates the weight 

function for the ith point to zero. This introduces a discontinuity in the fitted energy and 

derivatives whenever a data point crosses rcut. Both problems can be solved9 by a weight 

modified by a damping function S defined by  

 

                                                    ( ) ( )[ ]∑=
i

cuticut rRSrR ,, δς ,                                      (A1) 

 

where S is a smooth damping function of the form 
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where α>0 and where rcut is determined by 

 

                                                          ( ) constcutrR ςς =, ,                                                  (A3) 

 

where constς  is a given parameter. The damping function in effect fully counts a data 

point whose distance δ from the evaluation point at R is well within rcut. At the boundary 

of rcut and beyond, the damping function has the correct derivative and limiting properties 

to avoid any discontinuities. ( cutrR, )ς  becomes a fractional count of the number of data 

points “smoothly” contained within rcut. Selecting a fixed constς  value as input ensures 

that no matter what the value of N, sufficient data will be available for the IMLS 

procedure. 

       Once S(δ,rcut) has been determined, the new weights have the form 

 

                                 ( )[ ] ( )[ ]cutiii rRSRwRw ,)(' δδ=                                                       (A4) 

 

with derivatives 
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where Si stands for S[δi(R), rcut] and kcut Rr ∂∂  is  
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Figure Captions 

 

Fig. 1 The distribution of data points sampled by EMS (---), RANDOM (L), COMB 
(-⋅-), and GRID (—) methods as a function of energy. 

 
Fig. 2 The RMS error for the potential energy in kcal/mol versus ε for FD-IMLS ( )L , 

SD-IMLS (−), and TD-IMLS (−⋅−); n = 10, N = 3200. The RMS error is based 
on 40,192 points. 

 
Fig. 3 Same as Fig. 2 only for the RMS error of the first derivatives in kcal/mol/a0. 
 
Fig. 4 Same as Fig. 2 only for the RMS error versus n for ε = 1×10-24. See the text for 

details. 
 
Fig. 5 The RMS error for the potential energy in kcal/mol versus N for  (GRID;GRID) 

sampling. The points are connected by straight lines for clarity; the dotted line 
denotes FD-IMLS, dash-dot line denotes SD-IMLS, dash-double-dot line 
denotes TD-IMLS, solid line is SD-IMLSreduced, and dash line is TD-IMLSreduced. 
The weight function parameters are n = 10 and ε = 1×10-24. 

 
Fig. 6 Same as Fig. 5 only for (COMB;COMB) sampling. See the text for details. 
 
Fig. 7 The RMS error versus N for TD-IMLS fits that vary with the selection of ab 

initio points. The solid line with circles is for GRID selection and the solid lines 
with some minor noise are for automatic point selection from an expanding 
collection of ab initio seed points.  See text for details. 

 
Fig. 8 The RMS difference between SD-IMLS and TD-IMLS on Set 2 (symbols) and the   
             TD-IMLS RMS error on Set 2 (solid line) versus N for three different grids for  
             Set 3. The RMS difference is ▲, ■, and ● for Set 3 grids of 1689, 3289, and 

6489 points, respectively. The associated TD-IMLS RMS error in each case is 
shown by the curves below the corresponding points.
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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