
Interpolating Moving Least-Squares Methods for Fitting Potential 

Energy Surfaces: Applications to Classical Dynamics Calculations  

 

Yin Guo, Akio Kawano, and Donald L. Thompson 

Department of Chemistry, Oklahoma State University, Stillwater, OK  74078 

Albert F. Wagner 

Chemistry Division, Argonne National Laboratory, Argonne, IL  60439 

Michael Minkoff 

Mathematics and Computer Science Division, Argonne National Laboratory, 

       Argonne, IL  60439 

 

    Abstract 

 

 As a continuation of our efforts to develop efficient and accurate interpolating moving least-

squares (IMLS) methods for generating potential energy surfaces, for the first time we carry out 

classical trajectories and compute kinetics properties on higher-degree IMLS surfaces.  In this 

study, we have investigated the choice of coordinate system, the range of points (i.e., the cut-off 

radius) used in fitting, strategies for selections of data points, and basis elements. We illustrate and 

test the method by applying it to hydrogen peroxide (HOOH). In particular, reaction rates for the 

O-O bond breaking in HOOH are calculated on fitted surfaces by /Ousing the classical trajectory 

approach to test the accuracy of the IMLS method for providing potentials for dynamics 

calculations. 
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I. INTRODUCTION 

Constructing a potential energy surface (PES) is the first step in many theoretical studies of 

chemical applications. While many PES are obtained by empirical fitting, significant advances in 

quantum chemistry and computer power in the past two decades have made it increasingly possible 

to construct a PES from accurate ab initio energy values and sometimes derivatives of the energy. 

Over the past several decades, a variety of data fitting methods have been explored1 for 

constructing a reliable PES from a minimum of expensive ab initio electronic structure 

calculations.  These methods include the use of cubic splines,2 least-squares fitting,3 reproducing 

kernel Hilbert space interpolation methods,4 and hybrid methods.5,6 These methods often lack 

robustness (e.g., they may require special techniques for each PES) and scalability (e.g., they 

involve computations that increase rapidly with the reaction complexity).  One of the most 

successful methods developed in the past decade that is both robust and scalable is the method of 

Ischtwan and Collins.  This method is based on a modified Shepard8 interpolationthe 

modification is necessary to overcome poor derivative properties near the ab initio points. The 

modification requires a Taylor expansion through second order at each ab initio point, implying 

that ab initio gradients and Hessians must be calculated. This approach is mathematically coherent 

and has many advantages, but the gradients and Hessians often cannot be provided inexpensively 

(particularly for high-level ab initio calculations). 

Recently we and others have sought to develop an alternative approach based on the use of 

interpolating moving least-squares (IMLS) method.9-14 The approach is straightforward to 

implement and has the potential to provide a highly automated procedure for generating an accurate 

global PES for practical applications.  IMLS methods can be of any polynomial degree and thus 
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have generality.  In fact, the Shepard method is a zero-degree IMLS technique.  These methods do 

not require any derivative information and are thus efficient for high-level ab initio techniques.   

In prior studies9,10 we have examined 1-D and 3-D cases.   However, further development 

and improvement are needed to take the method to the application stage. The main focus of the 

present study is to further investigate various aspects of the approach and to develop and test 

procedures for generating IMLS surfaces for classical dynamics calculations.  The most important 

issue here is the cost of computational time. The IMLS values for energy and derivatives at a given 

point in configuration space are obtained by constructing and solving a matrix equation. The sizes 

of the matrices involved in the equation depend on the numbers of data points and basis elements, 

both of which increase as the size of the system increases. Since derivatives are evaluated at every 

time step, meaning the matrix equation needs to be solved millions of times in a trajectory study, 

the IMLS method can become prohibitively expensive as the size of the system increases. Thus, 

some measures have to be taken to reduce the computational cost. We present in this paper the 

procedures we have used and developed in this respect, using hydrogen peroxide (HOOH) as a test 

case.  

In Sec. II, we describe procedures for fitting surfaces using the IMLS approach. We first 

give a brief description of the basic formulism of the IMLS method. We then discuss the coordinate 

systems, the cut-off radius, selection of data points, and selection of basis elements, with 

calculations performed on HOOH. Since our purpose is to develop and test the method, instead of 

performing ab initio calculations, we have used the six-dimensional (6-D) analytical PCPSDE 

potential developed by Kuhn et al.15 to generate data points and assess accuracy. In Sec. III, we 

present rate constants for the O-O bond fission in HOOH obtained by running classical trajectories 

on fitted surfaces. A summary and the conclusions are given in Sec. IV.  
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II. AN IMLS APPROACH FOR GENERATING POTENTIAL ENERGY SURFACES 

 

A. IMLS Method 

A brief description of the IMLS method is given here for the convenience of discussing the 

issues related to the method and the procedures employed to further refine the method.  

In the IMLS method, the fitted potential is expressed in terms of a linear combination of the 

basis functions {b }: i(Z)
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where M  is the total number of basis functions, {bi(Z)} are polynomials, and {ai(Z)} are 

determined by minimizing the sum of weighted squared-deviations, 

 

                                                                                 ,                                                                         (2)        D[Vfitted (Z)] = wi(Z)[Vfitted (Z(i)) −V (Z( i))∑ ]2

i=1

N

 
 
that is, by the conditions ∂D/∂ai=0. Here N is the total number of ab initio data points located at 

{Z(1),Z(2),…,Z(N)} with energies {V(Z(1)),V(Z(2)),…,V(Z(N))}, respectively, and w(Z) is a weight 

function with the property that the data points closer to Z have larger weights than the more distant 

ones. This minimization procedure produces the following equation:  
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where B is a N×M matrix, 
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W  is a N×N diagonal matrix, 

 

))Z(,),Z(),Z(diag(W 21 Nwww K= ,                   (5) 

 

and V is a column vector, 

 

V = (V(Z(1)),V(Z(2)),…,V(Z(N)))T
.                        (6)  

 

Once the coefficient vector a is obtained by solving Eq. (3), the fitted energy at a given point Z is 

computed by using Eq. (1). Equation (3) was solved by using the singular value decomposition 

(SVD) technique.  

In classical trajectory calculations, the first derivatives of the potential are evaluated. The 

efficient procedure10 that reuses the matrix operations for solving a  can be employed for 

computing the derivatives ' . Briefly, taking the derivative of Eq. (3) leads to a similar equation: a

BTWBa'= (BT WV)'−(BT WB)'a .                   (7) 

Thus, the matrix decomposition of B  by the SVD technique for solving Eq. (3) can be reused 

to solve Eq. (7).  

TWB

Since  is a function of Z, it needs to be evaluated at every time step in a trajectory 

propagation.  This process amounts to solving Eq. (3) at each step. The time to solution goes as 

NM

a

2. Clearly, the IMLS approach can become prohibitively expensive as the size of the molecule 

increases, and thus measures must be taken to minimize N and M. The procedures employed in this 
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regard are discussed below in this section after a description of the coordinate systems used in this 

study. 

 
B. Coordinate System 

We have investigated two coordinate systems: one is interatomic distance coordinates that 

are commonly used in the modified Shepard interpolation method16 and that we used in our 

previous studies;11 the other is valence internal coordinates, which are physically more intuitive for 

many systems. 

In the system of interatomic distances {Ri}, as in our previous work on HOOH,11 the 

reciprocal interatomic distances {Zi=1/Ri} are used as the fitting coordinates and the un-normalized 

weight function is  

 

                                                               (8) 
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where (∆ρ)2 = (ρk − ρk
(i))2

k=1

6

∑ and {ρk = Rk}. 

The valence internal coordinates are bond lengths, bond angles, and dihedral angles. For the 

6-D case (HOOH) considered here, the coordinates Z = (rOH,rOO,rOH,θ1,θ2,cosτ ) (with θ1  and θ2 

being the two bending angles) are used as the fitting coordinates. Here, cosτ  instead of τ  is used 

as the torsional coordinate because τ  is defined in [-π,π] and is thus discontinuous at π. The un-

normalized weight function is of the same form as that of Eq. (8) except that 

ρ= (rOH,rOO,rOH,a1θ1,a2θ2,a3 cosτ ) , where { } are constants of unity value with units such that {ai ρi} 

all have the units of length. 
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To determine the values of the weight-function parameters, we computed rms errors for 

energy and gradient as functions of ε and p. The results obtained with the valence internal 

coordinates are shown in Fig. 1, where the total number of symmetry distinct data points used for 

fitting is 502, and 5000 points generated by using the efficient microcanonical sampling (EMS) 

method17 for E = 77.625 kcal mol–1 on the fitted surface were used for computing the errors. The 

selections of the data points and basis elements are described in the following subsections. The cut-

off radius (described in the next subsection) was 1.5 Å, which is the value used in computing the 

rate constants presented in Sec. III.  The value p=4 was used in computing the results shown in 

Figs. 1(a) and 1(b).  

As shown in Figs. 1(a) and 1(b), the rms errors are nearly independent of ε once it is below 

a certain value. This is understandable considering that a small enough ε should have no effect on 

the weight function except near the origin when a data point is very close to the fitted point; such a 

situation would happen infrequently, especially in high-dimensional space. Similar results were 

obtained by using the interatomic distance coordinates. This result suggests that one need not test 

the value for ε in future studies as long as a reasonably small value is used. Similar conclusions 

were reached in our earlier studies.10,11  

Figures 1(c) and 1(d) illustrate the rms errors for energy and gradient as a function of p. 

Here ε=0.01, which is the value used in all the subsequent calculations with either coordinate 

system. One can see that the rms error for energy remains near its minimum value for p equals 4 to 

6. However, the rms error for the gradient behaves somewhat differently from that for energy; it 

remains near its minimum value at p equals 1 to 4. We note that these results are only qualitative: 

they vary somewhat with the number of data points and their locations. Similar behaviors were also 
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observed for interatomic distance coordinates. Based on these results, we have used p=4 in all the 

calculations presented here. Similar conclusions were reached in our earlier studies.10,11  

 

C. Cut-Off Radius 

As discussed in Sec. II A, the time for solution goes as NM2. Obviously, one way to reduce 

the computational cost is to reduce the number of data points N included in an evaluation. This is 

possible because of the local nature of the IMLS fits―the weight function acts to make the 

contributions from distant data points negligible. Therefore, a cut-off radius rcut  can be introduced 

to exclude those distant points. That is, the weight function is set to zero for ∆ρ ≥ rcut . 

Truncating the weight function at ∆ρ = rcut  introduces a discontinuity in the function that 

causes jumps in the fitted energy and derivatives whenever a data point crosses rcut . This problem 

can be circumvented by introducing a damping function S(∆ρ)  to make the weight function go 

smoothly to zero at rcut . That is, we write the new weight function as 

     wnew ( ρ∆ ) = w( ρ∆ ) S( ρ∆ ),                               (9) 

where (∆ρ)2 = (ρk − ρk
(i))2

k=1

6
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Here α  is used as a parameter to adjust the fall-off region in S(∆ρ) ; the value α =7 was used. The 

power 3 is used so that the function and its first and second derivatives are all continuous at 

∆ρ = rcut .   

Figure 2 illustrates the effect of using a cut-off radius with the valence internal coordinates. 

Same as in Fig. 1, the number of symmetry distinct data points N used for fitting is 502, and 5000 
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points generated via EMS method on the fitted surface were used for calculating the rms errors. 

Panels (a) and (b) show the dependence of the rms errors for energy and gradient on rcut , 

respectively. It is seen that as rcut decreases, the rms errors also decrease until reaching a minimum 

before turning back up again. The rms errors decrease with decreasing rcut  at large rcut  because the 

distant data points actually have negative effects on the fits. They increase with decreasing rcut  at 

small rcut  because the fits become less accurate as the number of data points included gets too 

small. Since the derivatives are used in a trajectory calculation and since the rms error for gradient 

is minimal at approximately rcut =1.5 Ǻ as shown in Fig. 2(b), rcut =1.5

502

 Ǻ was used in all the 

subsequent calculations in the valence internal coordinates for SYM =N  (among which there 

are four points with C2 symmetry and thus N =1000). Figure 2(c) illustrates the averaged number 

of data points enclosed inside the cut-off radius as a function of rcut . For the value of rcut  used here, 

rcut =1.5 Ǻ, the averaged number of data points inside rcut  is approximately 300 out of 1000 total 

points. Thus, using a cutoff provides nearly 70% of savings in computer time in this case. For the 

calculations performed in this study, it is generally true that the rms errors for gradients are near 

their minima if a value of rcut  is used such that about 250300 points on average are inside rcut .  

Thus, the approximate value of rcut  can be readily estimated by computing the averaged number of 

data points inside rcut .  

A neighbor list can be implemented to further reduce the computational time on evaluating 

distances that are greater than rcut . In this bookkeeping scheme a list of neighboring data points that 

lie within a distance slightly larger than rcut  is maintained. The same list is used over several 

consecutive time steps and updated periodically. However, the procedure does not provide 

significant savings through our tests in studying the O-O bond fission in HOOH, likely because the 

cost of evaluating distances is minor compared to that of solving the matrix equation.   
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D. Selection of Data Points 

How to locate the data points is another important aspect of the IMLS approach. In 

principle, the data points should be placed in regions of interest. For studying chemical reactions 

using the classical trajectory approach, the data points should be located in regions where 

trajectories travel, and they should be somewhat uniformly distributed to avoid sparsity in any 

regions that trajectories frequently visit.    The data points used in this study consist of two sets. 

The first set includes 25 symmetry distinct predetermined points: 5 points along the O-O minimum 

energy path (among which 4 points with C2 symmetry, including the equilibrium configuration), 3 

points at large rOH , and 17 points in the low-energy regions (E<40 kcal mol-1). These 25 

predetermined points were used in all the calculations with either of the two coordinate systems. 

The second set consists of randomly selected points under two criteria: (1) the distance from the 

existing points is no less than a specified value, and (2) the energy is less than a maximum value 

Emax. In this study, Emax was chosen as 85 kcal mol-1, the largest energy for which the rate constant 

was calculated. The total number of points .42 SYM −= NN We note that although this random 

selection scheme is applicable here, a more efficient random walk procedure needs to be developed 

for general applications.   

 The reason that a random selection procedure, instead of a trajectory-based approach, is 

employed here lies mainly in the computational efficiency. We have calculated rate constants for 

the O-O bond fission in HOOH at various energies. Running trajectories repeatedly using the IMLS 

surface to pick the data points is computationally demanding and likely less efficient. With the 

random selection procedure employed here, the data points have the probability to be in any regions 

with E<Emax, which works well when the intramolecular dynamics is chaotic and trajectories cover 
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all regions of the energetically allowed phase space. However, if trajectories cover only limited 

regions, such as when the reaction is highly mode-selective, a trajectory-based approach is 

probably more efficient. We will investigate further the selection of data points in future work. 

 

E.   Selection of Basis Elements 

As discussed in Sec. II A, the number of basis elements used in fitting is another important 

factor in the computational cost. To achieve a given level of accuracy, one needs to carefully select 

the basis elements to make the set as small as possible. As the dimension of the system n increases, 

the number of diagonal terms scales as n, and the number of off-diagonal (cross) terms scales 

combinatorially. Thus, reducing the number of cross terms becomes increasingly important as the 

size of the system increases.   

Since a fitted energy is an expansion over basis elements (see Eq. (1)), the contribution of 

each basic element b  to the fit is determined by the corresponding coefficient a . Therefore, one 

can examine {  to determine the basis elements. In this study, the averaged values of {  were 

calculated for a set of fitted energies at randomly selected configurations, and the basis elements 

with large values of <  were selected. For the valence internal coordinate system, there are 25 

terms in the basis set; they are 19 diagonal terms with the bond terms up to the fourth order and the 

angle terms up to the second order, and 6 cross terms concerning couplings between the O-O bond 

and the two bending angles: 

i i

ai} ai}

ai >

rOOθ1, rOOθ2, rOO
2 θ1, rOO

2 θ2, rOOθ1
2, and rOOθ2

2
.  The selection was also 

confirmed by computing the rms errors for different selections. For the interatomic distance 

coordinate system, 25 terms were also used; they are 3 third-order terms, 1 rO1H1

3 ,1 rO2H2

3 , and 1/ , 

and all the terms up to the second order except 6 second-order cross terms: 

rOO
3

1 (rHHrO1H1
) , 

)(1
22HOHHrr , )

2H(
1Or1 , 

11 OrH )
12HO(

22HO rr1 , )
12HOr(

21HOr1 , and )
22HO(

11HO rr1 . With the valence internal 
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coordinates, only 2 out of 15 second-order cross terms are important, whereas 9 out of 15 are 

important with the interatomic distance coordinates. Since the valence internal coordinate system is 

physically more intuitive and better for describing potential interactions in general, generally it may 

be more suitable for describing potential couplings; that is, fewer cross terms are needed. 

 

III. RATE CONSTANTS FOR O-O BOND FISSION IN HOOH 

To test the accuracy of the IMLS method described in Sec. II for computing rate constants, 

we have studied O-O bond fission in HOOH using the classical trajectory approach. 

 

A. Details of Trajectory Calculations 

The overtone-induced dissociation of HOOH into OH fragments has been extensively 

studied both experimentally and theoretically.18 In a recent study using the same analytical surface, 

we have shown that the O-O bond dissociation rates are similar for the local mode sampling and 

EMS.19 Thus, to compute the reaction rate for OH-overtone excitations, one can use the EMS to 

select the initial conditions at energies corresponding to the experimental values. 

 The rate constant for the O-O bond fission in HOOH was calculated by using the fitted 

surface for several energies. The initial conditions were selected by using the EMS method on the 

fitted potential. Ensembles of 500 trajectories were used for each set of initial conditions. The 

trajectories were propagated by using Hamilton’s equations of motion in lab-fixed Cartesian 

coordinates using a fourth-order Runge-Kutta-Gill integrator with a fixed step size of 0.07 fs, and 

were followed for 1 to 3 ps depending on the energy. The total angular momentum is zero in all 

cases. 
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Some calculations were also performed on the analytical surface to provide the “exact” rates 

for comparisons.  Since the calculations are much faster in this case, the rate was computed for 

three independent ensembles of 2,000 trajectories, and the average value is reported. 

 

B. Rate Constants 

The reaction was assumed to be first order, so the rate constant k was obtained by fitting the 

decay curve to 

ln(Nt /N0) = −kt ,  

where Nt is the number of unreacted trajectories at time t and N0 is the total number of trajectories 

in the ensemble. A trajectory is assumed to have reacted once the O-O bond length exceeds 3.2 Å. 

 We show in Table I the dependence of the rate constant on the number of data points. The 

rate calculated on the analytical surface was also listed for comparison. Here 

E = E(vOH = 7) = 77.625 kcal mol-1, N is the total number of data points, and NSYM is the number of 

symmetry distinct points. The results for using either the valence internal or interatomic distance 

coordinates are listed. Note that statistical errors due to the sampling size in the rates computed on 

the fitted surfaces are probably around 10% with 500 trajectories in an ensemble. In the valence 

internal coordinates, the calculated rate agrees well with the exact rate even when NSYM is only 152. 

On the other hand, the rate is much faster in the interatomic distance coordinates and does not 

converge to the exact rate even when NSYM is as high as 2002. Nevertheless, the result is much 

improved with the use of the zeroth-order potential, as shown in parentheses in the last column. The 

same zeroth-order potential given in Ref. 11 was used.  

We have also tested using a smaller number of points ( 102SYM =N ).  With this small 

number of points, however, a trajectory often goes into regions with so sparse points that the fitted 
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energy is an unphysically large negative number. Obviously, the number of points cannot be too 

small for generating a PES for dynamics calculations.  

 Figure 3 shows two decay plots obtained on the analytical surface (solid curve) and on a 

fitted surface (dotted curve). The result on the fitted surface was obtained for NSYM = 502  with the 

valence internal coordinates. The two curves agree well with each other, both showing the initial 

statistical regime with a faster rate and then the dynamical regime with a slower rate. The rate 

constants were computed from the slopes of the dynamical regime. The curve for the analytical 

surface is smoother because of the larger ensemble sizeit contains 2000 trajectories as opposed to 

500 for the fitted surface. 

 An interesting question is how accurate a PES must be in order to obtain accurate rates.  

The answer for HOOH is that even a rather crude PES can yield accurate rates. To illustrate this 

point, we list in Table II the dependence of rms errors for energy and gradient on NSYM calculated 

by using the 5,000 points generated as described in Sec. II B. Clearly, the average qualities of the 

fits are not good, but this result is expected because the number of data points used is not enough to 

accurately describe all the regions considered here of this 6-D potential. In spite of this, the 

computed rates are quite accurate, at least when using the valence internal coordinates. For a 

statistical system this can be understood from statistical theories that rate constants depend only on 

a few quantities characterizing the surface (the barrier height and the frequencies) and not on the 

accuracy of the entire surface. However, HOOH is not a completely statistical system.  As 

discussed previously,19 the intramolecular couplings in HOOH are strong except that the two OH 

bonds are so weakly coupled that when one OH bond is excited the energy does not flow to the 

other one and thus the unexcited OH mode does not contribute to reaction. This nonstatistical 

behavior needs to be correctly incorporated in the potential for an accurate description of the 
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reaction rate. The difference in the results for the two coordinate systems is probably because this 

weak coupling is more accurately described in the valence internal coordinates with the basis 

elements used, even though the overall qualities of the fitted surfaces are similar for the two 

coordinate systems as shown in Table II.  In the case of using the interatomic distance coordinates, 

the potential couplings may be too strong, and the calculated rate is closer to the statistical value, 

which is faster than the true dynamical one. 

 To illustrate this nonstatistical behavior, we show in Fig. 4 a RRK plot of the rate constant 

as a function of energy, where diamonds and circles represent the rates calculated on the analytical 

and fitted surfaces, respectively. The results were obtained by using the valence internal 

coordinates with NSYM = 502 . The middle point in the plot is the one listed in Table I. A least-

squares fit of the data to the RRK expression k(E) = v(1− Eb / E)s−1 ( Eb  is the dissociation energy 

of O-O bond) yields s  and 3.2 for the rates obtained on the analytical and fitted surfaces, 

respectively, which are less than 5, the theoretical number for a statistical system, indicating that 

the intramolecular energy transfer is not complete during reaction.   

≈ 3.4

 

IV. SUMMARY AND CONCLUSIONS 

 We have further refined the IMLS method for fitting potential surfaces. We have 

investigated the effect of using a cut-off radius and selection of the data points and basis elements. 

And, for the first time, we have applied the method to dynamics calculations and computed rate 

constants for the O-O bond fission in HOOH using the classical trajectory approach. 

 Our results indicate that preliminary random samplings of IMLS evaluations with large 

basis sets can be monitored for basis function coefficient size.  Smaller coefficients on the average 

can then be eliminated in the production runs.  Our investigations of a cut-off radius suggests that 
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for this 6-D system, a cut-off radius should contain on the average a few hundred ab initio points 

for reasonable accuracy.   

Our results also indicate that, for a nonstatistical system, using a proper coordinate system 

can be important in accurately describing intramolecular couplings and hence the reaction rate. For 

HOOH, the valence internal coordinates are better than the interatomic distances. The calculated 

rate is accurate for NSYM as low as 152. If one uses a dual-level approach where IMLS is applied to 

the difference of the true PES with a reference PES, any apparent dependence on accuracy with the 

choice of coordinate system essentially disappears, demonstrating the effectiveness of employing a 

zeroth-order PES. 

 The IMLS method requires only energy values from ab initio calculations, whereas the 

modified Shepard method requires also first and second derivatives, which are computationally 

very demanding for high-dimensional systems. Thus, the IMLS method has the advantage of taking 

less computer time on electronic structure calculations. Another advantage is that higher than 

second-order terms can be easily included in doing the IMLS fits to improve accuracy, while 

higher-order ab initio derivatives need to be evaluated for the higher-order terms to be included in 

the modified Shepard method. However, the IMLS fitting can be more time consuming. A useful 

comparison of efficiency must take into account the combined cost of the ab initio calculations and 

the total number of evaluations needed for the application.   

The results presented here suggest that the IMLS approach has the potential to be a useful 

means for generating surfaces for studying chemical reactions in high-dimensional systems. More 

improvements are to be made, such as a better procedure for selecting data points and using 

variable cut-offs to improve efficiency. Any improvements in IMLS have to be scalable to higher 

dimensions.  That will be the direction of our future work. 
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Table I. Computed rate constants on fitted surfaces in either valence internal or interatomic 

distance coordinates for E = 77.625 kcal mol-1.  

 
 Valence Internal 

Coordinates 
Interatomic Distance Coordinates 

)( SYMNN  k k(k’)a 
300(152) 0.56 0.61(0.50) 
500(252) 0.55 0.74(0.60) 

1000(502) 0.58 0.78(0.53) 
2000(1002) — 0.73(0.53) 
4000(2002) 

              8000(4002) 
— 
— 

                0.70(0.50) 
                0.56(0.52) 

 0.54±0.02b  
 

a  The values in parentheses in the last column are obtained with the use of the zeroth-order 

function. 

b  The value is obtained by using the analytical surface. 

 
 
 
Table II. Dependence of rms errors for energy and gradient on the number of data points.a  

 Valence Internal Coordinate Interatomic Distance Coordinates 
)( SYMNN  ∆E ∆G ∆E ∆G 

300(152) 3.94 64.2 4.30 61.8 
500(252) 3.35 54.1 3.23 44.6 

1000(502) 1.97 36.6 2.54 40.3 
 

a The units of E∆  and are kcal molG∆ -1 and kcal mol-1Ǻ-1, respectively. 
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FIGURE CAPTIONS 

 

Fig. 1: The rms errors for energy and gradient versus the parameters in the weight function ε, 

panels (a) and (b), and p, panels (c) and (d). 

 

Fig. 2: The rms errors for energy (panel a) and gradient (panel b) and the average number of data 

points inside  (panel c) versus the cut-off radius . cutr cutr

 

Fig. 3: Typical decay plots for the O-O bond fission in HOOH. The results were obtained on the 

analytical surface (solid curve) and a fitted surface (dotted curve) using the valence internal 

coordinates with . Here 502SYM =N ) /ln( 0NNP t=  and 625.77=E  kcal mol-1. 

 

Fig. 4: Rate constants obtained on the analytical surface (diamonds) and the fitted surface with 

 (circles). Here E is the total energy, and  is the O-O bond dissociation energy. 502SYM =N bE
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