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ABSTRACT  
Automated annotation of high-throughput genome sequences is one of the earliest steps toward a 
comprehensive understanding of the dynamic behavior of living organisms. However, the step is often 
error-prone due to its underlying algorithms, which rely mainly on a simple similarity analysis and lack 
guidance from biological rules. We present here a knowledge-based protein annotation algorithm. Our 
objectives are to reduce errors and to improve annotation confidences. This algorithm consists of two major 
components: a knowledge system, called “RuleMiner,” and a voting procedure. The knowledge system, 
which includes biological rules and functional profiles for each function, provides a platform for seamless 
integration of multiple sequence analysis tools and guidance for function annotation. The voting procedure, 
which relies on the knowledge system, is designed to make (possibly) unbiased judgments in functional 
assignments among complicated, sometimes conflicting, information. We have applied this algorithm to ten 
prokaryotic bacterial genomes and observed a significant improvement in annotation confidences. We also 
discuss the current limitations of the algorithm and the potential for future improvement. 
 

INTRODUCTION 
The number of completely sequenced genomes has dramatically increased during the past several years, 
and this momentum is likely to continue. At the time of this writing, Genomes OnLine Database (GOLD) 
lists over 211 completely sequenced genomes [1]. Additional 522 prokaryotic genomes and 436 eukaryotic 
genomes are listed as ongoing sequence projects. Knowledge about protein components, functional 
capacities, and overall metabolic potentials of these genomes will advance progress toward a 
comprehensive understanding of the genetic mechanisms of diverse biochemical processes [2]. The 
challenge is that the experiments needed to determine biological functionalities for the composed gene 
components in the sequenced genomes are labor-intensive and very expensive.  
 
In an effort to complement such experiments, several computational approaches have been developed to 
automate the annotation processes [3-6]. These approaches, however, are often error-prone because their 
underlying algorithms rely mainly on a BLAST or FASTA-based sequence similarity analysis[7]. In 
contrast, the diversity of cellular functions has created complicated and unpredictable sequence-function 
relationships [8]. Evolutionary processes add further complexities [9, 10]. Consequently, the similarity 
analysis cannot always provide relevant relationships between functions and sequences [7, 11]. The 
resulted annotations are difficult to interpret and error-prone, and annotation confidences are hard to 
evaluate [12].  
 
Current bioinformatics research offer a variety of sequence analysis tools and each of them addresses 
different problems and has its unique features and capability[13-16]. It is thus essential to integrate these 
tools to achieve an enhanced computational capacity for recognizing and differentiating cellular functions. 
All these tools, however, have been independently developed and have resulted in incompatible 
nomenclatures [16]. As a result, the integration can be enormously difficult and could compromise the 
efficacy of these tools for the annotating protein function. The lack of clear principles or rules present 
another challenge [7, 11, 17], especially where multiple sequence analysis algorithms and heterogeneous 
biological datasets have to be integrated [9, 10].  
 
Our previous efforts [11] in this direction have focused on developing a knowledge system, called 
“RuleMiner,” for high-throughput genome sequence analysis. The knowledge system consists of three 
components: protein function groups (PFGs), PFG profiles, and rules. Established from an integrated 
analysis of the current knowledge in Swiss-Prot database [18] and family-based protein classifications, the 
PFGs cover all possible cellular functions available in the database. Characterized by sequence 
conservations (BLAST and BLOCKS), the occurrences of sequence-based motifs (BLOCKS), domains 
(Pfam), and species distributions, the PFG profiles illustrate detailed protein features for each PFG.  The 
rules, mined from the PFG profiles, describe the clear relationships between the PFGs and all possible 
features. As a result, the knowledge system can provide an enhanced capability for protein function 
analysis. For example, the results from sequence analysis tools for given proteins can be comparatively 
analyzed and much-needed guidance is readily available for such an analysis. If the rules describe unique 
relationships between the protein features and the PFGs—for instance, one to one and many to one (one or 
many features to one unique PFG)—then these features can be used as unique functional identifiers and 



cellular functions of unknown proteins can be reliably determined. Otherwise, additional information must 
be provided.  
 
In this paper, we present a high-throughput protein annotation algorithm extended from the knowledge 
system development. Our goal is to develop an analysis system with a seamless integration of multiple 
sequence analysis tools, biological rules, and PFG profiles in order to reduce annotation errors, improve 
confidences. An additional goal is to categorize the annotation confidences and associate them explicitly 
with specific protein annotations. For these goals, a voting procedure, which relies on rules and the 
functional profiles in the knowledge system, is developed to make (possibly) unbiased judgments in 
functional assignments among complicated and sometimes conflicting information from the sequence 
analysis tools. 
 
The judgments are based on the answers to the following questions: Does the knowledge system have any 
PFGs corresponding to the target proteins? Are the domains or motifs identified for the proteins unique to 
these PFGs (rules)? Are the features of the target proteins consistent with the profiles of the PFG 
candidates? Depending on the answers, we categorize the annotations into different confidence categories, 
in which annotations that satisfy all these questions would have the highest confidence. 
 
We have applied this algorithm to ten prokaryotic bacterial genomes and observed significantly improved 
annotation confidences. We believe this algorithm will be a great asset to those interested in using the 
annotation data. For example, researchers will be able to decide to what degree the annotation data can be 
trusted and design their experiments accordingly with the genome annotation data and the annotation 
programs available on request. 

 
MATERIALS 

In this section, we first describe genome sequence data and the procedure for primary genome analysis. We 
then define three new terms—digit scoring system, annotation confidence category, and protein version. 
Finally, we illustrate the rule-based algorithm with a detailed description of the analysis procedure and 
examples. 
 
Data Preparation 
We downloaded ten completely sequenced genomes (Table I) from the National Center for Biotechnology 
Information (NCBI) (ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/). These genomes cover a variety of 
organisms (2 prokaryote superkindoms, seven phylums, nine classes and ten orders), ranging from genomes 
that are well studied (e.g., Escherichia coli K12 and Bacillus subtilis) to those that are barely known (e.g., 
Halobacterium sp. and Aeropyrum pernix. With such variety, this genome data can be an excellent data set 
to evaluate the performance of our algorithm. 

Table I 
Genome Sequence Data Processing 
For the purpose of this research, a parallel process for BLAST, BLOCKS, and Pfam to run on a 512-node 
Linux cluster was developed at Argonne National Laboratory. A parallel process of this capacity is 
necessary to provide computational power because of the exceptionally large sequence data and 
computational time needed for each of the tools. The output of the tools is then processed and stored in an 
Oracle database. The database design is an important issue in the management of biological data because of 
its complexity and the exponential growth of related data.  However, we will not describe the details of 
database design and managements here, which are beyond the scope of this paper. 
 
A Digit Scoring System for BLAST Hits 
 In the voting algorithm, the E-value is one of the most important criteria for evaluating the sequence 
similarity in sequence analysis tools. Biological function domains, motifs, and BLAST hits with a lower E-
value are more likely the proper function assignments; an E-value of zero represents the highest level of 
confidence in functional relevance [13]. Comparing results from Pfam [14] and BLOCKS [15] is 
straightforward because each can give unique assignments of the functional domains or motifs with certain 
E-values. Comparing the BLAST hits, on the other hand, is difficult because BLAST analysis can give 
multiple hits. All of them may share the same functional annotations but each of them may associate with a 
different E-value. To represent protein functions of the BLAST hits, we developed a novel scoring system 
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(Table II). In this system, eight confidence levels of scores are defined by extending the scoring scheme of 
GeneQuiz [3]. Two digits represent each confidence level so that maximum number of BLAST hits can 
accumulate up to 99 without mixing adjacent levels of confidences. We call this a “digit score” in order to 
differentiate it from the score that is built into the BLAST search. The scheme can be easily extended as 
needed to increase the capacity of the scoring system.   

Table II 
Annotation Confidence Categories 
The confidence category indicates to what extent we can trust the annotation for given target proteins. We 
established three groups of annotation confidences based on possible combinations between tool-derived 
protein features and their potential entries in the knowledge system (Table III). Annotations in Groups I and 
III have a strong support from the knowledge system. A combinatory analysis of the protein features, rules, 
and PFG profiles can lead to highly confident functional assignments. The difference between the two 
groups of annotations is that proteins in Group I have unique functional assignments, whereas those in 
Group III have alternative or multiple functional assignments. Group II annotations, on the other hand, do 
not have such support, resulting in low confidence. We further classified the annotations of each group into 
four categories, depending on their E-values [3]. Annotations with an E-value of 1e-70 or less are 
considered to be highly confident (especially in Groups I and III), whereas those with an E-value of 1e-4 or 
greater are considered tentative or hypothetic (especially in Group II). 

Table III 
Protein Versions 
The protein versions represent unique positions that the target proteins occupy in the evolutionary 
process—in this paper, the species categories. These categories are defined as is in the Swiss-Prot database: 
A: Archaea, B: Bacteria, E: Eukaryote, Plasm: Plasmid, Chl: Chloroplast, Mit Mitochondrion, V: Virus, 
and Cyan: Cyanelle (http://www.expasy.ch/sprot/sprot-top.html). The protein versions can be determined 
based on a comparative analysis of the BLOCKS patterns of the target proteins and the BLOCKS pattern-
species associations in their corresponding PFG profiles of the knowledge system [11].  
 
The BLOCKS pattern is expressed in strings of uppercase letters (e.g., ABCDEF), each of the letter 
representing a conserved sequence motif for given BLOCKS families. The knowledge system established a 
specific association between the BLOCKS patterns and the species categories. It can be very complex: 
some patterns are universal to all species categories, whereas others are unique to certain species categories 
(Table IV). Nonetheless, most of the associations are well defined. Consequently, the protein version of the 
target proteins can be clearly determined by comparing the BLOCKS patterns of the proteins with their 
corresponding PFG profiles. 

Table IV 
Figure 1 

Procedure of Knowledge-Based Annotation Algorithm 
Figure 1 illustrates the procedure of our annotation algorithm. The procedure comprises three steps—data 
analysis, data processing, and voting—described as follows.  

1. Data analysis. Analyze the genome sequence data (predicted proteins) with BLAST, BLOCKS, 
and Pfam in a high-throughput manner (note that they are the same sets of sequence analysis tools 
used in the knowledge system development). 

2. Data processing. Process the tool-derived outputs from step I for every predicted protein in the 
genomes. For BLAST, the results include all homologous proteins and their corresponding E-
values. Additional information included in the BLAST results is the detailed functional 
descriptions and their derived knowledge-based protein function categories (KPFCs) of these 
homologous proteins (the same procedure developed in the RuleMiner is used to extract KPFCs). 
For BLOCKS, the results include the best-hit BLOCKS families: the sequence-based protein 
function categories (SPFCs), BLOCKS motifs, and E-values. For Pfam, results include Pfam 
domains, their locations on the proteins and E-values. The Pfam results are further processed to 
form unique Pfam domain patterns in which domains are arranged on the proteins in the way that 
there are no overlaps.  

3. Voting. Use the results from Step 2 (protein features, e.g., KPFCs, SPFCs, and Pfam domains) to 
query the knowledge system. PFGs have two components: KPFCs and SPFCs, which, together 
with other features in the PFG profiles, are stored in separate columns in the knowledge system. 
Therefore, querying the knowledge system with any of these features will result in the assignments 
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of possible PFG(s) and the identification of their related PFG profiles. Then, apply a voting 
procedure to determine the proper function annotations for target proteins and associate each of 
the annotations with confidence categories.  

 
The voting procedure is complicated because there are many possible combinations of the sequence 
analysis tool-derived features and their potential entries (PFGs) in the knowledge system (Table III). For 
simplicity, three cases are established, which correspond to three annotation groups. In Case I, protein 
features such as BLOCKS motifs, Pfam domains, or their combinations are function-specific (e.g., 
one/many-to-one relationships between these features), and thus the corresponding PFGs in the knowledge 
system or PFG profiles can be used to recognize unique functions. In this case, the voting procedure would 
lead to specific functions and proteins would be annotated with high confidences (Group I). In Case II, 
protein features have no corresponding entries in the knowledge system. This will result in low confidences 
(Group II), especially when the E-value is large (function relevance with an E-value of zero is considered 
significant and that with an E-value of 0.1 or greater is considered unrelated). In Case III, the rule points to 
one/many to many, a non-unique feature-PFG relationship and as a consequence, voting procedure leads to 
multiple PFGs. In this case, there will be no decisions in choosing a specific function among these PFGs 
(Group III).   
 
Example of the Voting Procedure, The following example demonstrates how the knowledge system 
facilitates the voting procedure when multiple sequence analysis tools and knowledge system are 
incorporated. gi|1788071 is one of over 4,200 open reading frames (ORFs) in the genome of Escherichia 
coli K-12 MG1655. Because of the analytic process (Figure 2), two different functional assignments are 
given. One of the annotations is ribokinase with a protein function group of PFG (EC 2.7.1.15, 
IPB002173), and the other is 2-dehydro-3-deoxygluconokinase (3-deoxy-2-OXO-D-gluconate kinase) 
(KDG kinase), which belongs to PFG (EC 2.7.1.45, IPB002173). In this example, no unique function-
specific protein features (rules and PFG profiles) can be identified in the knowledge system. 

Figure 2 
RESULTS 

One of the key features of our annotation algorithm is that we can obtain unique and highly confident 
functional annotations. Furthermore, each of the annotations is associated with confidence categories (e.g., 
category I.3 and I.4). In the Escherichia coli genome, over 51% of the proteins have such functional 
annotations (Figure 3A). About 24% of the protein annotations in Archaeoglobus fulgidus genome belong 
to these categories (Figure 3B). The principal reason that the knowledge-based annotation algorithm can 
achieve such a high confidence is that rules in the knowledge system can define a unique relationship 
between protein features and their corresponding cellular functions (PFGs). Among a total of 3,832 feature-
PFG relationships examined [11], 1,821 are defined as unique by the BLOCKS analysis alone. Our 
analysis, which incorporates information from BLAST, BLOCKS and Pfam, would certainly strengthen the 
capability of the differentiation and the recognition of relevant function relationships and so increase the 
accuracy in computation-oriented function annotation.       

Figure 3 
Ribulose bisphosphate carboxylase (EC 4.1.1.39) (RuBisCO) is an example of such an annotation. 
RuBisCO catalyzes the initial step in Calvin cycle, the photosynthetic dark reaction pathway in plants 
cyano-, purple, and green bacteria [19]. It consists of a large catalytic unit and a small subunit of an 
undetermined function. The information in the knowledge system indicates that BLOCKS protein families 
and Pfam domains for both subunits are unique to their functions. The properties enable our annotation 
algorithm to discover two subunits in the genome of Synechocystis sp. and to assign unique functions to 
these subunits. We also found one or two copies of RuBisCO large subunits in nonphotosynthetic bacteria 
such as Bacillus subtilis, as well as Archaea including Archaeoglobus fulgidus and Methanococcus 
jannaschii. As was shown by Finn and Tabita [20], recombinant forms of the Archaeal enzymes catalyze a 
bona fide RuBP-dependent CO2 fixation reaction, and it was recently shown that Methanococcus 
jannaschii and other anaerobic Archaea synthesize catalytically active RubisCO in vivo. In our study, all 
the functional assignments of ribulose bisphosphate carboxylase for the proteins in these genomes are 
classified as Category I.4.  
 
Another unique feature of our annotation algorithm is that alternative annotations are given to some 
proteins (Category III). For example, 5% of Escherichia coli proteins and 9% of Archaeoglobus fulgidus 



proteins are annotated as such (Figure 3). The reason is that proteins with such assignments are often highly 
homologous but have different sub-functions (e.g., enzymes with different substrate/ligand binding 
specificity); furthermore, no function-unique features can be defined for these proteins. For example, the 
BLOCKS protein family zinc-dependent dehydrogenase covers 17 different sub-functions. All of these sub-
functional enzymes share similar catalytic mechanisms [21, 22].  
 
Examples of such alternative functional assignments are shown in Table V for six genes in the Aquifex 
aeolicus genome. They cover a variety of cellular functions, including phosphatase, ATP-binding 
transporter, cytochrome oxidase, and transcriptional repressor and regulatory functions. In these families, 
BLOCKS patterns are essentially un-differentiable among all sub-functions. In addition, they possess 
identical Pfam domains. In the knowledge system, the features and PFGs for these functions are 
represented as one/many-to-many relationships. Obviously, the lack of unique protein feature identifiers for 
those highly homologous functions prevents our annotation algorithm from making final decisions about 
their functions. This situation contrasts the existing annotation systems, in which a brute-force approach is 
often used: functions are assigned mostly by whatever appears as the top hit of BLAST search.  

Table V 
Comparison of Multiple Genome Annotations 
The annotation distributions in multiple genomes are compared in Figure 3. The genomes are arranged in a 
doughnut figure (see Table I for the detailed description of the species). The first five genomes are 
Eubacteria, and the rest are Archaea. In general, Archaea genomes are far less informative than those of 
Eubacteria in regards  to functional inferences. If the genomes are arranged by their ratios of hypothetical 
protein to the total number of ORFs in these genomes, then five Archaea genomes will be located in the top 
five places, with Aeropyrum pernix in the first. Almost 60% (1,584) of the 2,694 proteins in the genome 
end without any functional clues. Pyrococcus horikoshii ranks second; about 46% of the 2,064 ORFs in the 
genome are hypothetical. The Eubacterial genomes generally have much lower ratios of hypothetic 
proteins. Escherichia coli K12 has the lowest of all, in which only 6% of its 4,248 ORFs are hypothetical. 
The other four genomes have around 20% hypothetical annotations. If these genomes are arranged by the 
ratio of proteins with Category I.4 annotations over the total ORFs in these genomes, their ranks are 
approximately reversed, with Escherichia coli at the top and Aeropyrum pernix at the bottom. So far, 
Archaeoglobus fulgidus has been shown to be the best-studied genome (11%) among the five Archaea. 
 
 

DISCUSSION 
In this paper, we present knowledge-based voting algorithm for high-throughput protein function 
annotations, in which multiple sequence analysis tools, biological rules, and functional (PFG) profiles are 
seamlessly integrated. The objective is to reduce annotation errors, improve confidences, and relate the 
annotations with confidence categories. For the first time, a knowledge system has been established and 
incorporated into the protein annotation process. The results from the integrated sequence analysis tools for 
given proteins can be comparatively analyzed. In addition, much-needed guidance is now available to 
enhance such analysis for an accurate function assignment.   
 
The annotations are further categorized based on confidence levels in the algorithm. The annotations with a 
strong support from the knowledge system are categorized at the highest level of confidence because of 
PFGs, well-defined PFG profiles, and clear-cut feature-function relationships; annotations without such 
support are considered tentative. The confidence information will be critical to researchers in deciding to 
what extent the annotation data can be trusted and then enable them to design experiments that are more 
reliable. 
 
Alternative functional assignments represent another unique feature in our annotation system. With our 
algorithm, no conclusion is forced if the evidence is not strong enough. Our analysis revealed that about 7% 
of the proteins in the analyzed genomes (from 5% to 9%) have such assignments (Figure 4). This figure 
strongly contrasts with the results from other current annotation systems. These results are often  
inconsistent because of their reliance on a brute-force approach [3, 4, 6] that selects the best-scoring 
proteins regardless of the sequence databases used in the analysis [11].  

Figure 4 



The comparison of different genome annotation systems is difficult because of the lack of a standard 
system for function representations. Although we have not attempted to compare our rule-based annotation 
system with any others, the alternative functional assignment presents one of the real improvements in the 
field. This feature helps accurately reflect the complexity of the biological functions in which the proteins 
are involved [8-10] and prevent the spread of mistaken annotations [7, 11]. 
 
Alternative function assignments also open an opportunity to fill gaps in the metabolic pathway for certain 
organisms, in which some enzymes are mysteriously missing in current annotation data. For example, EC 
5.3.1.8 (mannose-6-phosphate isomerase) is listed as a missing function from Synechocystis PCC6803 and 
other cyan-bacteria genomes (http://www.genome.jp/kegg/). In our analysis, however, alternative functions 
are assigned for single proteins in these genomes, including a mono-functional enzyme of EC 2.7.7.22 
(Mannose-1-phosphate guanylyltransferase) and a bi-functional enzyme of EC 2.7.7.22 5.3.1.8 (Figure 5). 
These alternatives provide scientific evidence to generate working hypotheses for researchers to design 
experiments to fill such metabolic and regulatory pathway gaps [23]. 

Figure 5 
The analysis of the distribution of annotation confidences among multiple genomes indicates a strong 
discrepancy in the representation of current knowledge. Escherichia coli has the highest ratio of proteins 
(over 50% of 4,289) that have annotations of the highest confidence (Categories I.3 and I.4). In contrast, 
Aeropyrum pernix, a crenarchaeota genome, represents one of the most poorly studied genomes.  Only 5% 
of its 2,694 predicted ORFs have the annotations classified as such. The majority (59%) of ORFs have no 
functional clues at all. On one hand, the poorly annotated genomes in general and Archaea genomes in 
particular reflect the current limitations of computational tools in function determinations. On the other 
hand, they present an opportunity to find new functions if efforts are made to systematically studying these 
genomes and their corresponding organisms. 
 
As indicated above, the sequence-based functional annotations, while useful in certain cases, are limited in 
their coverage of protein functional space. Function references based on protein networks present another 
layer of genome analysis methods complementary to sequence-based analysis. We believe that proteins 
often form structured interaction network modules to accomplish specific functions, such as transcriptional 
regulatory, metabolic synthesis, and signal transductions. Therefore, hypothetic proteins that have highly 
confident links with these network modules are likely to have similar functions [24]. To test this 
hypothesis, we plan to develop an integrated network construction system and incorporate network 
information into our annotation algorithm to expand functional coverage and increase annotation accuracy.  
 
In the current knowledge system and knowledge-based voting algorithm, we applied three sequence 
analysis tools, BLAST, BLOCKS and Pfam for their distinguished capabilities, broad sequence and 
functional coverages, rich annotation information, unique yet complementary attributes [11]. In brief, Blast, 
revealing sequence similarity at the level of individual amino acids, could recognize and distinguish, to 
certain level, homologous proteins but could not identify evolutionarily divergent yet functionally related 
ones. Pfam and BLOCKS, two family-based signature databases, could well complement the BLAST tool 
since they can detect divergent domains and conserved motifs, therefore, having ability to identify distant 
and clear-cut relationships in novel sequences [14, 15].  
 
However, we do not intend, by any means, to exclude other signature databases because those signature 
databases address different sequence analysis problems and have their own strength. Quite the opposite, 
building such knowledge-based annotation frame makes it easier to incorporate additional sequence 
analysis tools, thus, facilitating the development of more complex and smarter annotation systems in the 
future. As a final point of this paper, we have to emphasize that Gene Ontology (GO) will play an 
especially important role in such systems since GO can provide structured vocabularies to describe genes 
and gene products [25].  As a consequence, GO would facilitate function representation, which is an 
essential part of algorithm in the development of our knowledge system. 
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Figure 1. The knowledge-based annotation procedure includes three steps: I. data analysis, II. data 
processing and III. functional annotations. In step I, genome sequence data are analyzed with BLAST, 
Pfam and BLOCKS; in the step II, outputs from step I are further processed to extract sequence features 
that can be used to directly query RuleMiner, the knowledge system; In the last step, the voting procedure 
are applied to determine the function annotations and assign function confidence categories. All these 
processes proceed in a high-throughput and automatic manner.  
 



 
Figure 2.  Application of the knowledge-based voting algorithm for annotation of gi|1788071, a protein 
from Escherichia coli K-12 MG1655 (Bacterium). The annotation is based on the sequence features 
identified by three sequence analysis tools and information in the knowledge system.  

1. The Pfam domain-based rules (non-unique relationships between Pfam features and the protein 
functional groups) provide no differentiation ability in this example.  “pfkB” is essential for both 
PFG (EC 2.7.1.15, IPB000965) and PFG (EC 2.7.1.45, IPB000965). 

2. Feature-species associations could not offer any extra information for this annotation: PFG (EC 
2.7.1.15, IPB000965) occurs in Eubacteria and PFG (EC 2.7.1.45, IPB000965) in both Eukaryote 
and Eubacteria.  

3. BLOCKS and BLAST-based PFG profile could not supply any support either in distinguishing 
two protein function groups. Protein features from both BLOCKS and BLAST analysis fit very 
well with profiles from both protein functional groups.                      

Consequently, no decision will be made between the alternative functions and no unique functions will 
be given until new evidence is obtained. 

 



 
 
Figure 3. Percentage distribution of categories of annotation confidence of two genomes; one from 
bacterium: Escherichia coli (Panel A) and one from Archaea: Archaeoglobus fulgidus (Panel B). The labels 
indicate the categories of annotation confidences. Categories I.1 to I.4 present unique functional 
assignments with a strong knowledge system support. Categories II.1 to II.4 present annotations that do not 
have such support. Categories III.1 to III.4 present proteins with alternative functional assignments with 
knowledge base supports. From those confidence categories, X.1 is considered as hypothetical (or 
marginal) and tentative, and X.4 is considered as highly confident, where X presents any of the three 
confidence groups (Table II).  
       



 
Figure 4. Comparisons of percentage distribution of categories of annotation confidence for ten genomes. 
The genomes are arranged in a doughnut as follows (from outer cycle to the inner): ECOLI, BACNA, 
AQUAE, CHLTR, RICPR, ARCFU, METJA, HALN1, PYRHO, AERPE (see Table I for detailed species 
descriptions). The labels indicate the categories of annotation confidences. Categories I.1 to I.4 present 
unique functional assignments with a strong knowledge base support. Categories II.1 to II.4 present 
annotations that do not have such support. Categories III.1 to III.4 present proteins with alternative 
functional assignments with knowledge system supports. From those confidence categories, X.1 is 
considered as hypothetical (or marginal) and tentative, and X.4 is considered highly confident, where X 
presents any of the three confidence groups (Table II).     



 
Figure 5. Annotation example by the RuleMiner and profile-based voting algorithm and its potential 
application. A: Alternative functions are assigned, each of which associates explicitly with annotation 
confidences for a Prochlorococcus marinus protein. B: Pathways (metabolic, regulatory) are refined 
through improved annotations: The function of EC 5.3.1.8 is missed in this and other several cyanobacteria 
genomes (Anabaena, Synechocystis, Synechococcus, and Thermosynechococcus) in the fructose and 
mannose metabolism pathway. Assignment of a bifunctional enzyme provides a mechanism to fill the gap 
[11]. Boxes with green background represent functions found in these organisms. 
 



Table I. The complete microbial genomes tested and their basic information.  

Species Name 
Species 
Symbol 

 
 

Phylum Class Order 
SuperKi

ndom 

Genome 
Size 

(Kbps) 
Number 
of ORFs 

Escherichia coli K12 ECOLI 
ProteobacteriaP
roteobacteria 

Gammaproteobacter
ia   Enterobacteriales Bacteria 4639 4289 

Bacillus subtilis BACNA Firmicutes Bacilli  Bacillales Bacteria 4215 4100 
Aquifex aeolicus    AQUAE Aquificae Aquificae  Aquificales Bacteria 1551 1522 
Chlamydia trachomatis CHLTR Chlamydiae Chlamydiae  Chlamydiales Bacteria 1043 894 
Rickettsia prowazekii RICPR Proteobacteria Alphaproteobacteria  Rickettsiales Bacteria 1111 834 
Archaeoglobus fulgidus ARCFU Euryarchaeota Archaeoglobi  Archaeoglobales Archaea 2178 2420 
Methanococcus jannaschii METJA Euryarchaeota Methanococci  Methanococcales Archaea 1665 1715 
Halobacterium sp. HALN1 Euryarchaeota Halobacteria;  Halobacteriales Archaea 2014 2058 
Pyrococcus horikoshii PYRHO Euryarchaeota Thermococci  Thermococcales  Archaea 1739 2064 
Aeropyrum pernix AERPE Crenarchaeota Thermoprotei  Desulfurococcales Archaea 1669 2694 
 
Table II. Confidence levels, E-value, and score assignments. 

Confidence 
Levels 

 
E-value 

 
Digit scoring 

Confidence in GenQuiz 
(Probability) 

1 <1 10 Unknown (0%) 
2 <0.1 100 Unknown (0%) 
3 <1e-4 10000 Marginal (30%) 
4 <1e-10 1000000 Tentative (70%) 
5 <1e-20 100000000 Clear (95%) 
6 <1e-70 10000000000 Clear (99%) 
7 <1e-100 1000000000000 Clear (>99%) 
8 <1e-200 100000000000000 Clear (>99%) 

 
Table III. Distribution of 12 confidence categories in the knowledge-based function annotation algorithm 

 
Group 

 
Group Descriptions 

 
Category 

Confidences 
(E-value) 

1 >1e-04 
2 < 1e-04 && >1e-20 
3 < 1e-20 && >1e-70 

I Unique Assignments: The integrated analysis of the tool-
derived protein features, the rules and PFG profiles lead 
to a unique PFG (e.g. the BLOCKS patterns and Pfam 
domain patterns are function-specific in the knowledge 
system). 

4 < 1e-70 

1 >1e-04 
2 < 1e-04 && >1e-20 
3 < 1e-20 && >1e-70 

II Assignments without knowledge system supports: There 
are no functional descriptions related to the target 
proteins in the Swiss-Prot database.  Therefore, there are 
no corresponding PFGs in the knowledge System 4 < 1e-70 

1 >1e-04 
2 < 1e-04 && >1e-20 
3 < 1e-20 && >1e-70 

III Alternative Assignments: all tool-derived protein 
features, the rules and PFG profiles in the knowledge 
system point to several undistinguishable PFGs.  In this 
circumstance, there will be no decisions about their 
functions unless we obtain additional evidence. 

4 < 1e-70 

 
Table IV. Evolutionary distribution of BLOCKS patterns of PFGs in the knowledge system 

Protein Functional Group (PFG) 

Function Category 
BLOCKS 
Family 

Association of BLOCKS Pattern - Species Category 
in PFG profile 

EC 2.7.7.6 IPB001572 

ABCDEGHa:Bb, ABCDEFGH:A:B:E:chl:cynal, H:B, 
CDEGH:plasm, BCDEGH:E, EFGH:chl, CDEFGH:V, ABC:A, 
DEFGH:A:V, BCDEFGH:E 

EC 4.2.99.9 IPB000277 ABCDEF:B:E, BCDF:E, BCF:E  
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EC 1.6.99.3 IPB000103 AE:A, BCDE:B 

EC 4.1.1.23 IPB001754 
ABE:A:B, ABCDEF:E, BCE:B, E:B, AE:A, BE:B, ABCE:A:B, 
CE:B  

High mobility group 
protein IPB000910 ABC:E, BC:E:V, C:E  
ATP-dependent helicase IPB000629 A:B, AC:A:B, AD:B, AE:A, ABCDE:E,  
E.C.4.2.2.2 PR00807 DEG:B BCDE:E ABCDEFGH:E CD:B DE:B ADE:E CDE:B 
Note: a. BLOCKS Patterns; b. Species categories defined in Swiss-Prot. 
 
 
Table V. Alternative functional assignments in Aquifex aeolicus 

Genepid 
BLAST-based 

Function Description Digit Score 

Knowledge-based 
Function Groups 

(KPFG) 

Family-based 
Function 

Groups (SPFG) 

BLOC
KS 

Pattern 
Pfam 

Domain 
Spec

Categ
2984221        

Alpha-ribazole-5-
phosphate phosphatase 
(EC 3.1.3.-). 2000000 3.1.3.- IPB001345 ABCD PGAM B 

 

Phosphoglycerate 
mutase (EC 5.4.2.1) 
(Phosphoglyceromutase) 
(PGAM) (MPGM) 
(BPG-dependent 
PGAM). 2100000 5.4.2.1 IPB001345 ABCD PGAM BE 

2984332        
ATP-binding protein 
abc. 200000000 

ATP-binding 
protein IPB001617 AB ABC_tran B 

Choline transport ATP-
binding protein opuBA. 100000000 

Choline transport 
ATP-binding 
protein IPB001617 AB ABC_tran B 

Dipeptide transport 
ATP-binding protein 
dppD. 500000000 

Dipeptide transport 
ATP-binding 
protein IPB001617 AB ABC_tran B 

General L-amino acid 
transport ATP-binding 
protein aapP. 100000000 

General L-amino 
acid transport ATP-
binding protein IPB001617 AB ABC_tran B 

Glutamine transport 
ATP-binding protein 
glnQ. 200000000 

Glutamine transport 
ATP-binding 
protein IPB001617 AB ABC_tran B 

Glycine betaine L-
proline transport ATP-
binding protein proV. 200000000 

Glycine betaineL-
proline transport 
ATP-binding 
protein IPB001617 AB ABC_tran B 

Glycine betaine 
carnitine choline 
transport ATP-binding 
protein opuCA. 100000000 OxPP cycle protein IPB001617 AB ABC_tran B 

 

Glycine betaine 
transport ATP-binding 
protein opuAA (EC 
3.6.3.32) (Quaternary-
amine-transporting 
ATPase). 100000000 3.6.3.32 IPB001617 AB ABC_tran B 



Histidine transport ATP-
binding protein hisP. 200000000 

Histidine transport 
ATP-binding 
protein IPB001617 AB ABC_tran B 

Iron(III)-transport ATP-
binding protein hitC. 200000000 

Iron(III)-transport 
ATP-binding 
protein IPB001617 AB ABC_tran B 

Maltose maltodextrin 
transport ATP-binding 
protein malK. 300000000 

Maltosemaltodextrin 
transport ATP-
binding protein IPB001617 AB ABC_tran B 

Nitrate transport ATP-
binding protein nrtC. 400000000 

Nitrate transport 
ATP-binding 
protein IPB001617 AB ABC_tran B 

Nopaline permease 
ATP-binding protein P. 100000000 

Nopaline permease 
ATP-binding 
protein IPB001617 AB ABC_tran B 

Oligopeptide transport 
ATP-binding protein 
oppD. 1501000000 

Oligopeptide 
transport ATP-
binding protein IPB001617 AB ABC_tran B 

Possible ribonucleotide 
transport ATP-binding 
protein mkl. 200000000 

Ribonucleotide 
transport ATP-
binding protein IPB001617 AB ABC_tran B 

Probable ABC 
transporter ATP-binding 
protein PEB1C. 804000000 

ABC transporter 
ATP-binding 
protein IPB001617 AB ABC_tran B plasm

Probable amino-acid 
ABC transporter ATP-
binding protein yckI. 500000000 

Amino-acid ABC 
transporter ATP-
binding protein IPB001617 AB ABC_tran B plasm

 

Putative ferric transport 
ATP-binding protein 
afuC. 300000000 

Ferric transport 
ATP-binding 
protein IPB001617 AB ABC_tran B 

2984362        
Potential acrAB operon 
repressor. 10000 

AcrAB operon 
repressor IPB001647 A tetR B 

Regulatory protein 
mtrR. 10000 Regulatory protein IPB001647 A tetR B 

Tetracenomycin C 
transcriptional repressor. 10000 

Tetracenomycin C 
transcriptional 
repressor IPB001647 A tetR B 

Transcriptional 
repressor Bm3R1. 10000 

Transcriptional 
repressor IPB001647 A tetR B 

 
Uid operon repressor 
(Gus operon repressor). 10000 

Uid operon 
repressor IPB001647 A tetR B 

2984384        
Cytochrome O 
ubiquinol oxidase 
subunit III (EC 1.10.3.-
). 2000000 1.10.3.- PF00510 DE COX3 B  
Cytochrome c oxidase 
polypeptide III (EC 
1.9.3.1). 4582050000 1.9.3.1 PF00510 DE COX3 B E mit



Quinol oxidase 
polypeptide III (EC 
1.9.3.-) (Quinol oxidase 
aa3-600, subunit qoxC) 
(Oxidase aa(3)-600 
subunit 3). 2010000 1.9.3.- PF00510 DE COX3 B 

 

       
2983588        

Acetoacetate 
metabolism regulatory 
protein atoC (Ornithine 
arginine decarboxylase 
inhibitor) (Ornithine 
decarboxylase 
antizyme). 10000000000 

Acetoacetate 
metabolism 
regulatory protein IPB002078 ABCD sigma54 B 

Alginate biosynthesis 
transcriptional 
regulatory protein algB. 10000000000 Glycosyltransferase IPB002078 ABCD sigma54 B 
Nitrogen regulation 
protein NR(I). 70100000000 

Nitrogen regulation 
protein IPB002078 ABCD sigma54 B 

Repressor protein luxO. 10000000000 Repressor protein IPB002078 ABCD sigma54 B 
Transcriptional 
regulatory protein hydG. 20814160000 

Transcriptional 
regulatory protein IPB002078 ABCD sigma54 B plasm

 

Type 4 fimbriae 
expression regulatory 
protein pilR. 10000000000 

4 fimbriae 
expression 
regulatory protein IPB002078 ABCD sigma54 B 

2982837        
Acetoacetate 
metabolism regulatory 
protein atoC  100000000 

Acetoacetate 
metabolism 
regulatory protein IPB002078 BCD sigma54 B 

Alginate biosynthesis 
transcriptional 
regulatory protein algB. 100000000 

Glycosyltransferase-
transcritional-
regulatory IPB002078 BCD sigma54 B 

Formate hydrogenlyase 
transcriptional activator. 200000000 

Formate 
hydrogenlyase IPB002078 BCD sigma54 B 

Hydrogenase-4 
transcriptional activator. 100000000 

Hydrogenase-
transcriptional-
activator IPB002078 BCD sigma54 B 

Nitrogen fixation 
protein anfA. 200000000 

Nitrogen fixation 
protein IPB002078 BCD sigma54 B 

Signal-transduction and 
transcriptional-control 
protein. 100000000 Stanniocalcin IPB002078 BCD sigma54 B 
Transcriptional 
regulatory protein flbD. 901000000 

Transcriptional 
regulatory IPB002078 BCD sigma54 B plasm

 

Transcriptional 
regulatory protein xylR 
(67 kDa protein). 100000000 Xylose repressor IPB002078 BCD sigma54 plasm 

Note: a. Species categories defined in Swiss-Prot (A=Archaea; B=Eubacteria; E=Eukaryote; 
plasm=plasmid) 
 
 
 
 


