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Abstract. We present short single axioms for ortholattices, orthomodular lattices, and

modular ortholattices, all in terms of the Sheffer stroke. The ortholattice axiom is the

shortest possible. We also give multiequation bases in terms of the Sheffer stroke and
in terms of join, meet, and complementation. Proofs are omitted but are available in

an associated technical report and on the Web. We used computers extensively to find
candidates, reject candidates, and search for proofs that candidates are single axioms.

1. Introduction

Consider the problem of expressing equational theories as simply as possible—
with the least number of symbols, the least number of equations, the least number of
operations, and the least number of variables. The problem for Abelian groups was
solved by Tarski in 1938 [15] with the single axiom x/(y/(z/(x/y))) = z in terms of
the division operation. Other varieties of groups (including other operations) have
been addressed, and short single axioms have been found, but minimality has not
been proved in most cases.

The problem for Boolean algebra was solved recently with a shortest single axiom
in terms of the Sheffer stroke operation [10]. Progress has recently been made also
for lattices, with a reasonably short single axiom in terms of join and meet [9]. In
this paper we consider a chain of varieties between the lattices and the Boolean
algebras, namely, ortholattices, orthomodular lattices, and modular ortholattices.

The main results of the work we report here are all in terms of the Sheffer stroke—
a shortest single axiom for ortholattices, and short single axioms for orthomodular
lattices and modular ortholattices. We also include multiequation bases for these
varieties.

We used several computer programs in this work. Otter [5] searches for proofs,
Mace [4] searches for models and counterexamples, and other programs embody
decision and enumeration procedures. We claim, throughout the paper, that Otter
proves theorems and that Mace finds counterexamples. We have omitted the proofs
and counterexamples because they are long and because they do not seem to give
insight into the mathematics. The proofs and counterexamples can be found in a
technical report [7] and on a Web page [8]. The Web page contains, in addition,
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input and output files for Otter and Mace and demonstrations of the enumeration,
decision, and filtering programs that were used.

2. Multiequation Bases

We define the relevant varieties first in terms of join, meet, and complementation
and then in terms of the Sheffer stroke.

2.1. In Terms of Join/Meet/Complementation. Consider the following equa-
tions.

AJ: x∨(y∨z) = y∨(x∨z)
AM: x∧(y∧z) = y∧(x∧z)
B1: x∨(x∧y) = x
B2: x∧(x∨y) = x
DM: x∧y = (x′∨y′)′

CC: x′′ = x
ONE: x∨x′ = y∨y′

OM: x∨(x′∧(x∨y)) = x∨y
MOD: x∨(y∧(x∨z)) = x∨(z∧(x∨y))
CUT: (x∨y′)∧(x∨y) = x

The lattices (L), ortholattices (OL), orthomodular lattices (OML), modular
ortholattices (MOL), and Boolean algebras (BA) can be defined as shown in the
following table.

Variety Type Basis
L 〈2, 2〉 { AJ, B1, AM, B2 }
OL 〈2, 2, 1〉 { AJ, B1, DM, CC, ONE }
OML 〈2, 2, 1〉 { AJ, B1, DM, OM }
MOL 〈2, 2, 1〉 { AJ, B1, DM, CC, ONE, MOD }
BA 〈2, 2, 1〉 { AJ, DM, ONE, CUT }

Otter can easily prove that these bases are equivalent to other bases given in
the literature (for example, by deriving the commutativity laws from the L basis),
Mace can easily show that all but the BA basis are independent (we do not know
if ONE is necessary), Otter can easily show that these varieties form the chain

L ⊃ OL ⊃ OML ⊃MOL ⊃ BA,

and Mace can easily show that those inclusions are proper.

2.2. In Terms of the Sheffer Stroke. The lattices cannot be defined in terms
of a single binary operation [2], but OL and its subvarieties can be, in particular,
in terms of the Sheffer stroke “|”.

| in terms of∨,∧,′ ∨,∧,′ in terms of |
x|y = x′∨y′ x∨y = (x|x)|(y|y)

x∧y = (x|y)|(x|y)
x′ = x|x
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Rewriting a basis to a different set of operations does not necessarily produce a
basis in terms of that other set of operations. If we use the definitions just given to
rewrite a Sheffer stroke basis in terms of join and complementation, we do not get a
basis in terms of join and complementation. This statement applies to OL, OML,
MOL, and BA, and it is independent of the basis we start with. Consider (BA2),
a single axiom for BA [10]. Construct candidate (BA2′) from (BA2) by replacing
x | y with x′∨y′ throughout as follows (the spacing shows the correspondence).

(y | ((x | y ) | y ) ) | (x | (z | y ) ) = x (BA2)
(y’ v ((x’ v y’)’ v y’)’)’ v (x’ v (z’ v y’)’)’ = x (BA2’)

If (BA2’) were a single axiom, we would be able to derive associativity of join, but
this is impossible: if we interpret x′ as x, (BA2’) becomes identical to (BA2) except
for the operation symbol; hence the models of (BA2), in which the Sheffer stroke is
nonassociative, immediately give models of (BA2’) in which join is nonassociative.

Considering the other direction, if we rewrite a join/meet/complementation ba-
sis in terms of the Sheffer stroke, we do obtain a basis in terms of the Sheffer stroke
(the proof is omitted). However, this translation can produce equations more com-
plicated than necessary; for example, equation AJ rewritten to the Sheffer stroke
is

(x|x)|(((y|y)|(z|z))|((y|y)|(z|z))) = (y|y)|(((x|x)|(z|z))|((x|x)|(z|z))).
However, because the Sheffer stroke operation builds in properties of complemen-
tation, we can find simpler bases with Sheffer stroke than with join, meet, and
complementation.

Consider the following equations.

Â: x | ((y | z) | (y | z)) = y | ((x | z) | (x | z))
B̂: (x | x) | (x | y) = x

ÔNE: x | (x | x) = y | (y | y)
ÔM: x | (x | (x | y)) = x | y

M̂OD: x | (y | (x | (z | z))) = x | (z | (x | (y | y)))
ĈUT: (x | (y | y)) | (x | y) = x

The varieties in question can be defined as shown in the following table.
Variety Type Basis
OL 〈2〉 { Â, B̂, ÔNE }
OML 〈2〉 { Â, B̂, ÔM }
MOL 〈2〉 { Â, B̂, ÔNE, M̂OD }
BA 〈2〉 { Â, ĈUT }

Mace easily shows that these bases are independent, and Otter easily proves that
these bases are definitionally equivalent to the join/meet/complementation bases
in the preceding subsection.

2.3. Do Simpler Multiequation Bases Exist? Our goal in producing the mul-
tiequation bases was to find short, intuitive, and fairly standard bases in terms of
join/meet/complementation and then to find similar bases in terms of the Sheffer
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stroke. We doubt that the preceding bases are the shortest. In fact, for BA in
terms of the Sheffer stroke, the 2-basis with the least number of symbols is known
to be { x | y = y | x, (x | y) | (x | (y | z)) = x } [17]. For BA in terms of the
join and complementation, the simplest 2-basis we know of is { (x′∨y)′∨x = x,
(x′∨y)′∨(z∨y) = y∨(z∨x) } [11].

3. Single Axioms

It is well known that any finitely-based variety of OML is one-based [13]. This is
a consequence of the existence of Gould-Grätzer-Pixley (GGP) terms [1, 14] in these
varieties; that is, terms g(x, y, z) such that g(y, y, x) = g(x, z, z) = g(x, u, x) = x.
For example, (x∧z)∨((y∧z)′∧z)∨((x∧y)′∧x) is a GGP term for OML.

The variety OL does not admit GGP terms, and existence of single axioms is
known by a different result [12], relying on a basis consisting entirely of absorption
equations and the presence of majority terms; that is, terms m(x, y, z) such that
m(x, x, y) = m(x, z, x) = m(u, x, x) = x.

By those results, there exist procedures to construct single axioms for these
varieties, but the basic procedures have exponential behavior, producing very large
axioms, sometimes with millions of symbols. The procedures can be optimized
somewhat [6], but they still tend to produce axioms with hundreds of symbols.

Our approach is to start small, considering all possible candidate equations of
a given size, and looking at sizes as large as practical. If all goes well, we can
show that a candidate is a shortest single axiom by proving a known basis and by
eliminating all shorter candidates. In other cases, we can find single axioms without
being able to eliminate all shorter candidates.

A similar approach led, in previous work, to axiom LT1 (below) for lattice theory
[9], axiom BA1 for Boolean algebra [10], and BA2, which is a shortest axiom for
Boolean algebra in terms of the Sheffer stroke [10].

LT1: (((y∨x)∧x)∨(((z∧(x∨x))∨(u∧x))∧v))∧(w∨((s∨x)∧(x∨t))) = x
BA1: ((y∨z)′∨x′)′∨((u′∨u)′∨(x′∨y))′ = x
BA2: (y | ((x | y) | y)) | (x | (z | y)) = x

Our goal in this work was to find short single axioms for OL, OML, and MOL in
terms of the Sheffer stroke.

3.1. Generating and Filtering Candidates. The procedure to generate candi-
dates equations is roughly as follows.

• Generate all well-formed Sheffer stroke equations of a given length satisfying
the following constraints: (1) it has at least three variables; (2) its right-
hand side is a variable, say x; (3) neither the leftmost nor the rightmost
variable of the left-hand side is x; (4) it cannot be of the form y|α = x
or α|y = x for any variable y; and (5) if it is α|β = x, then length(α) ≤
length(β). Justifications for these constraints can be found in [10].

• Pass the equations through a decision procedure for Boolean algebra iden-
tities. A vast majority of the equations are removed by this check.
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• Remove equations that are not valid in the variety in question. For OL we
have a decision procedure for this. For OML and MOL, for which there
is no decision procedure [3, p. 218], we can test the equations against a set
of finite models of the variety (perhaps admitting some nonidentities).

• Eliminate candidates that are too weak to be single axioms. We do not have
a perfect test for this. In practice, we iteratively collect sets of nonmodels
by using the program Mace. ConsiderOL. If a candidate is false in all of the
current non-OLs, we use Mace to look for non-OL models of the candidate.
If one is found, we add it to the set and eliminate the candidate. We call
this process filtering the candidates, and we refer to the nonmodels as filters.

Let the length of a term or equation be the number of occurrences of vari-
ables and operators (including the equal sign but not parentheses). For example,
(x | x) | (x | y) = x has length 9. Note that Sheffer stroke equations have odd
length.

In the OL case, all candidates up through length 21 can be eliminated by a set
of four non-OLs [8, file non-OL.A-4] of sizes 3, 6, 6, and 8. A single axiom (OL-Sh
below) was found among the candidates of length 23.

In the OML case, all candidates up through length 19 can be eliminated with a
set of nine non-OLs [8, file non-OL.B-9], all of size ≤ 6. For length 21, we could not
eliminate all candidates, and we could not prove any of the survivors to be single
axioms. A set of 23 non-OLs was accumulated [8, file non-OL.C-23], eliminating
all but 58 candidates. A single axiom (OML-Sh below) was found among the
candidates of length 23.

The MOL case started out like the OML case, with the elimination of all
candidates up through length 19 by using the same filters as in the OML case.
For length 21, 14 more non-OLs were accumulated [8, file non-OL.D-14], and the
nine nonmodular OMLs up through size 16 were also used as filters. However, 238
length 21 candidates survived, and none was proved to be a single axiom. As the
candidates grow, it becomes more difficult to find counterexamples, so we used the
existing non-MOLs to filter candidates of lengths 23, 25, and 27. A single axiom
(MOL-Sh below) was found among those of length 25.

3.2. An Example Candidate and Counterexample. One of the OML can-
didates was the identity

((x | y) | y) | (((z | y) | (x | y)) | ((x | x) | z)) = y. (C)

Given this candidate, with no additional constraints, Mace could not find a coun-
terexample in a reasonable amount of time. However, when asked Mace to search
for a quasigroup model of (C), it immediately found the following structure.
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0 1 2 3 4 5 6
0 0 2 1 4 3 6 5
1 3 5 4 0 2 1 6
2 4 3 6 1 0 5 2
3 5 1 3 2 6 0 4
4 6 4 2 5 1 3 0
5 2 6 0 3 5 4 1
6 1 0 5 6 4 2 3

It is easy to see that this structure is not an ortholattice with respect to the Sheffer
stroke (e.g., because it contains an idempotent element, or because it is noncom-
mutative, or simply because it is a quasigroup). Hence, (C) cannot be a single
axiom for any subvariety of OL. This structure became a member of the filter set
non-OL.C-23 listed in [8].

3.3. Trying to Prove That Candidates Are Single Axioms. Given a set of
candidates that had survived all the filters, we tried to prove each to be a single
axiom by deriving a known basis, for example, the independent bases given in
Section 2.

Automatic proofs were attempted with hundreds of OL candidates, thousands
of OML candidates, and hundreds of thousands of MOL candidates before proofs
were found for the three cases. The time allocated for each candidate varied from
a few minutes to a few seconds, depending on the size of the set. For each proof
attempt, we included as goals several important properties of the variety as well as
a known basis. If some interesting properties were derived from the candidate, but
not enough for a complete proof, we investigated that candidate later with focused
proof attempts.

Length 23 single axioms for OL and OML were found without much difficulty.
The proofs were not trivial for Otter, but they were found automatically within a
few minutes. Finding a MOL axiom was much more difficult. Many more can-
didates had to be considered, and proofs with the successful candidates were not
found automatically. Promising candidates (those that proved the most interest-
ing properties) were selected from the automatic attempts, and advanced auto-
mated deduction techniques involving human guidance (i.e., the method of hints
and sketches [16]) were applied, producing a proof for one candidate of length 25.

3.4. Single Axioms for OL, OML, and MOL. We give here the main results
of the project—single axioms, in terms of the Sheffer stroke, for OL, OML, and
MOL. Proofs can be found in [7] and in [8]. For completeness, we also list (BA2),
a shortest single axiom for BA [10].

OL-Sh: (((y | x) | (x | z)) | u) | (x | ((x | ((y | y) | y)) | z)) = x
OML-Sh: (((y | x) | (x | z)) | u) | (x | ((z | ((x | x) | z)) | z)) = x
MOL-Sh: (y | x) | (((x | x) | z) | (((((x | y) | z) | z) | x) | (x | u))) = x
BA2: (y | ((x | y) | y)) | (x | (z | y)) = x

The OL axiom (length 23) is the shortest possible. We do not know whether the
OML axiom (length 23) or the MOL axiom (length 25) are shortest.
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With the exception of (BA2), each of these axioms has four variables, and the
question of short 3-variable axioms is open. In the OL case, all of the surviving
length-23 candidates have 4 variables, so any 3-variable OL axioms must have
length ≥ 25. In the OML case, four of the 58 length-21 and many of the length-
23 candidates have three variables. In the MOL case, many of the surviving
candidates of lengths 21 and 23 have three variables.

4. Conclusion

Symbolic computation was used in five ways in this work: (1) to enumerate equa-
tions subject to a set of syntactic constraints, (2) to evaluate equations with respect
to finite structures, (3) to decide ortholattice identities, (4) to search (with Otter)
for equational proofs, and (5) to search (with Mace) for finite algebras that satisfy
sets of equations and disequations. The first three ways are relatively straight-
forward, although the programs were coded efficiently so that they could handle
billions of equations. Otter and Mace are available for download from the Web
page associated with this paper [8].

The proofs in this work fall into several classes: proofs by equational deduction,
independence proofs by finite counterexamples, and minimality proofs by exhaustive
enumeration.

The minimality proofs are fundamentally different from the Otter or Mace proofs
and are similar in spirit (though not in scale or interest) to proofs of the four-color
theorem. In short, the problem is reduced to a finite set of cases that are checked
by computers. Soundness is especially questionable, with reliance (in our case) on
optimized special-purpose code for the equation generation and decision procedures.
We doubt that much can be learned from the various components of the minimality
proofs.

The Otter proofs and Mace counterexamples, on the other hand, are creative
in the sense that we had no idea what the proofs or structures might be and the
proofs, with the exception of the MOL single axiom proof, required little human
guidance.
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