
GNARE: An Environment for Grid-Based High-Throughput Genome Analysis

Dinanath Sulakhe,1 Alex Rodriguez,1 Mark D’Souza,1 Michael Wilde,1 Veronika Nefedova,1 Ian Foster,1,2 Natalia
Maltsev1

1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
2 Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

Abstract

Recent progress in genomics and experimental biology
has brought exponential growth of the biological
information available for computational analysis in
public genomics databases. However, applying the
potentially enormous scientific value of this information
to the understanding of biological systems requires
computing and data storage technology of an
unprecedented scale. The Grid, with its aggregated and
distributed computational and storage infrastructure,
offers an ideal platform for high-throughput
bioinformatics analysis. To leverage this platform, we
have developed the Genome Analysis Research
Environment (GNARE) – a scalable computational
system for the high-throughput analysis of genomes,
which provides an integrated database and
computational backend for data-driven bioinformatics
applications. GNARE efficiently automates the major
steps of genome analysis, including acquisition of data
from multiple genomic databases; data analysis by a
diverse set of bioinformatics tools; and storage of results
and annotations.

High-throughput computations in GNARE are
performed by using distributed heterogeneous Grid
computing resources such as Grid2003, TeraGrid, and
the DOE Science Grid. Multistep genome analysis
workflows involving massive data processing, the use of
application-specific tools and algorithms, and updating
of an integrated database to provide interactive Web
access to results are all expressed and controlled by a
“virtual data” model that transparently maps
computational workflows to distributed Grid resources.

This paper describes how Grid technologies such as
Globus, Condor, and the Gryphyn Virtual Data System
were applied in the development of GNARE. We focus on
our approach to Grid resource allocation and to the use
of GNARE as a computational framework for developing
bioinformatics applications.

1. Introduction
During the past decade, the scientific community has

witnessed an unprecedented accumulation of gene
sequence data and data related to the physiology and
biochemistry of organisms. To date, 250 genomes have
been sequenced, and genomes of more than 1,000

organisms are at various levels of completion [1]. In order
to exploit the enormous scientific value of this
information for understanding biological systems, the
information must be integrated, analyzed, graphically
displayed, and ultimately modeled computationally [2].

Comparative and evolutionary analysis of the wide
spectrum of phylogenetically diverse organisms
represents one of the most powerful approaches for
interpreting genomes and for understanding how
organisms adapt to environments. Such analysis allows
for systematic exploration of mechanisms that have led to
diversification of biological systems on all levels of their
organization: genomic, metabolic, and phenotypic. A
comparative approach, however, requires the
development of high-throughput computational
environments that integrate large amounts of genomic and
experimental data, powerful tools and algorithms for
knowledge discovery and data mining, tools for
collaborative analysis of biological data by the experts
residing in remote locations, and scalable computational
backends.

The efficiency and accuracy of genetic sequence
analysis is achieved by using various bioinformatics tools
and algorithms (e.g., analysis of global similarities [3] [4]
[5], domain and motif analysis [6] [7] [8], analysis of the
relevant structural [9] [10], and functional data).
Acquiring and integrating the needed information can be
extremely tedious, time-consuming, and prone to human
error if done by manually. Reliable execution of such
multistep analytical processes could be achieved,
however, by controlled workflows and analytical
pipelines. Another problem that emerges in high-
throughput bioinformatics is related to the fact that most
of the tools and algorithms used for analysis of genomic
data are CPU-intensive, requiring computational
resources beyond those available to researchers at a single
location. The aggregated and distributed computational
and storage infrastructure of the Grid offers an ideal
platform for mining biological information at this large
scale. A number of groups are working on utilizing Grid
technologies for bioinformatics purposes. Examples
include the Integrative Genome Annotation Pipeline
(iGAP), which has been used by the international
consortium “Encyclopedia of Life” [11] for the extensive
annotation of protein sequence data; myGrid [12], a large-
scale Grid-based European effort; the North Carolina

BioGRID [13]; EUROGRID [14]; and the Asia Pacific
BioGrid Initiative [15].

We have developed and continue to extend a system
that uses Grid technology to address the needs of high-
throughput genetic sequence analysis. This Genome
Analysis Research Environment (GNARE) is a high-
performance, scalable computational environment that
allows efficient automation of the major steps of genome
analysis, including data acquisition from diverse genomic
databases and analysis by several bioinformatics tools and
algorithms. GNARE also expedites the process of storing
the results of analyses and annotations. It is based on Grid
technology (specifically the Globus Toolkit® [16],
Condor [17], and the GriPhyN virtual data system [18])
and uses the computational resources of GRID2003 [19],
TeraGrid [20], and the DOE Science Grid [21] to perform
high-throughput computations. GNARE’s flexible
architecture allows users to tailor the genome analysis
process to their individual needs. The system can function
in an automated mode as well as interactively through a
Web-based interface.

This paper describes the GNARE implementation and
its automated database update pipeline GADU, our
experiences using GNARE on the Grid, and our efforts to
increase the application’s computational power and speed
through further Grid integration and enhancement. We
also describe scientific applications that use GNARE for
high-throughput analysis and annotation of genomes.

2. System Overview and Design
GNARE comprises three main components, as

illustrated in Figure 1: GNARE Architecture. GADU is
the main engine that executes computationally intensive
workflows on the Grid and performs the Integrated
Database updates. The Integrated Database (see Section
4) warehouses sequence data and annotations from the
monitored public databases as well as the results of data
analyses from the GADU update engine. The third
component is the set of Web-based applications that use
the Integrated Database (see Section 5.2) and GADU’s
analysis services.

Grid Environment
Grid3 / TeraGrid / DOE SG

Public Databases
NCBI / PIR / KEGG etc.

Analysis Server

Update Server

APIs / Libraries

GADU

Integrated
Database

Application Interfaces
Bioinformatics applications

using the Integrated DB and
the analysis server.

E.g.: PUMA2, Chisel

W
W
W

Flat files

.gbk, .faa, .fna, etc..

Parse the flat files
Into database

Figure 1: GNARE Architecture

GADU serves as the heart of the system. It acts as a
gateway to the Grid, handling all computational analysis
for the GNARE system. It is an automated, scalable, high-
throughput computational workflow engine that enables
the Grid execution of bioinformatics tools. The
interpretation of every newly sequenced genome involves
the analysis of sequence data by a workflow pipeline
composed of multiple bioinformatics tools, the execution
of result and annotation parsers, and other intermediate
data-transforming scripts. The GADU implementation
comprises two modules: an Analysis Server and an
Update Server. The Analysis Server automatically creates
workflows in the abstract Virtual Data Language, based
on predefined templates (Section 3.5), which it then
executes on distributed Grid resources such as Grid2003
and TeraGrid. The Update Server updates the Integrated
Database with recently changed data from a set of
monitored public databases (currently including NCBI
RefSeq [22], PIR [23], InterPro [6], and KEGG [24]).

In the following sections, we describe the
implementation details of each of the components of
GNARE.

3. The GADU Analysis Server
We start with the GADU Analysis Server, which is

responsible for executing bioinformatics analyses on the
Grid. Its components are shown in Figure 2 and described
below.

Input

Sequences

Tool_name:
Seq_File_Path:
DB File Path:
Parameters:
User_details:

Site Selector

Site_tester.pl

Site_selector.pl

(See Picture-3)

CHIMERA
Virtual Data Language

Condor Submit Files
(See Picture 4)

Workflow Generator

JOB PROCESSOR
accept_job(port: ####)
create_user_session()
fork_child(per request)
maintain_site_tester()

WORKER PROCESS

- process_job_description()

- create_dircetory_structure()

- send_DB_to_Grid()

while (processed < total_sequences)

{

- select_grid_site()

- get_batch_of_sequences()

- generate_workflow()

- condor_submit_dag ()

- maintain_log()

}

- process_failed_jobs()

JOB LOG FILE

- session details

- status of a job.

Sequence

Database

3

4

5

2

1

6

Job Description File

Figure 2: GADU Analysis Server

3.1. Job Description File
The Job Description File (item 3 in Figure 2)

describes a job that may involve simply running a
bioinformatics tool on the local machine, or alternatively
the execution of a predefined complex workflow on the
Grid.

For example, the analysis of a set of protein sequences
using BLAST [25] against some database is represented
in the Job Description File with all the information
required to perform this analysis, including the tool name
(BLAST), path of the input sequence file, path of the
database sequence file, and parameters to be used for
BLAST. Similarly, every analysis (e.g., BLOCKS [26],
PFAM [27], TMHMM [28]) can be represented by a Job
Description File appropriate for the tool. Using the
information from this file, the Job Processing Server
along with Workflow Generator creates the actual
workflow in a Virtual Data Language and eventually in
the form of a condor DAG.

3.2. Job Processing Server

The Job Processing Server (item 1 in Figure 2) accepts
a Job Description File and creates a worker process (item
2) to handle the job. Other stand-alone services are also
invoked at this time, namely, the Site Selector (item 4)
and Workflow Generator (item 5). In addition to creating
the worker process, the server also takes care of creating a
session for each job and controls the “Site Selector” so as
to keep an updated list of good working sites for job
submission. The site selector is explained later.

3.3. Worker Process

The worker process (item 2 in Figure 2) determines
how to handle each job based on the information in the
Job Description File. The worker process first creates the
directory structure for the job and then sends the
sequence database (e.g., in the case of BLAST) to all

usable sites on the Grid. A list of usable sites is collected
from the “Site Selector” (item 4).

The next step is to create a batch job where we select a
batch of query sequences to be submitted to a selected
Grid site. The worker process first asks for a “good
performing site” from the site selector. Based on the
information it gets back (explained in next subsection), it
picks a batch of sequences from the original input
sequence file and sends them to the site selected. For
example, if the Site Selector picked a site with 20 CPUs
to be used for 1,000 sequences to be processed for
BLAST, then the worker process would pick a batch of
1,000 sequences from the main input file after the last
sequence processed. Next, the worker process calls the
Workflow Generator (item 5 in Figure 2, described in
detail in Section 3.5), which encodes the workflow in an
abstract Virtual Data Language (VDL). Condor represents
a workflow in the form of a DAG and executes the
workflow on the selected Grid site. Once the Worker
Process submits a batch job, or rather a Condor DAG, to
the selected Grid site using Condor, it writes all the
details of the job to a log file (item 6 in Figure 2) and
goes back to generate the next batch job. The worker
process continues in this manner until all sequences have
been processed.

3.4. Site Selector

One challenge in using the Grid reliably for high-
throughput analysis is monitoring the state of all Grid
sites and how well they have performed for job requests
from a given submit host. If we are executing a workflow
that may submit large numbers of jobs to different Grid
sites over a period of several days, it is important to keep
track of which sites are available to run jobs at different
times. We view a site as “available” if our submit host
can communicate with it, if it is responding to Globus
Toolkit job-submission commands, and if it will run our
jobs promptly, with minimal queuing delays.

To address this issue, we have developed a Site
Selector (item 4 in Figure 2, and also Figure 3) that uses
information collected at the submit host to determine
which sites meet the required responsiveness criteria.

4

GRID3

…..

…..

TeraGrid

JAZZ

PDSF

UBuffalo

ANL

SDSC

Test job for each site
Run parallelly –Forking

site_tester.pl
(each child process writes to

the site status file below)

- manually forced to not to use
1 - working site.
0 - site failed

Site Status File:
status | test-time* | site

1 10 jazz
0 FAIL pdsf

#1 80 sdsc – tg
….
* - time in secs.

5

3

Blast/Blocks Server
Request a site

Get site with details
1

Site_selector.pl

get_all_working_sites
foreach working_site
{

get_condor_q details.

if (#of jobs in Q == 0)
&&

if (toal # jobs on the
host
< max_allowed)

select the site.
}
get_selected_site_details

return (@site_and_details)

Site Info File:
site | #max_nodes | nodes/batch |seqs/node
jazz 360 30 100
pdsf 500 40 100
sdsc 70 10 150
…..
Sequences/batch = nodes/batch x seqs/node

condor_q –global -globus
ID | | manager | ST | ..
1 jazz R blast..
1.1 jazz R blast..
2 Ubuff Q blast..
…..2

7

6

Figure 3: Implementation of the Site Selector

The site tester (“probe”) script (item 3 in Figure 3) can

be started and controlled manually or by using the Job
Processing Server. The script submits a small test job to
all Grid sites of interest and then records for each site
whether the site responded and, if so, its performance
(i.e., response time). The resulting Site Status File (item
4) notes for each site a status (either the site responded
correctly, or the site responded incorrectly or failed to
respond before a timeout period) and the time taken for
the site to respond. We update this Site Status File
regularly to maintain the current status of all the sites.

The Site Selector then uses the information in the Site
Status File to select the site to which we can submit our
next job. The selector scripts takes into consideration the
state of the Condor queue at the submit host (item 6 in
Figure 3) in order to make a decision. Whenever there is
request from the “Job Processing Server” to select a good
site, the Site Selector selects all the sites from the Site
Status File that have been flagged as acceptable by the
tester script. For each site it then looks at the submit
host’s Condor-G queue (using the condor_q command)
for the number of jobs that have already been submitted
to that site. If all the previously submitted jobs to this site
are in “Running” state or if there are no jobs submitted to
this site, then it selects the site for the next job. If,
however, even one job at this site is waiting to run, then
the site in consideration is not selected, and the selector
scripts looks at the next site. Once a job has been
submitted, the selector script makes sure that the same
site is not selected again for a specified period, so that the
newly submitted job has time to show up in the Condor
queue.

Apart from selecting a site, the site selector also
returns job-specific information to the requester. Based
on the statistics of the previously executed jobs, it creates
a configuration file, the Site Info File (item 7). This file
records the maximum number of nodes (or CPUs) at each
site, the number of nodes to be requested for each batch
job submitted at this site, the number of sequences to be
processed at each node, and other site-specific
information. Based on this configuration file, the selector
script also calculates the number of sequences that should
be processed in a single job at the selected site and the
number of nodes to be requested for that job. This
information is all returned to the requester, which in our
case is the Worker Process.

3.5. Workflow Generator

Having determined the site to which a job should be
directed, the worker process assembles a complete
description of the job that is to be executed and passes
this information to the Workflow Generator (item 5 in
Figure 2). The Workflow Generator is then responsible
for producing a workflow suitable for execution in the
Grid environment. This task is accomplished through the
use of the GriPhyN virtual data system’s “virtual data
language” (VDL) [29]. VDL provides simplified, abstract
access to large-scale Grid computation and storage
resources. It also provides the ability to

• track accurately the provenance of results of the
workflows, describing how they were obtained
from transformations of input data;

• discover data through tools that search for specific
transformations;

• produce new analysis work based on previously
executed work, which allows for the comparison
of transformation patterns executed at different
times; and

• audit and disseminate results.
Figure 4 illustrates the six-stage workflow produced

for a simple comparative analysis of 100 protein
sequences, grouped into five sets, through the BLAST
tool. The stages include transferring data to and from
Grid storage servers, partitioning input data for the
subsequent BLAST process, parsing specific information
that the user wants to capture from protein sequences, and
concatenating the final results.

 inputfile.1

compbio::FileBreaker/ID001

jobNo_1_1.Block2

compbio::BLAST/ID006
out.jobNo_1_1.Block2

compbio::BlastParser/ID007

parse.out.jobNo_1_1.Block2

compbio::cat/ID012

outfile.jobNo_1_1.BLASTPIR

inputfile.1

compbio::FileBreaker/ID001

jobNo_1_1.Block2

compbio::BLAST/ID006
out.jobNo_1_1.Block2

compbio::BlastParser/ID007

parse.out.jobNo_1_1.Block2

compbio::cat/ID012

outfile.jobNo_1_1.BLASTPIR
Figure 4: BLAST workflows

Top, a 6-step workflow with 5-way parallelism; below: the
center-path details.

This workflow is represented in VDL via a set of

transformation definitions (abstract interfaces that
describe an application program such as BLAST, Blocks,
or result-parser) and a set of derivations—in effect,
function calls that specify inputs such as genome
sequence files, output files from comparative analysis
tools, and textual parameters: in other words, all the
information coming from the worker process.

The VDL fragments below illustrate the notation. The
first two statements define the transformations
FileBreaker and BLAST shown in Figure 4. These
transformation definitions act as function definitions and
specify the formal arguments to an application, as well as
the details of how those arguments are passed to and from
the application represented by the TR definition. In the
case of FileBreaker, the arguments include a genome
sequence input file, the subsequent output files, and the
number of computer resources to use in the Grid
environment.

 TR FileBreaker(input filename, none nodes,
output sequences[], none species) {
 argument = ${species};
 argument = ${filename};
 argument = ${nodes};
 profile globus.maxwalltime = "300";
}

TR BLAST(none OutPre, none evalue, input
query[], none type) {
 argument = ${OutPre};
 argument = ${evalue};
 profile globus.maxwalltime = "300";
}

DV jobNo_1_1separator->FileBreaker(
 filename=@{input:"inputfile.1"|rt},
 nodes="5",
 sequences=[@{output:"job1.0":"tmp"},
 @{output:"job1.1":"tmp"},
 @{output:"job1.2":"tmp"},
 @{output:"job1.3":"tmp"},
 @{output:"job1.4":"tmp"}],
 species="Aeropyrum_Pernix"
)

Figure 5: VDL for BLAST workflow

The third statement specifies a FileBreaker derivation.

Derivations, defined by “DV” statements, specify the
actual arguments to be passed to a transformation. File
names used as arguments in DV statements are “logical
names,” mapped to physical file names at run time.

Data transfer for VDL is performed automatically and
transparently for the user. For example, the physical file
for the logical filename “inputfile.1” will be transferred
automatically to the site selected for execution of the
FileBreaker transformation via GridFTP [30], which
provides secure, efficient data movement in Grid
environments. Input files to transformations are
automatically located in the Grid by searching for
physical copies of a logical file in a replica location
service such as RLS [31. Output files are automatically
cataloged in the same location service for use in
subsequent transformations and workflows. In the
transformation “BLAST,” above, we use the “profile”
feature of VDL to specify the run-time limit for that
process. VDL profiles permit parameters to be passed to
components of the run-time environment.

Once the VDL for the workflow is written, the worker
process invokes the GriPhyN virtual data system to
execute the workflow at the Grid site selected previously
by the site selector. This task is achieved via the
DAGman (Directed Acyclic Graph Manager), a
metascheduler for Condor, which submits jobs to remote
site via Condor-G in an order determined by specified
interdependencies, which in this case are derived from the
VDL specification.

4. Update Server and Integrated Database

As shown in Figure 1, the Update Server helps in the

acquisition of genomic data from the public databases like
NCBI, PIR, PDB [32], KEGG and parses and uploads the
data into the Integrated Database. It also uploads the
parsed results of the various analysis tools and workflows
into the integrated database.

The Update Server uses its library of parsers for all the
different databases (flat files) that it downloads from the
public databases. The acquisition process can be
automatically executed at a predefined interval of time, in
which case the server checks for new updates to
download, or it can be started manually whenever there is
a new release of updated data. Once the databases are
downloaded and parsed, the Update Server uploads the
data into the integrated database. The uploading process
has been parallelized locally by forking appropriate
number (based on the maximum permitted number of
database handles) of child processes that upload the data
using SQLLoader. Similarly whenever we have parsed
results from the various analysis tools and predefined
workflows that are executed by the Analysis Server, the
Update Server uploads the data into the Integrated
Database.

The volume and complexity of the data, as well as the
diversity of the applications being developed at
Mathematics and Computer Science Division, require the
data to be stored in a highly integrated fashion. We have
developed an integrated relational database that serves as
a platform on which we can efficiently develop
bioinformatics applications. The Integrated Database
includes sequence and annotation data from public
databases NCBI, SwissProt [33], PIR, UniProt [34], and
Interpro, as well as metabolic pathway information from
EMP [35] and KEGG. The database also contains the
results obtained from applying different bioinformatics
tools to the sequence data, for example, BLAST, Blocks,
and TMHMM. The GADU Update Server ingests and
integrates all of this data into an integrated warehouse
database, automatically cross-referencing related entities
from the various data sources.

5. Results

In this section we describe the two significant benefits

that have resulted from developing and deploying the
GNARE system: the high-throughput analysis of updated
genome sequence data that we have achieved with
GADU, and the power that GADU and the Integrated
Database have provided for building powerful interactive
applications.

5.1. GADU Throughput

GADU has been used extensively by the
computational biology group at Argonne National
Laboratory as well as by the SEED [36] project, the NIH
Midwest Center for Structural Genomics (MCSG) [37],
and the NIH Great Lakes Regional Center of Excellence
[38]. We have developed and continue to develop
automated analytical pipelines for the applications in
order to manage and submit computationally intensive
jobs to the Grid. One such pipeline is a very basic one
designed to use the BLAST tool for comparative analysis
computations on the complete protein sequence universe.
There are constant updates to the protein sequence
universe; at this point it comprises over 2.1 million amino
acid sequences. These sequences are analyzed
individually to find out similarities among them that
could give clues about how sequences are related with
each other. The large number of protein sequences makes
these computations very computer intensive. The
following results demonstrate how a Grid environment
for the computations increases the efficiency of the
GNARE environment.

Several of the groups mentioned above have used the
BLAST pipeline for their sequence analysis and
annotations. One of the first instances of using this
BLAST pipeline was for the analysis of the data for the
SEED project, which at the time consisted of pairwise
comparisons of a database of 1.8 million protein
sequences against itself. The complete analysis was
performed in 84 hours using 250 nodes from the DOE
Science Grid site at the Argonne Laboratory Computing
Resource Center. Typically, depending on the platform
and size of the database, a single BLAST process for one
sequence may take anywhere from 20 seconds to 60
seconds.

Since that first run, many more BLAST pipeline
invocations have been performed, and the runs have
become more efficient with the addition of more Grid
resources (e.g., GRID2003 and TeraGrid). The size of the
protein sequence database has also increased to over 2.1
million sequences. Unlike the first run, more recent runs
have been performed with the Site Selector mechanism.
This mechanism decreased the labor of the earlier runs in
having to manually select the sites to which to send the
analysis. Indeed, even though the quantity of the protein
sequence universe has increased, the real time taken to
complete the whole database has decreased, as shown in
Table 1. This time reduction is due mainly to the ability
of the Site Selector to test the availability of a Grid site
before submitting a job to that site. One of the main
problems in the earlier runs was the time wasted

recomputing many of the protein sequences submitted to
unavailable resources.

Table 1: Runtime results with and without the Site

Seclector

 Runtime
 (hours)

Pipeline

DOE Science
w/o Site Select

1.4 million seq

GRID3
w/o Site Select

1.5 million seq

GRID3, TeraGrid
w/ Site Select

1.7 million seq

BLAST 170 184 108
Blocks 216 224 120

The BLAST pipeline is not the only pipeline run using

the Grid environment; however, it is the most common
one that we run today. Other bioinformatics tools are also
run for the complete protein sequence database using
different tools (e.g. Blocks, TMHMM) to extract different
vector information about the individual protein
sequences. tools are as computer intensive as the BLAST
pipeline and take a similar amount of time to analyze.

5.2. GNARE Applications

The use of GNARE has been essential in developing

the following bioinformatics applications:
PUMA2 [39], a system for high-throughput analysis

and metabolic reconstruction of genomes from the
sequence data, provides a platform for interactive genome
functional annotation, metabolic reconstruction and the
study of evolution of metabolism and biological function.
It contains analyses of over 1,000 completed and partially
sequenced organisms through precomputed sequence
analysis results using GNARE.

Pathos [40] provides the bioinformatics support to
members of the NIH/NIAID Great Lakes Regional Center
of Excellence in Biodefense research.

TarGet [41], a computational environment supporting
the NIH Midwest Center for Structural Genomics
(MCSG) serves researchers working on selection of
protein targets of biomedical importance for the
determination of 3D structure.

Sentra [42] provides an interface to a database of
prokaryotic Signal Transduction proteins.

MetaGenome serves researchers of the DOE
Microbial Genome program [43]. It provides
bioinformatics support for the identification and
characterization of organisms present in environmental
samples taken from the Hanford site.

Chisel [44] provides function prediction, evolutionary
and high-resolution analyses of genetic sequence data for
enzymatic functions.

In order to provide up-to-date data and analyses to the
researchers involved in these projects, given the growth
of genomic sequence data, the use of state-of-the-art

computational technologies such as distributed computing
is essential.

6. Summary and Future Work

The use of GNARE has proved essential in developing

applications in evolutionary analysis of genomes
(PUMA2, the SEED), biodefense research (PathosDB),
structural biology (TarGet DB), and bioremediation
(MetaGenome), all of which depend on the availability of
up-to-date annotations and rely on comparative analysis
of large sets of phylogenetically diverse organisms. Use
of GNARE dramatically reduced the time and human
resources required for genome analysis. The increase in
efficiency and speed of genome analysis enabled the
expert biologists involved in these application projects to
concentrate on essential biological problems without
wasting time and effort on data processing.

GNARE’s modular architecture is especially useful for
annotation and analysis of newly sequenced genomes.
Availability of new experimental results concerning
functions of proteins previously annotated as
hypothetical, as well as improvements in the sensitivity
and accuracy of bioinformatics tools, requires periodic
revisiting of previously annotated genomes and
reassignment of functions using this newly acquired
knowledge. The increased efficiency of genome analysis
offered by the GNARE system and the Grid considerably
simplifies the analysis of newly sequenced genomes and
the reannotation of previously annotated genomes.
GNARE can be an interface to leverage Grid resources
for all biologists interested in performing such complex
computations. It can hide the complex technologies
involved in using distributed Grid resources and help
users perform faster and better analyses.

In future work, we plan to advance further the use of
Grid technology for the needs of bioinformatics
applications in two main areas. First, we will provide
services to bioinformatics community via a Web-based
gateway, thus allowing users to submit and analyze their
data by various tools and algorithms using GNARE as an
entry port to the Grid environment. This server will also
enable users to create customized controlled workflows
using GNARE’s interface. The development of such a
server will allow access to advantages offered by the Grid
to wide community of researchers who will not be able to
use the Grid otherwise because of the lack of necessary
expertise or resources. A prototype of the GNARE Web
server has already developed.

Second, we will implement a virtual data warehouse
that will use the Grid environment for navigation and
analysis of data residing in remote locations.

Acknowledgments

We extend special thanks to the following individuals

who contributed valuable advice and support: Elizabeth
Glass, Jens Voeckler, Miron Livny, Zachary Miller, Alain
Roy, Susan Coghlan, and the systems support groups of
MCS, GRID2003, Globus, Condor, and iVDGL VDT.
This work was supported in part by the U.S. Department
of Energy under Contract W-31-109-ENG-38, and by the
National Science Foundation under grants 86044
(GriPhyN), 122557 (iVDGL), and the NCSA Alliance
Expedition “A PACI Petascale Data Quest” (PDQ).

References

1. GOLD: http://wit.integratedgenomics.com/GOLD/
2. Ideker, T., Galitski, T., Hood, L. (2001) A new approach to

decoding life: systems biology. Annu. Rev. Genomics Hum.
Genet., 2, 343–372..

3. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.,
Zhang, Z., Miller, W., Lipman, D.J. (1997) Gapped
BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Res., 25, 3389–
3402.

4. Pearson, W. R. (1994) Using the FASTA program to search
protein and DNA sequence databases. Methods Mol Biol.,
24, 307–331.

5. Shpaer, E. G., Robinson, M., Yee, D., Candlin, J. D.,
Mines, R., Hunkapiller, T. (1996) Sensitivity and
selectivity in protein similarity searches: A comparison of
Smith-Waterman in hardware to BLAST and FASTA.
Genomics, 38, 179–191.

6. Mulder, N. J., Apweiler, R., Attwood, T. K., Bairoch, A.,
Barrell, D., Bateman, A., Binns, D., Biswas, M., Bradley,
P., Bork, P., et al. (2003) The InterPro Database, 2003
brings increased coverage and new features. Nucleic Acids
Res., 31, 315–318.

7. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller,
L., Eddy, S. R., Griffiths Jones, S., Howe, K. L., Marshall,
M., Sonnhammer, E. L. (2002) The Pfam protein families
database. Nucleic Acids Res., 30, 276–280.

8. Henikoff, S., Henikoff, J. G., Pietrokovski, S. (1999)
Blocks+: a non-redundant database of protein alignment
blocks derived from multiple compilations. Bioinformatics,
15, 471–479.

9. Pearl, F. M., Bennett, C. F., Bray, J.E., Harrison, A. P.,
Martin, N., Shepherd, A., Sillitoe, I., Thornton, J., Orengo,
C. A. (2003) The CATH database: an extended protein
family resource for structural and functional genomics.
Nucleic Acids Res., 31, 452–455.

10. Lo Conte, L., Brenner, S. E., Hubbard, T. J., Chothia, C.,
Murzin, A.G. (2002) SCOP database in 2002: refinements
accommodate structural genomics. Nucleic Acids Res., 30,
264–267.

11. “Encyclopedia of Life” (http://eol.sdsc.edu/)
12. Goble, C., Pettifer, S. and Stevens, R. Knowledge

Integration: In silico Experiments in Bioinformatics. The

Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, 2004.

13. North Carolina BioGRID (http://www.ncbiogrid.org/)
14. EUROGRID, (http://www.eurogrid.org/)
15. Asia Pacific BioGrid Initiative

(http://www.apbionet.org/apbiogrid/).
16. Foster, I. , Kesselman, C. (1997) Globus: A metacomputing

infrastructure ioolkit. International Journal of
Supercomputer Applications 11(2) 115–128.

17. Litzkow, M.J., Livny, M., Mutka, M. W. Condor – a hunter
of idle workstations. In Proc. 8th International Conference
on Distributed Computing Systems, 1988, 104–111.

18. Foster, I., Voeckler, J., Wilde, M., Zhao, Y., The virtual
Data Grid: A new model and architecture for data-intensive
collaboration. Conference on Innovative Data Systems
Research, 2003.

19. Foster, I., et al., The Grid2003 Production Grid: Principles
and practice. In Proc. IEEE International Symposium on
High Performance Distributed Computing, 2004, IEEE
Computer Science Press.

20. Catlett, C. The TeraGrid: A primer, 2002.
www.teragrid.org.

21. DOE Science Grid, www.doesciencegrid.org
22. The NCBI handbook [Internet]. Bethesda (MD): National

Library of Medicine (US), National Center for
Biotechnology Information; 2002 Oct. Chapter 17, The
Reference Sequence (RefSeq) Project. Available from
http://ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books.

23. Wu, C. H., Huang, H., Arminski, L., Castro-Alvear, J.,
Chen, Y., Hu, Z., Robert, S. (2002) The Protein
Information Resource: An integrated public resource of
functional annotation of proteins. Nucl. Acids Res. 30(1)
35–137.

24. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H.,
Kanehis, M., (1999) KEGG: Kyoto Encyclopedia of Genes
and Genomes. Nucl. Acids Res. 27(1).

25. Altschul, S. F., Gish, W., Miller, W., Myers, E. W.,
Lipman, D. J. (1990) Basic local alignment search
tool. J. Mol. Biol. 215:403–410.

26. Henikoff, J. G., Henikoff, S. (1996) Blocks database
and its applications. Meth. Enzymology 26:88–105.

27. Bateman, A., Birney, E., Durbin, R., Eddy, S. R.,
Finn, R. D., Sonnhammer, E. L. (2000) The Pfam
protein families database. Nucl. Acids Res. 28: 260–
262.

28. Krogh, A., Prediction of transmembrane helices in proteins,
http://www.cbs.dtu.dk/services/TMHMM/

29. Foster,I., Voeckler, J., Wilde, M., Zhou, Y. (2220)
Chimera: A virtual data system for representing, querying,
and automating data derivation. In Proc. 14th Conference
on Scientific and Statistical Database.

30. Allcock, W., Bester, J., Bresnahan, J., Chervenak, A.,
Foster, I., Kesselman, C., Nefedova, V., Quesnel, D.,
Tuecke, S. (2002) Data management and transfer in high-
performance computational Grid environments. Parallel
Computing 28(5):749–771

31. Chervenak,A., Palavalli, N., Bharathi, S., Kesselman, C.,
Schwartzkopf, R. (2004) Performance and scalability of a
replica location service. In Proc. International Symposium

http://wit.integratedgenomics.com/GOLD/
http://eol.sdsc.edu/
http://www.cbs.dtu.dk/services/TMHMM/

on High Performance Distributed Computing Conference
(HPDC-13).

32. PDB, The Protein Data Bank,
http://www.rcsb.org/pdb/

33. Swiss-Prot, The Swiss-Prot Protein Knowledgebase,
http://us.expasy.org/sprot/

34. Bairoch A, Apweiler R, Wu C. H., Barker W. C.,
Boeckmann B., Ferro S, Gasteiger E, Huang H, Lopez R,
Magrane M, Martin MJ, Natale DA, O'Donovan C,
Redaschi N, Yeh L. S. The Universal Protein Resource
(UniProt).

35. Burgard, A.P., Maranas, C.D. (2001) Review of the
enzymes and metabolic pathways (EMP) database.
Metab. Eng. 3:193–194.

36. Overbeek, R., Disz, T., Stevens, R. (2004) The SEED: A
peer-to-peer environment for genome annotation. Comm.
ACM 47(11):46–51.

37. Midwest Center for Structural Genomics (MCSG)
http://www.mcsg.anl.gov

38. Great Lakes Regional Center of Excellence for Biodefense
& emerging Infectious Diseases Research,
http://www.glrce.org.

39. PUMA2 System, http://compbio.mcs.anl.gov/puma2
40. Pathos System, http://compbio.mcs.anl.gov/pathos
41. TarGet Environment, http://compbio.mcs.anl.gov/target
42. Maltsev, N., Marland, E., Yu, G.-X., Bhatnagar, S., Lusk,

R. (2002) Sentra, a database of signal transduction proteins.
Nucl. Acids Res. 30(1): 1349-1350. http://www-
wit.mcs.anl.gov/sentra

43. DOE Microbial Genome Program,
http://microbialgenome.org

44. Chisel, http://compbio.mcs.anl.gov/CHISEL

http://www.mcsg.anl.gov/
http://www.glrce.org/
http://compbio.mcs.anl.gov/puma2
http://compbio.mcs.anl.gov/pathos
http://compbio.mcs.anl.gov/target
http://www-wit.mcs.anl.gov/sentra
http://www-wit.mcs.anl.gov/sentra
http://microbialgenome.org/
http://compbio.mcs.anl.gov/CHISEL

	Introduction
	System Overview and Design
	The GADU Analysis Server
	Job Description File
	Job Processing Server
	Worker Process
	Site Selector
	Workflow Generator

	Update Server and Integrated Database
	Results
	GADU Throughput
	GNARE Applications

	Summary and Future Work
	Acknowledgments
	References

