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Abstract. This paper introduces the concept of the virtual workspace, a config-
urable execution environment that can be used to describe, dynamically deploy, 
and manage a customizable execution environment in the Grid. We describe 
workspaces, show how they fit into the Grid architecture, and discuss our initial 
experiences using this system with applications.  

1 Introduction 

Significant progress has been achieved in the deployment of Grid infrastructure.  
However, ensuring that testbeds remain scalable and grow in terms of users, commu-
nities, and application installations requires that we automate the capability to provide 
customized execution environments on remote resources. Ideally, such execution en-
vironments would also have strong isolation properties and provide fine-grained con-
trol of resources to ensure enforcement of policies and thus provide incentive for 
wider sharing. Moreover, it is essential that such environments can be procured on 
the fly as needs and policies change. The development of uniform Grid protocols [1, 
2] provides uniform ways to describe, negotiate, and manage such environments. It 
remains now to find a way of implementing these environments.  

Virtual machines (VMs) have been proposed as an answer [3, 4]. In addition to 
outstanding isolation properties, VMs can provide fine-grained enforcement; and by 
their very nature—virtualization of the underlying hardware—they enable instantia-
tion of a new, independently configured guest environment on a host resource. In 
addition, since VMs can be rapidly suspended and their state serialized, they can be 
easily migrated to remote resources offering a new level of flexibility in a Grid envi-
ronment. Moreover, as a result of recent progress in virtual machine technology, these 
advantages no longer come at a performance cost to either the application or the host-
ing resource: systems such as Xen [5] demonstrate that they can be used with per-
formance degradation of less than 5%. 

These advances create interesting opportunities but also mean that new methods 
must be developed to realize such opportunities. In this paper, we present the concept 
of a virtual workspace, which allows a Grid client to define an environment in terms 
of its requirements (such as resource requirements or software configuration) and 



then deploy the environment in the Grid. We describe how workspaces fit in the Grid 
architecture, present a prototype implementing such integration based on the Globus 
Toolkit and experiment with two workspace implementations using Xen [5] and the 
VMware Workstation [6]. We describe our initial experiences with integrating VMs 
into the Grid infrastructure, and we present preliminary results of testing our proto-
type system with a bioinformatics application suite. 

2  Virtual Workspaces  

Interactions in present-day Grids focus on mapping jobs to resources, often with the 
assumption that an execution environment with suitable configuration and enforce-
ment characteristics will be provided by means independent of the Grid infrastruc-
ture. Although such an assumption is true for closely knit groups of Grid users, it is 
not justified when applications or users with drastically different requirements and 
rights are trying to use the same resources. Recognizing this fact, we define the con-
cept of a virtual workspace that can be automatically deployed on resources and pro-
vide a required execution environment. Thus, jobs can be mapped to workspaces, and 
workspaces can be mapped to actual resources in the Grid.  

A virtual workspace (VW) is a definition of an execution environment in terms of 
its hardware requirements, software configuration, isolation properties, and other sa-
lient characteristics. The intent of defining a workspace is to capture the requirements 
for an execution environment in the Grid and then use automated tools in order to 
find, configure, and provide an environment best matching those requirements. We 
could, for example, use agreement-based tools to negotiate contracts defining work-
spaces and the use of actual resources and then negotiate a binding between them 
following the models described in [2, 7, 8].  

2.1   Virtual Workspace Descriptions 

To describe workspaces, we use an XML Schema, which captures generic properties 
of every workspace, as well as properties subject to specific workspace definition or 
workspace implementation-specific properties. 

The snippet below shows the implementation-independent description of a work-
space. It contains the workspace category type that describes what mechanisms are 
used to create the workspace: we currently support implementations based on differ-
ent types of virtual machines but are also experimenting with dynamic accounts [9]. 
Currently, the expectation is that defining the implementation type will provide 
enough of a clue to services processing the workspaces to provide implementation-
specific processing. Workspace state can be one of shutdown (a “cold” VM image 
containing no running processes), paused (a “hot” VM image), running (a workspace 
loaded and running in some virtual machine monitor (VMM)), and corrupted (a 
workspace that cannot be deployed because of internal inconsistencies). In addition, 
the generic part of workspace description contains an end-point reference (EPR) that 
can be used to check the status of the workspace. It takes the form of WSRF endpoint 



reference construct with a resource key embedded based on the workspace owner’s 
distinguished name. Other properties contained in the generic part of the schema in-
clude three time-related elements: creationTime, lifeCycle, and lastModified. Crea-
tionTime records the time when the workspace was first instantiated. LifeCycle indi-
cates how long the workspace is available for use. LastModified keeps the informa-
tion about when the properties of the workspace were modified last. 

Further definition contains a description of different workspace aspects, such as 
required hardware, networking configuration, required software installations and 
workspace capability. Description of the “virtual resource” that represents the hard-
ware requirements of the execution environment contains elements such as the RAM 
size, disk size, disk type, and accessing mode, as well as devices such as virtual CD-
ROM drives. A network specification contains the description of a network connec-
tion and how to establish it (such as the method to obtain an IP address).  Software 
descriptions contain information about the operating system (e.g., kernel version, 
distribution type), library signature, and programs installed. Workspace capability 
describes what can be done with the workspace: for example, a workspace may be 
configured to run a program on startup or have some programs (in particular, hosting 
programs) already running and be able to service requests on specific ports.  

 
<xs:simpleType name="categoryType"> 
 <xs:restriction base="xs:string"> 
  <xs:enumeration value="dynamic account"/> 
  <xs:enumeration value="vm"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:simpleType name="stateType"> 
 <xs:restriction base="xs:string"> 
  <xs:enumeration value="shutdown"/> 
  <xs:enumeration value="paused"/> 
  <xs:enumeration value="running"/> 
  <xs:enumeration value="corrupted"/> 
 </xs:restriction> 
</xs:simpleType> 
 
<xs:element name="virtualWorkspace"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="category" type="categoryType" default="vm"/> 
   <xs:element name="state" type="stateType" default="shutdown"/> 
   <xs:element name="EPR" type="wsa:EndpointReferenceType"/> 
   <xs:element name="creationTime" type="xs:dateTime" minOccurs="0"/> 
   <xs:element name="lifeCycle" type="xs:integer" minOccurs="0"/> 
   <xs:element name="lastModified" type="xs:dateTime" minOccurs="0"/> 
 
   <xs:element ref="hw:hardware" minOccurs="0"/> 
   <xs:element ref="net:network" minOccurs="0"/> 
   <xs:element ref="sw:software" minOccurs="0"/> 
   <xs:element ref="cap:capability" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 

 
Wherever applicable, workspace properties are described as a set of possible val-

ues (e.g., RAM size with min and max requirements rather than one value). The in-
tent is to leave open the largest possible set of mappings of workspaces to real re-



sources. The schemas are extensible to reflect the capabilities of different implemen-
tations. For example, we use a VM-based workspace category type, extended from 
the generic category type, to describe the category information of a workspace im-
plemented with virtual machines. Besides the inherited category name, it contains 
extra properties such as the type of virtual machine monitor (VMM), which are spe-
cific for VM-based workspaces only. 

Based on the descriptions defined in the schema, workspaces can be selected, 
cloned, or refined. Cloning a workspace, for example, involves creating a new name 
(as encoded within the EPR element), a new resource and copying the description 
metadata.  

2.2 Virtual Workspaces as Virtual Machines 

We have surveyed candidate technologies for workspace implementations [4] and 
identified two especially promising ones: configurable dynamic accounts [10, 11] and 
virtual machines. Although dynamic accounts present an interesting implementation 
option (especially when used with enforcement tools such as quota and software con-
figuration tools such as Pacman [12]), we pursue this work elsewhere [9]. Our focus 
in this paper is on a virtual machine implementation of workspaces in view of their 
outstanding isolation and serialization properties.  

A virtual machine [13] provides an isolated virtualization of the underlying physi-
cal host machine. Software running on the host, or VMM, is responsible for support-
ing the perception of multiple isolated machines by intercepting and emulating privi-
leged instructions issued by the guest machines. A VMM typically also provides an 
interface allowing a client to start, pause or stop multiple guests. A VM representa-
tion contains a full image of a VM RAM, disk, and other devices, allowing its state to 
be fully serialized, preserved, and restored at a later date. Recent exploration of 
paravirtualization techniques [5] has led to substantial performance improvements in 
virtualization technologies, making virtual machines an attractive option for Grid 
computing. 

The serialization properties of VMs create the potential for effortless configuration 
of execution environments (for example, allowing a user to configure VMs with soft-
ware required by a given community and clone them). Their isolation from the host 
machine provides a way of running a different configuration from that of the VM host 
and allows guest VMs and resource owners to take advantage of enhanced security 
properties of VMs. Further, those abilities combined provide potential for migration. 
For these reasons, VMs provide an excellent implementation option for workspaces: 
the configuration of a VM image can reflect a workspace’s software requirements 
while the VMM can ensure the enforcement of hardware properties.  

3 Integrating Virtual Workspaces into the Grid Architecture 

Virtual workspaces refine the execution environment layer in Grid architecture: rather 
than mapping jobs directly onto hardware resources as in [14], we map jobs to pre-



configured workspaces which can then be mapped to Grid resources. The picture be-
low illustrates how workspaces work within the Grid infrastructure: 
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Figure 1: Grid Interactions with Virtual Workspaces 

 
3.1  Grid Interactions  

 
The traditional Grid resource management infrastructure was split into two parts: a 

VW Manager running on a host that allows a client to deploy a specific workspace 
and a job management infrastructure starting up jobs in this workspace. We also as-
sume the existence of two additional components: the workspace factory and a 
repository, which allow a Grid client to create, copy, store, and inspect workspaces. 

In order to create a workspace instance, a Grid client contacts the VW Factory 
with a workspace description presented in Section 2.1. A negotiation process may 
take place to ensure that the workspace gets created in a policy controlled way. The 
newly created workspace is registered with a VW Repository, which provides a Grid 
service interface allowing for inspection and management of workspaces, and the 
client is returned a WSRF end-point reference (EPR) to the workspace. The work-
spaces leverage the abstraction of a Grid resource [1] to enable inspection and man-
agement of properties such as termination time.  

To deploy a VW on a specific resource, a client contacts a VW Manager Grid ser-
vice on that resource and presents it the workspace’s EPR. The VW Manager allows 
a client to deploy/undeploy, start/stop, and (in our VM-based implementation) also 
pause/unpause workspaces. Deploying a workspace simply means that all compo-
nents of the workspace (such as a VM image) have been staged to the resource and 
that it is available to the VW Manager on that resource. Currently, “checking out” 
workspaces from the repository puts a lock on them, since their state might change 
during use. Similarly, “undeploy” checks the workspaces back into the repository and 
releases the corresponding lock. After the workspaces are staged, they can be started 
(i.e., become available for computation). Once a VW becomes execution-ready, a 
program can be started by using Grid infrastructure mechanisms (e.g., Globus Re-



source Allocation Manager, or GRAM) or by using other methods such as preconfig-
ured program startup or a continuation of a previous execution. The VW Manager 
can also stop, pause (“freeze” an ongoing computation), or undeploy a stopped or 
paused workspace (stage it back to the repository).  

In a complete picture of interactions, a community broker would negotiate reserva-
tions or agreements for the use of specific resource allocations on a resource. The 
workspace agreements would be matched against those allocations and create binding 
agreements allowing the deployment of a specific workspace on a selected resource 
much as described in SNAP [7]. Such agreements could then be renegotiated and the 
workspaces migrated, as need arises.  

3.2  Implementation  

Our current prototype uses both Xen (version 2.01) and VMware (Workstation, 
version 4.5) VMs to implement virtual workspaces. The workspaces use IP addresses 
from a pre-reserved pool for networking. The Grid services and infrastructure de-
scribed above were implemented by using GT4 (alpha version 3.9.4). In order to be 
capable of deploying workspaces of a specific type, a host machine has to run a vir-
tual machine monitor of that type as well as the VW Manager service. At this point 
we assume that no VM image will leave the trusted environment of a specific site; 
that is, we do not yet introduce mechanisms to protect integrity and privacy of images 
themselves, and we assume one repository per site.  

New workspaces are created by cloning existing images configured with the same 
requirements and stored in the repository image pool, as in [15]. Each workspace is 
configured with a certificate and a private key to authenticate itself to clients. At this 
stage, we do not support negotiation for workspace creation; a workspace request is 
either accepted or rejected based on existing policies.  

The VW Manager interfaces with VMM running on a particular resource to im-
plement to stage/unstage, start/stop, and pause/unpause operations: in Xen via an 
HTTP control interface and on VMware Workstation via GUI scripting. To stage a 
workspace, the VW Manager transfers the workspace data (including description 
metadata and the implementation-specific image) from the VM Repository to the host 
node by using GridFTP [16]. Once the workspace data transfer is complete, the VW 
Manager waits for the client to start the workspace, which includes creating a work-
space resource, loading the VM image into memory, and booting the VM.  At boot 
time the VM may initiate preconfigured operations such as obtaining its network ad-
dress and starting programs (including the GT hosting environment). Once this step is 
completed, a VM can advertise the hosted Grid services such as GRAM for clients to 
invoke. 

Although in the current prototype we do not address the issue of ensuring privacy 
and integrity of workspace representations (VM images), we do support standard 
Grid authentication and authorization mechanisms. Running workspaces and Grid 
clients mutually authenticate by using the Grid Security Infrastructure GSI [17]. Our 
infrastructure also accepts VOMS certificates [18] and is capable of extracting 
VOMS attributes for authorization. Authorization of workspace creation, deployment, 



and management is configured via access control lists based on the distinguished 
name and attributes of Grid entities.  

4 Experiences with Virtual Workspaces 

The performance impact of virtual machines on applications has been shown to be 
small (typically under 5% of slowdown) for different application classes [5, 19, 20]. 
In our preliminary evaluation, we explored the performance impact of different ways 
of using VMs as part of Grid infrastructure. We also conducted a preliminary evalua-
tion of VM usage with applications.  

To explore the best ways of using VMs within the Grid infrastructure, we timed 
the process of starting up a workspace and running a program in it on a remote node 
in different startup configurations. We repeated those experiments for both of our 
workspace implementations (Xen and VMware Workstation) and compared them 
with the time of job startup through a call to GT4 GRAM. In all the experiments we 
assumed that the necessary data had already been staged to the node (i.e., the execu-
table and input data in the case of GRAM and a VM image in the case of workspace 
deployment). 

All experiments were run on a dual 2.2 GHz Xeon server configured to run single-
CPU guest VMs. The same VM image configuration (Debian Sarge) was used for 
both Xen and VMware, and the same test application was used for all experiments. 
Time was measured on the server side only, by using wall clock time. 

 

 
Figure 2:  Xen-based VWs versus job invocation using GRAM  
 

 Figure 2(a) shows time elapsed from the moment GRAM received a job startup 
request till the end of the job: as per GRAM default the job is run in a user account. 
Figures 2(b-c) show the combined time of deploying a workspace implemented as a 
Xen VM and starting a job in it under two different scenarios. In 2(b) we take advan-
tage of the serialization property of VMs: we prepare a “hot image” (a paused image) 
with a hosting environment already started up. A call to GRAM is placed as soon as 
the environment is available. In 2(c), instead of configuring the workspace to start up 
a GT4 hosting environment, we start up the job directly. Note that unless the VM is 
partially configured at boot time, this scenario could also be optimized by pausing a 
booted VM.  



For comparison, we also ran a similar test on VMware Workstation, which is hard 
to time given its non-programmatic, opaque interface (other VMware ESX/GSX tools 
provide more efficient and direct interfaces). The results are summarized in Figure 3; 
a significant amount of time is spent in a controller that we used to adapt the Work-
station version.  

 
Figure 3: VM deployment time using VMware workstation 
 

Our preliminary experiments show that a Xen VM could be effective for a range of 
configurations with addition to job deployment time that can easily be absorbed by 
latency in the Grid environment. Startup costs of deploying a VM image are compa-
rable to starting a job; the trade-off is that while GRAM implements a flexible job 
deployment strategy the VM is already pre-configured with the job to be started. On 
the other hand, the advantages gained by using VMs are significant. Deploying hot 
images ready to process requests offers the fastest solution (note that this method 
could be used to eliminate application initialization time as well). However, this may 
not always be possible; in such cases using a VM preconfigured to start a specific job 
is also an efficient alternative (currently no credential is delegated to such a job; the 
startup is based on authorization of the client that submits the VM).  

To obtain a preliminary assessment of the usefulness of this infrastructure to Grid 
applications, we experimented with the EMBOSS [21] suite for bioinformatics appli-
cations. The most important effect was facilitating deployment: while the EMBOSS 
installation took roughly 20 minutes, starting a preconfigured VMware Workstation 
workspace took on average 6 minutes and 23 seconds, and the process itself elimi-
nated installation errors (as per our results above, Xen could be used for even better 
results). Another noticeable consequence was a more flexible use of resources, espe-
cially in a heterogeneous resource environment: we no longer had to require a ho-
mogenous resource base.  

5 Conclusions and Future Work 

We have described the abstraction of a virtual workspace, a customizable execution 
environment capable of being deployed on a variety of platforms in the Grid. Work-
spaces are defined in terms of client requirements, such as software and hardware 
requirements, and are implemented in terms of technologies providing an isolated 
execution environment, quality of service at the granularity of a workspace (as op-
posed to a single process), customized software installation, and, in the case of VMs, 
execution serialization and migration. 

We showed how workspaces can be integrated into the existing Grid infrastruc-
ture. The integration entails relatively small changes, but introduces substantial flexi-
bility of use. The use of Grid protocols allows us to fully leverage this flexibility and 
create, deploy, and shut down workspaces dynamically based on policy-driven provi-



sioning decisions. By virtue of their properties, workspaces are a promising vehicle 
for implementing policy-driven Grid usage. 

To evaluate the feasibility of our workspace implementations, we compared the 
performance of GT4 GRAM, a widely used job startup service for Grid applications, 
to the process of starting up workspaces implemented as virtual machines in a variety 
of scenarios. In conjunction with the small performance impact on applications [5], 
our results show workspaces to be a promising abstraction for Grid computing. In 
addition, our experiments identified a number of job startup scenarios relevant in the 
workspace context, showing how they may be used in practice. Preliminary applica-
tion evaluation of workspaces also proved satisfactory and fully realized our expecta-
tions for more flexible resource usage.  

More work is needed in order to fully assess the usefulness of these ideas. In the 
short term, we will focus on the privacy and integrity of migrating workspaces. 
Workspace distribution (delivery from Repository to host) requires transferring im-
ages of a few gigabytes; this task can be handled by using the presence of an image 
on a node as a matching criterion as proposed in [15] or by transferring only partial 
images as in [22]. In addition to performance impact on individual applications, we 
are considering scalability issues that can be addressed by either using a lighter-
weight workspace implementation such as [23] or mapping groups of jobs to one 
workspace.   
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